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It has boon shown that olocti’jo and inagiuitic fields due to spin-l 
parti(des carrying electric and magnetic changes â ’c symmotTical.
In order to avoid the arb'tiary stj ing vaiiablcs in the solution of field 
equations, two four-potentials aie introduced and it has been shown 
that their components arc proi>orlional to electric and magnetic- 
currents source densities respectively.

1. Tn t b o d u c t io n

Using the methods given by Lomont & Moses (1967), we could derive the reduc
tions ol wavefunetions transforming as scalar field (Rajput 1969d; Paikash k  
Rajput 1975), antisymmetric tensor field (Rajput 1969a, 1969b) and three vector 
field (1969c), for noii-zmo as w(dl as for zero mass system, to the iricducible 
I epresentaljons ol’ propei', orthoclironoiis, iniiomogoneous Loientz group in 
terms o f Foldy-Shirokov (1956, 1958) and Lomont-Moss (1964) realizations 
These reductions have been used for the reduction, second quantization and 
interactions (Rajput 1970, 1971b, 1969c; Pai’kash & Rajput 1974) ol electro
magnetic fields for zero and non-zero mass systems. In the reductions for non
zero mass system, it has been seen that in the presence of an electric charge source 
the longitudinal component ol <'lcctric fields is non-zero while that of magnetic 
iiold vanishes. This lack of synunetry though agrees with the experimental 
observation leading to the conclusion of non-existence of free magnetic charge 
m nature, is somewhat disturbing because nothing in classical physics forbids 
their existence. To overcome tins lack of symmetry, Dirac (1931, 1948) pul 
forward the idea ol magnetic charge as the natural generalization of electricity. 
He showed that quantum mi^chanics demands the existence ol' free magnetic 
polos, having the pole strength e/2a, avIiok- a is fine-structure constant. The 
similar result was deduced independently by Saha (1937, 1948) from very simple 
considerations of classical elect rodynamies taking a point electric charge and 
a magnetic polo at two points and comxniting the angular momentum of the 
system about the lino joining these point s Schwinger (1966, 1968) formulated 
the field theory of magnetic charges carried by spin-1/2 particles and Zwanziger 
(1968, 1971) could generalize this theory for those particles carrying both electric 
and magnetic charges. Deo k  Singh (1973) extended Zwznzigor’s work -for
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spill-1/2 fields to tlie case rd elecfcrie and magnetic charges carried by spin-zero 
fields, Jn the prestmt work, aHsuming the generalized charge of a spir-1 massive 
parti(;Io as a complex quantity with electric and magnetic cliargos as its real 
and imaginary parts w(> have undertaken the study of njduction of electro
magnetic field in the x>iosence ol eloctiie charge source density to the symmetric* 
fields of pai'ticle.s cai’iying both thĉ  tdecd-iic and magnetic charges.

We have cariied oin the reduction ol generalized electromagnetic fields 
to the irreducible repnssenta-tions of proper, orthochronous. inhomogeneous 
Lorontz group m lint'ar momentum basis loi non-zero mass system. Keduced 
expanstions lor electric and magnetic fields arc‘ lesolved m to longitudinal and 
t-ransvoi’so parts and it has been shovm that lioth the longitudinal fields aie non- 
vanishing and symmclrical. It has also been shown that the magnetic* charge 
has its contribution in piodncmg electric fields as electric* chaige (in motion) 
contributes to the magnetic field Two vector potentials and two scalar potentials 
are intTodnced for- tlic description of transverse and longitudinal electiic* and 
magnetic fields and it. has been shown that edectrie and magnetic chaigc sourte 
densities are proportiomd to fundamental oleetric and magnetJe charges

