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Abstract

The modern biological sciences are fraught with statistical difficulties. Biomolecular
stochasticity, experimental noise, and the “large p, small n” problem all contribute to
the challenge of data analysis. Nevertheless, we routinely seek to draw robust, mean-
ingful conclusions from observations. In this thesis, we explore methods for assessing
the effects of data variability upon downstream inference, in an attempt to quantify and
promote the stability of the inferences we make.

We start with a review of existing methods for addressing this problem, focusing upon the
bootstrap and similar methods. The key requirement for all such approaches is a statistical
model that approximates the data generating process.

We move on to consider biomarker discovery problems. We present a novel algorithm for
proposing putative biomarkers on the strength of both their predictive ability and the sta-
bility with which they are selected. In a simulation study, we find our approach to perform
favourably in comparison to strategies that select on the basis of predictive performance
alone.

We then consider the real problem of identifying protein peak biomarkers for HAM/TSP,
an inflammatory condition of the central nervous system caused by HTLV-1 infection.
We apply our algorithm to a set of SELDI mass spectral data, and identify a number of
putative biomarkers. Additional experimental work, together with known results from the
literature, provides corroborating evidence for the validity of these putative biomarkers.

Having focused on static observations, we then make the natural progression to time
course data sets. We propose a (Bayesian) bootstrap approach for such data, and then
apply our method in the context of gene network inference and the estimation of param-
eters in ordinary differential equation models. We find that the inferred gene networks
are relatively unstable, and demonstrate the importance of finding distributions of ODE
parameter estimates, rather than single point estimates.
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Chapter 1

Introduction

Abstract This thesis is broadly concerned with the approximation of data-
generating processes (DGPs) in systems biology. Our principal aim is to
assess the stability of inferences and conclusions drawn from biological and
biomedical data. In this chapter, we describe our motivations, discuss ex-
isting methods for the approximation of DGPs, and explain how inferential
stability may be assessed.

Outline In Sections 1.1 and 1.2, we motivate our work and summarise the
key statistical challenges routinely encountered in bioinformatics and sys-
tems biology. As a first step toward drawing meaningful conclusions from
our data, it is vital to quantify the effects of these difficulties. We are here
interested in determining whether or not our inferences are robust to realistic
perturbations of the data. We therefore explain in Section 1.3 how approxi-
mations of DGPs may be used to assess inferential stability. We consider a
number of methods, focussing on bootstrap and subsampling techniques. We
discuss “Bayesian bootstrap” approaches and make a straightforward con-
nection between these and the posterior predictive checking framework. We
finish in Section 1.6 with an overview of the thesis.

1.1 Motivation

Concerns about the reproducibility of results in systems biology abound, both in the sci-
entific literature (Baggerly et al., 2004; Ein-Dor et al., 2006; Zhang et al., 2008, 2009) and
the popular press (Pollack, 2004). Since the outcomes of systems biology research may
have implications for future medical treatments and practices, reproducibility is clearly
vital. However, given the many statistical challenges associated with systems biology
data (see Section 1.2), it can often be difficult to determine whether our conclusions arise
as a result of the underlying biology, or if they are a side-effect of biases and/or noise
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CHAPTER 1. INTRODUCTION 9

in the experimental procedure (Marshall, 2004). In the latter case, reproducibility will
almost inevitably be affected adversely.

In order to assess reproducibility, we would ideally repeat experiments many times, and
see if we consistently draw the same (or similar) inferences. In practice, we are limited by
the costs and resources required to conduct experimental studies. We therefore seek alter-
native, statistical approaches that approximate the experimental data generating process
(DGP). In this way we assess the stability of our inferences; i.e. the degree to which they
vary in light of realistic perturbations to the data. Ultimately, we hope that this will help
to improve the reliability of reported conclusions in systems biology and the biomedical
sciences more broadly.

1.2 Statistical challenges in systems biology

The past decade has seen a dramatic increase in the amount — and the variety — of bio-
logical data. This has been driven by the advent of modern high-throughput technologies
that enable measurements to be taken on large numbers of biological and biomolecular
entities (such as genes or proteins) rapidly and at low cost. One obvious and very im-
portant example of this is the microarray, which routinely allows the expression levels of
thousands of genes to be measured simultaneously. The microarray and similar technolo-
gies have revolutionised the modern biomedical and life sciences, providing a means by
which to probe the complex systems that underpin the functions performed by cells and
organisms.

These experimental advances — and the resulting quantities of data they generate — have
given rise to novel challenges for statisticians and data analysts. We here provide a brief
overview of some of the most fundamental, all of which have an impact upon the work
presented in this thesis. For the sake of brevity and focus, we do not cover all of these
challenges in depth; further information may be found in the references herein.

1.2.1 The “large p, small n” problem

The number of covariates, p, on which we have measurements is usually many more
than the number of available observations, n. This leads to characteristically “wide”
data matrices when analysing microarray (Efron et al., 2001), proteomics (Barla et al.,
2008), and other ’omics data sets (Broadhurst and Kell, 2006). Within this “large p, small
n” paradigm (West, 2003), classical statistical techniques generally fail (Ochs, 2010).
Moreover, it becomes particularly important to address challenges such as overfitting and
multiple hypothesis testing (see Section 1.2.2). A host of different approaches have been
proposed to mitigate and overcome the challenges presented when working within this
paradigm. For example, a variety of dimension reduction and feature selection techniques
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are routinely employed in order to decrease the value of p by (for example) projecting into
a lower dimensional space, compressing information, or removing redundant covariates
(see Saeys et al., 2007, for a review). At the same time, James-Stein shrinkage (Opgen-
Rhein and Strimmer, 2007a), regularisation (Kim and Park, 2004), and Bayesian (Fox and
Dimmic, 2006) versions of classical techniques such as the t-test have been considered in
order to extend their applicability.

1.2.2 The multiple comparisons problem

Classical frequentist hypothesis tests seek to assess the significance of an observed statis-
tic, assuming some (parametric or nonparametric) null model for that statistic (Fisher,
1925). For example, in differential expression analyses, we are interested in determin-
ing whether or not the difference in the mean expression level of a gene in two different
conditions is significant, and might assume Student’s t-distribution for the null model. If
the observed value of the statistic is in the tails of the null distribution (as quantified by
a p-value), then we might decide to reject the null hypothesis. The critical p-value below
which the null hypothesis is rejected is known as the significance level, α. In scientific
studies, α = 0.05 is a particular common choice, which corresponds to a 5% chance
of incorrectly rejecting the null hypothesis (i.e. a 5% chance of a false positive/Type I
error). The difficulty with this approach is that, when we perform a very large number
of tests (which, for simplicity, are usually assumed to be independent), our control over
the probability of falsely rejecting the null hypothesis for at least one may become quite
weak. One way in which this may be formalised is by considering the familywise error
rate (FWER), which represents the experiment-wide significance level and may be inter-
preted as the probability of incorrectly rejecting the null hypothesis in at least one of the
individual tests. The FWER is defined by,

αFWER = 1− (1− α)p, (1.1)

where p is the total number of tests (assumed to be independent), and α is the significance
level for each individual test. So, if α = 0.05 and we were performing p = 100 tests, then
αFWER ≈ 0.99.

A number of procedures to correct for multiple comparisons by controlling the FWER
have been proposed, including the Bonferonni, Šidàk (Šidàk, 1968) and Holm-Bonferonni
(Holm, 1979) methods. We refer to Shaffer (1995) for a comprehensive review of these
and several other approaches. An alternative methodology is the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995), which controls the false discovery rate (FDR).
The FDR is simply the expected Type I error rate (i.e. the expected proportion of incor-
rectly rejected hypotheses amongst all rejected hypotheses).
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1.2.3 Covariate interdependencies

In the previous section, we briefly touched upon the common assumption of indepen-
dence when performing multiple statistical comparisons. Of course, in biological systems,
strong dependencies between the various biomolecular players mean that this assumption
must generally be regarded as a gross simplification. An obvious but important example of
this is the presence of dependencies amongst and between mRNA and protein expression
levels, which arise as a result of gene regulation mechanisms. In the context of differential
expression analyses, several variants of the t-test have been proposed to take these into
account (Tibshirani and Wasserman, 2006; Lai, 2008; Zuber and Strimmer, 2009).

Covariate dependencies are not mere statistical nuisances, however. Rather, they represent
the observable effects of intricate networks of interactions between different biomolecular
species, and hence provide an opportunity to elucidate this complex behaviour. Statistical
descriptions of these interactions are usually considered in the context of network infer-
ence (Butte et al., 2000; Margolin et al., 2006; Schäfer et al., 2006; Lèbre, 2009). As
well as empirical representations, it is also increasingly common to consider mechanistic
models (such as ordinary, stochastic and partial differential equations). These models are
typically parametric, and hence parameter inference is a key challenge for model fitting.
This task is complicated not only by the vast numbers of parameters that must often be in-
ferred (for example, Schoeberl et al., 2002, propose a model of a cell signalling pathway
comprising 94 state variables and 95 parameters), but also by inherent properties of the
models, such as parameter non-identifiability (Gutenkunst et al., 2007) and the presence
of bifurcations (Kirk et al., 2008). Overall, regardless of whether we consider empiri-
cal or mechanistic models, adequately capturing the complex interdependencies of the
underlying biological system remains an ongoing challenge.

1.2.4 Sources of stochasticity

Exacerbating the problems of small sample sizes, large numbers of covariates, and com-
plex dependency structures, is the ubiquity of stochasticity. At the experimental level, the
high throughput technologies that generate the vast majority of data sets that we study
have often been criticised for being highly noisy (Marshall, 2004). Although more recent
assessments tend to be more optimistic (Klebanov and Yakovlev, 2007), the principal dif-
ficulty remains that the number of technical replicates that may be obtained is seriously
limited by the expenses associated with data generation (Lee et al., 2000). Given time,
we may reasonably expect that these technologies will become more precise and that data
will become cheaper to generate. However, even assuming that experimental sources of
noise may be eliminated, biomolecular systems are implicitly stochastic, and — given the
relatively small numbers of molecules that may be involved in a given process — deter-
ministic approximations will often be inadequate (Wilkinson, 2006; Phillips et al., 2009).
Moreover, we are often concerned with populations of cells or organisms, and hence must
be aware of the variability between different individuals.
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The main practical implication of these various sources of stochasticity is that, when we
repeat experiments, we expect to obtain (slightly) different results each time. We must
therefore be careful not to overfit to any one particular data set, or to draw conclusions
that are not robust to the variability in our observations.

1.3 Assessing inferential stability

Despite the statistical challenges described in Section 1.2, we seek to draw general conclu-
sions and make useful inferences about the nature of the biological systems being studied.
Perhaps the most important quality that we desire our conclusions to have is for them to
be reproducible, and not overly specific to the particular (small) set of measurements that
was originally observed. From a statistical inference perspective, we wish to avoid over-
fitting and to ensure that our inferences generalise well to new, previously unseen data
sets.

In this thesis, we shall be concerned with the estimation of structures (models) and quan-
tities (typically model parameters) from biological data. One of our recurring aims will
be to assess the stability of these estimates. By stability we mean the robustness of our
estimates to realistic perturbations of the data. The way in which we shall assess stability
is by approximating the underlying data generating process (DGP) using empirical, data-
driven approaches. Informally, our aim is to determine how the variability in the observed
data translates into variability in our conclusions.

Before introducing specific methodologies for approximating DGPs, we consider a frame-
work for assessing inferential stability using the “plug-in principle” (Efron and Tibshirani,
1993).

1.3.1 The plug-in principle

We denote the true, underlying DGP by F , and assume that we have an observed data set
Dobs = {xobs

1 , . . . ,xobs
n }, so that xobs

1 , . . . ,xobs
n represents a random sample of size n

drawn from F . Following Efron (1979), we construct the sample probability distribution,
F̂ , which puts mass 1/n at each sample point. This probability distribution is therefore
defined by,

p(x) =
Multiplicity of x in Dobs

n
, (1.2)

where the “multiplicity of x in Dobs” is simply the number of times x appears in Dobs.
The plug-in principle is the practice of estimating aspects of F by the corresponding
aspects of F̂ (Efron and Tibshirani, 1993).

More precisely, suppose D = {x1, . . . ,xn} is a random sample of size n from the dis-
tribution F , and let s = T (D) be a summary statistic, where T is some deterministic
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function of the elements of D. For example, we might have T (D) =
∑n

i=1 xi/n, in
which case s is simply the sample mean. In the frequentist tradition, we quantify the
variability in the summary statistic by considering its sampling distribution. This is the
(hypothetical) distribution of s that we would obtain if we were to repeatedly sample sets
Di of size n from F , and were to calculate T (Di) for each one. In practice, we might
not be interested in the whole sampling distribution, but may be content with summaries,
such as the expectation or standard error of s. The real difficulty is that we cannot usually
determine the sampling distribution analytically (unless strong parametric assumptions
are made), and brute force alternatives (sampling exhaustively from F ) are usually pro-
hibitively expensive.

The plug-in principle tells us to consider F̂ in the place of F . This is useful, since we
may obtain random samples of size n from F̂ computationally: we simply draw n ob-
servations with replacement from Dobs (as we discuss in Section 1.4.1.1, this defines the
nonparametric bootstrap). If we repeat this many times, we generate a large number, B,
of replicate data sets that we denote Drep

(1) , . . . , D
rep
(B). We then calculate the value of the

summary statistic for each replicate data set , srep
(i) = T (D

rep
(i) ), for i = 1, . . . , B. The

resulting frequency distribution of srep (which is sometimes termed the bootstrap distri-
bution of the summary statistic) is used in place of the sampling distribution of s. We may
also use the replicate data sets in order to obtain Monte Carlo estimates of (for example)
the expectation and standard error of srep with respect to the distribution F̂ (see Metropo-
lis and Ulam, 1949; Robert and Casella, 2004, for details of Monte Carlo methods). As
B →∞, these estimates approach the true expectation and standard error (with respect to
F̂ ). Again, these estimates are used as surrogates for the quantities that we would ideally
derive from the true, unknown distribution, F .

Although the original formulation of the plug-in principle assumes F̂ to be the sam-
ple probability distribution function of Equation 1.2, the parametric bootstrap (Section
1.4.1.2) extends the principle to more general approximations of the DGP. The idea is
always the same, however: we simulate a large number of data sets from the approximate
DGP, and then use these to obtain the bootstrap distribution of the statistic of interest. A
schematic view of this procedure is provided in Figure 1.1 (an elaboration upon Figure
1 from Efron, 2003), which draws a comparison between the “real world” defined by F ,
and the so-called “bootstrap world” (Efron and Tibshirani, 1993) defined by F̂ .

1.4 Methods for approximating data generating processes

The plug-in principle provides us with a framework for assessing the stability of a sum-
mary statistic, s, or — more generally — of any quantity estimated from the data. The
lower the variability in the bootstrap distribution of srep, the more stable we will believe
s to be. The main requirement needed to apply the plug-in principle is an approximation,
F̂ , of the DGP, from which we may draw replicated data sets. We here consider a num-
ber of approaches for approximating the DGP, focusing in particular upon bootstrap and
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Bootstrap distribution of srep = T (Drep)

Figure 1.1: Illustration of the plug-in principle and comparison between the real world and the
“bootstrap world”. We simply use the approximate DGP, F̂ , wherever we would ideally use the
true, unknown DGP, F . We simulate a large number of times from the approximate DGP and cal-
culate the statistic of interest for each replicate data set. We hence obtain the bootstrap distribution
for the summary statistic, which we use in the place of the unknown sampling distribution.

subsampling methods. We discuss the Bayesian bootstrap of Rubin (1981b), and draw
comparisons with the posterior predictive checking framework of Gelman et al. (1996).
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1.4.1 The Bootstrap

As we have already touched upon, the bootstrap is a well-known and widely applied
method for assessing properties of an inferred quantity or statistical estimator (Efron,
1979; Efron and Tibshirani, 1993). There have been many applications of the bootstrap
to biological problems. Amongst the earliest of these is the work of Felsenstein (1985)
(later updated by Efron et al., 1996), who used a bootstrapping procedure to assign con-
fidence intervals to phylogenies. Other examples include (to name but a few): assessing
the reliability of conclusions drawn from clustering expression data (Kerr and Churchill,
2001); constructing “robust” estimates of gene networks (Imoto et al., 2004); and assign-
ing confidence scores to protein-protein interactions (Friedel et al., 2009).

Bootstrap approaches fall into two broad categories: parametric and nonparametric. The
nonparametric bootstrap (Efron, 1979) is the more widely applied, and is commonly re-
ferred to as the bootstrap. We consider both nonparametric and parametric varieties in
Sections 1.4.1.1 and 1.4.1.2.

1.4.1.1 Nonparametric bootstrap

In the nonparametric case, we obtain bootstrap data sets by drawing samples of size n
with replacement from the original data set. For example, if n = 6, then the following are
possible bootstrap data sets derived from Dobs,

NPBS1: {xobs
6 , xobs

3 , xobs
1 , xobs

1 , xobs
2 , xobs

5 } (1.3)

NPBS2: {xobs
3 , xobs

6 , xobs
1 , xobs

3 , xobs
2 , xobs

2 } (1.4)

NPBS3: {xobs
5 , xobs

1 , xobs
3 , xobs

1 , xobs
4 , xobs

1 } (1.5)

Basic properties of the nonparametric bootstrap Note that, as a result of sampling
with replacement, our bootstrap data sets can contain the same observation more than once
(and thus are strictly multisets, although we shall suppress this distinction throughout).
Since each such set is of fixed size n and contains only elements from D, there is a finite
number, nBS , of distinct bootstrap samples that may be obtained; namely,

nBS =

(
2n− 1

n

)
. (1.6)

In practice, however, we rarely generate all possible bootstrap data sets, since nBS is large
even for relatively small n (for example, when n = 10, there are already 92,378 possible
bootstrap samples, and for n = 20 there are nearly 7× 1010).

One further property of the nonparametric bootstrap that we briefly mention concerns
the average number of observations in D that are left out of each replicate data set. The
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probability of a particular observation xi not appearing in our bootstrap data set is given
by (1 − 1

n
)n. As n grows large, this probability tends to exp(−1) ≈ 0.368, and hence

the average number of observations left out of each bootstrap data set is approximately
0.368n. It follows that the average number of distinct observations in each bootstrap
sample is 0.632n. This realisation is the motivation behind the .632 bootstrap estimator
of prediction error, for further details of which we refer to Efron and Tibshirani (1993,
1997).

Connection to the multinomial distribution Although usually described algorithmi-
cally in terms of how bootstrap data sets are generated, there is an implicit probability
model behind the nonparametric bootstrap. We first note that — given Dobs — any non-
parametric bootstrap data set, Drep, is completely described by the multiplicities with
which each of the elements of Dobs appears in Drep. For example, NPBS1 (Equation
1.3) is completely described by the vector N1 = [2, 1, 1, 0, 1, 1]>, where the ith ele-
ment of N1 is the multiplicity of xobs

i in NPBS1. Similarly, NPBS2 is described by
N2 = [1, 2, 2, 0, 0, 1]> and NPBS3 by N3 = [3, 0, 1, 1, 1, 0]>. Identifying each Drep

with its corresponding multiplicity representation, we can then regard each nonparamet-
ric bootstrap data set as a sample from a multinomial distribution with n trials and n
outcomes, xobs

1 , . . . ,xobs
n , in which the probability of each outcome is 1/n. That is, when

performing a nonparametric bootstrap, we may consider that we are drawing samples
from,

Multinom(n, θ1, . . . , θn), (1.7)

where n is the number of trials and θi = 1/n is the probability associated with outcome
xobs
i , for i = 1, . . . , n.

1.4.1.2 Parametric bootstrap

As the name suggests, the parametric bootstrap proceeds by fitting a parametric proba-
bility model to the observations in Dobs, and then forming new data sets by drawing n
samples from the fitted model. Usually, the model’s parameters are chosen to maximise
the likelihood of the observed data set. For example, if xobs

i = xobs
i ∈ R and a univariate

normal with fixed variance σ2 is chosen as the parametric bootstrap model, then we could
estimate the only parameter of our model, µ, as the sample mean of the observations.
Clearly, an important consideration for our parametric model is that we should be able to
sample from it. At the same time, in order for our bootstrap data samples to be realistic
(in the sense that they could plausibly have been generated by the true, unknown data
generating process), we must also be careful to choose a model that is not obviously in
conflict with the observed data or any other knowledge/beliefs that we may have.

We note that the nonparametric bootstrap may be viewed as a special case of the para-
metric bootstrap, in which the chosen probability model is a multinomial (Equation 1.7)
whose parameters have been selected by maximum likelihood. As we discuss in Section
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1.4.3, regarding the nonparametric bootstrap in this way allows it to be considered from a
Bayesian perspective.

1.4.2 Subsampling

Before moving on to Bayesian versions of the bootstrap, we consider a simple alternative
for simulating data sets: namely, random subsampling. If the size of Dobs is n, then
this approach proceeds by first choosing a value r ∈ (0, n) and then generating data sets
by repeated random sampling of r observations from Dobs without replacement. So, for
example, if we return to the n = 6 example of Section 1.4.1.1 and take r = 3, then any
subset of Dobs of size 3 might be selected. As with the nonparametric bootstrap, there
is only a finite number, nr, of distinct data sets that can be generated using subsampling
approaches; namely,

nr =

(
n

r

)
. (1.8)

If we denote the set of all distinct subsets of Dobs of size r by Robs
r , then subsampling

implicitly defines a probability model,

p(Drep) =

{
1
nr
, if Drep ∈ Robs

r .

0, otherwise.
(1.9)

That is, random subsampling approaches sample uniformly from Robs
r . For consistency

with earlier notation, we refer to the data sets generated by random subsampling as repli-
cate data sets (even though, of course, they are of size r < n).

1.4.2.1 Specific applications

In the particular case where r = n − 1 and we are interested in estimating the bias or
standard error of the summary statistic of interest, we would refer to the approach as
a jackknife procedure (Quenouille, 1949; Tukey, 1958). Using subsampling to assess
predictive performance (by training/fitting a model using the sampled set, and testing the
prediction on the left-out set) is broadly known as cross-validation. If the training sets are
generated through the subsampling procedure described above, it is common to speak of
random subsample cross-validation, to make the distinction with k-fold cross-validation
(where Dobs is first split into k subsets — or folds — and then k training data sets are
defined by systematically leaving out 1 fold at a time).

1.4.2.2 Comparison to the bootstrap

One of the advantages of random subsampling compared to bootstrap approaches is that
each of the replicate data sets generated by the former represents a random sample of size
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r from the true, unknown DGP, F . Of course, these are not independent samples from F ,
and there will be rather more similarity between our replicate data sets than there would
be between “real” data sets obtained by repeatedly drawing independent random samples
of size r from F . The principal disadvantages of subsampling are that the replicate data
sets are of size r < n, as a result of which there are fewer distinct random subsamples than
there are nonparametric bootstrap samples. More formal comparisons of the asymptotic
properties of subsampling and bootstrap procedures are provided by Politis and Romano
(1994); Politis et al. (1999, 2001).

1.4.3 The Bayesian bootstrap

Recognising that there is a parametric probability model behind the bootstrap (even in
the nonparametric case) allows it to be considered from a Bayesian standpoint. Although
the bootstrap has its origins very firmly in the frequentist tradition, Bayesian interpreta-
tions are also possible. This was first recognised by Rubin (1981b), who introduced the
Bayesian bootstrap (which we shall refer to as the Bayesian nonparametric bootstrap, for
consistency with conventional bootstrap terminology).

1.4.3.1 Bayesian nonparametric bootstrap

Rather than setting the parameters in Equation (1.7) to be their maximum likelihood es-
timates, we may instead adopt a Bayesian approach and seek the posterior distribution,
p(θ|Dobs), over the vector of unknown parameters, θ. We start by specifying a prior,
p(θ), and then update this in light of the observed data, Dobs, according to Bayes rule,

p(θ|D) =
p(θ)p(Dobs|θ)

p(Dobs)
, (1.10)

where p(Dobs|θ) is the likelihood function (here specified by the multinomial probabil-
ity model), and p(Dobs) =

∫
θ
p(θ)p(Dobs|θ)dθ is a normalising constant known as the

marginal likelihood. Calculating the posterior is usually analytically intractable; how-
ever, in the case of the multinomial we may choose a conjugate Dirichlet prior, and hence
determine the (Dirichlet) posterior in closed form. More concretely, if our prior is,

p(θ|α) =
1

B(α)

n∏
i=1

θαi−1
i (1.11)

where α = [α1, . . . , αn]> is the vector of parameters of the Dirichlet distribution and
B(α) is the multinomial Beta function, then the posterior is given by,

p(θ|α, Dobs) =
1

B(α+ N)

n∏
i=1

θαi+Ni−1
i (1.12)
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where Ni is the multiplicity of xi in the original data set Dobs, and N = [N1, . . . , Nn]> is
the vector of multiplicities. Rubin (1981b) focused in particular on an improper Haldane-
Dirichlet prior1, setting αi = 0 for all i. The posterior corresponding to such a prior is
uniform over all vectors θ for which

∑n
i=1 θi = 1 (and is zero otherwise).

