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A b stra ct : The energy levels o f  the Schrddinger equation are calculated for several forms o f  
potentials in two-dimensional space using the inner product technique for several eigenstates and 
over a wide range o f  values o f  the perturbation parameters The obtained numerical results are 
compared with those previously reported by other methods
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1. Introduction

The study of systems of coupled oscillators is important and has wide applications; for 
instance, in the field of molecular physics, this model has been applied to intramolecular 
vibrational energy transfer [1-3], vibrational spectroscopy of polyatomic molecules, 
intramolecular [4,5], and unimolecular reaction [6], etc.

The inner product technique of eigenvalue calculation investigated by Blankenbecker 
cr nl [7] and applied to one- and two-dimensional problems. Killingbeck and Jones [8] used a 
renormalized version of inner product theory to calculate energy eigenvalues for two- 
dimensional oscillator.

The aim of this paper is to calculate the energy levels of the Henon-Heiles potential, 
and to iTKxiify the inner product technique to treat potentials with mixed parity. We consider 
here the generalization of the Henon-Heiles system, which can be expressed as

V(jr,>) = x ^ + y ^ + X ^ x ‘y^ + ( 1)
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The potential (1) has the general form, and with different values of the parameters 

the potential (1) takes different types, for example at (/ = 1, 7 = 2 ,
L = 3, /r = 0) it reduces to the Henon-Heiles potential. We should mention here, that for ease 
of comparison with results available in the literature, the potential will l)e taken as

=  j e o y  +  j ( o y  +  A
2 3xy + /ir (2)

The energy levels of the Henon-Heiles potential (2) has been calculated by semiclassical 
techniques as well as by quantum mechanical techniques; for instance, various authors [9-12] 
have made numerical studies of the Henon-Heiles potential. The eigenvalues and 
wavefunctions for the potential based on the adiabatic approximation theory have also been 
calculated [13]. The hypervirial perturbation theory with adiabatic approximation has been 
used to calculate the energy levels for various slate numbers [14]. Also the perturbative 
semiclassical methods have been used to calculate the energy values for the same potential for 
various eigenstates [15]. Recently the WKB approximation, which is the so-called 
semiclassical method, has been used to treat the same potential [16].

The Henon-Heiles potential has no strictly bound quantum mechanical states due to 
tunnelling; though for small excitations, the error in assuming discrete eigenvalues is small. 
The quantal energy spectrum of a nonintegrable Hamiltonian is expected to exhibit two types 
of behaviour. At low energies the energy levels belong to a regular spectrum, and at higher 
energies it is predicted that energy levels exist belonging to an irregular spectrum. The energy 
levels of an irregular spectrum arc more sensitive to a slowly changing or lixed perturbation 
than those of the regular spectrum.

To overcome the divergence problem we use a renormalization parameter a  and write 
the potential ( 1) in renormalized form as

V'(x,y) = + + |v(jc,j)-Aor(.v‘

where
^ = I + Aa.

(3)

(4)

The ground energy level for potential (1) is calculated for different values of ( XJ,J,L,K,^).  
and the results arc shown in Table 1. Also the ground and the first three excited states arc 
calculated for potential (2) for different values of the perturbation parameters.

In rectangular coordinates, the Schrddinger equation for the potential V (x.y) can be 
written as

^  -  4 t  +  (AT.>•).dx dy^
(5)

The energy £|, and wavefunction corresponding to the Schrddinger equation (5) for 
potential (1) when the perturbation parameter A = 0 can be expressed as
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K,.n, = + 2n, + 2, = 0, 1. 2...... (6)

' f ' n , 2"""' !h J  (jf) exj  ̂ \h „ ( v) exp| -  ^  (7)

where Ĥ  (x) and H„ (> ) are Hermile polynomials.

2. The recurrence relation for the two dimensional-system using the inner 
product technique

The inner product technique is a perturbative technique which gained certain popularity to 
handle numerical calculations of eigenvalue problems in multidimensional systems for various 
types of potentials.

The inner product technique has been applied to two-dimensional oscillators with even 
parity of perturbation [8,17]. In this section, we intend to point out the flexibility of the inner 
product perturbation theory to handle mixed parity perturbations.