Maxwell’s field ecpiations arc' niodifiod m the presence of electric and magnetic 
current and charge source' densities to the gcmeiaJized field equations in terms 
of the generalized electromagnet re wave-function and elec'tromagnetic* field 
tensoT Hciparatoly Ln order to avoid the arbitrary stirmg variables ni the* Solu
tion of those field equations I.avo four-potentials havci been introduced and it. 
has been shown that their comjronents are pioportional to fundamental electric 
and magnetic charges Reduced expansion ol generalized four current density- 
has been reduced and it has been shov n that it satisfies the continuity condition 
ensuring its conservation Imposit.ion ol the generalized field eejuations on the 
rciduced expansions ol elc'cl.romagnetic fields has led to the proportionality of 
oloctric and magnetic current and clrargc source densities A suitable Lagrangian 
density which yields the required field ecj[uations has been given

2 R e DTJOTIOM o f  P ie LDS o f  P a kTICLES CAREYlNci R l e c t r ic  a n d  
M a g n e t ic  Oh ak g es  (JjIn e a r  M o m e n tu m  B a s is )

Reduction of electric and magnetic fields m the presence of electric and 
magnetic charges to the rreducible representations of proper, orthoclu onoue, 
inhomogonoous Lorentz group can not be done in the usual manner in which 
the reduction of ordinary electromagnetic fields (in the absence of monopoles) 
is carried out (Rajput 1970, 1971; Parkash & Rajput 1974b) because in this case 
we havo restriction (H  ^  cur >4). In order to carry out this reduction let us 
start with the results derived by Epstein (1967a) for electric and magnetic fields 
in the presence of the particles canying both the charges, (electric and magnetic).
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Substitutiiig m theHe results our reduced expansjons of scalar (Rajput 1969e) 
and vector fields (Rajput 1967c) for non-zero mass system, we get«■ ' -  I''”  '»
and

- ; d p [  o x p { - i ( p . x - a - 0 } ]

. . .  (2)

where /(p ) —/(»«., p) is the representation of wave function of particle of mass m 
and spin-] in the basis characterized by llie Hilbert space on which the generators 
(d inhomogeneous Lorentz group operate; h{p) — f*{m, —p); x is the space-time 
four-component position vector, c ^ f e ~ l ,  and w(p) ^  ^  w. The
generalized charge q has been considered as a complex quantity with electric 
and magnetic charges e and g as its real end imaginary paits;

q — e—ig. (3)

This consideration has been shown (Parkash & Rajput 197S, 1974a) to have 
certain advantages over that given b}̂  Zwanziger (1968a), regarding the derivation 
of electric and magnetic coupling parameters. These equations may also be 
written in the following forms .

where

EH^) -

KHX) :

£(*) -  EHx)-\-V.'r(x),

H(x) =

iem r f dp p[p  ,f(p)} , , ,,,
CO oxpWpjc <«()>

- J ' * ?  . e x p { - « ( p . x - < o t ) } l .

(4)

(6)

(6a)

_ j2 g  , P{P:^_(P| e x p { - t (p  x -cu ()} (6 b )



and
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-Jdp[e?i*(p)- _ '/{pxA*(p)) j exp {-i(p ,x -cot) j .

... (7a)

«^ (* ) =  I [ ;  ®^p«p

- / rfp [ , / .* (p ) -  ] e ^ p { - i ( p , * - . 0 } ]

... (7hi
It may be readily Been that

div — div =  0 

curl -  curl =  0
and ... (Si)

The divorgoucoleBB parts E'̂  and ol gemualizrd olccxiic* and niagnotjo fields 
are intorpaited as their Iraiisverse parts in the conventional manner v̂ hile non
curl parts E^ and are) treatê d as longitudinal parts. It is obvious from 
the reduced expressions (Ca) and (Gb) thai; both the longitudinal fields are non 
vanishing and symmetrical in the presence of electric and magnetic charges while 
in the absence of electric or magnetic charge the itorrosponding longitudinal field 
vanishes. For the oi'dinary fields (i.o., for g — 0) the reduced expansions 
(Parkash & Rajput 19711; Rajpm. 1971) of electric and magnetic fields are not 
symmetrical. Moreover the longitudinal parts E^ and are proportional to 
e and g respectively. This supports the assumption made by Schwinger (1966a) 
and Zwanziger (19G8b) in developing the quantum field theory.