Rubin (1981b) proposed to sample from Equation (1.12) (according to the method pre-
sented in Wilks, 1963), and considered summary statistics for which these sampled pa-
rameters could be used directly, without recourse to sampling replicate data sets. For ex-
ample, if we were interested in the distribution of the mean, then we would obtain a single
Bayesian bootstrap replicate by sampling θrep from Equation (1.12), and then calculating
srep =

∑n
i=1 θ

rep
i xobs

i . We would then repeat this a large number of times in order to
obtain the Bayesian bootstrap distribution of srep (see Figure 1.2 (b)). Where it can be
applied, this approach provides results that are rather similar to the (non-Bayesian) non-
parametric bootstrap, but tends to produce smoother distributions, as illustrated in Figure
1.2. Note that this is unsurprising, since (for example) Bayesian nonparametric bootstrap
replicates of the mean,

∑n
i=1 θ

∗
i xi, may take a continuous range of values, while conven-

tional nonparametric bootstrap replicates are limited to values from a discrete set (albeit
a potentially large one).
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Figure 1.2: We seek the bootstrap distribution of the sample mean of 5 numbers drawn from a
standard normal. These are: 1.04, 0.35, -0.21, -0.07, -0.55. (a) The distribution of the sample
mean determined from 10,000 nonparametric bootstrap samples. (b) The distribution of srep =∑n

i=1 θ
rep
i xobs

i determined from 10,000 Bayesian nonparametric bootstrap samples (employing a
Haldane-Dirichlet prior as in Rubin 1981b). The similarity between the two distributions is largely
due to the use of a non-informative prior in the Bayesian case, as discussed in Section 8.4 of Hastie
et al. (2009).

1A prior density, p(θ), is called improper if the integral
∫
p(θ)dθ diverges (see, for example, Gelman,

2004). Such priors can still be useful, provided the posterior p(θ|Dobs) is not also improper. We note
that the Haldane-Dirichlet prior cannot strictly be written as in Equation (1.11), which is only valid when
αi > 0 for all i. In this case, Equation (1.11) should more correctly be written as p(θ|α) ∝

∏n
i=1 θ

αi−1
i .

Equation (1.12) remains valid, provided Ni ≥ 1 for all i.
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One of the key differences between the conventional (frequentist) and Bayesian versions
of the nonparametric bootstrap is therefore that the former considers summaries of the
form s = T (D), while the latter considers summaries s = T (Dobs,θ). As previously
discussed, for the frequentist nonparametric bootstrap, the variability in s follows as a
direct consequence of the variability in D. Our objective is hence to find the sampling
distribution of s. The form s = T (D) reflects these assumptions: D is a random variable
(whose distribution is unknown, and which we therefore approximate) and s is simply
a deterministic function of D. In contrast, for the Bayesian nonparametric bootstrap,
the variability in s follows from the uncertainty in the unknown parameter θ. Hence, in
this case, the form s = T (Dobs,θ) is appropriate: the observed data set, Dobs, is fixed
and s is a deterministic function of this fixed set and the random variable θ. It follows
that the Bayesian nonparametric bootstrap distribution may be interpreted as the posterior
distribution of s, given the multinomial model and the prior p(θ) (Rubin, 1981b). We
shall refer to this as the induced posterior distribution of s.

We note that we could, in principle, generate replicate data sets using the Bayesian boot-
strap, by sampling from the joint distribution,

p(Drep,θ|Dobs) = p(Drep|θ, Dobs)p(θ|Dobs). (1.13)

As we discuss in the next section, this is exactly the approach taken when performing
posterior predictive checks.

1.4.4 Posterior predictive checking

A Bayesian procedure that is in many ways similar to the bootstrap is posterior predictive
checking (Rubin, 1984; Gelman et al., 1996; Gelman, 2004), also known as phenomeno-
logical Bayesian monitoring (Rubin, 1981a). We provide details of this here (largely
following the notation of Gelman, 2004).

We suppose that we have an observed data set, Dobs, and a parametric probability model,
F̂ , for the DGP, whose parameters are denoted θ. As previously, we suppose that —
given a realisation of the parameters — we are able to simulate from the model in order
to generate replicate data sets. For consistency with previous sections, we here assume
that the simulated data sets always comprise the same number of samples as the original
data set (we refer to Gelman et al., 1996, for a more general treatment, where arbitrary
properties ofDobs — not just the sample size — may be maintained). Posterior predictive
checking is an approach for assessing the quality of the model, F̂ , through simulation. In
the first stage of this procedure, we seek to sample replicate data sets from the posterior
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predictive distribution,

p(Drep|Dobs, F̂ ) =

∫
p(Drep,θ|Dobs, F̂ )dθ (1.14)

=

∫
p(Drep|θ, Dobs, F̂ )p(θ|Dobs, F̂ )dθ (1.15)

=

∫
p(Drep|θ, F̂ )p(θ|Dobs, F̂ )dθ, (1.16)

where p(θ|Dobs, F̂ ) is the posterior distribution of θ, and the final line follows from
the property that Drep and Dobs are conditionally independent of one another, given θ
and F̂ . In order to generate replicate data sets, we sample from the joint distribution,
p(Drep,θrep|Dobs, F̂ ), by first sampling θrep from p(θ|Dobs, F̂ ), and then simulating
from F̂ . We repeat this a large number, B, of times and hence obtain a set of pairs,
{(θrep

i , D
rep
i )}Bi=1. Equation (1.16) tells us that the replicate data sets, Drep

i , generated in
this way constitute samples from the posterior predictive distribution.

To perform the posterior predictive check, we must also define one or more test statistics,
T (D), which are scalar summaries of the data (or, more generally, we define discrepancy
measures, T (D,θ), which are summaries of both the data and the parameters; see Gelman
et al., 1996). We may then calculate T (D

rep
i ) for each of the replicate data sets (or, if we

are using a discrepancy measure, we calculate T (D
rep
i ,θ

rep
i )). This provides us with a

frequency distribution for the test statistic. As in the Bayesian nonparametric bootstrap
case, this represents the induced posterior distribution of T . Posterior predictive checking
refers to any procedure by which T (Dobs) (the test statistic evaluated on the original data
set) is compared to this distribution. Informally, if F̂ is a “good” model, then T (Dobs)
will be a “typical” value for T . This may be quantified by considering whether or not
T (Dobs) appears in the tails of the induced posterior predictive distribution, and gives
rise to the concept of a Bayesian p-value (Gelman et al., 1996; Gelman, 2004).

As a model-checking procedure, posterior predictive checks have been criticised (Bayarri
and Berger, 1999). The main difficulty arises from using the data twice: once to obtain
the posterior, p(θ|Dobs, F̂ ), and then again when comparing T (Dobs) to the induced pos-
terior distribution of the test statistic. The result of this is that posterior predictive checks
tend to be conservative (i.e. they are not as critical of the model being checked as perhaps
they should be). One well-established alternative is the prior predictive check (Box 1980;
see also Ratmann et al. 2009 for a recent novel application in the context of approxi-
mate Bayesian computation). In this approach, we replace the posterior, p(θ|Dobs, F̂ ),
in Equation (1.16) by the prior, p(θ|F̂ ). This clearly eliminates the problem of using the
data twice, but introduces a number of practical difficulties (Bayarri and Berger, 1999).
Chief amongst these is the strong dependence upon the choice of prior: a good model
may nevertheless appear to be at odds with the data if a poor prior is used. A number
of alternatives to the prior and posterior checking procedures have been proposed, which
seek to avoid using the data twice and also to diminish the effects of a poorly chosen prior.
For example, cross-validation approaches may be used, in which a subset of the data is
used in order to find the posterior, and then the remainder is used when performing the
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‘check’ (Carlin, 1999; Marshall and Spiegelhalter, 2003). In the context of hierarchical
models, mixed predictive checks offer another alternative (Gelman et al., 1996; Marshall
and Spiegelhalter, 2007; Lewin et al., 2007). In this case, we consider priors, p(θ|β, F̂ ),
that are themselves parameterised by hyperparameters, β. Samples, βrep, are drawn from
the “hyper-posterior”, p(β|Dobs, F̂ ), which are then plugged into the prior. In turn, sam-
ples, θrep, are then drawn from the prior, p(θ|βrep, F̂ ), after which replicate data sets
may be obtained by simulating from F̂ . Although mixed predictive checks do use the
data more than once, they have been found to be less conservative than their posterior
predictive counterparts (Marshall and Spiegelhalter, 2003).

Finally, we note that the use of predictive checks and (in particular) p-values is not univer-
sally accepted within the Bayesian paradigm (see, for example Lindley, 1999). Although
an interesting source of debate, we do not enter into this discussion here, and turn instead
to our principal concern: the connection of the posterior predictive checking procedure to
the bootstrap.

1.4.4.1 Comparison to the bootstrap

The machinery of posterior predictive checking may be viewed as a generalisation of
both the frequentist and Bayesian bootstrap procedures. For example, if the posterior,
p(θ|Dobs, F̂ ), in Equation (1.16) were a spike (delta function) located at θML (the max-
imum likelihood parameter vector), then the replicate data sets generated by simulating
from the posterior predictive distribution would be identical to (frequentist) parametric
bootstrap samples (we note that this observation has previously been made by Bollback,
2005). On the other hand, if we were to choose a discrepancy measure T (D,θ) that did
not vary with D, but was instead a function of the unknown θ and the observed data set
Dobs, then (in the particular case where F̂ were a multinomial distribution and the prior on
θ were a conjugate Dirichlet distribution) we would recover the Bayesian nonparametric
bootstrap.

The aims of posterior predictive checking and the bootstrap are quite different, however.
In the former, we seek to assess the quality of the approximation F̂ by comparing sum-
maries of the replicate data sets (the tests statistics) with the same summaries of the orig-
inal data set. In the latter, although we might perform checks to determine that F̂ is an
adequate model of the DGP, our principal aim is to assess the variability of summaries
derived from the replicate data sets. However, we note that there is no reason why the in-
duced distribution of T that is constructed during the posterior predictive checking proce-
dure should not be used in order to make statements about the stability of the test statistic
(once we have established that F̂ is not a poor model).
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1.5 Alternative Bayesian method for stability assessment

So far, we have only discussed methods that assess stability by first approximating the
DGP, which is the approach that we shall take throughout this thesis. An alternative
approach that we might consider is to perform Bayesian inference directly upon the un-
known quantity whose stability we wish to assess (which, in this context — and for rea-
sons that will become clear below — we will denote by φ rather than s). We would then
seek the posterior distribution p(φ|Dobs,H), where we here use H as a catchall for any
modelling assumptions that are made. Rather than assessing stability per se, we would
instead be quantifying the uncertainty that remains in the value of φ after having observed
Dobs.

1.5.1 Comparison to methods of Section 1.4

Recall that, throughout Section 1.4, we were interested in methods that could generate
replicate data sets, Drep, from an approximation, F̂ , to the DGP. When F̂ was parametric,
we either performed maximum likelihood estimates of the parameters (in the case of the
“conventional” bootstrap), or sought the posterior distribution, p(θ|Dobs, F̂ ) (in the cases
of the Bayesian bootstrap and posterior predictive checking procedure). We calculated
summary statistics, s, that were deterministic functions of the replicate data set, Drep;
and/or the parameters, θ; and possibly also the original data set, Dobs. To cover all of
these possibilities, we shall here write s = T (Drep,θ, Dobs), where T is a deterministic
function. As previously described, the (induced) posterior distribution of the summary
statistic is then,

p(T (Drep,θ, Dobs)|Dobs, F̂ )

=

∫ ∫
p(T (Drep,θ, Dobs), Drep,θ|Dobs, F̂ )dDrepdθ

=

∫ ∫
p(T (Drep,θ, Dobs)|Drep,θ, Dobs)p(Drep|θ, F̂ )p(θ|Dobs, F̂ )dDrepdθ

=

∫ ∫
T (Drep,θ, Dobs)p(Drep|θ, F̂ )p(θ|Dobs, F̂ )dDrepdθ, (1.17)

where the final line is a consequence of the fact that T is deterministic.

It follows from Equation (1.17) that a sample from the induced posterior may be obtained
by,

1. drawing a sample, θrep
i , from p(θ|Dobs, F̂ );

2. drawing a sample, Drep
i , from p(Drep|θrep

i , F̂ ); and

3. calculating srep
i = T (D

rep
i ,θ

rep
i , Dobs).
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This process precisely captures the methodology of the posterior predictive checking pro-
cedure, the Bayesian nonparametric bootstrap, and also — if p(θ|Dobs, F̂ ) is approxi-
mated by a spike at θML — the conventional bootstrap (see also Section 1.4.4.1).

All of the methods of Section 1.4 may therefore be viewed as generating samples from
p(s|Dobs, F̂ ) (or approximations to it), and hence are similar to the Bayesian approach
that we outlined at the start of this section (which seeks p(φ|Dobs, F̂ )). The principal
distinction stems from the nature of s, which is assumed to be deterministically specified
givenD and/or θ. It is this assumption that allows us to derive the posterior distribution of
s by performing inference on D and θ. For more general quantities, φ, such an approach
would not be possible. Given the aims of this thesis, this is not too much of a limitation.
In particular, we may consider any quantity, s, that is calculated deterministically from a
data set using a computer program. This allows us to assess the stability of the outputs of
pre-existing (and often complex) computer programs simply by altering their inputs.

1.6 Thesis overview and outline

In Chapter 2 we consider the use of stability selection methods for identifying robust
biomarkers. We propose a novel algorithm that combines assessments of stability and
predictive performance, which is then applied to a simulation example. In Chapter 3
we consider the particular biological example of discovering protein peak biomarkers of
the inflammatory condition, HTLV-1 associated myelopathy/tropical spastic paraparesis
(HAM/TSP). We select a number of putative biomarkers, two of which have been exper-
imentally identified. We then move on to consider time courses of data. In Chapter 4 we
propose a method for bootstrapping such data sets, and then apply this approach in Chap-
ters 5 and 6. We first use the procedure to quantify the stability of networks inferred from
gene expression time course data (Chapter 5), and then consider the stability of parameter
estimates for ordinary differential equation models (Chapter 6). Finally, in Chapter 7 we
summarise and discuss the main conclusions of this thesis.



Chapter 2

Stability selection for biomarker
discovery

Abstract Recent studies have highlighted the importance of assessing the
stability with which putative biomarkers are selected. We here present a
generic method for selecting covariates (i.e. putative biomarkers) on the
strength of a simple probabilistic score that combines assessments of stability
and diagnostic performance. By applying this score in tandem with a selec-
tion strategy based upon the elastic net, we assess the effects of correlations
upon stability.

Outline In Section 2.1, we provide an introduction to the biomarker dis-
covery problem, after which we review in Section 2.2 existing methods for
assessing selection stability. We then describe the feature selection strategies
that we employ (Section 2.3), before discussing the “stability selection” pro-
cedure that was recently proposed by Meinshausen and Bühlmann (2010).
We highlight certain difficulties with this procedure that can arise as a result
of correlations amongst covariates. In Section 2.5 we present a novel strategy
for selecting covariates on the basis of both stability and predictive perfor-
mance. We discuss the implementation of this approach in Section 2.6. In
Section 2.7, we consider a simulation example that allows us to demonstrate
the utility of our algorithm relative to a more conventional approach that se-
lects solely on the basis of predictive performance. We discuss our results in
Section 2.9

The principal motivation for this work is a real biological example, in which
we seek SELDI mass spectrometry protein peak biomarkers of HTLV-1 asso-
ciated myelopathy. We describe this example fully in the next chapter, where
we also provide a detailed analysis of the data using both our novel selection
method, as well as more traditional approaches.

25
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2.1 Background

The search for molecular profiles that allow us to discriminate between two (or more)
classes of individuals or entities is an ongoing challenge in genomic, metabolomic and
proteomic studies. Such profiles may simply be sought as diagnostic or prognostic aids
(e.g. van de Vijver et al., 2002; van ’t Veer et al., 2002), or may represent a first step toward
understanding a given biological process (e.g. Vine et al., 2004). The biomolecules that
appear in these profiles are termed biomarkers, and the process of identifying them is
known as biomarker discovery.

2.1.1 Differential expression analyses

One important example of a biomarker discovery procedure is differential expression (see
also Section 1.2.2). Here, we seek to identify genes or proteins that are up- or down-
regulated in a collection of “case” samples relative to a collection of “controls”. The
cases and controls may be individuals who do or do not suffer from a disease, or may
represent more general binary classifications (such as mutant versus wildtype; subjected
to stress versus grown in ideal conditions; or any one of a wide array of different dichoto-
mous relationships). Typically, DNA microarrays or other high-throughput technologies
are used, which allow expression levels to be measured upon hundreds or thousands of
genes or proteins simultaneously. The development of statistical procedures for detecting
which genes or proteins are differentially expressed between the classes of interest re-
mains an area of intense research, often driven by the emergence of new high-throughput
technologies (Bullard et al., 2010; Robinson et al., 2010; Stegle et al., 2010).

The methods for differential expression analyses tend to be univariate gene-by-gene (or
protein-by-protein) approaches that employ t-tests or alternatives/variants thereof (includ-
ing nonparametric and empirical Bayes procedures; see, for example, Efron et al., 2001).
Given the large number of genes or proteins that usually appear in these studies, correct-
ing for multiple comparisons is essential (see Section 1.2.2). At the end of a differential
expression analysis, we are typically presented with a list of genes/proteins (often ranked
by p-value) that we have determined to be significantly differentially expressed between
the two classes/conditions. The entries of this list represent the putative biomarkers. The
main limitations of such univariate approaches is that they do not take into account pos-
sible interactions or dependencies amongst the covariates, and also that they do not by
themselves allow predictions to be made. For these reasons, it has become increasingly
common to consider multivariate predictive models.
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2.1.2 Multivariate predictive models for biomarker discovery

Multivariate predictive models that select covariates (in our case, putative biomarkers)
may be broadly classified as either filter, wrapper or embedded procedures. Filter meth-
ods separate out the feature selection and prediction tasks, making use of an initial filter-
ing step in order to identify relevant covariates (possibly using univariate procedures), and
then training a multivariate classifier using the reduced set of features (Guyon and Elisse-
eff, 2003). In contrast, wrapper approaches combine the two tasks by searching through
different feature sets and assessing each one by fitting the corresponding model to the ob-
served data (Kohavi and John, 1997). Finally, embedded procedures refer to multivariate
models which automatically select features as part of the process of fitting to an observed
data set (Saeys et al., 2007). In general, filter methods provide the worst predictive per-
formance (as we might expect, since the selected features are chosen independently of the
predictive model), while wrapper methods are usually the most computationally costly, as
they require a search through a large number of different combinations of the covariates,
with the predictive model needing to be fitted for each one (Saeys et al., 2007). Embed-
ded methods often offer similar levels of predictive performance to wrapper approaches,
while maintaining computational efficiency (Guyon and Elisseeff, 2003).

For the sake of brevity and focus, we do not provide a review of the many different feature
selection methods that are employed in bioinformatics and systems biology, and refer
to Guyon and Elisseeff (2003) and, particularly, Saeys et al. (2007) for comprehensive
treatments. In Section 2.3, we describe the method that we use throughout this chapter
and the next, which is an embedded strategy employing a logistic regression classifier with
a lasso or elastic net likelihood penalty. However, many of the concepts that we discuss
are generic, rather than being specific to any particular choice of selection strategy.

2.1.3 Selection stability

A number of recent papers have highlighted the importance of considering the stability
of covariates identified by feature selection algorithms, especially in the context of iden-
tifying gene signatures and biomarkers of disease (for example, Abeel et al., 2010; Mein-
shausen and Bühlmann, 2010; Zucknick et al., 2008). The principal aim is to establish
how specific the covariates selected (i.e. the identified biomarkers) are to the particular
data set that was observed, in order to quantify how well we might expect our selections to
generalise to new data sets. Although not a new concept (see, for example, Turney, 1995,
for an early discussion), it has received a renewed interest in biological contexts due to
concerns over the irreproducibility of results (Ein-Dor et al., 2006, 2005). Assessments
of stability usually proceed by subsampling the original data set. A feature selection al-
gorithm is applied to each subsample, and then stability is quantified using any one of
several methods for assessing the concordance amongst the resulting sets of selections (as
described in Section 2.2). There is an increasing body of literature on this subject, and we
refer to He and Yu (2010) for an alternative review to the one presented here.
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One of the main difficulties with stability is that it is not by itself a useful objective. As
pointed out in Abeel et al. (2010), a selection strategy that always chooses a fixed set
of covariates regardless of the observed data will provide perfect stability, but the pre-
dictive performance is likely to be poor. Since we ultimately seek biomarkers that are
not only robust but which also allow us to discriminate between (for example) different
disease states, it is desirable to try to optimise both stability and predictive performance
at the same time. The procedure of Abeel et al. (2010) addresses this by taking a pow-
erful predictive model with an embedded covariate selection strategy (a Support Vector
Machine using the Recursive Feature Elimination method— see Guyon et al., 2002), and
then using a bootstrap aggregation approach in order to improve selection stability. In
Section 2.5, we present a simple alternative methodology. We follow Meinshausen and
Bühlmann (2010) in estimating selection probabilities for different sets of covariates, but
diverge from their approach by combining these estimates with assessments of predictive
performance. Given that our approach uses subsampling for both model structure estima-
tion and performance assessment, it is somewhat related to double cross validation (see
Stone, 1974, and also Smit et al., 2007 for a proteomics application similar to the one
considered in the next chapter); however, we do not employ a nested subsampling step.

A further difficulty with stability arises as a result of correlation. As discussed in Yu
et al. (2008), Kirk et al. (2010) and Section 2.4.2, correlations amongst covariates can
have a serious impact upon stability. Since multivariate covariate selection strategies
commonly seek a minimal set of covariates that yield the best predictive performance, a
single representative from a group of correlated covariates is often selected in favour of the
whole set. This can have a negative impact upon stability, as the selected representative
is liable to vary from subsampled data set to subsampled data set. Unfortunately, due
to complex interdependencies between biological entities, correlations are ubiquitous in
genomic and proteomic studies. A further contribution of this chapter is therefore to
quantify the effects of correlation upon stability. The covariate selection strategy that we
ultimately employ provides a parameter, α, that can be varied in order to control whether
we tend to select single representatives or whole sets of correlated covariates (see Zou and
Hastie, 2005; Friedman et al., 2007, 2010). This allows us to investigate systematically
how our treatment of correlation affects stability.

2.2 Assessing stability

There are various ways of quantifying the stability with which variables are selected.
After first defining some notation, in this section we consider the Jaccard and Kuncheva
similarity indices, as well as estimated selection probabilities.
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2.2.1 Notation

As in Chapter 1, letDobs be the data set of n observations, where nowDobs = {(xi, yi)}ni=1.
Here, each xi = [xi1, . . . , xip]

> ∈ Rp is a vector of measurements taken upon p covari-
ates, v1, . . . , vp, and each yi ∈ {0, 1} is the corresponding observation of the class label,
y. We suppose that we have a selection strategy,H, that seeks to find a set comprising the
“best” covariates (the definition of “best” is implicitly encoded in the particular choice
of strategy). We further suppose that this strategy has an associated parameter, λ, which
provides control over the number of selections made. For data set, D, and parameter, λ,
we denote the set of covariates selected byH as s(D;λ,H). To assess selection stability,
we would ideally investigate the consistency amongst sets s(Di;λ,H), where each Di is
a draw from the underlying data generating process, F . Since it is usually infeasible to
obtain large numbers of independent data sets, a practical way in which to assess stability
is to consider subsampling or bootstrapping Dobs, as described in Chapter 1. Applying
the plug-in principle, we consider the consistency amongst sets s(Drep

i ;λ,H), where each
Di is a draw from an approximating DGP, F̂ .

2.2.2 Jaccard similarity coefficient

The Jaccard coefficient (Jaccard, 1901, 1912) was introduced as a way of measuring the
similarity between two sets S1 and S2,

J(S1, S2) :=
|S1 ∩ S2|
|S1 ∪ S2|

. (2.1)

Note that J attains a minimal value of 0 if and only if S1 ∩ S2 = ∅, and a maximal value
of 1 if and only if S1 = S2.

To provide a summary of the similarity between several sets S1, . . . , S`, we may consider
the mean pairwise Jaccard coefficient, J , where,

J(S1, . . . , S`) :=
2

`(`− 1)

`−1∑
i=1

( ∑̀
j=i+1

J(Si, Sj)

)
. (2.2)

Since J is defined as the mean of `(` − 1)/2 Jaccard coefficients, it follows that J also
has a maximum of 1 and a minimum of 0. Furthermore, the maximum occurs only when
all Si are identical, and the minimum occurs only when all Si are pairwise disjoint (i.e.
when Si ∩ Sj = ∅ for all i and j).