The strategy applied to solve the Schrodinger eq. (5) to obtain the corresponding 
eigenvalue, begins with the use of the following reference wavefunction :

0 (x,>O = exp + (8)

where is a real positive variable and and are non-negative integers (stale numbers). 
The reference function <p(x,\) becomes a correct unperturbed state wavefunction only for the 
special cases fi = 1 and Hy = 0 , 1), but otherwise the general calculations involve various 
overlap integrals between it and the accurate wavefunction *P(Jc»y). It might be conjectured 
that the optimum choice of p  corresponds to some situation of maximum overlap of (l> with 

however, P was simply varied empirically to obtain the best results. The next step to be 
taken is to introduce the inner product in the form

«(M ,N ) = {(l>\x^y'"\H') (9)

which plays a major role in this technique, where the R{M,N) are sometimes called moments. 
The final step is to work out the quantity

M /V|£/?(M,/V) = {^ iHx ' ^y ( 10)

obtained by taking the inner product of the Schrodinger cq. (5) with the product 
and then inserting the perturbation expansions

K

E  = ^  E( L) k^ .

n i)

( 12)



142 M  R M  W itwit
into relation (10), we obtain the following recurrence relation with three-dimensional arrays, 
after some algebra 

AT=50
^  E{L)R(M,N,K-L)  = R(M + I ,N+J, K- \ )+f i R(M+L, J  + P , K - \ ) - a
1̂ 0

[R(M+2,N,K- l )+R{M,N + 2,K-l )]  + 2^[Af + A^+n^+/i,, + l] 

R(M,N,K) -  + 2Mn^-M^R(M-2 , N, K)  -  +2/Vn,.- Â |

R(M,N-2,K) .  (13)

The unperturbed energy can be expressed as

£(0) = 2p[n^+n^. + l]. (14)

The recurrence relation (13) is then used as follows : If the energy sum up to E(Q)X^ is 
required, then the indices have the ranges set out below

/: = 0, 1, 2..........  Q

(fixed AO = 0, 1, 2 , ........Q

(fixed K . N ) M  = 0, 1 ,2 .......... Q

the indices are scanned in the order given above and the relation (13) is used to work out 
R(M,N,K)  in term of lower order elements which are already known. E(K)  is found from the 
eq. (13) for the special case M ^  N because in this case the relation (13) is used 
differently and the sum on the left hand side becomes E(K),  because of the intermediate 
normalization convention riy) = 1 which we impose on the algorithm. This gives the 
value of the energy coefficient E^K) in terms of already calculated elements of the three- 
dimensional arrays R(M,N,K).  The sum of the energy perturbation series can then be 
calculated term by term, and a  is varied to give the best possible convergence of the 
perturbation series. The compulation was carried out to double-precision accuracy by using 
VME system with Fortran (77) program. On the other hand, the algorithm outlined above can 
be implemented on microcomputer [8].

In the present paper, we have found a further application for the energy eigenvalues by 
calculating the expectation values without using wavefunctions. To find expectation values of 
type < > for the potential

V(x,y)  = x^ •\-y^ Xx^y^. (15)

We need to have the eigenfunction *P(x,y) for all jc and y if we wish to apply the definition

/  I N  2 N \  f ir /2 . . 2N 2N , ,U  y j  = (x , y )x  y dxdy.  (16)



Perturbative calculatum of energy levels for coupled oscillators etc 143

To find y(x,y)fOT arbitrary x, y and for any state number (n,, ny = 0, 1, 2,..), is not easy. 
However, Killingbeck [18] has ^ l i e d  a very simple perturbative numerical algorithm for the 
calculation of an expectation value, based on the formula

( x " V ^ )  = Lt,^o ^  + ex^'^y^'^) - e (h  -  (17)

This algorithm demonstrates that expectation values can be determined by an approach based 
on eigenvalue calculations, without the explicit use of wavefunctions. The way in which we 
can calculate is as follows; we do two calculations, to get two E values, with + e x ^ y ^  
included in the potential

E , = x ^ + y ^  + X x V  + ex^'^y^^ md

£  = + A x V  -  ex^'^y^'^

(18)

(19)

where c is  a very small number, typically (10 ’ ^ e S lO"̂ ). The value of is then
given by

( , = V » )  -  i  1= . -  E ].2e

for example at 2N s  2, A = 0.5 and e = 10”’ for eigenstate n̂ , = Uy = 0, eq. (20) becomes 

10

(20)

( . V ) = [2.10821379884-2.10821376055] = 0.19145000029. (21)

3. Results and discussion

The numerical results for a two-dimensional system are presented in Table 1, for the ground 
stale Eqq with different values of perturbation parameters; it is clear that the inner product

Table 1. Energy values for the ground>state for the potential ( 1). for several sets o f  perturbation 
parameters.