From the transverse fields E^ and given by eqs. (7a) and (7b), wo can 
derive the reduced expansions foi- iho transverse magnotJc and electric potentials 

and respectively, by using following relations ;

where

A ^x) =  w lD {x ~ x ‘ )H ^ x ‘)dx'

B̂ (x) -vxfD(x-x')E^(x')dx'
(9)

(10)

D(x—x) ■== 7̂t\



We tbua geii

... (11)
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a n d

+  J d p [ < ? q p )  „ » P { ? ^ ' ^ . ( P ) J + 4 p x A * ( p ) } j  e x p { - i ( p . x - o , ( ) } ]

...  (12)
from which it la obvious that

£2- ^ ... (13a) 

... (13b)

Tliorofore in order to doscribo the (.ransvt'i ao (dectromagnotic fields in tho presence 
of electric and magnetic charges, the two tiausverse vector potentials are required. 
Tho samo roanlt was derived somiclassically by Cabibbo & Fenaii (1962)

Longitudinal parts and given by eqns (6a) and (6b) may also be 
written as follows :

=  -A 0 ,
and

where
d p

+  / ^  { p -^ * ( p ) }  « x p  { — t ( p .X - w ^ ) } j

(14a)

(14b)

(15a)

and

<f‘f =  — 1-̂ | 4^72 [ 5 -^ {P -  f  (pO exp {Hp.x-wt))

+  s ^ { p  **(p)) «*P { - ‘ (p .* - "* ) } ]  . ... (15b)

Those scalar fields may be intorprotted as electric and magnetic scalar potentials, 
respectively. In terms of these potentials one can introduce in the obvious
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maimer, the oleotric and magnetic charge eomce densities jo(a;) and 
follows :—

=  lD {x—x )h {x )d x
and

0 . -  lD {x~x^)K {x')dx ’ .

Comparing these equations with eqs, (15a) and (15b), we get

'̂o(») =- I o~|^37a [ /  ^  { p / ( p ) ) e x p  (»(p a r -u ,J ) }

(16a)

(16b)

and

”  J - ^ { p  /i'*‘(p))exp{—i.(p.x-wO}]

=  \q^irW  [ -f ^  e ^ « P  * -«■ ') }

_  J  ^  ( p  h*(p) oxp f - i ( p  x - o - O ) ]

(17a)

(17b)

which au) the reduced expansions ol eleetiic and inagnouc charge source densitie,p. 
It is obvious from tliehJti (expansions that

0̂ 9
... (18)

Using the expansums (1) and (2), ŵe may derive the following reduced expansion 
of the wave fanelion, ijr — which transforms as elecf-romagnetie fields

-  I ip [ f W  ... (19)

It may also bo resolved into longitudinal and transverse parts in the following 
manner :

i/r(x) =

and the. longitudinal part may be tvritter as 

fii(x) =  - A ^ ,

. . .  (20) 

... (21)
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-  (2 2 )

wnich is the generalized scalar potential. Generalized charge source density 
t/o(®) m,aj?’ be intioduced in terms of <pg in the manner described b\ eqs. (16) 
Thus we get

■/o(*) =  -  [ J ^  {p-.f(p)}exp {»(p.*-<u()}I q I

which may be witteii as

(23)

(24)

where j^{x) and /cQ(a;) are given by eqs. (17). Transverse part m cq. 
(20) may be written as

where
V{X) ^ AHx)~iB̂ {x).

(26)

for AF  and BT given by eqs (9) and (10), and therefore, V '̂{x) may be inter- 
prettod as the generalized transverse vector potential./ Obviously, V^(aj) may 
also bo written as

Lot us put 

and similarly,

V̂ yx) — î x J D{x—x)if’̂ {x—x’)dx'

A ^ x )  -  B ^ x) ^  V'^^x)

... (26)

E'^ix) =  H^X) =  ĵfT̂ {x)

Then the relations (9), (10) and (26) can be written as a single equation given as

V'  ̂— f  i>{x—x)^k'^^{x')dx ... (27)

where is the usual Levicivita three-index symbol and is the antisymmetric 
symbol with =  1.