Calculating the mean pairwise Jaccard coefficient, J , for the selected sets s(Drep
1 ;λ,H),

. . . , s(D
rep
B ;λ,H)) provides us with an assessment of selection stability (Zucknick et al.,

2008). We would regard J = 1 as corresponding to maximal stability (complete agree-
ment amongst the selections) and J = 0 as corresponding to maximal instability (com-
plete disagreement amongst the selections) .
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We note that some recent authors refer to the mean pairwise Jaccard coefficient, J , as
the generalised Kalousis measure (Somol and Novovičová, 2010), following the use by
Kalousis et al. (2007) of an “adaptation of the Tanimoto distance” (see also Tanimoto,
1960). However, this adaptation is in fact identical to the Jaccard coefficient, so we persist
with our slightly more wordy terminology for the sake of clarity.

2.2.3 Kuncheva similarity coefficient

To motivate the exposition that follows, we first consider the behaviour of the Jaccard
coefficient under a random selection strategy. Suppose that S1 and S2 are both random
subsets of the complete set of covariates, {v1, . . . , vp}. Furthermore, suppose S1 and S2

are both of size m, with 0 < m < p. On average, how many elements will S1 and
S2 have in common? An alternative way of phrasing this is as follows: if the elements
of S1 are all considered as “successes”, and the remaining elements of {v1, . . . , vp} are
considered as “failures”, how many successes will appear in S2 (on average)? Having
phrased the problem in this way, it is clear that the solution is given by the expectation
of a hypergeometric distribution with m draws, m successes, and population size p, and
hence is m2/p (Feller, 1968).

From the above, it follows that, if we were to adopt a selection strategy that simply draws
m covariates at random (where 0 < m < p), the expectation of the Jaccard coefficient is
given by,

E[J(S1, S2)] = E

[
|S1 ∩ S2|
|S1 ∪ S2|

]
= E

[
|S1 ∩ S2|

|S1|+ |S2| − |S1 ∩ S2|

]
=

m2/p

2m−m2/p

=
1

2(p/m)− 1
. (2.3)

Hence, under a random selection strategy, the Jaccard coefficient will tend to increase as
the number of selections, m, increases.

Kuncheva (2007) defines an alternative similarity coefficient that corrects for the increase
in selection stability that occurs as a result of random chance. If |S1| = |S2| = m, then

K(S1, S2) :=
|S1 ∩ S2|p−m2

mp−m2
, (2.4)

where p is the total number of covariates. The expectation of this similarity coefficient
under a random selection strategy is zero for all m ∈ (0, p). Moreover, its maximum
value is 1 (when S1 = S2) and its minimum is -1 (when S1 ∩ S2 and m = p/2).



CHAPTER 2. STABILITY SELECTION FOR BIOMARKER DISCOVERY 31

The mean pairwise Kuncheva coefficient, K, can be calculated in a similar manner to the
mean pairwise Jaccard coefficient, simply exchanging J for K in Equation (2.2).

2.2.4 Other similarity measures

There are many other similarity measures that may be used to assess selection stability,
including (to name but a few): the relative Hamming distance (Dunne et al., 2002); the
Dice-Sørensen index (Dice, 1945; Sørensen, 1948); and the Ochiai index (Ochiai, 1957).
An extensive review of these and others is provided in He and Yu (2010). All of these
indices have commonalities, and there are often only subtle differences between them.
We consider only the Jaccard and Kuncheva similarity indices. The Jaccard index is par-
ticularly popular in the literature (e.g. Zucknick et al., 2008; Kalousis et al., 2007; Saeys
et al., 2008), while the more recent Kuncheva index is considered to be a particularly
suitable measure for stability analyses due to its correction for agreement due to random
chance (Abeel et al., 2010).

2.2.5 Selection probabilities

Meinshausen and Bühlmann (2010) introduce a rather different way of assessing stability,
in the form of estimated selection probabilities. For any subset, V , of the set of covariates
{v1, . . . , vp}, they consider the probability that V is selected by strategy, H. The way
to estimate this probability in the frequentist framework would be to sample data sets,
D1, . . . , DN , from the DGP, F ; to apply H to sampled data set; and finally to calculate
the proportion of times that V is selected. As N → ∞ this proportion tends to the (fre-
quentist) probability of selecting V . A straightforward application of the plug-in principle
tells us to estimate this probability as,

P̂Sel(V |λ,H) :=
1

B

B∑
i=1

I
(
V ⊆ s(D

rep
i ;λ,H)

)
, (2.5)

where Drep
1 , . . . , D

rep
B are replicate data sets drawn from the approximate DGP, F̂ . When

calculated for sets V such that |V | = 1 (i.e. sets that comprise just a single covariate), we
refer to these estimates as marginal selection probabilities.

We note that this method of stability assessment is conceptually different to both the Jac-
card and Kuncheva coefficients of Sections 2.2.2 and 2.2.3. Instead of providing a global
summary of the variability amongst a collection of selected sets, the method of Mein-
shausen and Bühlmann (2010) associates a “stability score” (interpretable as an estimated
probability) with every subset of the covariates. The higher the score, the more stably
selected the covariate. As we discuss in Section 2.4, one way to proceed is to place a
cutoff on this score in order to identify a set of the most stably selected covariates. Before
that, however, it will prove useful to introduce two specific feature selection methods.
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2.3 Feature selection algorithms

There is a wide variety of different feature selection strategies, many of which are re-
viewed in Saeys et al. (2007). We here focus on penalised likelihood methods applied to
logistic regression models for binary classification. We first introduce logistic regression,
and then describe the lasso and elastic net penalties.

2.3.1 Logistic regression

The standard logistic regression model for the binary classification problem is as follows,

p(y = 1|v> = z>; β0,β) = f(β0 + β>z), (2.6)

where v = [v1, . . . , vp]
> is the vector of the covariates; z = [z1, . . . , zp]

> is a corre-
sponding vector of observed values; β = [β1, . . . , βp]

> is a vector of coefficients; β0 is an
intercept term; and f is the logistic function,

f(t) =
t

1 + exp(−t)
. (2.7)

Given a data set, Dobs, the usual way to estimate the coefficients β0, β1, . . . , βp is to
identify the values that maximise the (log) likelihood function. Recall that Dobs =
{(xi, yi)}ni=1, with xi = [xi1, . . . , xip]

> ∈ Rp, and yi ∈ {0, 1}. Assuming independent
observations, the log likelihood is given by,

`(β0,β) =
1

n

n∑
i=1

(
yi log

(
p(yi|xi; β0,β

>)
)

+ (1− yi) log
(
1− p(yi|xi; β0,β

>)
))
,

(2.8)
where p(yi|xi; β0,β) is shorthand for p(yi = 1|v> = xi; β0,β), which is calculated by
plugging the observed data into Equation (2.6).

The βi’s that maximise the log likelihood may be found by setting the derivatives of
Equation (2.8) to be zero, and then solving the resulting equations using (for example) the
Newton-Raphson algorithm (Press et al., 2007).

2.3.2 The lasso

The lasso (Tibshirani, 1996; Efron et al., 2004) introduces a penalty term,
∑p

i=1 |βi|, to
the likelihood function, so that the estimated βi’s are now given by,

β̂0, β̂ = argmax
β0,β

[
`(β0,β)− λ

p∑
i=1

|βi|

]
, (2.9)
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where λ ≥ 0 is a regularisation parameter which controls the strength (severity) of the
penalty. When λ = 0, we recover the unpenalised form of the likelihood. For λ suf-
ficiently large (say, λ ≥ λmax), the maximum value of the penalised likelihood will be
given by setting βi = 0, for i = 1, . . . , p. It is clear that the general effect of the penalty
term will be to shrink the magnitude of the estimated coefficients. However, the real ben-
efit of the lasso is that, rather than simply shrinking all of the coefficients to be small,
some of the coefficients are set exactly to zero (Tibshirani, 1996). As a result of this,
the lasso performs automatic feature selection, where the covariates with non-zero coeffi-
cients constitute the selected features.

2.3.2.1 The regularisation parameter

The value of λ determines how many covariates are selected: the larger λ, the fewer
selections. Choosing the “best” value for λ is a non-trivial problem, and often we resort to
cross-validation approaches in order to find the λwhich provides the lowest generalisation
error (Hastie et al., 2009).

Rather than specifying a single value for λ, we may be interested in determining how
the estimated coefficients change as λ is reduced from λmax to 0. This information is
often presented as a regularisation path, as illustrated in Figure 2.1. Several approaches
now exist for finding the regularisation path (e.g. Friedman et al., 2010; Koh et al., 2007;
Genkin et al., 2007). Throughout this thesis, we employ the freely available glmnet
package in R, which implements the method of Friedman et al. (2010).

2.3.3 The elastic net

An alternative to the lasso is provided by the elastic net (Zou and Hastie, 2005). This is
again a penalised likelihood approach, and may be viewed as a generalisation of the lasso.
For the elastic net, the estimated βi’s are given by,

β̂
(EN)
0 , β̂

(EN)
= argmax

β0,β
[`(β0,β)− λQα(β)] , (2.10)

where,

Qα(β) =

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|
]
, (2.11)

is the elastic net penalty term1. Note that this penalty term introduces a second parameter,
α, in addition to λ. When α = 1, we recover the lasso (Equation 2.9), and when α = 0
we recover the ridge penalty (Hoerl, 1962). On its own, the ridge penalty has the effect of

1Often the definition of the elastic net penalty term omits the factor of 1/2 that multiplies the first term
in the sum (e.g. Hastie et al., 2009). We keep this factor for consistency with Friedman et al. (2010).
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Figure 2.1: Example regularisation path produced using glmnet. Each coloured line corre-
sponds to a different covariate. The plot describes how the value of the coefficient (y-axis) for
each covariate changes as λ is varied (x-axis). Note that each of the coloured lines appears as a
series of steps, highlighting the fact that only a discrete grid of λ values is considered.

shrinking the magnitude of the coefficients, but without setting any of them to be exactly
zero. It follows that ridge regression does not by itself perform automatic feature selec-
tion. In contrast, the mixture of ridge and lasso penalties that defines the elastic net retains
this property of the lasso (for α ∈ (0, 1]). Moreover, for α ∈ [0, 1), the elastic net exhibits
the grouping effect (Zou and Hastie, 2005), meaning that the estimated coefficients of
strongly correlated covariates will tend to have similar values. In the extreme case where
there are two or more perfectly collinear covariates, the corresponding coefficient values
will be identical. The lasso does not have this property. Indeed, if there is a group of sev-
eral strongly correlated covariates, then the lasso will tend to select just one of them (Zou
and Hastie, 2005). The lasso is therefore “efficient” in its selection of covariates, in that
it automatically strips out “redundant” covariates that provide little further information
over those that have already been selected. As we now discuss, however, this property
provides difficulties for stability selection.
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2.4 Stability selection

The estimated selection probabilities of Section 2.2.5 provide us with a “stability score”
for each of the covariates. Meinshausen and Bühlmann (2010) propose to use this score
in order to pick out only the most stably selected covariates. Below, we provide a brief
overview of the ideas behind this stability selection approach, after which we introduce
stability paths, and then discuss in Section 2.4.2 some of the problems that occur due to
correlations amongst the covariates,

Following Meinshausen and Bühlmann (2010), the set of stably selected covariates is
defined to be,

Sstable =

{
vi :

(
max
λ∈Λ

(
P̂Sel({vi}|λ,H)

))
≥ πthr

}
, (2.12)

where Λ is a range of possible values for the regularisation parameter, λ; P̂Sel({vi}|λ,H)
is the estimated marginal selection probability for covariate vi; and πthr is a probability
threshold. In other words, Sstable is simply the set of covariates whose estimated marginal
selection probability, P̂Sel({vi}|λ,H), is greater than a predefined threshold value (for any
λ ∈ Λ).

Assuming that the covariates, vi, may be considered as either “relevant” or “noise” vari-
ables (where relevant variables are those covariates which have a causal relationship with
the output, y, and conversely for noise variables), and under a few further technical as-
sumptions, a bound may be established on the expected number of noise variables appear-
ing in Sstable (we refer to Meinshausen and Bühlmann, 2010, for full details).

Meinshausen and Bühlmann (2010) propose to control this bound through the selection
of the threshold, πthr, and the set, Λ. The resulting set of stably selected covariates,
Sstable is then returned as the final set of selections. Meinshausen and Bühlmann (2010)
demonstrate this procedure using both linear (in the regression case) and logistic (in the
binary classification case) regression models, and define H by using the lasso to perform
automatic feature selection.

2.4.1 Stability paths

One very useful way to visualise the stability selection procedure is provided by so-called
stability paths (Meinshausen and Bühlmann, 2010). For each covariate, vi, these describe
how the estimated probability of selection, P̂Sel({vi}|λ,H), varies as a function of λ.
They are therefore identical to conventional regularisation paths (Figure 2.1), except that
the y-axis describes the estimated probability of selection associated with each covariate,
rather than the estimated coefficient value. An example (which we discuss in more detail
in the next section) is provided by Figure 2.2a . Note that the x-axis in this plot corre-
sponds to a normalised version of the regularisation parameter, λnorm = λ/λmax, so that
λnorm = 1 corresponds to λ = λmax.
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2.4.2 The effects of correlation

Correlations amongst the “relevant” covariates can cause difficulties for stability selec-
tion. As noted in Kent (2010), if there are two strongly correlated relevant covariates, v1

and v2, then the lasso might select v1 approximately half time, and v2 approximately half
the time (and rarely ever select both together). The effect of this would be to make both
covariates appear relatively unstable, and might result in neither being selected (depend-
ing on the value of πthr in Equation 2.12). This problem was considered further in Kirk
et al. (2010), and the analysis is repeated below.

2.4.2.1 Simulation model

We consider a simulated regression example, in which p = 500, n = 50, the covariates are
sampled from a N (0,Σ) distribution, and the response is given by Y =

∑
i=1,...,8 vi + ε,

where ε is a zero-centred Gaussian noise term with variance 0.1. Here, Σ is the identity
matrix except for the elements Σ1,2 = Σ3,4 = Σ4,5 = Σ3,5 = 0.8 and their symmetrical
counterparts. It follows that there are only 8 “relevant” variables, v1, . . . , v8, and that,
amongst these, there are two strongly correlated sets: {v1, v2} and {v3, v4, v5}.

2.4.2.2 Probability sharing amongst correlated covariates

In order to assess the effects of correlation upon stability, we simulate 1,000 times from
the model, and — for each simulated data set — use a subsampling strategy identical
to the one employed by Meinshausen and Bühlmann (2010) (i.e. subsampling 50% of
the data 100 times) to estimate the selection probabilities, P̂Sel({vi}|λ,H). The selection
strategy, H, is again defined to be automatic feature selection using the lasso. In Figure
2.2a, we show the stability path for one of these simulations. Note that v2 appears stably
selected, while the estimated selection probability for v1 remains low for all values of
λ. Indeed, the estimated probability of selection for v1 is comparable to the estimated
selection probabilities for the noise variables. For this particular simulation, we would
therefore expect the stability selection procedure to fail to pick out v1. This pattern is
not universal across all simulations, however. For some simulations, it is v1 that is stably
selected, while the estimated selection probability for v2 hovers around the noise level.
For others, we observe the scenario envisaged by Kent (2010), with v1 and v2 both having
estimated selection probabilities of around 0.5 or 0.6. In fact, there is a whole spectrum of
behaviours, all of which follow a clear pattern: there is a negative relationship between the
estimated selection probabilities for v1 and v2. This is illustrated in Figure 2.2b. Another
way to think of this is to regard the selection probabilities as being “shared” amongst the
correlated covariates (so, one selection probability might be high and one might be low,
or both might be middling, but we will rarely see both being particularly high).
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Figure 2.2: (a) Stability path for a particular realisation of the simulation example of Section
2.4.2. Thick black lines are used for v1 and v2, dot-dashed lines for v3, v4 and v5, thin solid
lines for v6, v7 and v8, and faint, dotted lines for all noise variables; (b) For 1,000 realisations,
selection probabilities for v1 and v2 at λ = 0.25 are estimated using a subsampling method. The
plot illustrates the density of these points in the 0–1 square (with lighter squares indicating higher
density), showing a clear negative relationship; (c) Using the same realisation as in Figure 2.2a,
we plot the stability path when correlated covariates are grouped together; (d) Again using the
same realisation, we obtain a stability path using the elastic net (with α set to 0.2).
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2.4.2.3 Grouping correlated covariates

Figures 2.2a and 2.2b illustrate that, if the relevant variables are strongly correlated, sta-
bility selection (with the lasso) will often fail to select all of them. One way to overcome
this is to perform a preprocessing step in order to detect the sets of correlated covariates.
We may then consider the estimated probability of selecting at least one of the elements
of the correlated set; for example, the estimated probability of selecting v1 or v2 (or both).
If we adopt this approach, we obtain stability paths such as the one shown in Figure 2.2c.

2.4.2.4 Using the elastic net

Grouping the covariates together into correlated sets greatly alleviates the problems pre-
sented by having strong correlations amongst the relevant varables. However, in practice,
defining these groups is likely to present further challenges. For example, how should we
determine the critical level of correlation at which covariates should be grouped together?
Assuming that we can overcome this problem, what should we do if we decide that co-
variates vi and vj should be grouped together, and similarly for vi and vk, but we then find
that the correlation between vj and vk falls below our critical value?

A more elegant and straightforward approach would seem to be to use the elastic net
(Section 2.3.3) in place of the lasso. Figure 2.2d demonstrates the improvements that
such an approach can provide.

2.5 Selection by stability and predictive performance

The stability selection approach of Meinshausen and Bühlmann (2010) not only provides
a useful method by which to assess selection stability, but also makes use of this informa-
tion in order to define a new feature selection algorithm (albeit one that relies upon the
“base” strategy, H). There are, however, limitations to this approach (in addition to the
problems with correlation that we identified in the previous section). For example:

1. The focus on bounding the number of falsely selected covariates means that, al-
though the “false positive rate” (i.e. the frequency with which a noise variable
appears in the stable set) is low, the “false negative rate” (i.e. the frequency with
which a relevant variable is omitted) can be very high. The result of this is that the
stability selection approach tends to be conservative — although we can say with
high confidence that the covariates appearing in the stable set are relevant, we might
be doing so at the expense of omitting other relevant covariates.

2. In practice, the clear distinction between “relevant” and “noise” covariates might
be artificial. It might be more realistic to suppose that there is a continuum of
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relevance, and that our aim is simply to identify the covariates that provide us with
the best ability to predict.

These two limitations motivate the work in this section, where we consider an alternative
stability selection approach that takes predictive performance into account. In brief, our
strategy is to use the data left out of each subsample in order to quantify the predictive
performance afforded by the selected covariates. We then combine this information with
an assessment of stability, and finally choose the set of covariates that optimises both
stability and predictive performance. In contrast to Meinshausen and Bühlmann (2010),
our approach is only applicable for classification problems.

2.5.1 Assumptions

For the time being, we allowH to represent any selection strategy, subject to the following
two requirements:

1. We assume that H may be parameterised by the number, m, of selections that it
makes. For example, we might specify m = 3, in order to ensure that our strategy
will return 3 selections. This is partly for ease of exposition: for a more general reg-
ularisation parameter, λ, we cannot immediately tell whether, for example, λ = 0.2
corresponds to 10 selections, 53 selections, or any other number between 0 and p.
Moreover, any given value for λ will generally correspond to different numbers of
selections depending upon the particular data set we observe. So, for replicate data
sets Drep

i and Drep
j , the sizes of the selected sets s(Drep

i ;λ,H) and s(Drep
j ;λ,H)

may well be different, even for the same value for λ. This is not necessarily prob-
lematic, but we believe it to be more intuitive and interpretable if we deal directly
with the number of selections, m, rather than some technical parameter, λ. This is
particularly the case if we wish to specify in advance a maximum number of co-
variates to be returned by our selection strategy. For example, if we wish to identify
putative biomarkers, available resources may determine a maximum number of pro-
teins that we are able to validate experimentally or test clinically. In what follows,
we emphasise this assumption by writing m in the place of λ.

2. Accompanying H, we require there to be a corresponding classification model, h,
that allows us to make predictions (in the case of embedded selection strategies, H
and h may be one and the same). For example, if logistic regression with an elastic
net likelihood penalty is employed in order to select a set of covariates, then an
appropriate form for the corresponding classifier h is a logistic regression model. If
only a subset of the covariates V ⊆ {v1, . . . , vp} appears in the predictive model h,
then we make this clear by writing h[V ].

We note that the first requirement is not excessively limiting, as most selection strategies
can be formulated in such a way as to generate a ranked list of covariates from which we
may then select the top m (for example, see Section 2.6.1.1).
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2.5.2 Quantifying stability

We employ the estimated selection probabilities of Section 2.2.5. However, in contrast to
Meinshausen and Bühlmann (2010), we focus upon estimated selection probabilities for
sets V such that |V | = m (rather than the marginal selection probabilities of individual
covariates). That is, we consider,

P̂Sel(V |m,H) =
1

B

B∑
i=1

I
(
V = s(D

rep
i ;m,H)

)
, (2.13)

where we now have a strict equality inside the indicator function. In words, P̂Sel(V |m,H)
is simply the proportion of the B subsampled data sets for which the corresponding se-
lection of size m was V .

2.5.3 Quantifying predictive performance

When we have only a limited number of observations, we often employ a cross-validation
approach in order to assess predictive performance (see Section 1.4.2.1). In random sub-
sample cross-validation, we proceed by first drawing subsamples Drep

1 , . . . , D
rep
B from

Dobs. For each i we then train classifier h on Drep
i and calculate the correct classification

rate, c(Drep
i ;h), when h is applied to Drep

\i = Dobs\Drep
i (note that the correct classifi-

cation rate is simply one minus the misclassification rate). Similar to the way in which
Equation (2.13) is identified as an estimate of the probability of selecting set V , we may
identify the mean of the B correct classification rates c(Drep

i ;h) as an estimate of the
probability that h classifies correctly.

Returning to our problem, we wish to estimate the probability of correct classification
using h[V ], given that V is one of our selected sets of size m. In line with the random
subsample cross-validation procedure outlined above, and making use of the existing sub-
sampling strategy used for the selection probabilities, we estimate this as,

P̂Correct(h[V ]|V = s(D
rep
i ;m,H) for some i) :=∑B

i=1 c(D
rep
i ;m,H)I(s(Drep

i ;m,H) = V )∑B
i=1 I(s(D

rep
i ;m,H) = V )

,
(2.14)

where c(Drep
i ;m,H) is the correct classification rate achieved when h[s(D

rep
i ;m,H)] is

trained on Drep
i and applied to Drep

\i .

Thus, P̂Correct(h[V ]|V = s(D
rep
i ;m,H) for some i) is simply the average of the correct

classification rates achieved whenever V was selected.
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2.5.4 Combining stability and predictive performance

Equation (2.14) provides an estimate of the conditional probability of correct classifica-
tion using h[V ], given that V is a selected set. Equation (2.13) estimates the probability
that V is selected. We may hence estimate the joint probability of both selecting V and
classifying correctly using the resulting classifier h[V ] by multiplying these estimates to-
gether. We therefore obtain,

P̂Joint(V |m,H, h) :=
1

B

B∑
i=1

c(D
rep
i ;m,H)I(s(Drep

i ;m,H) = V ). (2.15)

Note that this is identical to Equation (2.14), except that rather than dividing by the num-
ber of subsamples for which V was selected, we divide by the total number of subsamples.

It is this joint probability of selection and correct classification (which, for brevity, we will
henceforth refer to as the “joint score”) that we shall use in order to assess the quality of a
given set V , and which we will ultimately optimise in order to make our final selections.
Note that Equation (2.15) is just a weighted estimate of the probability of correct classifi-
cation (Equation 2.14). This weighting penalises sets that are unstably selected, since B
will be large relative to

∑B
i=1 I(s(D

rep
i ;m,H) = V ) for sets that are selected only a few

times. This has the additional positive side-effect of down-weighting estimates that are
made on the strength of small numbers of subsamples. If V is a completely stable set (i.e.
for all Drep

i , we have s(Drep
i ;m,H) = V ), then

∑B
i=1 I

(
s(D

rep
i ;m,H) = V

)
= B, and

hence Equations (2.14) and (2.15) coincide.