X
I  J L K \i 
1 2 3 0 4

t  J L K ii
1 2 3 0 1

/  J L K  
2 2 1 1 1

0.001 1.9999999444444317 1.9999996944442650 2.0002498439138079

0.005 1.9999986111031538 1.9999923609989839 2.0012461140999907

0.01 1.9999944443171231 1.9999694426502501 2.0024845365616810

0.02 1.999977775740322 1.9998777490604472 ^2.0049387732394514

0.03 1.99994998968273 1.9997248545321512 2.0073636095761402

0.04 1.99991107849175 1.9995106509779684 2.0097598943891263

0.05 1.99986103143719 1.999234986534003 2.012128430118983

0.06 1.99979983469471 1.99889766501212 2.014469976669919

0.07 1.99972747132432 1.99849844518677 2,016785254817740

68B-(7)
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T a b le  2.{Contd.)
2

2.0

1.5

1.5

I.O

2

1.0 0.15 - 0.1

1.5 -0 .1 5  0.1

2.5 -0 .1 5  0.15

1.0 - 0.1 0.1

0

1

0

1

0
1
0

1
0

1
0

1
0
1
0
I

0
0
1

1
0
0

1
0

0

I

1
0

0
1
1

1.2034048952926  

2.6260612389250  

2.1874957318595  

3.5672929910501  

1.2241791322612  

2.4476784531188  

2.4447092929989  

3.6671666346361  

1.4023329575697  

2.6257575055191  

2.9783453992141  

4.2024677843936  

0 .9985114296570  

1.9958178856053  

1.9881289674396  

2.9811862589588

approximation [14], semiclassical [15] and hypervirial methods [13] for several sets of 
perturbation parameters (A, /i). It is seen that the inner product results are excellent
relative to the previous ones.

Table 3 . Con^arison energy values for Henon’H eiles potential with variation in perturbation 

parameters A. =  0.49, Wy = 1.69, A =  - / i .  The empty spaces mean the results arc not available.

-A  riĵ , riy Present results BQ AA SC HR

0.01 0.99997659863626

0.02 0.99998995929848

0.03 0.99975622899927

0.04 0.99953288293574

0.05 0.99921417130018

0.06 0.99878298845122 0.9988 0.9988 0.9987 0.9988

0.08 0.99750503091855 0.9975 0.9975 0.9975 0.9975

0.10 0.99551888097989 0.9955 0.9956 0.9955 0.9956

0.12
0.0

0 .14

0.99259494493192 0.9926 0.9927 0.9927 0.9927

0.988426091755 0.9884 0.9887 0 .9889 0 .9885

0.15 0.985744249175

0.16 0.98256799465 0 .9826 0.9833 0 .9836 0.9827

0.17 0.978879628
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-A nx,riy Present results BQ AA SC HR