So far onlĵ  the transverse vector potentials have been introduced—Total 
vector potential may be introduced in the following way (Schwmgoi 1966a>)

A(x) — A^(x)~^S a{x—x)K {x ')d x ' 

B{x) =  fi^ (jr)- J‘ a {x - x )h (x )d x '

... (28a)

... (28b)



where a{x—x )  is a numerical function defined by the following equations :

curl a{x—x') ... (29)

V-«(x““ jic') == 0 ... (30)
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and

In eq, (29) h{x—x )  is uon-zuro only along a Hingula]’ line called a Dirac string 
and satisfies the following condition

^ ■h {x~x) — — (̂ac—x') (31)

Those ocjuations (28a) and (28b) Jbr tolaJ potc^ntials are cho&on in accordance 
with the .similiii iclatjons for th(" total lioldh £ ’(.r) and //(.t:), widen can be derived 
in the following iorni bĵ  oonibinmg equations (4), (5) and f^la) and (14b) and 
(IGa) and (16b) .

E{x) =  £ ^ * ) - V  S D {x -x ') j„ (x ’ )dx' 

H{x) =  H=^(»)-v J l)(x-'x')h„(x')dx'.

(32)

(33)

Negative sign beiore tihe miogial in (̂ ([. (28b) is choscui keeping m viow' the spaee- 
roflection elunjreteristic ol iJ ’̂(.r). Takiin  ̂ (,iirl on botli sides of eqii (28a) and 
using eq,s. (13a) and (29), ŵe get ,

^^xA{x) — j  h {x—x')K{x')dx' ■- (34)

taking divergence ol t-liis equation jmd using cqn (31) we get

d iv / /(a ;)  - - l-y(a;) . . .  (35)

w'̂ hich is the goiiorali/.ed JVIaxweirs equation for divergence of magnetic field,
Tins equation tfindously maintains the sjonmetry in field equations lor generalized 
eloctromaguetiie fields, [f string is not crosssed, h{x—x') -- 0 and Iheroforc, wo 
get,

H{x) ^  curl y4(a:) (Locality eondition).
Jn the similar manner oqn. (2.28b) jnelds

div £(.r) =  j„(.r) ... (36)
and also for not crossing the string

£(.r) — y.rB(a;)

If wo take the divergence of equations (28a) and (28b), w'-e get
y .A {'x )= --v B ix )^ iy  ... (37)

Let us now define longitudinal potentials AH^) and BHx) such that

A[x) A^{x)-\-A^{x) ... (38a)

B(x) ... (38b)
and



oqualions ami (37) yield

I lt[x~x)K {^ ')dx' . (30)
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uud
sj ^  0.

Winch tor rioiiK̂  choice ot hiniig iiiay be solved lo gel Â  ̂ m ticrins ol sliiiig 
variables {(J)y is giV(‘ii l»y (hj. (15L)) Hiiudarly. lor the potoiiijal w  liavt'

and

which may yield

J K x -  x),)^[x')dx' 

0 ■ ■ (40)

la  order to avoid thi‘ solutions in terms of arbiliaiy stung vai'iubles. let 
us introduf;e loin-iiolenliais .4 — {.-I,,} and /? — sncli ihat A  ^  { A ^  n j ) f )

and l i  — (fi', /'Of/) 111 tcnns (4‘ s])atiaJ and teiujioral jiaits oJ thrsi* \(‘ciois,
electric and nuigiuitie fields ma;\' be wriUen as

7?(.r)= -  ^  -va>« -A x B

i/(x) ^  -^ -V < > » + V X i4 ... (41)

(Jompanng tlmse (H|ualions v'lth eqs. (1) and (2), w(‘ may readily (ieuv<* tJie 
lollowmg reduced exjiaiisions for the eoiiijjorients of these vectors .