2.5.5 Selecting by joint score maximisation

The above discussion suggests a selection strategy in which we seek the set V that max-
imises Equation (2.15). Given a range of values for m (say, m = 1, . . . ,mmax) and
a collection of different selection algorithms {Hk}Kk=1 (and corresponding classification
models {hk}Kk=1), we perform an exhaustive search in order to find,

V̂ (m, k) := argmax
V

{
P̂Joint(V |m,Hk, hk)

}
, (2.16)

and
P̂ (m, k) := max

{
P̂Joint(V |m,Hk, hk)

}
, (2.17)

for 1 ≤ m ≤ mmax and 1 ≤ k ≤ K. For eachHk we can then plot how the maximal value
of the joint score varies with increasing m, which allows for straightforward comparisons
of different selection strategies (as we shall see in Figure 2.5). As our final selected set
and final choices for m and k we take,

m̂, k̂, V̂ := argmax
m,k,V

{
P̂Joint(V |m,Hk, hk)

}
. (2.18)

For complete clarity, a straightforward algorithm for computing these quantities is pre-
sented in Algorithm 1.
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Algorithm 1 Selection by stability and predictive performance

Draw subsamples Drep
1 , . . . , D

rep
B from Dobs

topScore← 0
topSelectedSet← emptySet()
for k = 1 to K do
H ← Hk

h← hk
for m = 1 to mmax do

selectedSets← emptyList()
classRates← emptyVector()
counter← 1
for i = 1 to B do
V ← s(D

rep
i ;m,H)

if V ∈ selectedSets then
index← which(selectedSets == V )
classRates[index]← classRates[index] +c(D

rep
i ;m,H)

else
selectedSets[counter]← V
classRates[counter]← c(D

rep
i ;m,H)

counter← counter +1
end if

end for
if max(classRates) ≥ topScore then

index← which(classRates == max(classRates))
topScore← max(classRates)
topSelectedSet← selectedSets[index]

end if
end for

end for

It is clear from Algorithm 1 that the procedure for finding the set that optimises the joint
score may be computationally costly, since we have to perform feature selection, train
our classification model, and then evaluate its predictive performance a total of KBmmax

times. We note, however, that this part of the procedure is eminently parallelisable: we
may consider each value of m for each Hk applied to each Drep

i on a separate computer
node. We must simply ensure that each node returns a selected set, V , and a corresponding
correct classification rate. Subsequently, we must process these outputs (together) by
identifying all of the distinct V ’s amongst those that were returned, and — for each of
these — we must sum all of the corresponding classification rates. The V that has the
highest sum is the final output of the algorithm.
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2.6 Implementation

Until now, our exposition regarding how to select by stability and predictive performance
has been rather general. We now provide details of how the subsampling is performed, as
well as describing the selection strategies and classification model that we consider.

2.6.1 Subsampling

Suppose that n0 of the observations in Dobs belong to class 0, and n1 = n − n0 belong
to class 1. Then, in all of the examples considered in this paper, we form subsamples
D

rep
1 , . . . , D

rep
B which maintain the class proportions of the original set by each time ran-

domly sampling 0.5bnjc observations from class j, for j ∈ {0, 1}. For the simulation
example of Section 2.7, we take the number of subsampled data sets to be B = 100; and
for the biomarker discovery example of Chapter 3 we take B = 250.

2.6.1.1 Selection strategy

As previously, we focus on selection strategies that use logistic regression models with
elastic net likelihood penalties, including the lasso penalty as a special case. In the fol-
lowing, we consider a grid of α values (α = 0.1, 0.2, . . . , 1), and find for each the regular-
isation path (Figure 2.1). Each different value of α defines a different covariate selection
strategy, so that we have 10 strategies H1, . . . ,H10, with Hk corresponding to α = k/10.
Throughout, we use the glmnet package in R (Friedman et al., 2010) in order to con-
struct regularisation paths. We form a ranked list from the regularisation path by con-
sidering the order in which covariates are selected (i.e. the order in which coefficients
become non-zero as we decrease λ). If, due to the effects of the regularisation path being
evaluated on a discrete grid of λ values, two covariates seem to appear simultaneously
(e.g. covariates v3 and v7 in Figure 2.1), then we randomly choose which one should ap-
pear first in the list. In principle, this random choice errs on the side of slightly decreasing
the stability of our selections; in practice, however, we find it to have little effect. The
selected set of size m is then defined to be the top m covariates in the ranked list.

2.6.2 Predictive model

For each selection strategy,Hk, we take h (the corresponding predictive model) to be a lo-
gistic regression classifier. We train h by unpenalised maximisation of the log-likelihood.
We note that this two-step procedure of using the elastic net for variable selection and
then obtaining unpenalised estimates of the coefficients in the predictive model is similar
to the LARS-OLS hybrid (Efron et al., 2004) or the relaxed lasso (Meinshausen, 2007).
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2.6.3 The stabSel package

We have implemented the procedure described in this section as part of an R package,
which we call the stabSel package. This additionally allows the calculation of esti-
mated marginal selection probabilities, and the Jaccard and Kuncheva similarity coeffi-
cients. The user may vary the number of subsamples, subsample proportions etc., or may
use predefined defaults.

2.7 Simulation example

We consider a similar example to the one presented in Section 2.4.2.1. We have p = 500
predictors v1, . . . , v500 and n = 200 observations. The predictors v1, . . . , v500 are jointly
distributed according to a multivariate normal whose mean µ is the zero vector and whose
covariance matrix Σ is the identity, except that the elements Σ1,2 = Σ3,4 = Σ3,5 = Σ4,5

and their symmetric counterparts are equal to 0.9. Thus, there are two strongly correlated
sets, C1 = {v1, v2} and C2 = {v3, v4, v5}, but otherwise the predictors are uncorrelated.
Observed class labels y are either 0 or 1, according to the following logistic regression
model:

P (y = 1|v1, . . . , v500) =
1

1 + exp (−
∑5

i=1 vi))
. (2.19)

Since v1, . . . , v5 are the only covariates that appear in the generative model given in Equa-
tion (2.19), the notion of “relevant” and “noise” variables is appropriate here.

We simulate 1,000 data sets by first sampling from a multivariate normal in order to obtain
realisations of the covariates v1, . . . , v500, and then generating values for the response y
according to Equation (2.19). When performing selections, mmax is set to 20.

2.7.1 Selecting by predictive performance

In order to assess the usefulness of our approach, we compare it to a selection strat-
egy based upon predictive performance alone. We proceed as before, taking subsamples
D

rep
1 , . . . , D

rep
B of data setDobs (where we use the same proportions and value ofB as for

the joint selection strategy). For a given value of m, we apply strategy H to subsampled
data set Drep

i in order to obtain a selected set V = s(D
rep
i ;m,H). We then train the pre-

dictive model h[V ] on Drep
i and assess its performance on the left out set Drep

\i . We hence
obtain a correct classification rate c(Drep

i ;m,H). By taking the average over all subsam-
ples, we obtain the mean correct classification rate, c(m,H) =

∑B
i=1 c(D

rep
i ;m,H)/B.

Given a range of values of m and several different models H, we select the combination
(msel,Hsel) which maximises c(m,H). The final selected set, s(D;msel,Hsel), is given
by applyingHsel to the original data set Dobs in order to obtain msel selections.
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2.8 Results

We present in this section the results obtained from our simulation example, before mov-
ing on to a real biological example in the next chapter.

2.8.1 No false positives

We applied our selection strategy (Algorithm 1) to each of our 1,000 simulated data sets.
For 50.5% of simulations, we selected all 5 relevant covariates; in a further 39.1%, we
selected just covariates from the second correlated set; and in the remainder we selected
various combinations of the 5 relevant covariates (Figure 2.3, left bar). Our strategy never
selected a set containing a noise covariate. This is in stark contrast to the selection strategy
based upon predictive performance alone (Section 2.7.1), as illustrated in Figure 2.3, right
bar. For 26.4% of our simulated data sets, we obtained selected sets that contained at least
one noise variable. Not only is this “false positive” rate significantly higher than for our
“joint score” selection strategy, but also the “true positive” rate is lower, with the full set
of relevant covariates being selected for only 26.3% of the simulated data sets .

50.5%

26.3%

39.1%

6.3%

6.4%

7.6%

10.8%

10.4%

16.2%

26.4%

Joint strategy Prediction only

SelectedSets

1: V1 V2 V3 V4 V5

2: V3 V4 V5

3: V1 V2 V3 V5

4: V1 V2 V4 V5

5: V1 V2 V3 V4

6: V2 V3 V4 V5

7: Other [relevant selections]

8: Other [including noise variables]

Figure 2.3: Sets selected using “joint score” and “predictive performance” methods.



CHAPTER 2. STABILITY SELECTION FOR BIOMARKER DISCOVERY 46

2.8.2 Smaller values of α yield higher scoring selections

Figure 2.4 illustrates the sampling distributions (over all 1,000 simulations) of the maxi-
mal joint scores (Equation 2.17) for different values of α. We can see that smaller values
of α tended to yield higher maximal values of the joint score.

Maximal value of joint score
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ity

0

5
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.4

0.6

0.8

1

Figure 2.4: Distributions of the maximal joint score values for 5 different values of α.

2.8.3 Analysis of a single simulation

As well as looking at the average performance over all 1,000 simulations, it is also use-
ful to consider a single simulation, as this corresponds to the more realistic scenario in
which we have only one data set. In this section, we illustrate results for one particu-
lar simulation, which we refer to as “Simulation 1”. In Figure 2.5, we show how the
maximal joint scores (Equation 2.17) vary as a function of m and α. Amongst all con-
sidered values of m and α, the absolute maximum was achieved when m = 5, α = 0.2
and V = {v1, v2, v3, v4, v5} (as indicated in the figure). This set is therefore returned by
Algorithm 1 as our final selection.
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Figure 2.5: Maximal joint scores as a function of m for Simulation 1. We show the results from
all 10 values of α that we considered.

2.8.3.1 Comparison to Jaccard and Kuncheva similarity indices

We may additionally consider the Jaccard and Kuncheva indices as alternative ways in
which to quantify stability. For each value ofm (and each value of α), we have a collection
of 100 selected sets, s(Drep

i ;m,H), of sizem. We may hence calculate the mean pairwise
Jaccard and Kuncheva coefficients for these collections (Equations 2.2.2 and 2.2.3). If we
plot the resulting values as a function ofm, we obtain similarity paths, as shown in Figure
2.6.

We note that there is a high degree of similarity between Figure 2.5 and Figures 2.6a
and 2.6b. This is reassuring, and suggests that aspects of our approach could perhaps
be employed in existing methodologies that currently utilise the Jaccard or Kuncheva
similarity indices (such as Abeel et al., 2010). The joint score has a number of advantages
over these (and other) similarity measures. Principal amongst these is that the joint score
has a straightforward probabilistic interpretation (while the similarity measures tend to be
more heuristic in nature), and also that it incorporates an assessment of predictive ability.



CHAPTER 2. STABILITY SELECTION FOR BIOMARKER DISCOVERY 48

o

o
o

o

o

o
o

o
o o o

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability − Kuncheva

Number of Selections

M
ea

n 
pa

irw
is

e 
K

un
ch

ev
a 

co
ef

fic
ie

nt

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o
o

o

o

o

o

o o

o

o

o

o
o

o

o
o

o
o o

o

o

o

o
o

o

o
o

o o
o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o
o

o
o

o
o

o

o

o

o

o
o

o

(a)

●

●

●

●

●

●

●
●

●
●

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability − Jaccard

Number of Selections

M
ea

n 
pa

irw
is

e 
Ja

cc
ar

d 
co

ef
fic

ie
nt

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

αα
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

(b)

Figure 2.6: (a) Kuncheva, and (b) Jaccard similarity paths for different values of α (for Simulation
1).

2.9 Discussion

We have considered a number of ways for assessing the stability of covariate selections.
We discussed the recently published stability selection procedure of Meinshausen and
Bühlmann (2010), and highlighted the difficulties that can arise as a result of correlations
amongst the covariates. We then presented a novel score for combining assessments of
stability and predictive performance. For a subset V of the covariates (and given selection
strategyH and classification model h), this score may be interpreted as an estimate of the
joint probability of selection of V by H and correct classification using h[V ]. We further
constructed a straightforward algorithm which returns the set V (as well as the number
of selections, m, and model indicator, k) that maximises our score. This algorithm is
implemented in the stabSel package in R. The algorithm allows different covariate
selection strategies and classification models to be considered together, and also permits
us to compare their stability and predictive properties. We employed a selection strategy
using logistic regression models with the elastic net likelihood penalty. By considering a
range of values for the α parameter, we were able to investigate the effects of correlation
on stability.

We applied our algorithm to a series of simulated data sets for which we knew the “cor-
rect” covariate selections. For all 1,000 of our simulations, the sets returned by our algo-
rithm included only relevant covariates. For just over half of the simulations we recovered
all of the relevant covariates. This represented a significant improvement in performance
relative to a selection strategy based upon predictive performance alone, which returned
all of the relevant covariates for only a quarter of the simulated data sets, and which also
frequently selected noise covariates. Looking more closely at our results enabled us to
determine that the covariate selections with the highest joint scores tended to be given
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by lower values of α. Given that there was a strong correlation structure amongst our
covariates (and in light of the discussion of Section 2.4.2), this is unsurprising.

We then focused our attention upon a single simulation in order to replicate the situation
in which we have just one data set. We demonstrated that the results obtained using our
method were in good agreement with assessments of stability that employed the Jaccard
or Kuncheva similarity indices.

Overall, we have demonstrated that our approach provides a useful way to combine as-
sessments of stability and predictive performance, which has favourable properties rela-
tive to methods that select on the basis of predictive performance alone. Our algorithm
allows us to compare several different selection strategies,Hk. Its output tells us not only
the number of selections and selected set which optimise the joint score, but also the op-
timal selection strategy from amongst those we considered (Equation (2.18)). In the next
chapter, we apply our algorithm in the context of HTLV-1 biomarker discovery.



Chapter 3

HTLV-1 biomarker discovery

Abstract We apply the algorithm of the previous chapter to SELDI-TOF
MS blood serum data obtained from HTLV-1 seropositive patients. We iden-
tify a number of putative protein peak biomarkers to distinguish between
asymptomatic carriers of the virus and infected individuals who suffer from
an inflammatory condition known as HAM/TSP. Two of the putative biomark-
ers have been experimentally identified as β2-microglobulin and Calgranulin
B. Our results indicate that, together, these proteins allow us to discriminate
between the two classes of HTLV-1 infected individuals with (approximately)
a 78% cross-validation rate of correct classification.

Outline In Section 3.1 we provide information about both HTLV-1 and
SELDI-TOF MS. We describe the data in Section 3.2, and perform some stan-
dard statistical analyses in Section 3.3. In Section 3.4 we apply the algorithm
of Section 2.5. As part of our analysis, we demonstrate the difficulties caused
by correlation that we identified in the previous chapter. We then discuss the
plausibility of the putative protein peak biomarkers, with reference to further
experimental results (Section 3.5). We provide further general conclusions in
Section 3.6.

3.1 Background

The human T lymphotropic virus Type 1 (HTLV-1) is a widespread virus associated with
a range of diseases, the most commonly recognised of which are adult T-cell leukaemia/-
lymphoma (ATLL) and an inflammatory condition of the central nervous system known
as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). In the present
document, it is with the latter that we are concerned. HTLV-1 persists lifelong in the host,
but only between 0.1% and 2% of infected individuals suffer from HAM/TSP (Bangham,
2000). It is therefore of significant interest to determine any factors that are different

50
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between asymptomatic carriers (ACs) of the virus, and individuals with HAM/TSP. Pre-
vious research has focused upon characterising the lymphocyte population in HAM/TSP
patients versus ACs (Goon et al., 2003; Toulza et al., 2008), comparing the expression
levels of HTLV-1 genes (Asquith et al., 2005; Toulza et al., 2008), and investigating the
integration sites in the host cell genome of the HTLV-1 provirus (Meekings et al., 2008).

We here add to the emerging picture of the pathogenesis of HAM/TSP by considering
a novel data-type; namely, surface-enhanced laser desorption/ionisation time of flight
mass spectrometry (SELDI-TOF MS) proteomics data. We seek to identify proteins in
the blood plasma whose abundances are associated with HAM/TSP, and which allow
HAM/TSP patients to be discriminated from ACs.

3.1.1 SELDI-TOF MS

For brevity, we do not provide a detailed review of the technology used for SELDI-TOF
MS, and refer to (Issaq et al., 2002) for further information. To summarise, pre-prepared
samples are spotted onto an array (chip), and are then analysed by a laser desorption/ioni-
sation time of flight mass spectrometer. This produces a spectrum, such as the one shown
in Figure 3.1a, which displays the mass/charge (m/z) ratio of the ionised proteins, and the
signal intensity of the ions. Once a collection of such spectra has been generated, peak
detection and clustering may be performed in order to reduce the dimensionality (and in-
crease the interpretability) of each spectrum, producing a series of “spikes”, such as those
shown in Figure 3.1b. Each spike is assumed to correspond to a protein, with the intensity
(height) being a measure of abundance.
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Figure 3.1: A section of a SELDI-TOF MS output. (a) Displayed as a spectrum. (b) Displayed as
a series of “spikes” (after processing). The spikes summarise the key information for each peak:
namely, it’s mass/charge ratio (x-axis) and its intensity (y-axis).

Ideally, we might hope that we could simply “look up” the proteins corresponding to the
mass/charge ratio for each spike, and hence easily identify the proteins in our samples.
Unfortunately, the relative imprecision with which the technology assigns protein peaks
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to molecular masses necessitates the use of additional experimental methodologies in or-
der to perform the identification (Ndao et al., 2010). It was therefore originally envisaged
that the principal usage of SELDI-TOF MS data would be as part of a more complete
data analysis (Issaq et al., 2002). Candidate protein peak biomarkers would be identified
from the original spectra, and then later identified by other means. However, later studies
questioned the necessity of the protein identification step, arguing that — for diagnostic
purposes — this information was not truly necessary, and that it was instead sufficient to
determine “proteomic patterns” that allowed different types of samples (e.g. case/control)
to be discriminated from one another (Petricoin et al., 2002b). One of the results of this
is that many subsequent studies worked with the full, high-dimensional spectral repre-
sentation of the data, rather than the lower-dimensional, clustered peaks (Petricoin et al.,
2002a; Sorace and Zhan, 2003).

In a reanalysis of the data of Petricoin et al. (2002b), Baggerly et al. (2004) highlighted
serious concerns regarding the reproducibility of results obtained from SELDI-TOF MS
data, and identified a number of problems with the experimental protocols and statistical
analyses that had been used in earlier papers. The identified issues included: an inability
to generalise results to new data sets; being able to achieve perfect classification using
“noise” in the spectra; and determining that, in Petricoin et al. (2002b), a “baseline cor-
rection” had not been performed1 As a result of these issues, there has been a degree of
distrust regarding results obtained from SELDI-TOF MS data (Constans, 2006). However,
many authors have taken heed of the warnings and recommendations of Baggerly et al.
(2004), with successful results (MacGregor et al., 2008; Hand, 2008; Pusztai et al., 2004).
Current opinions of SELDI-TOF MS are much improved (Ndao et al., 2010), particularly
when viewed as a means for proposing putative biomarkers that are to be followed up in
further experimental studies (MacGregor et al., 2008).

In order to mitigate the issues raised by Baggerly et al. (2004), a carefully designed ex-
perimental study was undertaken, in which two separate data sets were generated (see
Section 3.2). Appropriate preprocessing and normalisation of the data was performed, af-
ter which we applied a number of standard approaches for analysis (Section 3.3). Finally,
in Section 3.4, we apply the selection algorithm of Section 2.5. Given the concerns about
reproducibility of results, we believe it to be particularly appropriate to apply a stability
selection approach to SELDI-TOF MS data such as these.

3.2 The data

Blood plasma samples were obtained from 68 HTLV-1-seropositive patients, 34 of whom
were sufferers of HAM/TSP and 34 of whom were ACs. The data were collected in
two batches, both of which comprised 17 HAM/TSP samples (henceforth HAMs) and

1Baseline correction refers to a procedure by which the baseline of the spectrum is “flattened” to a
constant (zero) level in order to allow different spectra to be compared to one another (see Sauve and
Speed, 2004).
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17 ACs. Additionally, samples were obtained from 16 ethnically matched uninfected
controls (henceforth U). Two data sets were formed, D0 and DV . The former comprises
the first batch of HTLV-1 samples, plus all 16 Us, while the latter comprises the second
batch of HTLV-1 samples, plus 14 of the Us.

The DO samples were spotted onto a number of chips for SELDI-TOF MS analysis. A
randomisation process was employed, which ensured that each chip included a variety
of HAM, AC and U samples. Onto each chip, an independent control sample was also
spotted (identical for all chips), so that we could later correct for any chip-specific effects
(see Section 3.2.1). SELDI-TOF MS was used to generate spectra, and baseline correction
and normalisation by total ion current (TIC) were performed using proprietary software
(Biomarker Wizard, BioRad). The same software was used in order to detect and cluster
protein peaks2, the final output being a series of spikes. The samples from the DV set
were processed in an identical manner, but separately from the DO set.

In addition to these two data sets, we also considered all 68 HTLV-1 samples together to
create a “combined” data set, DC . Peak detection and clustering were again performed
using Biomarker Wizard, but this time with all 68 HTLV-1 spectra together.

3.2.1 Normalisation for chip-specific effects

Since the samples were distributed over several chips, we applied a normalisation proce-
dure to control for any chip-specific effects. Given that the control samples spotted onto
each chip are identical, we know that any discrepancy between them must arise as a result
of chip-specific biases (and random noise). We therefore modelled the intensities of the
peaks in the control spectra using a linear model of the type often used in analyses of
microarray data (Churchill, 2004),

yik = Ai +Bk + εik. (3.1)

Here, yik is the measured intensity of peak i in the spectrum from the control sample on
chip k; Ai is the true unobserved intensity of peak i in the control sample (independent
of the chip); Bk is a chip-specific fixed effect; and εik is a zero-mean random error term.
The moment estimator of the chip effect is then,

B̂k = ȳ·k − ȳ··, (3.2)

where ȳ·k is the average peak intensity across all of the peaks that appear in the control
sample on chip k, and ȳ·· is the average peak intensity across all peaks in all control
samples (i.e. across all chips).

2Clustering peaks refers to the procedure that is used in order to match up peaks from different spectra.
For example, in one spectrum, there might be a peak with m/z value 13,301.7 and in a second spectrum,
there might be a peak with m/z value 13,303.0. The clustering procedure analyses all spectra together and
determines whether or not these peaks should be grouped together (and hence whether or not we should
regard these peaks as corresponding to the same protein). See Tibshirani et al. (2004); Coombes et al.
(2003) for typical examples of peak clustering algorithms.
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We normalised all other spectra by subtracting the appropriate chip effect from the inten-
sities. That is, we calculated,

ynormalised
ij = yij − B̂k(j), (3.3)

where yij is the (original) intensity for peak i in sample j, and k(j) denotes the chip on
which sample j was run.

3.2.2 Summary

To recap, after performing the SELDI-TOF MS analysis and the various preprocessing
and normalisation steps, we have 3 data sets:

• DO, comprising 17 HAMs, 17 ACs, 16 Us.

• DV , comprising 17 HAMs, 17 ACs, 14 Us.

• DC , comprising 34 HAMs, 34 ACs.

3.3 Preliminary data analysis

We start with a standard statistical analysis of the DO and DV data sets, in which we use
a nonparametric alternative to the conventional t-test in order to identify protein peaks
whose intensities differ significantly between HAMs and ACs. More precisely, we use
the Mann-Whitney U test (Mann and Whitney, 1947), which we may view as testing for
a significant difference between the median intensities of the two groups. We employ
the variant of the Benjamini-Hochberg multiple testing correction procedure suggested
by Storey (2002), controlling the false discovery rate at q = 0.05 (see also Section 1.2.2).
As well as comparing the HAM and AC classes, we additionally consider the following
pairwise comparisons: HAM vs. U, and AC vs. U.

The peaks determined to be significant are shown in Tables 3.1 and 3.2 for theDO andDV

data sets respectively. Note that the peak identifiers are the mass-to-charge “locations” of
the peaks, the units of which are kiloDaltons (kDa).

Tables 3.1 and 3.2 show that, for both the DO and DV data sets, the 11.7kDa, 11.9kDa,
13.3kDa and 14.6kDa peaks have significantly different median intensities between the
HAM and AC classes (and also between the HAM and U classes). In Figures 3.2 and
3.3 we show heatmaps which illustrate the pattern of intensities for these peaks amongst
the HAM and AC spectra. The figures show a clear difference between the intensities of
these peaks in the two classes of samples: they are all elevated amongst the patients with
HAM/TSP.
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Our inability to detect significant differences between the median peak intensities of the
AC and U classes is somewhat disappointing, but perhaps unsurprising. Although infected
with HTLV-1, the ACs are, after all, asymptomatic, and hence we would expect to find it
difficult to distinguish them from the uninfected controls.

HAM vs. AC HAM vs. U AC vs. U
Peak q-value Peak q-value Peak q-value
11.7 7.00E-05 11.7 4.71E-06 - -
11.9 2.38E-04 11.9 5.04E-05
13.3 5.50E-04 13.3 1.16E-04
14.6 1.49E-02 14.6 8.55E-04
17.3 3.76E-02

Table 3.1: Peaks identified as significant (after multiple testing correction) from the DO data set, together
with corresponding q-values.

