Ultra-violet absorption spectrum of methyl benzene sulfinate

M Λ. SHASILIDIIAR

Physics Department, Karnatak University, Dharwar 3, Karnataka

(Received 29 December 1975)

The ultraviolet absorption spectrum of methyl benzene sulfinate in the vapour state and in solution have been studied. The observed fundamentals and their assignments are reported

1. INTRODUCTION

The ultraviolet absorption spectrum of methyl benzene sulfinate has been recorded in the range $\lambda 2720-\lambda 2120\Lambda$ and analysed. The spectrum was also recorded in isooctane solution and the *f* values obtained. Since the data on the ground state vibrational frequencies of the molecule is not available in the literature, the infrared absorption spectrum is also recorded and analysed

2. EXPERIMENTAL

The vapour and solution spectra were recorded with a DK2A Beckmann spectrophotometer with 1 to 10 cm cells at room temperature and the vapour phase spectra was also recorded with a large quartz spectrograph with 10 to 150 cm cells at 0°C to 150°C fifted R-40 plates were used. The accuracy of measurements has been estimated to be $\pm 5 \text{ cm}^{-1}$ for sharp bands and $\pm 10 \text{ cm}^{-1}$ for broad or diffuse bands. The f values of the solution spectrum were computed and is described elsewhere (Shashidhar & Rao 1975)

The infrared spectrum of this molecule was recorded using a Perkin Elmer model 225 spectrophotometer in the range 200-4000 cm⁻¹. For recording the spectrum in the regions 200-650 cm⁻¹ and 650-4000 cm⁻¹ CsI and NaCl optics were used respectively. Methyl benzene sulfinate being solid it was mixed in Nujol and in tetrachloroethylene and pastes of sufficient concentration were propared A httle amount of these pastes were enclosed between the windows to obtain the desired absorption

3 RESULTS AND DISCUSSION

The ultraviolet absorption spectrum of this molecule lies in the region $\lambda 2720-2120$ Å.

The infrared frequencies are given in table 1. The analysis of the infrared spectrum were made by comparison with the related molecules like benzone sulfonyl chloride, bouzene sulfonyl bromide (**Ham** et al 1960) The characteristic

Wave number	Intensity	Assignment	
265	m	a" C-S-C deformation	
310	R	a" C-C out of-plane bending	
405	m	a" C-C out of-plane bending	
445	8	a' C-C in-plane bending	
610	w	a' C-C in-plane bending	
53 0	8	a" SO ₂ deformation	
685	ß	a" C–C out of-plane bending	
695	н	a' C–S stretching	
745	в	a" C-H out of-plane bending	
785	8	a" C-H out of-plane bending	
925	8	a" C-H out of-plane bending	
955	в	a" C-H out of-plane bending	
960	VS	a" C-H out of-plane bending	
995	8	a' C–C stretching	
1020	m	a' C-H in-plane bending	
1035	m	a" CH ₃ rooking	
1070	s	a' C-H in-plane bending	
1085	6	a' SO ₂ -CH ₃ stretching	
1140	8	a' C-H in-plane bending	
1160	m	a' C–H in-plane bending	
1175	m	a' 802 symmetric stretching	
1280	8	a' C–H in-plane bending	
1325	m	a' C-C stretching	
1365	R	a' SO ₂ asymmetric stretching	
1375	8	$a' \operatorname{CH}_3$ symmetric bending	
1405	m	$a' \operatorname{CH}_3$ asymmetric bending	
1445	B	a' C-C stretching	
1465	m	a' C-C stretching	
1585	ms	a' C-C stretching	
295 0	m	a' CH ₃ symmetric stretching	
3005	m	a' CH, asymmetric stretching	
8010	m	a' C-H stretching	
\$040	w	a' C-H stretching	
3085	w	a' C-H stretching	

Table 1 Fundamental vibrational frequencies (in cm^{-1}) of methyl benzene sulfinate

vs = very strong, s = strong, ms = medium strong, m = medium, w = week.