-j- s — '(p -* - “'i /d
V ) J

(42a)

+  .,1 [p/»*W)<-xp(-<(p H -cO }6L)(a»“| 7?/)

-  I ( / [  ■ ' ' » *  “ ‘“ '>1

J A*(p)expf—/(p X"taO }l
OJ J

(‘12b)

(42e)



and
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^u,['Xm) ip A*<P){''^1’ { -« (P  x -coO j ]
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It js ol)vious li'oni tlio.so ivdiu od t’\j)imsions thul

A , _r
K  /̂

which when combined Mith cqn. (IS) yields

An __ 'ISL Ai

... (42d)

... (41i)

(44)

Geneualizeo Fxeed Equation

111 th(! in'csence ol‘ elcelrie and maguelic* charf^ sources two MaxAA'oll’s 
equations ot (‘lecti'omaj^uoiic fields liavi' iilvt‘Luly Ix̂ im derived as oqns (35) and 
(35). The oilier two given by

and

h ; .. (45)

... (40)

wdiere j  and k are eleerrii. and magnetic current densities. In the.sii equations 
it IS assumed that pi.sitivi' magnetic charge is a souico Avhile negative magnetic 
cluuge i.s a sink lor magnetic field f / .  This assumption determines tlie sign of 
A’„ and k in eqs (35) and (40) and permits one to construct a inagnetie dipole 
as the conibmation el a jiosilivo and a negative inonopole so that.-it. will be in- 
dislingiiishable from tliat produced by suitable electric current.

In terms of A\a\e function i// given b, eq, (20) these field eipiatioiis can 
be Avritten as follows

A (47)

Aa./// - fb//
dl ... (48)
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whei’o (/,, is iJin cliaj’̂ (‘ somvo flonsiiy ])y cq. (24) aud J is
f êiieialrzed oin roiil. density defined as

J ~ j  ik. . . .  (49)

Tt is now possible to introduee f/enoralized loin -cui rent density

whero
- - ( /  i ’h ) ^  ik. vA:„)

Substituting the ledueed t‘xpansions (1) and (2) in fields erp.s (85), v3G), 
(15) and (4-G) wo get llie iolloAAing expansions in addilmn to tliose given liy 
<njs. (17) ;

« -  [ '  ?  1

'"I"® '’’ ]
I ... (51)

rt, js obvious Iroin these K'llneed (‘xpansioiis ol gonerali/eci ehiiige and emrent 
donsitiK's that

... (52)

which gives tin; pmjjoi’t lonality ol elialne eliaige and cniient soiireî  densitû .s 
with magnetic charge and ciiri''nt soiiKv deiisil i(̂ s i c^spectivelv mtia ins of th(‘ 
ratio ot electra* and magnetic t'lindameiital (barges.

In terms o(‘ idnr-potentials ,M,il and \\(‘ may defiin* tin* elect romagnetii-
tcnsoi as follows .

whore is completely antisymmetric Hnai-tcnsor and
d A v
d.r„

(5.8)
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TIk'u 111'' (i(‘ld loiiK (;J0), (45) and (Ifi) may b(‘ wrilloii in the folloniu^ 
(•(nn])a(‘1 lorjii

ani I
III' .'/u

-- 1;.

... (54 a)

.. (54b)

v\li(M’(i i i i ( ‘ ilic* C(>ni]»oJioiil,K o f  a du a l 1(misov n b la jiicd  fro m  F , n t  b y  t h e  dua l

11 aii'^fonnal ions \.i\

- I .) /'(-t, -lyp) ... (55)

Siibsl it 111 i i u ;  (M|s ( 5 , 4 )  a n d  ( 5 5 )  i n  I h d d  (M|S ( 5 1 a )  a n d  ( 5 - 4 1 } ) .  n i ‘  <^(.t 

’ "  D.iylr„ f)xy- ’
. (50)

nlu'in Tu “ and llu‘ comiininMd.s of ^miM’alizod i-iinnil lonr-vt'cloi
are dnlini'd bv <'(|uation.s (:?l) and (40)

IhMluci'd (\\|iansions of ucMuaali/C'd foninMirronl d(Mi.sjl,y J may Ix' i(adil\ 
d(‘ri\'(*d by iiMiiy Ibn indun'd ox|jansion,s (17), (50) and (5J) in (‘(|.s (124) and (40) 
11 may llmi b(‘ sJi()nn

d J , { x )

df, \ d iv  J { x )  - -  0 ... (57)

u4iu‘l\ IS 1Jli‘ m|ual.ion ()l‘ t onl muity ensnvmij; tho conscTvalion t)l oeneralizc'd iour- 
ciimMil

LaqKUHjian Dr/hsih/

L -  - i/tr^ K  I,.