HAM vs. AC HAM vs. U AC vs. U
Peak q-value Peak q-value Peak q-value
14.6 4.18E-02 14.6 2.39E-03 - -
11.7 4.18E-02 11.7 4.45E-03
13.3 4.18E-02 13.3 4.45E-03
11.9 4.57E-02 17.5 1.05E-02

11.9 4.37E-02
13.7 4.38E-02
17.3 4.38E-02
59 4.38E-02

90.6 4.38E-02
8.58 4.4s1E-02

Table 3.2: As in Table 3.1, using the data from the DV data set.
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Figure 3.2: Heatmap representation of the pattern of intensities for the 11.7kDa, 11.9kDa, 13.3kDa and
14.6kDa peaks, using data from the original set. Rows correspond to different samples (with the top 17
being AC samples, and the bottom 17 being HAM), while columns correspond to different peaks. The
colours of the blocks describe the log peak intensities (after median centring).
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Figure 3.3: As in Figure 3.2, but this time showing the results from the verification data set. Again, the
top 17 rows correspond to AC samples, and the bottom 17 to HAM.
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3.4 Selection by stability and predictive performance

Having completed a preliminary statistical analysis, we now apply the algorithm of Chap-
ter 2, Section 2.5. As previously mentioned, we believe assessments of selection stability
to be particularly appropriate for SELDI-TOF MS data sets, given the concerns in the lit-
erature regarding reproducibility of results (Baggerly et al., 2004). It is also widely recog-
nised that strong correlations are characteristic of mass spectrometry data sets (Coombes
et al., 2003; Hand, 2008; Zuber and Strimmer, 2009), so it is important to account for
their effects.

In Section 3.4.2, we apply our algorithm to the combined DC data set. We focus on this
data set rather than DO or DV , as we are principally interested in the differences between
the HAM and AC classes, and so it is sensible to make use of all available HTLV-1 data.
Given the randomised experimental procedure (Section 3.2), the normalisation for chip-
specific effects (Section 3.2.1), and the good agreement between the results from the DO

and DV data sets found in Section 3.3, we believe the combination of the HTLV-1 data
sets to be justified.

Before embarking upon our main analysis, we make use of the DO and DV data sets
once more. In Section 3.4.1, we demonstrate that the effects of correlation present dif-
ficulties for stability not only in the simulated example of Section 2.4.2, but also in real
experimental examples.

3.4.1 Effects of correlation upon stability: a real example

For the DO and DV sets separately, we use a subsampling approach in order to estimate
marginal selection probabilities for the protein peaks. We employ the same subsampling
procedure as in Section 2.6, and again use logistic regression models with the elastic net
likelihood penalty in order to make selections. We combine ideas of Sections 2.4.2 and
2.5 and plot stability paths that describe how the estimated marginal selection probabili-
ties vary as a function of m (the number of selections), rather than λ (the regularisation
parameter). We show in Figure 3.4 the resulting stability paths for DO when the elastic
net mixing parameter, α is set to 1 (Figure 3.4a), and to 0.1 (Figure 3.4c). Similar plots
are shown for DV in Figures 3.4b and 3.4d.

The figures show that when α is taken to be 1, there is little agreement between the stably
selected covariates from the two data sets (for example, Figure 3.4a shows the 11.7kDa
peak to be the most stably selected and the 14.6kDa peak to be barely ever selected; while
in Figure 3.4b this situation is reversed). However, when the value for α is reduced to
0.1 (and hence correlated variables are permitted to be selected together), the agreement
between the two plots is greatly increased, with the top 4 most stably selected peaks being
in agreement (11.7kDa, 13.3kDa, 14.6kDa and 11.9kDa).
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(a) α = 1; data set DO.
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(b) α = 1; data set DV .
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(c) α = 0.1; data set DO.
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(d) α = 0.1; data set DV .

Figure 3.4: Stability paths for the DO and DV data sets, for values α = 1 and α = 0.1. Four
covariates of interest are shown in colour.

The disagreement between Figures 3.4a and 3.4b, and the improved agreement as we re-
duce α, is due to strong correlations amongst the (putatively) relevant covariates. The
correlation structure is represented visually in Figure 3.5, where we can see that the in-
tensities of the 11.7, 13.3, 14.6 and 11.9kDa peaks are all strongly correlated with one
another. This provides a real example of the effects that strong correlations can have upon
selection stability.
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Figure 3.5: Heatmap representation of the correlation structure amongst 6 protein peaks in theDC

data set. The colour of each square indicates the magnitude of the (Pearson) correlation coefficient
between each pair of protein peaks, as described by the colour key in the top left.

3.4.2 Applying Algorithm 1 to DC

We apply our “joint score” selection method to the HTLV-1 combined data set, DC , ac-
cording to the approach presented in Chapter 2, Algorithm 1, and using the same subsam-
pling procedure as in Section 2.6. We again employ logistic regression models with the
elastic net penalty in order to select protein peaks, considering α = 0.1, 0.2, . . . , 1 (as in
Section 2.6.1.1).

The final set returned by the algorithm comprises the protein peaks located at 11.7kDa,
13.3kDa and 14.6kDa (see Figure 3.6). We additionally show in Figure 3.7 the joint
scores and estimated correct classification probabilities for 6 of the highest scoring sets.
Each point corresponds to a selected set (as indicated by the legend). Moreover, each
set may be represented up to ten times in the figure, as we display results from all of the
values considered for α (if a set is represented fewer than ten times, this indicates that
for some values of α, the set was never selected). We can see that sets comprising just
the 11.7kDa or 13.3kDa peaks individually (respectively the red and magenta points) are
amongst the highest scoring, and that all other high-scoring sets also include these two
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covariates. The highest estimated probabilities of correct classification (around 0.78) are
achieved for the set comprising both the 11.7kDa and 13.3kDa peaks (and no others).
However, the highest joint scoring set additionally includes the 14.6kDa peak, indicating
that selection of this covariate can help to improve stability. The intensities of all 3 of
these peaks are correlated, and our results reflect this. Other high-scoring sets additionally
include the 11.9kDa, 17.3kDa and 17.5kDa protein peaks (note that these covariates give
rise to the local maximum in Figure 3.6). The 11.9kDa peak is strongly correlated with
the 11.7kDa, 13.3kDa and 14.6kDa peaks, while the 17.3kDa and 17.5kDa peaks are
particularly strongly correlated with each other (see Figure 3.5).
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Figure 3.6: Maximal joint scores as a function of m for the DC data set (cf. Figure 2.5). The set
comprising the 11.7kDa, 13.3kDa and 14.6kDa peaks achieves the maximal joint score over all
values of α, and hence is the final output of Algorithm 1.
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Figure 3.7: Joint score versus estimated probability of correct classification for 6 of the top scoring
covariate sets, and for all considered values of α

3.4.2.1 Jaccard and Kuncheva similarity paths

For completeness, we also plot similarity paths (as in Figure 2.6 from Chapter 2), to
show how the mean pairwise Jaccard and Kuncheva similarity coefficients vary as a func-
tion of m. We use the same subsampling scheme and predictive models as previously,
but this time consider a finer grid of values for the elastic net mixing parameter, taking
α = 0.01, 0.02, . . . , 1. We are hence able to plot similarity surfaces, showing how the
similarity coefficients vary as a function of m and α, as shown in Figure 3.8. We first note
that Figures 3.8a and 3.8b bear a strong resemblance to one another. The main differ-
ence between these two plots is that we can begin to see the Jaccard coefficient increasing
for large values of m, while the Kuncheva coefficient corrects for this. There are local
maxima in both plots at m = 2, m = 3 and m = 6, depending on the values of α.
Although impossible to tell from just the similarity coefficients, Figure 3.6 allow us to in-
terpret these maxima. The maximum at m = 2 corresponds to the stable selection of the
11.7kDa and 13.3kDa peaks; the maximum at m = 3 corresponds to the additional stable
selection of the 14.6kDa peak; and the maximum at m = 6 corresponds to the additional
stable selection of the 11.9kDa, 17.3kDa and 17.5kDa peaks.
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Figure 3.8: (a) Jaccard and (b) Kuncheva similarity surfaces for the DC data set.

3.5 Experimental identification of protein peaks

The 11.7kDa and 13.3kDa protein peaks were identified using peptide mass fingerprint-
ing techniques (see, for example Pappin et al., 1993). The 11.7kDa peak was found to
correspond to β2-microglobulin, while the 13.3kDa peak corresponds to Calgranulin B.
There is strong supporting evidence for the validity of these proteins as biomarkers. The
β2-microglobulin protein is a known biomarker of rheumatoid arthritis (Manicourt et al.,
1978) and other chronic inflammatory diseases (Xie and Yi, 2003), while serum Calgran-
ulin B levels have been found to be elevated in a number of inflammatory disorders (Foell
and Roth, 2004; Kelly et al., 1989), including cystic fibrosis (Wilkinson et al., 1988).

3.6 Discussion

We analysed SELDI-TOF MS data in order to identify putative biomarkers of HAM/TSP.
We used a number of techniques to analyse these data, including the algorithm of Chapter
2, Section 2.5. Three protein peaks were returned by our algorithm, which were in good
agreement with those selected using more traditional analyses (Section 3.3). Amongst
these, there were two particular protein peaks (11.7kDa and 13.3kDa) that together pro-
vided the maximal cross-validation correct classification rate (around 78%) when dis-
criminating between HAMs and ACs. These peaks were identified using peptide mass
fingerprinting techniques, and were found to correspond to plausible protein biomark-
ers. Experimental identification of the remaining protein peak returned by our algorithm
(14.6kDa) is ongoing. Although not returned amongst the final selections of our algo-
rithm, efforts are also being made to identify at least one of the 17.3 and 17.5kDa peaks.
Figure 3.6 provides weak evidence to suggest that these protein peaks might be important.
Moreover, in our preliminary analyses (Section 3.3), we found them to be very close to
the threshold FDR level, although usually falling just below it. In contrast to the 11.7kDa,
11.9kDa, 13.3kDa and 14.7kDa peaks, the intensities of the 17.3kDa and 17.5kDa peaks
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are elevated amongst the ACs, and hence they might provide different insights into the
pathogenesis of HAM/TSP.

By plotting stability paths for the DO and DV data sets (Figure 3.4), we demonstrated
that the problems identified in Section 2.4.2 can occur in practice, as well as in simulated
examples. Our algorithm, which allows us to consider a range of values for the mixing
parameter of the elastic net likelihood penalty, allows these issues to be mitigated.

We found the plot shown in Figure 3.7 (where the joint score is plotted against the esti-
mated probability of correct classification) to be particularly useful when deciding upon
the order in which to identify the protein peaks. Having access to an assessment of pre-
dictive performance as well as an assessment of stability allowed us to target the first of
the follow-up experiments toward the protein peaks that we believe will (individually and
jointly) provide the greatest ability to classify.

Although they provide good summaries of selection stability, we again found the mean
pairwise Jaccard and Kuncheva similarity indices to be of limited use when trying to
determine exactly which covariates are stably selected. However, we were able to shed
light on the causes of the local maxima in the Jaccard and Kuncheva similarity surfaces
(Figure 3.8) by referring to the plot of maximal joint scores (Figure 3.6).

Overall, the quantities calculated by the algorithm of Chapter 2, Section 2.5, proved very
useful, and provided deeper insights into the stability and predictive properties of the
covariates than would be possible using either the stability selection procedure of Mein-
shausen and Bühlmann (2010) or standard similarity measures such as the Jaccard and
Kuncheva indices. This is due both to our use of the joint score (to combine assessments
of stability and predictive performance), and also the fact that we have a score associated
with each set of selected covariates (rather than having a marginal score associated with
single covariates, or an overall summary of stability).

There is a great deal of scope for further work following on from this chapter. In particular,
blood plasma samples from multiple sclerosis patients have become available, and we are
beginning to work with these. Identifying protein peaks that allow multiple sclerosis
patients to be distinguished from individuals with HAM/TSP would potentially be of
significant diagnostic value, as these two conditions can be difficult to tell apart (Bangham
et al., 1989; Rudge et al., 1991). As previously mentioned, experimental work is also
ongoing in order to identify a few more of the protein peaks identified during our analysis.



Chapter 4

A bootstrap for time course data

Overview

Abstract Having previously considered assessments of stability for static
data, we move on to a method for assessing the robustness of estimates ob-
tained from time courses of measurements. We propose an approach in which
we approximate the data generating process (DGP) as a multivariate Gaus-
sian distribution. We consider two conceptually different Bayesian approaches
for inferring the parameters of this distribution, and demonstrate that they
both lead to the same approximate DGP.

Outline This chapter is concerned with a method for bootstrapping regres-
sion models. In Section 4.1, we briefly review an existing technique for ad-
dressing this task, before providing motivation for our multivariate Gaussian
approach. We then describe in Section 4.2 a (finite-dimensional) conjugate
Bayes approach in which we place a multivariate Gaussian prior over the val-
ues of the unknown noiseless values of the observations. After this, we discuss
the machine learning approach of Gaussian process regression in Section 4.3,
and thereby derive in Section 4.4 a (infinite-dimensional) Bayesian approach
in which a Gaussian process prior is placed over the regression function f .
Although these derivations are slightly different, both lead to the same ap-
proximate DGP (Section 4.5). Finally, in Section 4.6, we briefly discuss our
procedure in the context of other bootstrap approaches.

In Chapters 5 and 6 we consider two different applications of the approach
described here.

64
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4.1 Background

One of the limitations of the previous chapters is the static nature of the data considered.
Although such data allow us to make useful statements regarding the general differences
between two (or more) conditions, they provide no information regarding (for example)
how the severity of symptoms of HAM/TSP change over time, or about the dynamics of
the interactions between HTLV-1 and the immune system. In order to address such ques-
tions — and, crucially, to move beyond simple statistical models toward more mechanistic
representations of biological systems — we require time-resolved measurements (Grig-
orov, 2006; Sato et al., 2008). Such time course data are known to present challenges
for bootstrapping approaches, as it is necessary to ensure that correlations between mea-
surements at different time points are adequately captured (Efron and Tibshirani, 1993;
Bühlmann, 2002). In this chapter, we address this problem in the context of bootstrapping
using regression models (Efron and Tibshirani, 1993; Davison and Hinkley, 1999).

4.1.1 Bootstrapping using regression models

We consider regression models of the form,

y(t) = f(t) + ε, (4.1)

where f(t) is a deterministic function of the covariates, and ε is a zero-centred random
variable. The observations that we obtain through experimentation are viewed as reali-
sations of the random variable y(t). Throughout, we only consider regression problems
in which t ∈ R is time, and we further restrict ourselves to the case where f(t) and y(t)
are real-valued. Unless otherwise stated, we also assume that ε is normally distributed,
ε ∼ N (0, σ2

ε ).

We initially assume that our data comprise measurements taken at p distinct time points,
t1, . . . , tp, and that at each ti we have a single observation, yi. Current biological time
course data are often of this form, although we later consider situations in which we have
more than one observation at each time point (see Chapter 5). In traditional approaches
to regression, we choose a parametric form for f , whose parameters we then estimate by
fitting to the observed data. We denote the fitted function by f̂ . For example, in simple
linear regression we would assume f(t) = β0 + β1t, and would obtain estimates β̂0 and
β̂1 of the coefficients by (for example) ordinary least squares. The fitted function would
then be f̂(t) = β̂0 + β̂1t.

Bootstrapping residuals Given such a regression model, the most common method for
obtaining replicate data sets is to bootstrap the residuals (Efron and Tibshirani, 1993).
This requires us to start by calculating the residuals of the fitted model,

ε̂i = yi − f̂(ti), (4.2)



CHAPTER 4. A BOOTSTRAP FOR TIME COURSE DATA 66

for i = 1, . . . , p, in order to obtain the set E = {ε̂i}pi=1. We then use the standard meth-
ods of Chapter 1 in order to obtain a bootstrap sample of the residuals, EB = {ε̂∗i }

p
i=1.

For example, in the nonparametric case, EB would be formed by sampling from E with
replacement. It is then straightforward to obtain bootstrap samples of our observations as,

y
rep
i = f̂(ti) + ε̂∗i , (4.3)

for i = 1, . . . , p. This procedure is illustrated in Figure 4.1. We may repeat the process
many times in order to obtain a large number of replicate data sets.
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Figure 4.1: Illustration of a nonparametric bootstrap of residuals. (a) The blue points represent the
original data set, while the red line denotes the fit provided by a particular model. (b) We calculate
the residuals, here represented as vertical lines drawn between the observed data and the fitted
model. (c) We perform a nonparametric bootstrap on the residuals by sampling with replacement
from the set of vertical lines. By adding these to our fitted model, we obtain a bootstrap data set
(the black points). (d) The original (blue) and bootstrap (black) data set, with connecting dashed
lines added to aid visualisation.

The main difficulty with the above method is that it relies upon the fitted parametric
model, f̂ . In systems biology problems, it is often difficult to establish an appropriate
form for f , with mechanistic (“knowledge-driven”) specifications typically being both
uncertain and incomplete. One alternative is to fit an empirical (“data-driven”) regression
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model — using, for example, ANOVA models (as in Kerr and Churchill, 2001) or a more
flexible approach such as an artificial neural network — and then to obtain replicate data
sets as above, by bootstrapping residuals. However, regardless of the regression method
we employ, we are again overly reliant on a single fitted model, f̂ . In practice, we will
rarely have complete belief that f̂ is identical to the true, underlying function f . We
hence propose an approach in which we explicitly model the uncertainty in the values of
f(ti), i = 1, . . . , p.

4.1.2 Motivation and chapter outline

In this chapter, we propose a multivariate Gaussian bootstrap procedure for time course
data. We view the values of f(ti), i = 1, . . . , p, as unknown parameters, and hence
rephrase our regression problem in terms of the discrete model,

y> = θ> + ε>, (4.4)

where y = [y1, . . . , yp] is the vector of observed values for y; θ = [f(t1), . . . , f(tp)] is
the vector of unknown values for f(ti); and ε = [ε1, . . . , εp] is the vector of residuals. By
assumption, the discrepancy between y and θ arises as a result of univariate normal ex-
perimental measurement noise, so that ε1, . . . , εp may be viewed as independent samples
from N (0, σ2

ε ), and hence ε> is a sample from the multivariate normal N (0, σ2
ε I).

In Section 4.2, we adopt a Bayesian approach toward the inference of θ>, specifying a
multivariate normal prior, θ> ∼ N (mo,Σo), and updating this in light of the observed
data in order to obtain the posterior distribution. An informal motivation for why and
how a multivariate Gaussian may be an appropriate prior for θ> = [f(t1), . . . , f(tp)]

> is
provided by Figure 4.2. At the heart of our approach is the use of a parametric covariance
function, k, which specifies the elements of Σ0 by modelling how the covariance between
f(ti) and f(tj) varies as a function of ti and tj .

The use of a function k to capture the covariance structure of the data is identical to the
approach taken in Gaussian process regression (GPR). GPR is a Bayesian nonparametric
method that has grown in popularity in recent years, and has been applied in several
systems biology contexts (Liu et al., 2010; Stegle et al., 2010; Lawrence et al., 2007;
Yuan, 2006; Gao et al., 2008). In Section 4.3, we describe this method in more detail and
then consider in Section 4.4 how GPR may be used to generate replicate data sets.

In the chapters following this one, we demonstrate our approach using two examples from
the systems biology literature. In Chapter 5 we consider the inference of networks from
the Arabidopsis thaliana data set of Smith et al. (2004), considering both relevance (Butte
et al., 2000) and partial correlation networks (e.g. Opgen-Rhein and Strimmer, 2007a).
We then look in Chapter 6 at the problem of estimating the parameters of an ordinary
differential equation model proposed by Swameye et al. (2003) for the STAT5 signalling
pathway.
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Figure 4.2: In (a) we show 20 samples drawn from a trivariate Gaussian distribution, depicted in a
conventional way using a 3-d scatterplot. These data points may also be represented longitudinally
as in (b). Here, each sample, [x, y, z]>, is represented by three points — one for each element of
the vector — connected by a straight line. We are concerned with the reverse problem: given a
single longitudinal time course comprising measurements at p time points, we seek to model this
as a sample from a p-variate Gaussian distribution.

4.2 Multivariate Gaussian bootstrap

Recall our assumptions that we have a vector of measurements, y = [y1, . . . , yp] ∈ R1×p,
taken at times t1, . . . , tp, and that each yi may be represented as,

yi = f(ti) + εi. (4.5)

Here, f is some continuous deterministic (but unknown) function of time, and we assume
that the residuals, εi, are independently and identically distributed according toN (0, σ2

ε ).
This model allows us to express the assumption that there is some “true”, underlying
output that is deterministically linked to the value of t (as represented by f(t)), but that
the output we actually observe has been corrupted by stochastic measurement noise. We
may rewrite Equation (4.5) as the vector equation,

y> = θ> + ε>, (4.6)

where θ = [f(t1), . . . , f(tp)] and ε = [ε1, . . . , εp]. Traditional regression approaches
would seek to estimate θ by fitting a parametric model, f̂ , to the data, and then taking
θ = [f̂(t1), . . . , f̂(tp)].

4.2.1 A Bayesian approach

An alternative strategy is to regard θ simply as an unknown parameter of the model pre-
sented in Equation (4.6). We may then adopt a Bayesian approach to the inference of the
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vector θ. In order to do this, we must first define a prior, p(θ), and a likelihood function,
p(y|θ), where y = [y1, . . . , yp]

> is the vector of observations. The prior describes our be-
lief about the values of f(t1, ), . . . , f(tp) before observing the data, while the likelihood
function scores different possibilities for θ by defining the likelihood of y for any given
choice of θ. Bayes rule then provides a principled means to update our prior beliefs in
light of the observed data,

p(θ|y) =
p(θ)p(y|θ)

p(y)
. (4.7)

Here, p(θ|y) is the posterior, which describes our belief about the values of f(t1, ), . . . ,
f(tp) after observing the data, and p(y) is the marginal likelihood (sometimes also called
the prior predictive distribution). The marginal likelihood is a constant term defined as,

p(y) =

∫
p(θ)p(y|θ)dθ, (4.8)

where the integral is taken over all possibilities for θ. The presence of this term in the
denominator of Equation (4.7) ensures that

∫
p(θ|y)dθ = 1.

4.2.2 Defining the prior

Motivated in part by the observations of Figure 4.2, we take our prior to be a p-dimensional
multivariate Gaussian,

θ> ∼ N (m0, K0). (4.9)

For simplicity, we shall always take m0 to be the zero vector. In practice, this choice is
not overly restrictive (in particular, we shall see that it does not constrain the mean of the
posterior to be zero), but it does simplify some of the calculation. However, for the sake
of generality and to allow for the possibility of stronger prior information, we shall leave
m0 as an unspecified vector of length p in our initial exposition.

The choice of K0 is perhaps more important. In practice, specifying K0 according to our
prior beliefs is likely to be challenging, since we may know very little about the nature of
the unknown function f . However, if we assume that f is continuous, then we do at least
have the prior belief that f(ti) and f(tj) should be more strongly correlated if ti and tj are
close together, and should be less strongly correlated if they are far apart. This motivates
the use of a covariance function, k, which defines the covariance between f(ti) and f(tj)
as a function of ti and tj , so that,

(K0)ij = k(ti, tj). (4.10)

As we shall discuss, such functions are at the heart of the machine learning method of
Gaussian process regression (GPR). One choice for k that is commonly encountered in
the GPR literature is the squared exponential covariance function,



CHAPTER 4. A BOOTSTRAP FOR TIME COURSE DATA 70

kSE(ti, tj) = σ2
g exp

(
−(ti − tj)2

2`

)
, (4.11)

where σ2
g and ` are parameters of the covariance function, referred to as hyperparameters.

Other choices of covariance function are possible, all of which introduce hyperparameters.
Note, however, that our use of a covariance function has simplified our problem: we no
longer have to specify the whole covariance matrix, K0, but instead have only to specify
σ2
g and ` (in the squared exponential case). We discuss the choice of hyperparameters in

Section 4.2.4.

4.2.3 Defining the likelihood

Recall our assumption that the residuals, εi, are independently and identically distributed
according to N (0, σ2

ε ). It then follows from Equation (4.5) that,

y|θ ∼ N (θ, σ2
ε I), (4.12)

where I is the p× p identity matrix. The appropriate form for the likelihood is then given
by the usual multivariate normal probability density function, with mean θ and covariance
σ2
ε I ,

p(y|θ) =
1

(2π)p/2|σ2
ε I|1/2

exp

(
−1

2
(y − θ)>(σ2

ε I)−1(y − θ)

)
. (4.13)

4.2.4 Selecting the hyperparameters

From Equations (4.9) and (4.12) it follows that,

y ∼ N (m0, K0 + σ2
ε I), (4.14)

and hence the marginal likelihood, p(y), is simply,

p(y) =
1

(2π)p/2|K0 + σ2
ε I|1/2

exp

(
−1

2
(y −m0)>(K0 + σ2

ε I)−1(y −m0)

)
. (4.15)

Note that this may also be calculated by explicit evaluation of Equation (4.8). We adopt
the strategy of estimating the hyperparameters and σ2

ε by finding the values that max-
imise this marginal likelihood, or — equivalently — minimise the negative log marginal
likelihood (Rasmussen and Williams, 2005). The estimates are then given by,

β̂, σ̂2
ε = argmin

β

{
(y −m0)>(K0(β) + σ2

ε I)−1(y −m0) + log |K0(β) + σ2
ε I|
}
,

(4.16)
where β is just a shorthand for the vector of all hyperparameters (e.g. β = [σ2

g , `]
>

in the case of the squared exponential function of Equation 4.11), and we make clear
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the dependence of K0 upon β by writing K0(β). Solving this minimisation problem
requires numerical optimisation techniques; we use Rasmussen’s implementation of a
Polak-Ribière conjugate gradient scheme (Rasmussen, 2006).