M. A. Shashidhar

]	Lower frequ	ency transition
(a) In vapou	с	
phaso	Relative	Assignment
v(cm ⁻¹)	intensity	
36855	w	0,0 -311
36978	w	0,0 -198
3 701 7	w	$0,0 - 3 \times 40$
37065	m	$0,0 - 2 \times 49$
37117	8	0,0 -49
37166	8	0,0
37244	w	$0,0 + 179 - 2 \times 49$
37345	w	0,0 + 179
37453	m	0,0 + 287
37528	m	0,0 +661-311
37741	w	$0,0 + 2 \times 287$
37827	\mathbf{m}	0,0 + 661
37997	w	0,0 + 661 + 179
38114	8	0,0 + 948
38235	1118	0,0 +1069
88394	m	0,0 + 948 + 287
38569	w	0,0 + 948 + 287 + 179
38696	w	0,0 -+ 2 × 287 + 948
38784	w	0,0 +948+661
38883	w	0,0 + 1069 + 661
38958	w	0,0 + 1069 + 948 - 198
39060	m	$0,0 + 2 \times 948$
39175	m	0,0 + 1069 + 948
39328	m	$0,0 + 2 \times 1069$
39474	w	0,0 +948+1069+287
39689	w	$0,0 + 3 \times 948 - 311$
40005	w	$0,0 + 3 \times 948$
40315	w	$0,0 + 3 \times 948 + 287$
40636	w	$0,0 + 4 \times 948 - 311$
40945	w	0,0 +4×948
(b) In isoocta		A! t
solution v(cm ⁻¹)	ε	Assignment
36985	798	0,0
37950	956	0,0 +965
38900	717	$0,0 + 2 \times 965$ $f_s = 0.00799 \pm 0.0002$
39865	475	$0,0 + 3 \times 965$
40820	315	$0,0 + 4 \times 965$
]	Higher frequ	ency transition
In vapour		In isooctane solution
phase v(cm ⁻¹)		ν(cm ⁻¹) ε
47050 i		46350 8135
		$f = 0.0562 \pm 0.002$
·		

Table 2 Spectral data of mothyl benzone sulfinate

contours were used to identify the species The assignments were made by assuming C_s symmetry for the molecule. Out of 48 normal modes of vibration 33 are of a' type and 15 are of a'' type

The band system lying in the region $\lambda 2710-2410A$ (lower frequency transition) consists of some what narrow bands and are degraded to the red and this corresponds to the $A_{1g} \rightarrow B_{2n}$ transition of benzene. The study of temperature effect on band system has facilitated the choice of the band at 37166 cm^{-1} as the 0.0 band With this band as 0, 0, the bands with separations 198, 311 cm^{-1} towards the longer wavelength side are assigned as the ground state fundamentals, while the strong bands with shifts 179, 287, 661, 948 and 1069 cm⁻¹ from the 0.0 band towards the shorter wavelength side are identified as the excited state vibrational frequencies On the basis of these ground and excited state fundamentals all the observed bands of this molecule can be interpreted. The excited state fundamentals 948 and 1069 $\rm cm^{-1}$ are progression forming and they may respectively correspond to the modes ring A_1 and $7a(A_1)$ (following the nomenclature of Randle & Whiffen 1955) The other two excited state fundamentals 179 and 287 cm⁻¹ corresponding to the ground state fundamentals 198 and 311 cm⁻¹ may respectively correspond to the modes $11(B_2)$ and $6a(A_1)$. The excited state fundamental 661 em^{-1} , which combines with the frequencies 948 and 1069 cm^{-1} may correspond to the mode $12a(A_1)$ In addition, difference frequency 49 cm⁻¹ has been observed and this may correspond probably due to v-v transition of some nontotally symmetric vibrations

In absorption spectra of this compound in solution of isooctane, the strong band at 36985 cm^{-1} has been chosen as the 0, 0 band (lower frequency transition). It is interesting to note that the absorption spectrum of this compound in solution retain the vibrational structure observed in the corresponding vapour spectrum

The spectra in the higher frequency transition both in the vapour and solution phase were recorded with the spectrophotometer This may correspond to the 1980Å band of benzene

The spectral data for his compound both in the lower and higher frequency transitions are given in table 2.

Roferences

Ham N. S., Hambly A. N. & Laby R. H. 1960 Aust. J. Chem. 13, 443. Randle R. R. & Whiffen D. H 1955 Molecular Spectroscopy, Institute of Petroleum, London. Shashidhar M. A. & Suryanarayana Rao K. 1975 Ind. J. Phys. 49, 128.