V ( a . \ , - l i n , ) : i , - ( f i A „ - \ a B , ) k „  . .  (58 )

n4ua(̂  DL and ji am loal aibiliary |iaraimdoi's, can Ix' .sho\ni tr> yield fiidd (‘f( (4(i) 
under lh(‘ iiid(']iend(mt variations of .1̂ , and For 11u‘ varialion ( f  polcmlials
J,, and Pin i’('spmiv(‘ly, fj,et

and

/ Oh], d-yly\ , / / /  d-B \ I 7
) +  2 (5;r,t),r„ 5.r,V ’
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From tlmso (‘Cjualious tho Ck'KL o(|im1ious (.5(1) niay Ix' K'jidily pio-
vicled lilial ar-\-p- i- (►

Althougli llm usual Lagraiigiau fui l\Iax\\oJl sysicaii is not iiivarjaiit midoi 
ilio dual Iraiisfoimatious ol potouMal and ruiroiit, llm Lagiauifiaii iiiti t)diu‘( d 
Imi’d js dual iiivaiiantp. Tins dual iiivaiiaiic(  ̂ \̂ill ho disnissc'd m d('tad m mu 
laior papoi'
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( îbihlii) X & ’̂’('11,111 1̂  l!M)2 \ a o\ 'o  i 'u m w to  23, 11 17.
Dimn 1' A AI l ‘):il /VfK A'o(/ pSV;f.A133 (.0
Diinr- I’ A M 1<MS /Vo/s. 7?rr 74, .S17
Dc'oJl. M. (feSin l̂i I. r lfl7:t /y;-/ ./ V h m  47 (i".U
E|)kU'iii K .) I!)b7ii/Vy//.s JjdUi 18, Till
li’olfly li L  jnSOP/o/.s' /)V(' 102, ')IjlS
Lornimt J S. IMnsrs H K Ibli-l / o w n  M a (h , 5. iif)l 
Lnmonl. J. S cV, Moses H K lM(i7l» r/fau/y. 'MnUt Plni\ 8. S37 
:\los(‘s-H E ll)()7c ./oyyyjy M a lh  / 'Ay/,9. 8. 113 I 
rai'kiisli Om iV l\a)pol lA S, Ji)7'l h u l  •/ 7'/yy/,v 47. (ill 
I'ai Itash ( )m lV llajpiil II iS l'J7-la/yyr  ̂ -/ /Vyyys' 48, la2
Vuikash Oin A liujpul B S 1D711) h ii l  J  48, Jlo
Ikiikash Oni, Kaijail. H S  ̂ Sin'’̂ li M 11)71(1 h id  d  Phii.\ 48,00!).
1 *.uleash Om A lifijpill B S PM  ic  h id  d 48 ,1.̂ 1)
Baikash Om A l l̂ajpui B iS 11)75 J'ltd d  P it iv  A A p ^ d  P h ijs 13, 471
Kajpul. B. S 19()9a In d , d  W n js 43. l:J5-
Haji)oi B. N 19fi9l)yy?f( d Phyh  43. 4:i9
Uajpiit B S l%9e /x'/ d  P lu fs  43. (iOJ
llaipul Ji iS 19()9d fi ll! ,/ P w c  A App/ P h y s  7, 7JO
Enjixit, B, N 1909(' /y/(7 ./. Byy/r A 1 pp? P////9 7, S2;i,
llajjait B R 1970a Ah/oŷ 'o ('yyarn/o 66A, 5J7
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