The above procedure represents an empirical Bayes approach, in which the hyperparam-
eters defining the prior are estimated from the data (Bernardo and Smith, 1994). An alter-
native is to define priors for the hyperparameters, and then to use a Markov chain Monte
Carlo method in order to perform Bayesian inference (e.g. Barber and Williams, 1997).
Although appealing, such approaches are more computationally costly, so we choose not
to pursue them here.

4.2.5 Evaluating the posterior

Once we have estimated σ2
ε , it is clear from Equation 4.12 that the problem of inferring

θ is equivalent to the well-known problem of inferring the mean of a multivariate normal
distribution when the covariance matrix is known. Furthermore, since our prior for θ is
multivariate normal, and hence is a conjugate prior for the multivariate normal likelihood,
it follows that we can calculate the posterior analytically (see, for example, Gelman,
2004), to give,

θ|y ∼ N (mn, Kn), (4.17)

where,

mn =

(
K−1

0 +
1

σ2
ε

I

)−1(
K−1

0 m0 +
1

σ2
ε

y

)
(4.18)

and,

Kn =

(
K−1

0 +
1

σ2
ε

I

)−1

. (4.19)

4.2.6 Defining the approximate DGP

From Equations (4.12) and (4.17), we deduce that an appropriate model for our approxi-
mate DGP is,

yrep ∼ N (mn, Kn + σ2
ε I). (4.20)

It is clear that this may be viewed as a two-stage procedure in which we first use Equation
(4.17) in order to sample values for the unknown function outputs θ = [f(t1), . . . , f(tp)],
and then use Equation (4.12) to add simulated measurement noise.

As we shall now discuss, with small amendments to our assumptions, the above method
may be adapted to model the uncertainty in the function f — not merely the vector θ —
and our approach may be derived from the perspective of the machine learning approach
of Gaussian process regression.
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4.3 Gaussian process regression

Gaussian process regression (GPR) is a method for nonlinear regression. It may be viewed
as a Bayesian approach in which we first place a Gaussian process prior over the regres-
sion function f , and then update this in light of observed data.

More formally, a Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution (Rasmussen and Williams, 2005).
This definition simply means that a (potentially infinite) collection v1, v2, . . . of random
variables defines a Gaussian process if and only if any finite subcollection of the variables
is jointly distributed according to a Gaussian distribution. So, for example, v1 by itself
must be Gaussian distributed; the joint distribution of v1 and v2 must be Gaussian; . . . and
so on.

In this section, we explain how a GP prior may be specified and then updated in light of
observed data in order to obtain a GP posterior. We note that the derivation presented in
this section is rather similar to the one given in Section 4.2. However, with apologies for
repetition, we nevertheless proceed, as we feel that it is instructive to consider the finite-
and infinite-dimensional cases separately.

4.3.1 Defining the prior

In Gaussian process regression, a GP prior is assumed for the outputs of the unknown
function f . This means that we assume f(t1), f(t2), . . . , f(tr) to have a joint Gaussian
distribution for any t1, t2, . . . , tr and any finite r. In order to specify the Gaussian process
prior, we require a mean function, m, and a covariance function, k. These tell us how to
define the mean vectors and covariance matrices of the Gaussian distributions associated
with each finite subcollection of the variables. We write f ∼ GP(m, k) to indicate that
we have assumed a Gaussian process prior with mean functionm and covariance function
k for the function f . This is shorthand for the following:

We write f ∼ GP(m, k) if and only if, for any finite collection t1, t2, . . . , tr
of times, we have [f(t1), . . . , f(tr)]

> ∼ N (m, K), where mi = m(ti) and
Kij = k(ti, tj).

There are many possibilities for m and k. In practice, we shall always take m to be the
zero function, so that m(ti) = 0 for all ti. As before, this is not excessively restrictive,
but for the sake of generality we assume m to be a general mean function throughout our
exposition. The covariance function is rather more important, as it allows us to express
beliefs about the correlations between f(ti) and f(tj 6=i). As previously mentioned, one
popular choice for k is the squared exponential covariance function of Equation (4.11).
As before, having chosen a particular parametric form for our covariance function, we
must estimate its hyperparameters.
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4.3.2 Estimating the hyperparameters

As previously stated, we assume a constant-variance, univariate normal noise model, so
that, for all t, we have,

y(t) = f(t) + ε, (4.21)

where ε ∼ N (0, σ2
ε ). We assume a Gaussian process prior over f(t), from which it

follows that, for any finite collection t1∗, . . . , ts∗ of times, we have,

[y (t1
∗) , . . . , y (ts

∗)]> ∼ N (m∗, K∗∗ + σ2
ε I), (4.22)

where m∗ = [m(t∗1), . . . ,m(t∗s)]
> and (K∗∗)ij = k(t∗i , t

∗
j). In other words, with our as-

sumed noise model, the Gaussian process prior over f(t) induces a Gaussian process prior
over y(t),

y(t) ∼ GP(my, ky), (4.23)

where my(ti) = m(ti) and ky(ti, tj) = k(ti, tj) + σ2
ε δ(ti, tj). Here, δ(ti, tj) is the Kro-

necker delta function which is equal to 1 whenever ti = tj and 0 otherwise.

In particular,
y ∼ N (m0, K0 + σ2

ε I), (4.24)

where,

mo = [m(t1), . . . ,m(tr)]
>, and (4.25)

(Ko)ij = k(ti, tj). (4.26)

Note that Equation (4.24) is identical to Equation (4.14), and hence we may adopt exactly
the same approach to estimating our covariance function’s hyperparameters as previously
(see Equation 4.16).

4.3.3 Evaluating the posterior

Recall that we have observations made at t1, . . . , tr. From our assumption of a Gaussian
process prior for f(t), it follows that, given any finite collection t1∗, . . . , ts∗ of times, we
have,

[f(t1), . . . , f(tr), f(t1
∗), . . . , f(ts

∗)]> ∼ N
([

mo

m∗

]
,

(
Ko Ko∗
K∗o K∗∗

))
, (4.27)

where,

m∗ = [m(t1
∗), . . . ,m(ts

∗)]>, (4.28)
(Ko∗)ij = k(ti, tj

∗), (4.29)

(K∗o)ij = k(ti
∗, tj), (4.30)

(K∗∗)ij = k(ti
∗, tj

∗). (4.31)
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Hence, from Equation (4.22),

[y(t1), . . . , y(tr), f(t1
∗), . . . , f(ts

∗)]> ∼ N
([

mo

m∗

]
,

(
Ko + σ2

ε I Ko∗
K∗o K∗∗

))
. (4.32)

From Equation (4.32), and using standard properties of Gaussian distributions (von Mises,
1964), it follows that the function values f(t1

∗), . . . , f(ts
∗) conditioned on y(t1), . . . , y(tr)

are also jointly distributed according to a multivariate normal. Specifically,

[f(t1
∗), . . . , f(ts

∗)]>
∣∣∣y(t) ∼ N (mcond, Kcond), (4.33)

where y(t) = [y(t1), . . . , y(tp)]
>, and,

mcond = m∗ +K∗o
(
Ko + σ2

ε I
)−1

(y(t)−mo) , (4.34)

Kcond = K∗∗ −K∗o
(
Ko + σ2

ε I
)−1

Ko∗. (4.35)

If we plug our observed output values into Equation (4.34) — i.e. we set y(t) = y> —
then Equation (4.33) defines the posterior distribution of [f(t1

∗), . . . , f(ts
∗)]>, given our

observations. Since t1∗, . . . , ts∗ may be any finite collection of times, Equations (4.33) –
(4.34) define a Gaussian process: the Gaussian process posterior for f(t) given observa-
tions y.

4.3.4 Visualisation

Equation (4.33) describes the joint posterior distribution of function outputs evaluated
at any finite collection of times. In particular, we can take a single time, say t∗, and
use Equation (4.33) to derive the posterior distribution for f(t∗). This will clearly be a
univariate normal whose mean, µ∗, and variance, σ2

∗ , are given by Equations (4.34) and
(4.35) respectively.

For any t∗, we can hence define the predictive mean value for f(t∗) (namely, µ∗), and
also standard deviation error bars (derived from σ2

∗). One way of visualising the Gaussian
process posterior is then to consider a fine grid of values for t∗, and to plot the resulting
predictive means, µ∗, together with ± 2 standard deviation error bars. An example of
this is shown in Figure 4.3. Note that, strictly, the apparently continuous regression lines
actually comprise a fine grid of discrete points (and similarly for the shaded ±2 standard
deviation region).

4.4 Gaussian process regression bootstrap

We now consider how the Gaussian process regression framework may be used to generate
replicate data sets. Recall that Equation (4.33) holds for any finite collection of time
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Figure 4.3: Four fitted Gaussian process regression models, as used in Taylor et al. (2010). The
plot shows four different data sets (represented by the blue, red, green and yellow points), with
independent Gaussian process regression models fitted to each set. The solid regression lines show
how the pointwise predictive means vary as a function of time, while the shaded regions describe
±2 standard deviation confidence intervals.

points, so in particular it holds for the time points t1, . . . , tp at which the observations
were made. Of course, in this case, we will have m∗ = mo and K∗∗ = K∗o = Ko∗ = Ko,
so that,

[f(t1), . . . , f(tp)]
>
∣∣∣y ∼ N (mn, Kn), (4.36)

where,

mn = mo +Ko

(
Ko + σ2

ε I
)−1

(y −mo) , (4.37)

Kn = Ko −Ko

(
Ko + σ2

ε I
)−1

Ko. (4.38)

We may hence generate replicate data sets by sampling values for [f(t1), . . . , f(tp)]
> from

N (mn, Kn), and then adding simulated measurement noise generated from N (0, σ2
ε ), as

illustrated in Figure 4.4. Of course, we may combine these two steps and sample replicate
data sets directly according to,

yrep ∼ N (mn, Kn + σ2
ε I). (4.39)

In principle, we could generate replicate observations at any finite collection of time
points. In practice, however, we sample only at the time points where the observations
were made. This is partly for the sake of consistency with existing bootstrap procedures
(such as bootstrapping residuals), but also because it is a more conservative approach (in
the sense that it generates replicate data sets most similar to the original one).
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Figure 4.4: (a), (b) and (c) each demonstrate the procedure for drawing bootstrap samples from
the Gaussian process regression model. In each case, the first row illustrates the Gaussian process
regression model that has been fitted to the original data set; the second row shows a bootstrap
function drawn from the GP posterior; and the third row shows the final replicate data set, obtained
by adding noise to the sampled function.

4.5 Multivariate Gaussian versus GPR bootstrap

We have presented two very similar methods for approximating DGPs that generate time
course data, derived from slightly different standpoints. In both cases, we end up obtain-
ing replicate data sets by sampling from multivariate Gaussians (see Equations 4.20 and
4.39). It is clear that these two approaches must lead to equivalent models for the approx-
imate DGP. Although the matrix identities which allow us to deduce the equivalence of
Equations (4.38) and (4.19), and of Equations (4.37) and (4.18), are perhaps less obvious,
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they follow immediately from the Woodbury matrix identity (see, for example Golub and
Van Loan, 1996).

4.6 Discussion

We have proposed a multivariate Gaussian bootstrap for time course data. We derived
the approximate DGP from two standpoints, considering both conjugate Bayesian and
Gaussian process regression (GPR) perspectives.

As illustrated in Figure 4.4, our method may be considered as a two-stage approach, in
which we first sample a function from the Gaussian process posterior, and then add noise
simulated from N (0, σ2

ε ). If, instead of sampling, we had a single, fixed estimate for the
function, we would view our approach as a parametric bootstrap of the residuals, with
the parametric model being specified by N (0, σ2

ε ). It follows that our procedure may
be considered as a natural extension of residual bootstrapping, in which we additionally
model the uncertainty in the underlying regression function, f .

If we overlook the derivation and focus only on the final approximation to the DGP (Equa-
tion 4.20), we may view our approach as a straightforward multivariate Gaussian para-
metric bootstrap (albeit one in which a Bayesian approach is used to infer the parameters,
instead of using maximum likelihood estimation). The Bayesian nature of our approach
is crucial, however, as it allows us to specify prior belief regarding the covariance struc-
ture of the data via the covariance function. This enables us to overcome the difficulties
associated with having so few observations. For example, we would typically have in-
sufficiently many data points to estimate the entries of the covariance matrix in Equation
(4.20) using a simple maximum likelihood method.

By analogy with the method of Rubin (1981b), it would seem appropriate to refer to
our method as a Bayesian parametric bootstrap. Similar to Rubin, we have a model
for the DGP (in our case a multivariate Gaussian, in Rubin’s a Dirichlet distribution)
whose parameters we infer using a conjugate Bayesian approach. An important contrast
to Rubin’s nonparametric procedure is that, as just discussed, the conjugate prior that we
employ is necessarily informative.

In the next chapters, we apply our approach in the context of two inference problems
commonly encountered in systems biology; namely, gene network inference (Chapter 5),
and the estimation of parameters of ordinary differential equation models (Chapter 6).



Chapter 5

Application I:
Gene network inference

Abstract We apply the approach of Chapter 4 in the context of inferring
networks from gene expression time course data. We focus upon the estima-
tion of partial correlation networks from an Arabidopsis thaliana data set. We
demonstrate that the inferred networks are relatively unstable, but that there
are edges within the network that have a high level of bootstrap support.

Outline We start in Section 5.1 with a very brief introduction to networks,
a description of the gene expression data set with which we are concerned,
and a summary of the “GeneNet” algorithm of Schäfer et al. (2006). We then
review the differences between cross-sectional and longitudinal time courses
in Section 5.2, and consider how the nonparametric bootstrap and the method
of Chapter 4 should be applied to these two types of data. We present results
in Section 5.3, which we discuss in Section 5.4.

5.1 Background

The use of networks to describe and model biological systems is now widespread (see, for
example Barabasi and Oltvai, 2004; de Silva and Stumpf, 2005, and references therein).
Applications include protein interaction (Kelly and Stumpf, 2008), metabolic (Ma and
Zeng, 2003) and gene regulatory (de Jong, 2002; Schlitt and Brazma, 2007) networks. The
underlying goal of network models is to describe dependencies (represented by edges)
between covariates (represented by nodes). These might be physical dependencies (for
example, we might construct a network of different molecular species, with edges drawn
between those that have been experimentally determined to bind to one another), or statis-
tical dependencies (for example, we might draw edges between genes whose expression
levels are significantly correlated).

78
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Given the complexity of biological systems, and the difficulties associated with making
in vivo observations, elucidating statistical dependency networks is often a more realis-
tic proposition than establishing all of the underlying (causal) physical interactions ex-
perimentally. Inference of statistical dependency networks therefore represents a form of
large-scale hypothesis generation (Butte et al., 2000; Opgen-Rhein and Strimmer, 2007a).
It is then the task of the experimentalist to determine the biological causes that explain
why the statistical dependencies exist. Where experimental evidence already exists, this
is often used to validate (subnets of) the inferred network (e.g. Christley et al., 2009).

Clearly, in order to construct a statistical dependency network, it is first necessary to define
how the dependency will be assessed. Methods commonly employed in the literature
include correlation (Butte et al., 2000), partial correlation (Opgen-Rhein and Strimmer,
2007a), and mutual information (Margolin et al., 2006). In this chapter, we focus upon
partial correlation networks. We employ the R implementation of the GeneNet algorithm
(Schäfer et al., 2006; Opgen-Rhein and Strimmer, 2007a), and consider the A. thaliana
data set of Smith et al. (2004) that is included with the package.

5.1.1 The data

The data set comprises time course measurements for 800 Arabidopsis thaliana (thale
cress) genes. For each gene, there are 2 measurements at each of 11 different time points
(representing 0, 1, 2, 4, 8, 12, 13, 14, 16, 20 and 24 hours from the start of the experi-
ment). The aim of the original investigation was to analyse the changes in gene expression
that occur during the diurnal cycle. To this end, the experiment involved changing the ex-
posure of the plants to light over the course of a 24 hour period. The first measurement
(at time 0) was taken immediately at the end of a 12 hour period of light. The next 5
measurements (at 1, 2, 4, 8 and 12 hours) were taken during a period of darkness. A 12
hour period of light followed, during which a further 5 measurements were taken (at 13,
14, 16, 20 and 24 hours after the start of the experiment). Each sample was obtained by
harvesting three leaves from 20 plants. Microarray analyses were then performed upon
each sample in order to quantify gene expression. The data were normalised, and then
preprocessed to identify genes for which there was evidence of periodicity in the pattern
of expression (see Smith et al., 2004 for further experimental details, and Opgen-Rhein
and Strimmer, 2007a; Wichert et al., 2004 for preprocessing steps).

5.1.2 The GeneNet package

The GeneNet package allows partial correlation networks to be constructed from gene
expression time course data. Given any collection of covariates, the partial correlation be-
tween any particular pair is (informally) the correlation that remains between them once
the effects of all of the others have been regressed away. For the purposes of constructing
networks, partial correlation is considered a far more informative measure of similarity
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than simple correlation (Opgen-Rhein and Strimmer, 2007a). For example, if we have
three correlated covariates, A,B and C, partial correlation allows us to quantify the de-
gree to which the correlation between A and B is explained by the fact that both are
correlated with C. If all of the covariates in our collection were jointly distributed ac-
cording to a multivariate Gaussian distribution (in which case our inferred network would
be a graphical Gaussian model — see Lauritzen, 1996), then this would be equivalent to
determining the extent to which A and B are conditionally independent given C.

Partial correlations can be calculated by inversion of the usual correlation matrix (Schäfer
and Strimmer, 2005). That is, denoting the correlation matrix by P , and the inverted
correlation matrix by P−1 = Ω = (ωij), the partial correlation matrix R = (rij) is given
by,

rij = − ωij√
ωiiωjj

. (5.1)

In order to make use of this formula, we clearly need to be able to calculate the corre-
lation matrix. Given that we are interested in time courses of data, this means that an
appropriate definition of correlation is required. GeneNet employs dynamical correla-
tion, as defined in Opgen-Rhein and Strimmer (2006a). Briefly, the dynamical correlation
between functions g(t) and f(t) is defined via the functional inner product,

〈g(t), h(t)〉 =

∫ B

A

g(t)h(t)dt, (5.2)

where [A,B] is the time interval of interest (here, A represents the first time at which an
observation is made, andB the last). Time-centred functions, gC(t) = g(t)−〈g(t), 1〉 and
hC(t) = h(t) − 〈h(t), 1〉, may then be computed, after which variances may be defined
as Var(g(t)) = 〈gC(t), gC(t)〉 (and similarly for h). This allows us to standardise the
functions to obtain, for example, gS(t) = gC(t)/

√
Var(g(t)). Finally, the dynamical

correlation is defined as,

Cor(g(t), h(t)) = 〈gS(t), hS(t)〉. (5.3)

When we have only discrete, noisy observations of the functions g and h (which will
always be the case in practice), the dynamical correlation must be estimated. We refer to
Opgen-Rhein and Strimmer (2006a,b) for details of the procedure that is implemented in
GeneNet.

Once we have computed the (dynamical) correlation matrix for our collection of time
courses, we may use Equation (5.1) in order to estimate the partial correlation matrix, R.
However, in order to proceed, we must then determine which of the partial correlations are
significant. This allows us to go from a continuous partial correlation matrix to a binary
adjacency matrix, and hence defines a network. In order to do this, GeneNet adopts the
procedure of Efron (2004), which we now briefly outline. It is assumed that the observed
partial correlations represent samples from a mixture model,

f(r̂) = η0f0(r̂) + (1− η0)fA(r̂), (5.4)
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where r̂ denotes the estimated partial correlation, so that f(r̂) describes the distribution
of estimated values across all possible edges. This captures the following ideas. We
assume that there is some true, underlying (and unknown) partial correlation network,
which we suppose to be sparse (i.e. there are very few edges relative to the total number
of possible edges). Let us denote by C the set of all pairs of nodes (i.e. the set of all
possible edges), and by CA the set of all edges. Then C0 = C\CA represents the set of
all non-edges. If we knew the network, then we could consider the distribution, f0(r̂), of
partial correlation estimates amongst the elements of C0, and the distribution, fA(r̂), of
partial correlation estimates amongst the elements of CA (the set of edges). The f0 and fA
notation is designed to be deliberately suggestive of “null” and “alternative” distributions
(respectively). The mixing parameter, η0, describes the proportion of the elements of C
that are in C0, and hence represents the prior probability that any pair of nodes randomly
selected from C is in C0.

We now suppose that we are presented with a pair of nodes, e = (nodei, nodej), for
which we know the estimated partial correlation to be r̂. Then Bayes rule tells us that the
probability that e ∈ C0 is given by,

p(e ∈ C0|r̂) =
p(r̂|e ∈ C0)p(C0)

p(r̂)

=
η0f0(r̂)

f(r̂)
. (5.5)

From this it follows that the posterior probability that e is a genuine edge is given by,

p(e ∈ C1|r̂) = 1− η0f0(r̂)

f(r̂)
. (5.6)

In order to make a decision, we require a threshold, τ , so that if p(e ∈ C1|r̂) > τ then we
classify e as belonging to C1 and hence determine that there should be an edge between
nodei and nodej in our network.

It follows that, given our estimated partial correlation matrix, a value for τ , and Equation
(5.4), we are able to classify all pairs of nodes as either edges or non-edges. Of course,
in practice, we do not know f0, fA or η0, and hence these must be estimated from the
empirical distribution of partial correlation estimates. In GeneNet, this is accomplished
by assuming a parametric form for f0 (namely, the theoretical null for the sample normal
partial correlation, as given in Hotelling, 1953; Schäfer and Strimmer, 2005), and esti-
mating fA nonparametrically from the empirical distribution (see Efron, 2004; Strimmer,
2008). The mixture model fitted to the A. thaliana data set is illustrated in Figure 5.1.

Once we have chosen a value for τ , the GeneNet algorithm may be treated as a black box,
which returns the estimated partial correlation network corresponding to a particular input
data set (as illustrated in Figure 5.2). It follows that, in order to assess the stability of the
inferred networks, we may adopt a bootstrap procedure whereby we plug each replicate
data set into the algorithm and assess the variability amongst the resulting networks.
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Figure 5.1: Illustration of the mixture model (Equation 5.4) fitted to the A. thaliana data set. The
histogram (labelled “Mixture”) shows the empirical distribution of the observed partial correlation
estimates, which is taken as f(r̂). The dotted red “null component” curve describes the fitted
(parametric) null distribution, f0(r̂), while the blue curve describes the (nonparametric) alternative
distribution, fA(r̂). Note that this figure is taken directly from the output of the GeneNet package.

5.2 Bootstrapping the data

As mentioned in Section 5.1.1, the A. thaliana data set comprises time courses for which
there are two measurements at each of the time points. We here consider how we should
treat data such as these, before describing the methods that we use to approximate the
DGP.

5.2.1 Cross-sectional versus longitudinal data

We start by examining the different types of data that we might encounter. We can con-
sider that there are broadly two sorts of time course data: cross-sectional and longitudinal.
In addition to the exposition in this section, we would refer also to Storey et al. (2005),
where different methods for coping with these two different types of data are discussed.

5.2.1.1 Cross-sectional data

These may be regarded as a collection of “snapshots” (cross-sections) taken at different
time points (Figure 5.3a). Although we may have several measurements taken at each
time point (possibly on different entities, or perhaps multiple noisy measurements on the
same entity), we have no way to match up any particular measurement at time ti with
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Figure 5.2: Illustration of the GeneNet algorithm, considered as a black box. In order to use the
algorithm, we simply have to provide a data set (in our case, 800 gene expression time courses),
and also the cutoff parameter, τ . The output is a partial correlation network. In the language of
Chapter 1, we view the network as a summary of the observed data set, and use bootstrapping as a
means to assess its stability.

measurements at any other time point tj . These data are commonly encountered in the
biosciences, where the process of taking measurements on a cell or organism is often
extremely invasive and may preclude the possibility of taking measurements on the same
entity at any later time point. In the extreme case, where the act of measurement destroys
the sample or kills the organism, it is clear that each sample/organism may contribute
measurements at only a single time point. Modelling such data involves trying to describe
how a population of measurements evolves over time. One way of doing this is to assume
a fixed parametric model for the population at every time point, so that our task is reduced
to modelling how the parameters vary with time. Typically, we phrase such an approach
as a regression problem. For example, we might assume that the measurements at time t
may be modelled by a univariate normal distribution, N (f(t), σ2), where σ2 is fixed and
f(t) describes how the (true, unobserved) mean of the population varies over time. This
is equivalent to the regression model,

y(t) = f(t) + ε, (5.7)

where y(t) are the observed measurements and ε ∼ N (0, σ2). More complicated proce-
dures might (for example) consider parametric models other than the normal distribution
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and/or might allow the variance to change over time (e.g. Imoto et al., 2003).
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Figure 5.3: Cross-sectional versus longitudinal data. Left: synthetic cross-sectional data. Right:
synthetic longitudinal data, where lines connect measurements taken on the same individual/entity.
In both cases, the blue dashed line describes the empirical mean.