0 .1 8 0 .9 7 4 2 8 5 5 0 .9 7 4 3 0.9761 0 .9 7 6 4 0 .9 7 4 5

0.20 0 .9 6 1 6 0.9621 0 .9 6 6 8 0 .9 6 6 7 0 .9 6 2 5

0.01 1 .6 9 9 9 5 5 5 5 1 2 8 6 4 9

0.02 1 .6 9 9 7 9 7 4 6 9 9 9 2 3 4

0 .0 3 1 .6 9 9 4 8 1 7 3 0 6 6 6 1 2

0 .0 4 1 .6 9 8 9 5 4 8 6 2 5 7 2 4 4

0 .0 5 1 .6 9 8 1 5 3 5 2 7 1 1 6 9 3

0 .0 6 1 .6 9 7 0 0 3 8 2 6 2 0 6 8 2 1.6970 1.6971 J .6970 1.697J

0 .0 8 1 .69330381519851 1.6933 1.6934 1.6933 1.6934

0 .10
1,0

1 .6 8 6 9 9 4 2 7 7 6 8 1 .6870 1.6873 1 .6870 1.6872

0 .12 1 .676 8 8 5 6 6 7 8 1.6769 1.6777 1 .6770 1.6772

0 .1 4 1 .6 6120482 1.6612 1.6634 1.6617 1.6616

0 .1 5 1.65041381

0 .1 6 1 .636 9 0 5 5 1 .6370 1 .6430 1.6382 1 .6376

0 .1 7 1.61968

0 .1 8 1.59655 1.5980 1.6149 1 .6010 1.5983

0.01 2 .2 9 9 8 3 9 8 0 1 0 9 5 8 1

0.02 2 .2 9 9 3 3 7 9 1 4 5 4 8 7 6

0 .0 3 2 .2 9 8 4 6 0 5 2 4 1 1 3 7 6

0 .0 4 2 .2 9 7 1 7 0 6 4 9 0 8 6 4 1

0 .0 5 2 .2 9 5 4 2 8 7 3 6 2 7 7 6 3

0 .0 6 2 .2 9 3 1 8 9 3 0 8 6 1 5 3 1 2 .2 9 3 2 2 .2 9 3 2 2 .2 9 3 2 2 .2 9 3 2

0 .0 8 2 .2 8 7 0 1 0 2 1 7 5 8 8 9 1 2 .2 8 7 0 2.2871 2 .2 8 7 0 2.2871

0 .10 2 .2 7 8 1 3 1 5 9 3 9 5 0 4 0 2.2781 2 .2 7 8 3 2 .2 7 8 2 2 .2 7 8 3

0 .12
0,1

2 .2 6 5 8 4 4 3 0 0 5 6 2 2 .2 6 5 8 2 .2 6 6 3 2.2661 2 .2661

0 .1 4 2 .2 4 9 0 4 1 4 9 6 8 8 2 2 .2 4 9 0 2 .2 5 0 2 2 .2 4 9 6 2 .2 4 9 4

0 .1 5 2 .2 3 8 3 8 2 8 3

0 .1 6 2 .2 2 5 7 0 1 5 2 .2 2 5 7 2 .2 2 8 8 2 .2 2 6 8 2 .2 2 6 3

0 .1 7 2 .2 2 1 0 2 6

0 .1 8 2 .1 9 0 6

0.01 2 .9 9 9 7 7 6 7 8 2 2 5 5 0 2

0.02 2 .9 9 9 0 4 1 2 2 6 0 7 8 1 4

0 .0 3 2 .9 9 7 6 8 5 8 5 9 8 8 1 9 0
y'

0 .0 4 2 .9 9 5 5 9 0 5 2 8 2 2 7 1 4

0 .0 5 2 .9 9 2 6 2 0 2 9 1 3 5 6 2 6

0 .0 6 2 .9 8 8 6 2 2 3 3 9 4 5 2 2 7

0 .0 8 2 .9 7 6 8 1 3 6 6 0 4 6 2 2 7

0 .10 2 .9 5 8 3 5 2 6 8 5 1 3 6 6 7
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T ab le 3 . {Contd.)

—X fijf, riy Present results

0.12  U 2.9305035186199

0.14 2.88843544175

0.15 2.859086

0.16 2.82045

0.17 2.7615

0.18 2.67

0.20 2.55

H3 M SC HR

We should note that (as pointed out by a referee) there are several tricks for 
accelerating the rate of convergence of the perturbation series such as Pad6 approximants and 
Euler’s transformations can be a powerful tool for alternating series. Euler's transformation 
can be applied not only to convergent series, in some cases it will produce accurate answers 
from the first few terms of a series that is formally divergent. It is widely used in the 
summation of asymptotic series, defined by

J e- [ \  + Xt]-' dt = ( - 1)" nlX". (22)

In present work Aitken's transformation was used in order to improve the convergence of the 
calculations. This is a simple formula for extrapolating the partial sums of a series whose 
convergence is approximately geometric. If E(f), E(I+l)are three successive partial
sums, then an improved estimate is

E, = [E( l - l )E( I  + l ) - E a ) E ( I ) f  [ E U + i ) - 2 E ( I ) + E ( I - l ) ]rl (23)

it seems to play a role in improving the accuracy of our results to extra digits.

Killingbeck [19] tested the Pad  ̂approximants, Euler's transformation and Aitken's 
transformation on perturbation series for two-dimensional oscillators to improve the 
convergence of the perturbation series, the test was implemented on microcomputer.

It is interesting to note that for these types of perturbation the contribution to Ihe 
perturbation energy series comes from the even terms only, because the energy of a perturbed 
oscillator with an odd perturbation are even functions of the perturbation parameter X,

Our confidence in the accuracy of our results comes from the checks, the agreement 
between our results and those produced by the Hill determinant approach. Also two separate 
computations for some eigenstates with slightly increasing or decreasing the value of a, 
yielded eigenvalue agreeing to all digits.
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