5.2.1.2 Longitudinal data

These comprise measurements on a single entity (or a collection of such entities) that is
followed over time. For example, we may have a cohort of patients in whose response to
a particular drug we are interested. A longitudinal study of these individuals would track
each patient over the course of a period of time. For each individual, we would hence
have measurements at several time points. Such data sets may be represented as in Figure
5.3b, with lines drawn between measurements taken on the same individual. In order to
describe these data, we typically adopt a model similar to the one described by Equation
(5.7), but with an additional index i to allow different models for different individuals.
That is, we model the observed measurements, yi(t), taken on the ith individual at time t
as,

yi(t) = fi(t) + εi, (5.8)

where εi ∼ N (0, σ2
i ). Common simplifications include the assumptions that σi = σ is

the same for all individuals, and that we may write fi(t) = f(t) + γi for all i, so that the
functions fi(t) are identical, up to an additive constant (see Storey et al., 2005).

5.2.1.3 Practicalities

In practice, the distinction between longitudinal and cross-sectional data may not be as
clear as suggested by the preceding paragraphs. In the case of the A. thaliana data set, for
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example, the reason for which there are two measurements at each time point is because
the entire experiment was repeated (Smith et al., 2004). Thus, viewed at the “experi-
ment level”, we have two longitudinal time courses for each gene. That is, using the
terminology of Section 5.2.1.2, we may regard the data as longitudinal if each experiment
is treated as a different “individual”. However, at the “plant level”, the data are cross-
sectional. Whether we should treat the data as longitudinal or cross-sectional depends
upon our aims. When bootstrapping the data, we consider both possibilities, and assess
the effects that this has upon our results.

5.2.2 Applying the bootstrap

We employ both the approach of Chapter 4 and the nonparametric bootstrap (Section
1.4.1.1), and consider cross-sectional and longitudinal cases separately (as described in
Sections 5.2.2.1 and 5.2.2.2 below). In each case, we generate 1,000 replicate data sets.
We fix τ and, for each replicate data set, apply the GeneNet algorithm in order to obtain
a partial correlation network. Using the same value for τ , we also apply the algorithm to
the original A. thaliana data set, Dobs.

5.2.2.1 Nonparametric bootstrap

Cross-sectional case Let yij1 and yij2 be the two measurements on gene i at time
j. We obtain bootstrap replicates of yijk by drawing 2 samples with replacement from
the set {yij1, yij2}. There are thus three possible outcomes: {yij1, yij2}, {yij1, yij1} and
{yij2, yij2}. Although this is relatively few, we repeat this for each of the 11 time points
for gene i, and hence there are 311 distinct possibilities for the bootstrapped time course.
We repeat this process (independently) for each gene in order to obtain replicate data sets.

Longitudinal case Let yi1 and yi2 be the two vectors of measurements on gene i (so
that the “1” and “2” label the two different experiments). We obtain bootstrap replicates
of yik by drawing 2 samples with replacement from the set {yi1,yi2}. There are thus
three possible outcomes: {yi1,yi2}, {yi1,yi1} and {yi2,yi2}. For each gene, there are
hence only 3 distinct bootstrapped time courses. However, because we test the interaction
of each gene with 799 other genes, this actually amounts to a large number of distinct
possibilities for the estimated partial correlation matrix, R̂.

5.2.2.2 Multivariate Gaussian bootstrap

Cross-sectional case For gene i, we calculate the set of mean values {yij}11
j=1, where

yij denotes the mean of yij1 and yij2. We hence have a time course of mean values, to
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which we can apply the approach of Chapter 4. It follows that, in this case, the “noise”
variance, σ2

ε , actually represents the variance of the sampling distribution of the sample
mean at each time point. For a population distributed according toN (µ, σ2), the sampling
distribution of the sample mean is N (µ, σ2/n), where n is the number of observations
used to calculate the sample mean (see, for example Freund, 1971). It follows that, in
order to generate replicate observations (rather than generating replicates of the sample
mean) , we have to modify Equation (4.20) to become,

yrep ∼ N (mn, Kn + nσ2
ε I), (5.9)

where, in our case, n = 2. We use this procedure in order to obtain replicate time
courses for each gene independently. We take our covariance function, k, to be k(ti, tj) =
kSE(ti, tj)+kM(ti, tj), where kSE is the squared exponential covariance function of Equa-
tion (4.11), and kM is a Matérn covariance function,

kM(ti, tj) = σ2
f

(
1 +

√
3|ti − tj|
l2

)
exp

(
−
√

3|ti − tj|
l2

)
, (5.10)

where σf and l2 are hyperparameters that we estimate as previously. The Matérn class
of covariance functions is recommended by some authors (Stein, 1999), who feel that the
strong smoothness properties of the squared exponential covariance function are unreal-
istic (see Rasmussen and Williams, 2005, for a discussion of the properties of various
covariance functions). We here use a combination of squared exponential and Matérn
covariance functions, as this allows for greater flexibility in the range of behaviours that
may be modelled.

Longitudinal case For gene i, we simply apply the approach of Chapter 4 to the two
time courses, yi1 and yi2, independently. We use the same covariance function as in the
cross-sectional case.

5.3 Results

5.3.1 Illustration with τ = 0.999999

Initially, we take τ to be very close to 1 (namely, τ = 0.999999). This represents very
stringent control over the so-called local false discovery rate (Efron et al., 2004), since we
require a putative edge to have a very high posterior probability in order for us to accept it
as genuine. In practice, we would be very unlikely to set such a stringent threshold (Efron
et al., 2004 and Schäfer et al., 2006 recommend a value of around 0.8). However, it here
proves a very effective way in which to simplify the presentation of our results, as the
resulting networks have relatively few edges and are therefore much easier to visualise
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than the oft-criticised “hairball” (or “ridiculogram”) images that pervade the biological
literature (Lander, 2010).

In Figure 5.4, we show the network inferred from Dobs, in which the node labels corre-
spond to the gene identifiers used within GeneNet (see Appendix A for a table that allows
these labels to be decoded). The edges are coloured according to their bootstrap support
(here calculated using the longitudinal nonparametric bootstrap procedure described in
Section 5.2.2.1). The bootstrap support for an edge is simply the proportion of the boot-
strapped networks that also contained that edge. Bootstrap support is often considered
when estimating phylogenies (e.g. Brown, 1994; Felsenstein, 1985), and is here used as
an assessment of edge stability (very similar to the use of estimated selection probabilities
in Chapter 2). Note that the colour of the nodes is a visual aid only, to help us to locate
edges that have a high degree of bootstrap support. Specifically, each node is given the
same colour as whichever of its incident edges has the highest bootstrap support.

In Figure 5.5, we show similar plots obtained using each of the bootstrap procedures
described in Section 5.2.2.
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Figure 5.4: Network inferred from the original A. thaliana data set, when τ = 0.999999. Edges
are coloured according to their bootstrap support, with reds indicating higher and blues indicating
lower support, as indicated in the colour bar. Each node is given the same colour as whichever of
its incident edges has the highest bootstrap support. Labels on the nodes allow the corresponding
genes to be identified (see Appendix A). All orphan nodes are omitted.
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Figure 5.5: As in Figure 5.4, but considering all 4 procedures for bootstrapping the data. Node
labels are omitted, as are any edges for which the bootstrap support is 0%. (a) Using the non-
parametric bootstrap when the data are treated as longitudinal (this is identical to Figure 5.4); (b)
Using the multivariate Gaussian bootstrap of Chapter 4 and again treating the data as longitudinal;
(c) Nonparametric bootstrap, data treated as cross-sectional; (d) Multivariate Gaussian bootstrap,
data treated as cross-sectional.
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Although there are differences between the bootstrap support percentages that arise using
the different methods, there is a general pattern that is consistent through Figures 5.5a –
5.5d. We can see that there is a highly connected region of the network (which includes,
amongst others, the nodes labelled as 726, 272 and 47 in Figure 5.4) where there are many
edges with a high level of bootstrap support. Outside of this region, edges have a low level
of bootstrap support.

The bootstrap support percentages calculated using the “longitudinal, nonparametric”
bootstrap were generally higher than for the other 3 bootstrap approaches (as can be seen
immediately from the much “brighter” appearance of Figure 5.5a relative to Figures 5.5b
– 5.5d). This is what we would expect, as the bootstrap approach used to produce Figure
5.5a is the most constrained (as we discussed in Section 5.2.2.1, for each gene, one in
three of the replicate data sets will be identical to the original). Indeed, given the con-
strained nature of this approach, it is quite surprising that so many of the edges have such
low bootstrap support (in the blue range of the colour bar). In Section 5.3.2 we investigate
whether or not this is connected to our (unrealistic) choice of τ .

5.3.2 A range of values for τ

The value for τ that we considered in the previous section was much higher than we
would take in practice (Efron et al., 2004, suggests a value of around 0.8). We here
consider a range of values, τ = 0.45, 0.55, . . . , 0.95. Unfortunately, for these smaller
cutoff values, the network becomes much harder to visualise (the network inferred from
Dobs has 1,917 edges when τ = 0.95 and 10,467 edges when τ = 0.45). Instead, we
assess the agreement between our bootstrap replicate networks and the original networks
using a similarity measure of the type discussed in Chapter 2. Let Eobs(τ) denote the
set of all edges that appear in the network inferred from Dobs when the cutoff is set to τ .
Similarly, let Erep

i (τ) denote the set of all edges that appear in the network inferred from
the ith replicate data set, Drep

i when the cutoff is set to τ . We define the proportion of
overlapping edges to be,

ρi(τ) =
|Erep

i (τ) ∩ Eobs(τ)|
|Eobs(τ)|

. (5.11)

We note that this similarity measure is identical to the “percentage of overlapping genes”
or “percentage of overlapping features” (Shi et al., 2005; He and Yu, 2010), but used in a
different context. We calculate ρi(τ) for each of our replicate data sets, and hence obtain
a bootstrap distribution for ρ(τ). Given that we have four different bootstrap procedures
(Section 5.2.2), we have four bootstrap distributions for each value of τ . The resulting
histograms are provided in Figure 5.6.

Figure 5.6 shows that the networks inferred from the replicate data sets generated using
from the longitudinal, nonparametric bootstrap procedure are most similar to the original
network, with ρi(τ) values generally falling between 0.3-0.4. This chimes with our intu-
ition regarding the constrained nature of this procedure. The other bootstrap procedures
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give rise to broadly similar distributions, with ρi(τ) values generally falling between 0.1-
0.2. Within the range considered, the precise value of τ makes little difference to the
bootstrap distribution of ρ(τ). Although the numerator in Equation 5.11 increases with τ ,
the denominator also does so (and at a similar rate).
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Figure 5.6: Plots showing the bootstrap distributions of ρ(i)(τ) for different values of τ and four
different bootstrap approaches. The title above each histograms indicates the value of τ , while the
colours of the bars indicate the bootstrap procedure.

It is again striking that there are relatively few stable edges (at best, only around 30-40%
of the edges in the original network appear in the replicate networks). We discuss possible
reasons for this in Section 5.4.
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5.3.3 Stable subnets

Thus far, our results have been rather negative, suggesting that the estimated network is
relatively unstable to realistic perturbations of the data. We now consider how the boot-
strap replicates may be used more positively. Motivated by Chapter 2, we identify the
most “stably selected” edges and hence generate stable subnets of the original network.
To do this, we simply specify a bootstrap support threshold, b, and then omit the edges in
the network that do not have at least this level of bootstrap support. In a different context
(determining whether or not a set of species forms a monophyletic group), b = 95% is
commonly considered to represent a “significant” level of bootstrap support (Felsenstein,
1985), although this is considered by some to be overly conservative (e.g. Brown, 1994).
We here do not attempt to determine the “correct” choice of b (although we note that this
problem is closely related to the problem of choosing πthr in Section 2.4, and could pro-
vide an interesting direction for future study). Instead, we simply note that the bootstrap
support provides us with a way of assigning stability scores to the edges, and hence could
be used as part of a “stability selection” approach for edges. A basic example is given in
Figure 5.7.
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Figure 5.7: A “stable subnet” of the network estimated from Dobs when τ = 0.99. Edges with
100% bootstrap support are coloured blue; those with between 95 and 100% are coloured green;
and those with between 90 and 95% are coloured red. All other edges are omitted. Each node has
the same colour as whichever of its incident edges has the highest bootstrap support. Bootstrap
support was calculated using the longitudinal, nonparametric approach.
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5.4 Discussion

We applied the multivariate Gaussian bootstrap approach of Chapter 4, as well as non-
parametric procedures, in the context of gene network inference. We considered only the
GeneNet algorithm of Schäfer et al. (2006), although we note that there are now sev-
eral further methods for gene network inference which could also be investigated using
the approaches described (e.g. Lèbre, 2009; Opgen-Rhein and Strimmer, 2007b). Our
bootstrap approaches were adapted to reflect different interpretations of the data as longi-
tudinal or cross-sectional. However, regardless of the approach we considered, we found
the inferred network to be relatively unstable.

In order to gain a little more insight into the apparent instability of the inferred network,
we now briefly consider the bootstrap distributions for the estimated partial correlations.
We focus on the partial correlation between the genes labelled as 726 and 272 in Figure
5.4, and also between the genes labelled as 81 and 144. We choose these particular nodes,
because a very stable edge was consistently found between the first pair of genes (for all
values of τ ), while the bootstrap support for the edge between 81 and 144 was low (for
τ = 0.999999). Using our longitudinal, nonparametric bootstrap replicates, we obtain
bootstrap distributions for these partial correlations. These are shown as histograms1 in
Figure 5.8, overlaid on top of the fitted mixture model of Figure 5.1 (in order to provide a
sense of scale).
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Figure 5.8: Bootstrap distributions of (absolute) estimated partial correlations for: genes 726 and
272 (magenta); and genes 81 and 144 (cyan). These are plotted over the fitted mixture model of
Figure 5.1, in order to provide a sense of scale.

1For consistency with Figure 5.1, we actually plot the absolute values of the estimated partial correla-
tions.
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We can see that the magnitude of the partial correlation between genes 726 and 272 is
consistently large across all bootstrap replicates, and hence it is unsurprising that it is
stably determined to correspond to an edge. In contrast, the magnitude of the partial
correlation between genes 81 and 144 varies between 0.0018 (very low) and 0.034 (high).
It is therefore unsurprising that, while we occasionally determine there to be an edge
between these two genes, we often conclude the opposite. However, this does not explain
why the partial correlation between genes 81 and 144 varies between such a low value
and such a high value. Our current hypothesis is that this is (at least in part) due to
difficulties caused by the presence of multiple strongly correlated genes (in a manner
that is closely related to the problems discussed in Chapter 2, Section 2.4.2). Recall our
earlier example in which we considered three correlated covariates (A,B,C). We stated
that partial correlation allows us to quantify the degree to which the correlation between
A and B is explained by the fact that both are correlated with C. Now, in the original data
set, there are 242 genes whose dynamical correlation with both gene 81 and gene 144
is stronger (larger in magnitude) than the dynamical correlation of these two genes with
each other. It follows that, in order for there to be a stable edge between genes 81 and 144,
we would consistently have to determine that the correlation between these two genes is
not explained by any of the other 242 genes. Given that our bootstrap procedures perturb
the time courses for all of these genes (independently), it seems unsurprising that we are
unable to do this. For completeness, we note that there are no genes whose dynamical
correlation with gene 726 and gene 272 is stronger than their dynamical correlation with
each other.

At this stage, the above is just a hypothesis. We would suggest that in order to investi-
gate this further, it would be prudent to undertake a series of simulation studies (similar
to those of Chapter 2) in which the dynamical correlation between time courses is con-
trolled. Similar studies have been performed in order to investigate the quality of networks
inferred from static data (Werhli et al., 2006), but we are unaware of any examples where
GeneNet has been applied to simulated time course data. We do not pursue this further in
the current thesis, but we believe that this presents an important direction for future work.



Chapter 6

Application II:
ODE parameter estimation

Overview

Abstract We apply the bootstrap of Chapter 4 in the context of estimating
parameters of ordinary differential equation (ODE) models. We illustrate
using a simulated Lotka-Volterra model, and also consider the estimation of
parameters from real experimental data in an ODE model of the JAK2-STAT5
signalling pathway. We briefly discuss how the Gaussian process regression
model used to perform the bootstrap can also be used as part of the estimation
procedure itself.

Overview We start in Section 6.1 by providing some brief background re-
garding ODE modelling in systems biology, focusing on methods for param-
eter estimation. In Section 6.2, we consider a simulation example, using
artificial data generated from a Lotka-Volterra model. We move on to a real
example in Section 6.3, where we estimate the parameters of an ODE model
of the JAK2-STAT5 cell signalling pathway. In Section 6.4, we briefly discuss
a possible extension of our approach, which we demonstrate can speed-up
the process of parameter estimation. We end in Section 6.5 with a discussion
of our results and conclusions.

6.1 Background

Ordinary differential equation (ODE) systems have become widely used in systems biol-
ogy, to model gene regulatory networks, signalling pathways and metabolic networks (e.g.
Quach et al., 2007; Swameye et al., 2003; Tyson et al., 2003; Schoeberl et al., 2002). We
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may consider the process of ODE modelling (and mechanistic modelling more generally)
as comprising three steps: formulation, fitting, and prediction.

1. Formulating the model provides us with a formal means by which to express our
current understanding of the biological system;

2. Fitting to an observed data set allows us to determine how well our understanding
agrees with empirical evidence;

3. Predicting using the fitted model allows us to generate new, testable hypotheses
(which may well lead to refinement of the original model).

We are concerned with the second of these steps. In general, an ODE model will have
a number of unknown parameters (which may include initial conditions), and it is these
that we must estimate in order to fit to the observed data. We wish to use the methods of
Chapter 4 in order to quantify the stability of these estimates.

In this section, we provide a brief introduction to ODE modelling, and describe two broad
methodologies for parameter estimation: simulation and two-step methods. In Sections
6.2 and 6.3 we consider examples that employ simulation based parameter estimation
routines. However, our bootstrap approach lends itself naturally to a two-step method,
and we discuss this further in Section 6.4.

6.1.1 Ordinary differential equation models

We consider ODE models of the form,

d

dt
x(t) = h(x;θ). (6.1)

Here, x ∈ Rp is the vector of state or phase variables, and θ is the vector of parameters.
We will be concerned with initial value problems, where we know (or must estimate)
the initial conditions x(0) = x0. It will not usually be possible to solve Equation 6.1
analytically, and hence numerical methods must be employed. There is a wide variety of
methods for solving systems of ODEs (see, for example, Press et al., 2007). Throughout
this chapter, we use an explicit Runge-Kutta (4,5) method (Dormand and Prince, 1980).

6.1.2 Parameter estimation for ODE models

There have been many methods proposed for estimating the parameters of ODE models
of biochemical processes (for example Perkins et al., 2006; Quach et al., 2007; Toni
et al., 2009). We here classify all such methods as either simulation or non-simulation
based methods. Amongst the latter, two-step approaches (discussed in Section 6.1.2.2)
are perhaps the most common (Brunel, 2008)
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6.1.2.1 Simulation methods

At their most basic, simulation methods may be considered as a form of trial and improve-
ment approach. We start by choosing some initial value for the parameters, then solve the
resulting system of ODEs and assess how close we are to the observed data. After this, we
propose a new value for the parameters, solve the system again, and determine if we have
a better or worse fit to the data. We repeat this process many times until either we are sat-
isfied that the discrepancy between the fit and the data is small enough, or we are unable
to make significant further improvements, or we reach a predefined maximum number
of iterations. It is clear that such approaches require three main ingredients: (i) an error
function to minimise; (ii) an optimisation routine to perform the minimisation; and, (iii)
a stopping criterion. These are common requirements for optimisation problems, and we
refer to Press et al. (2007) for descriptions of many suitable algorithms. An early case
study of ODE parameter estimation using optimisation routines is provided by Biegler
et al. (1986). Here it is noted that, instead of an error function, we might instead be
able to define a likelihood function. For example, we might assume that our ODE model
defines the mean behaviour of the system, and that the observed data represent noisy
realisations of the system. If we assume a parametric form for the noise model (such as
univariate Gaussian noise), then it is relatively straightforward to define a likelihood func-
tion (Biegler et al., 1986; Kirk et al., 2008). Once we have a likelihood function, we may
use an optimisation procedure to find the maximum likelihood parameter values, or may
adopt a Bayesian approach and seek the posterior distribution of the parameters given the
data (Gelman et al., 1996).

The difficulty with these simulation-based approaches is that, for each new parameter pro-
posal, we are required to solve the ODE system. Depending on the optimisation routine
and the nature of the error (or likelihood) surface, we might require tens or hundreds of
thousands of simulations (or more) in order to obtain an adequate fit (Toni et al., 2009).
This can come at a huge computational cost, and hence simulation methods are often
relatively slow.

6.1.2.2 Two-step methods

To avoid having to solve the ODE system, we might consider a two step approach, in
which we first approximate x(t) by x̂(t), and then find the θ that minimises the discrep-
ancy between d

dt
x̂(t) and h(x̂;θ) (Brunel, 2008). Although this again requires the use of

an optimisation routine, we avoid the computational expense associated with having to
solve the ODE system.

Varah (1982) provides an early example of the application of two-step methods in which
the approximation x̂(t) is found by modelling the observed data using splines. Different
methods for approximating x̂(t) include local polynomial regression (Jost and Ellner,
2000) and artificial neural networks (Voit and Almeida, 2004). One potential difficulty
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with these methods is that they rely (to some degree) on the quality of the approximation
x̂(t). Even if x̂(t) provides a good fit to the observed data, there is no guarantee that it
matches the behaviour permitted by the ODE model. To address these difficulties, Poyton
et al. (2006) proposed a procedure to estimate x̂ and θ in an iterative fashion, which was
later extended in Ramsay et al. (2007).

6.2 Example I: Lotka-Volterra model

We start by considering a simulation example, based upon a Lotka-Volterra model (Lotka,
1920; Volterra, 1926). Such models have been employed as a means to describe the rela-
tionship between predator and prey species in ecology, and also to describe interactions
between “predator” and “prey” molecular species (Wilkinson, 2006).

6.2.1 The model

We consider the following version of the Lotka Volterra predator-prey model

dx

dt
= ax− xy (6.2)

dy

dt
= bxy − y

where a and b are parameters, and we assume that the initial conditions are known and
gven by x(0) = 1, y(0) = 0.5. Here, x and y refer to the population sizes of the prey and
predator species (respectively).

6.2.2 The data

We consider the artificial data set of Toni et al. (2009). These data were simulated by
setting a = b = 1 in Equation (6.2), solving the equations numerically, and then adding
Gaussian noise. Data were sampled at 8 time points (for both x and y), and the noise was
generated by sampling independent random variates from a N (0, 0.52) distribution. We
denote the data by Dobs = {(xi, yi)}8

i=1, where (xi, yi) are the observed values for x and
y at time ti. These simulated data are shown in Figure 6.1, together with the solutions for
x(t) and y(t) when a = b = 1 (labelled as “true x” and “true y”). The full data set is
provided in Toni et al. (2009, Supplementary Material).
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6.2.3 Estimating the parameters

We employ a simulation approach in order to perform least squares estimation of the
parameters. That is, we seek the parameters, θ = [a, b], that minimise the objective
function,

g(θ;Dobs) =
8∑
i=1

(
(x(ti;θ)− xi)2 + (y(ti;θ)− yi)2

)
, (6.3)

where x(ti;θ) is the value of x(t) at time t = ti when the parameters in Equation (6.2)
are given by θ (and similarly for y(ti;θ)).

In order to minimise g(θ;Dobs), we use the lsqnonlin function in Matlab (MATLAB,
2009), which employs a trust-region-reflective algorithm based on an interior-reflective
Newton method (Coleman and Li, 1994, 1996). This allows us to specify bounds on
the acceptable range of values for a and b, which we set to be 0 ≤ a, b ≤ 10. We set
the initial point for the optimisation algorithm to be a = b = 0.5. Since lsqnonlin
finds local minima only, we should ideally perform several random initialisations (i.e.
with different initial points) to try to avoid getting stuck in a local minimum. However,
since this example is for illustration only, we use just one initial point in order to reduce
computational overheads. As we shall see later, local minima do appear to be an issue for
this example.
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Figure 6.1: Lotka-Volterra model and simulated data. “True x” and “true y” show the model from
which the data were simulated, while “estimated x” and “estimated y” are the fits provided by
parameters estimated from the simulated data.

Before applying our bootstrap procedure, we use the lsqnonlin function to estimate
the parameters from the original data set. We obtain âorig = 1.0712 and b̂orig = 0.9585.
The fits provided by these parameters are shown in Figure 6.1 (labelled as “estimated
x” and “estimated y′’). In order to provide some context for our later analysis, we also
consider a grid of a and b values, and for each pair we calculate g(θ;Dobs). The result-
ing error surface is illustrated in Figure 6.2, with the estimated parameter values, (â, b̂),
indicated by a “+” symbol.
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Figure 6.2: Representation of the negative log error surface for the Lotka-Volterra system, given
data set Dobs. The black “+” sign marks the parameter values estimated from the original data
set.

6.2.4 Bootstrap procedure

We fit Gaussian process regression models independently to the x data and to the y data.
We use a zero mean function, and a squared exponential covariance function whose pa-
rameters are estimated by maximisation of the marginal likelihood. The resulting fits are
shown in Figure 6.3. We sample 10,000 replicate data sets from the model, according to
the procedure given in Chapter 4. For each replicate data set, Drep

i , we fit the ODE model
by using the lsqnonlin function to find the parameters that minimise g(θ;D

rep
i ).
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Figure 6.3: GP regression models fitted to the data for the x (left) and y (right) variables.
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6.2.5 Results

Corresponding to each of our replicate data sets, Drep
i , we have a parameter estimate,

θ
rep
i = [a

rep
i b

rep
i ]. Figure 6.4 illustrates the joint distribution of these estimates, while

Figure 6.5 shows the marginal bootstrap distributions.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

a

b

 

 

Su
m

 o
f s

qu
ar

es

5

10

15

20

25

30

Figure 6.4: Scatterplot of the bootstrap distribution of estimated parameter values for the Lotka-
Volterra example. Each point corresponds to a different θrep

i . The colours of the points indicate the
value of g(θrep
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i ), with blue corresponding to lower errors and red corresponding to higher
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Figure 6.5: Histograms of the marginal bootstrap distributions of the estimates for a (left) and b
(right). The mean values are provided above each plot.
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Figures 6.4 and 6.5 both show that the majority of the estimated parameters are clustered
around the true values, a = b = 1, with the large cluster in Figure 6.4 comprising approx-
imately 96% of the points. This is reflected in the mean values of the estimates, which
are 1.0090 and 0.9849 for a and b respectively. The estimated standard error for both a
and b is 0.13 (to 2 significant figures). This is reassuring: it suggests that realistic changes
to the observed data generally make quite small differences to our parameter estimates.
However, it is notable that, for around 4% of our parameter estimates, we obtain quite
different estimates, with â ≈ 0.45 and b̂ ≈ 0.8. However, the fits provided by these esti-
mates are generally quite a lot worse than the fits provided by those that fall in the large
cluster in Figure 6.4. This suggests that these estimates might arise from a failure by the
optimisation algorithm to converge to the true minimum.

If we overlay the scatterplot of Figure 6.4 onto the depiction given in Figure 6.2 of the
error surface calculated with respect to the original data set, Dobs, then we obtain a re-
vealing insight into the bootstrap distribution of the estimated parameters (see Figure
6.6). We can see that the bootstrap distribution provides quite a good reflection of the
shape of the error surface. In particular, we can see that the small cluster centred around
a = 0.45, b = 0.8 has a close correspondence to a local minimum in the error surface (in
the a direction).
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Figure 6.6: Joint distribution of bootstrap parameter estimates overlaid on top of the error surface
of Figure 6.2. Note that we here colour the points of the scatterplot uniformly, to avoid confusion
with the colour scale of the error surface contours.
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6.3 Example II: JAK2-STAT5 signalling pathway

The JAK-STAT pathway is a well-studied signalling pathway that describes a mechanism
by which signals carried by cytokines may be transduced to the cell nucleus via STAT
activation, dimerisation, and relocation (Horvath, 2000; Aaronson and Horvath, 2002). In
the case of the JAK2-STAT5 pathway, Epo (erythropoietin) triggers the activation of JAK2
kinases when it binds to EpoR (the Epo receptor), which then results in STAT5 becoming
activated, dimerising, and moving to the cell nucleus. This process is illustrated in Figure
6.7.

Figure 6.7: The JAK2-STAT5 signalling pathway (figure adapted from Znamenkiy, 2006).

Swameye et al. (2003) suggested a number of parametric ODE models to describe this
signalling pathway, the parameters of which were estimated from experimental data. We
consider one of the proposed models (taken from Swameye et al., 2003, Supplementary
Material), and – using data from the original experiments – apply the approach of Chapter
4 in order to obtain bootstrap distributions of the parameters.

6.3.1 The Model

The model we consider is as follows,

dv1

dt
= −r1v1D + 2r4v4

dv2

dt
= r1v1D − v2

2 (6.4)

dv3

dt
= −r3v3 + 0.5v2

2

dv4

dt
= r3v3 − r4v4.
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Here, v1, v2 and v3 represent the concentrations in the cytoplasm of (respectively) un-
phosphorylated STAT5, phosphorylated monomeric STAT5, and phosphorylated dimeric
STAT5. The variable v4 denotes the concentration of STAT5 in the nucleus, and D is
an experimentally determined quantity (which varies over time) related to the amount of
Epo-induced phosphorylation of the EpoR (see Swameye et al., 2003). The ri’s are pa-
rameters which are combinations of the rate constants of the system (see Swameye et al.,
2003, Supplementary Material). The initial values of v2, v3 and v4 at time t = 0 are as-
sumed to be zero (since it is supposed that all STAT5 in the cell is initially cytoplasmic
and unphosphorylated), while the initial concentration of unphosphorylated cytoplasmic
STAT5, v1(t = 0), is treated as an unknown parameter.

The quantities v1, v2, v3 and v4 could not be measured experimentally. Instead, the amount
of phosphorylated STAT5 in the cytoplasm, y1, and the total amount of cytoplasmic
STAT5 (phosphorylated and unphosphorylated), y2, were recorded. These can be writ-
ten in terms of the vi’s as follows,

y1 = r5(v2 + 2v3) (6.5)
y2 = r6(v1 + v2 + 2v3), (6.6)

where r5 and r6 are two unknown scaling parameters, which must also be estimated. In
total, there are thus 6 unknown parameters in this model (r1, r3, r4, r5, r6 and v1(0)).

6.3.2 The data

Swameye et al. (2003) measured y1 and y2 at a number of discrete time points in order to
obtain several sets of experimental data. We focus on just one of these (the “DATA1 hall”
set, available from the original authors). The data are shown later in Figure 6.8.

6.3.3 Estimating the parameters

Given our concern that the optimisation routine employed in Section 6.2 may have failed
(in a small number of cases) to have found the global optimum, we here employ a more
sophisticated approach. We estimate the unknown parameters of the ODE system pre-
sented in (6.4) using the Stochastic Ranking Evolutionary Strategy (SRES) of Runarsson
and Yao (2000), as implemented in the libSRES C library (Ji and Xu, 2006). This is a
“global” optimisation routine that is (in principle) able to escape local optima (although,
given a finite running time, this might not be the case in practice), and was recently found
to provide the best performance in a test problem that sought to estimate 36 parameters
of a nonlinear biochemical ODE model (Moles et al., 2003). In order to improve our
chances of locating the global optimum, we rerun the algorithm 8 times for each data set
(and take as our final estimate the “best” amongst these 8 runs). We again seek the least
squares estimate of the parameters, so employ the error function given in Equation (6.3).
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SRES allows us to specify acceptable ranges for the parameter values, which we set to
be: v1(0) ∈ [0.01, 10], r1 ∈ [0.1, 10], r3 ∈ [0.01, 5], r4 ∈ [0.01, 5], r5 ∈ [0.1, 10], r6 ∈
[0.01, 10].

Before applying our bootstrap procedure, we use SRES to obtain parameter estimates
from the original data set. These are (to 3 significant figures): v̂1(0)orig = 0.996, r̂orig

1 =

2.43, r̂orig
3 = 0.256, r̂orig

4 = 0.303, r̂orig
5 = 1.27, r̂orig

6 = 0.944.

6.3.4 Bootstrap procedure

As previously, we fit Gaussian process regression models independently to the y1 data
and to the y2 data. We again employ a zero mean function and a squared exponential
covariance function, and estimate the hyperparameters by maximisation of the marginal
likelihood. The resulting fits are shown in Figure 6.8. Due to the computational costs
associated with fitting using SRES, this time we sample only 1,500 replicate data sets
from the model, and calculate parameter estimates for each one.
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Figure 6.8: Gaussian process regression models fitted to the JAK2-STAT5 data, for y1 (left) and
y2 (right). Data points are shown as filled red circles.
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6.3.5 Results

Figure 6.9 shows that the marginal bootstrap distributions are generally centred around
the original parameter estimates. However, for the r3 parameter, there are two distinct
clusters. The first (much larger) cluster comprises estimates centred around r̂orig

3 . The
second cluster comprises 28 estimates for which r3 ≈ 5.
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Figure 6.9: Histograms showing the marginal bootstrap distributions of the parameter estimates.
The vertical black dashed lines indicate the parameter estimates obtained from the original data
set. Although the distributions are generally quite narrow, note that for r3 there is a small amount
of probability mass located at r3 ≈ 5 (shown as a red bar and ringed by a red circle).
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In Figure 6.10, we plot pairs of corresponding parameter estimates against one another.
We show the 28 parameter estimates for which r3 ≈ 5 in red. It is not just the r3 value
that is unusual for these red points: we can see that the r4 and r5 values are also “extreme”
(although less dramatically so than for r3) .
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Figure 6.10: Scatterplots showing pairs of estimated parameter values. The y-axis of every plot
in the top row corresponds to v1(0); the y-axis of every plot in the second row corresponds to
r1; . . . and so on (as indicated by the labels). Similarly the x-axis of plots in the first column
corresponds to v1(0), and so on. Red points correspond to parameter estimates in the “second set”
(for which r3 ≈ 5).
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It is reasonable to ask if the parameter estimates for which r3 ≈ 5 (the red points in Figure
6.10) arise as a result of a failure by the optimisation routine. However, this appears not
to be the case, as the corresponding fits are comparable to the fits provided by the original
estimates (see Figure 6.11). It follows that there is a second set of parameter values that
are very different to the original estimates, but which nevertheless allow the ODE model
to capture the observed behaviour.

0 10 20 30 40 50 60
0

0.5

1

1.5

y
1

0 10 20 30 40 50 60
0

0.5

1

1.5

Time, t

y
2

Original data
Original fit
2nd parameter set

Figure 6.11: Plots showing the original experimental data set, original fit to this data set, and the
fits obtained using values from the second set of parameter estimates.

6.4 A two-step approach

We mentioned in Section 6.1.2.2 that an alternative way in which to estimate the param-
eters of an ODE system is to fit a (typically nonparametric) model to the data, x̂(t), and
then to estimate the parameters θ in order to minimise the discrepancy between d

dt
x̂(t)

and f(x;θ) (cf. Equation 6.1). As part of our bootstrap approach, we fit a GP regression
model to the data. We could, therefore, make use of this as part of a two-step method for
parameter estimation. We briefly illustrate this idea in the context of the Lotka-Volterra
example of Section 6.2.

6.4.1 Sampling derivatives

One useful property of Gaussian processes is that the derivative of a GP is again a GP
(see, for example Rasmussen and Williams, 2005). Recall that, given covariance function
k for a GP, the covariance cov(f(ti), f(tj)) is given by k(ti, tj). The covariances between
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the derivatives of f , and between function values and derivatives are then given by,

cov

(
df

dt

∣∣∣∣
t=ti

,
df

dt

∣∣∣∣
t=tj

)
=

d2

dtidtj
k(ti, tj), cov

(
f(ti),

df

dt

∣∣∣∣
t=tj

)
=

d

dtj
k(ti, tj).

(6.7)
These results (and more general versions) are provided in Solak et al. (2003); Girard
(2004); Rasmussen and Williams (2005). For brevity, we shall henceforth write df

dti
as

shorthand for df
dt

∣∣
t=ti

and fi as shorthand for f(ti). We consider below the specific case in
which we are interested only in the function and derivative values at the times where we
have observations. However, with minor modifications, our exposition may be extended
to the more general case where we are interested in any finite collection of times.

If we assume a GP prior for f , with zero mean function and covariance function k, then,

[
y1, . . . , yr, f1, . . . , fr,

df

dt1
, . . . ,

df

dtr

]>
∼ N

0,

Ko + σ2
ε I Ko LFD

Ko Ko LFD
LDF LDF M

 , (6.8)

where yi is the (noisy) observation obtained at time ti and,

(Ko)ij = k(ti, tj), (6.9)

(LDF )ij = cov

(
df

dti
, fj

)
, (6.10)

(LFD)ij = cov

(
fi,

df

dtj

)
, (6.11)

(M)ij = cov

(
df

dti
,
df

dtj

)
. (6.12)

If we define,

K∗o =

(
Ko

LDF

)
, Ko∗ =

(
Ko LFD

)
, and K∗∗ =

(
Ko LFD
LDF M

)
,

then we can see that Equation (6.8) bears a strong similarity to Equation (4.32). Using
these definitions of K∗o, Ko∗ and K∗∗, it follows that,[

f1, . . . , fr,
df

dt1
, . . . ,

df

dtr

]>∣∣∣∣∣ [y1, . . . , yr] ∼ N (mcond, Kcond), (6.13)

where mcond and Kcond are as defined in Equations (4.34) and (4.35).

We may hence sample function values and corresponding derivative values from Equation
(6.13).
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Figure 6.12: Left: Fitted GP model (red) and corresponding derivative process (magenta) for the
x data. Right: Fitted GP model (blue) and derivative process (cyan) for the y data.

6.4.2 Sampling derivatives for the Lotka-Volterra example

We fit a GP regression model to the Lotka-Volterra data exactly as previously, but this
time we additionally consider the derivative process, illustrated in Figure 6.12. We may
then sample from the multivariate normal distribution of Equation (6.13) in order to obtain
replicate function and corresponding derivative values. Figure 6.13 shows function and
derivative values drawn from the multivariate Gaussian posterior, and compares to numer-
ically estimated derivatives (note that, to aid visualisation, this figure actually illustrates
the more general case where we permit sampling at time points other than those at which
the observations were made). There is clearly good agreement between the sampled and
numerically estimated derivatives.

6.4.3 Two-step estimation of Lotka-Volterra parameters

The procedure described in Sections 6.4.1 and 6.4.2, provides a way of sampling different
approximations, x̂(t), to x(t), and also their derivatives, d

dt
x̂(t), all evaluated at the time

points at which we have observations. Let us denote the ith sampled approximation by
x̂i(t), and also define x̂i := [x̂i(t1), . . . , x̂i(tn)]> to be the vector comprising the values of
x̂i(t) evaluated at the time points t1, . . . , tn at which we have observations. We define ŷi
similarly.
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Figure 6.13: (a) Functions and (b) corresponding derivatives sampled from the joint distribution
of function and derivative values for the x data (cf. Figure 6.12, left). (c) Derivatives estimated
numerically from the curves in (a) using the gradient function in Matlab (MATLAB, 2009).
Note that the colours match up between (a), (b) and (c), so that — for example — the red curves
in (b) and (c) represent the derivative of the red curve in (a).

Note that we may rearrange Equation (6.2) in order to obtain,

xy +
dx

dt
= ax (6.14)

y − dy

dt
= bxy. (6.15)

Since we have approximations to all terms in Equations (6.14) and (6.15) except a and
b, and since also both equations are linear in the parameters, we may now find least
squares estimates of a and b analytically. For example, if we plug our approximations
into Equation (6.14) and rewrite as ẑ1 = aẑ2 (where ẑ2 is our approximation to x, and
ẑ1 is our approximation to the lefthand side of Equation 6.14), then the least squares
estimate for a is given by â = ẑ1/ẑ2. We may estimate b similarly. It follows that for
each collection of approximations, {x̂i, ddt x̂i, ŷi,

d
dt
ŷi}, we may obtain estimates of a and

b analytically (and hence very quickly).

We sample 10,000 pairs, (x̂i,
d
dt
x̂i), of approximations for x(t) and d

dt
x̂i, and 10,000 pairs,

(ŷi,
d
dt
ŷi), for y(t) and d

dt
ŷi. For each collection, {x̂i, ddt x̂i, ŷi,

d
dt
ŷi}, we estimate the

parameters as described above. The resulting marginal distributions are shown in Figure
6.14.

The marginal distributions produced using the two-step approach are clearly very similar
to those shown in Figure 6.5, but are obtained at a vastly reduced computational cost.
The total length of time required to obtain the bootstrap distributions of Figure 6.5 was
5696 seconds (approximately 1 hour 35 minutes). In contrast, it took just 1.5 seconds to
generate the marginal distributions shown in Figure 6.14 (and, in both cases, the quoted
times include fitting and sampling from the Gaussian process regression models).
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Figure 6.14: Histograms of the marginal distributions of the estimates for a (left) and b (right),
obtained for the Lotka-Volterra example using the two-step procedure of Section 6.4.

6.5 Discussion

We applied the bootstrap procedure of Chapter 4 in the context of parameter estimation
for ODE models. We first demonstrated the utility of this approach by considering a sim-
ulated Lotka-Volterra model. By bootstrapping the simulated time course data, we were
able to obtain distributions of parameter estimates, which reflect the effects of variability
in the data. The majority of the estimates were clustered around âorig and b̂orig (the esti-
mates from the original data set). However, there was also a distinct second cluster. The
estimates in this second cluster generally provided worse fits to the data than those in the
first, which suggested a possible failure of the optimisation algorithm. In spite of this,
we note that the mean values of the bootstrap distributions were closer than the original
estimates to the values that were used to simulate the data (a = 1, b = 1).

We then considered a model of the JAK2-STAT5 signalling pathway, which we fitted to
real experimental data. We obtained bootstrap distributions of the parameter estimates,
and again observed two clusters of parameter estimates. This time, however, the smaller
cluster appeared to be genuine, as the parameter estimates belonging to this cluster pro-
vided a very good fit to the original data set (comparable to the fits provided by the esti-
mates in the larger cluster).

We finally considered how the Gaussian process regression model used to perform the
bootstrap might also be used as part of the estimation procedure itself, and demonstrated
that this approach provided significant computational gains, with apparently no loss in
the quality of estimation. Indeed, the mean values of the marginal distributions shown
in Figure 6.14 were very close to the parameter values that were used to generate the
data. Since we were able to obtain parameter estimates analytically, this also avoided the
problems with local minima that we had seen previously. However, it is important to note
that we were only able to obtain analytical solutions because the ODE model was linear
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in the parameters. In general, this will not be the case, and hence for most practical ap-
plications we would be forced to use numerical optimisation. Nevertheless, optimisation
in the “two-step” case may reasonably be expected to be faster than optimisation in the
“simulation” case, since we avoid having to solve the ODE. It should also be noted that
we do not need to know the initial conditions of the system in order to apply two-step
approaches, which is in stark contrast to simulation methods. The biggest limitation of
the approach as currently presented is that we require observations of all state variables,
which will rarely be the case for more realistic examples. Extending the methodology
to cope with incompletely observed systems could be an interesting direction for future
work.

Perhaps the most important message of this chapter is that single point estimates of the
parameters are of limited value, providing no information whatsoever about stability to
data perturbations. Given that biological data are noisy, this would seem to be woefully
inadequate. Although we maintain that bootstrap approaches are useful for addressing this
problem (and allow us to extend the utility of existing point-estimate methods), Bayesian
methods (in which we place priors directly over the unknown parameters) are also appli-
cable. Since, in the bootstrap case, we will usually require global optimisation routines
in order to estimate the parameters, the usual criticism of Bayesian approaches being too
computationally costly would be unfair. We therefore present our bootstrap procedure as
a useful alternative to a full Bayesian treatment.

We note that, contemporaneous with our investigation into the two-step approach of Sec-
tion 6.4, a similar method was proposed by Calderhead et al. (2009) from a Bayesian
perspective. These authors provide a rather more sophisticated procedure than the one
presented here, combining the potentially conflicting derivative approximations d

dt
x̂ and

h(x̂;θ) as a product of experts (Mayraz and Hinton, 2002). Samples from the poste-
rior parameter distribution are obtained using a Markov chain Monte Carlo method (Jasra
et al., 2007). Again, we regard our approach as an alternative, which — while less sophis-
ticated — may be used as a wrapper around existing methods for parameter estimation,
and hence might (in some circumstances) be easier to implement.



Chapter 7

Discussion

7.1 Summary

Throughout this thesis, we have been concerned with methods for approximating data
generating processes (DGPs), and how the resulting approximations may be used in or-
der to assess the stability with which quantities and structures are inferred from systems
biology data.

In Chapters 2 and 3 we focused upon covariate selection in the context of biomarker dis-
covery problems, and considered how subsampling may be used to quantify selection sta-
bility. We thereby proposed a novel algorithm for determining a final set of stably selected
covariates, and used a simulation study to demonstrate that our approach has favourable
properties in terms of the number of “false positive” selections that are made (Chapter 2).
We showed that correlations amongst covariates may cause difficulties for stability selec-
tion approaches that employ the lasso (Section 2.4.2). However, by using our approach in
tandem with the elastic net likelihood penalty, we were able to mitigate these challenges.
In Chapter 3, we applied our approach to a problem in HTLV-1 proteomic biomarker dis-
covery, and identified a number of putative SELDI peak biomarkers for the inflammatory
condition HAM/TSP. Two of these have been experimentally identified as Calgranulin B
and β2-microglobulin, both of which seem highly plausible biomarkers.

In Chapter 4 we proposed a novel method for bootstrapping time courses of data. Our
approach is in some ways similar to existing methods for bootstrapping residuals, but ad-
ditionally employs concepts from Gaussian process regression (GPR) in order to capture
the uncertainty in the unknown regression model. We derived our procedure from conju-
gate Bayesian and Gaussian process regression standpoints, and demonstrated that both
derivations lead to the same approximation to the DGP.

In Chapter 5 we applied the multivariate Gaussian bootstrap of Chapter 4 in order to assess
the stability of networks inferred from gene expression time courses using the “GeneNet”
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algorithm of Schäfer et al. (2006). We suggested different methods for bootstrapping de-
pending upon whether the time course data were viewed as cross-sectional or longitudinal.
We applied the procedure of Chapter 4 and also nonparametric bootstrap approaches to
an Arabidopsis thaliana gene expression data set. Regardless of the method used to boot-
strap the data, the networks we obtained using GeneNet appeared relatively unstable (as
quantified by using a similarity measure to assess the concordance between the replicate
and original networks). Nevertheless, there were some edges in the network that had high
levels of bootstrap support. We therefore suggested that bootstrap approaches such as the
ones we considered might be use to generate stable subnets, which are present in all (or
most) of the replicate networks. We finally discussed the possible effects of having many
correlated genes, and the impact that these might have upon stability.

In Chapter 6, we applied our multivariate Gaussian bootstrap in the context of ordinary
differential equation (ODE) parameter estimation. For illustration, we briefly considered
a simulation example based upon a Lotka-Volterra model, and demonstrated the utility of
our approach. We then moved on to a model of the JAK2-STAT5 cell signalling pathway.
We found that parameter estimates were generally fairly stable, with the majority of our
replicate estimates being close to those obtained from the original data set. However, we
also identified a distinct second set of parameters that provided a good fit to the original
data, but were very different to the original estimates. Finally, we exploited the Gaussian
process regression derivation of our bootstrap approach, and incorporated the underly-
ing GPR model within the estimation procedure. Returning to our earlier Lotka-Volterra
example, we obtained very similar results, but at a massively reduced computational cost.

7.2 Conclusions

Assessing the stability of inferences to data perturbations is clearly very important, par-
ticularly in light of the many sources of variability present in current biological studies
(see Chapter 1). As exemplified by reanalyses of early SELDI-TOF-MS studies (Bag-
gerly et al., 2004), conclusions drawn from biomedical data can be difficult or impossible
to reproduce, which raises serious questions about their validity. The approaches we have
presented in this thesis are designed either to identify the most stable conclusions, or at
least to quantify the stability of our inferences. Bootstrapping, subsampling, and similar
procedures for approximating the underlying DGP have a relatively long history in biol-
ogy (e.g. Felsenstein, 1985). Although Bayesian approaches are increasingly popular and
are incredibly useful for quantifying uncertainty, we nevertheless believe that bootstrap-
ping remains an important, effective and practical tool, and take the view that it is useful
to have a variety of techniques available to us. The most obvious benefit of bootstrapping
is a practical one: the “plug-in principle” of Efron and Tibshirani (1993) means that any
existing procedure for drawing conclusions from our observed data may also be applied
to our replicate data sets. This is particularly useful given the availability of computer
programs that take a data file as input and then return an output (without us necessarily
knowing the details of the algorithms employed).
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In Chapter 2, we clearly demonstrated the difficulties (in terms of stability) caused by
feature selection algorithms such as the lasso, which only pick out a single representative
from a correlated set of covariates. One of the main contributions of this chapter was
therefore to provide a procedure that would allow different feature selection algorithms
to be considered together, which allowed us to explore different tolerances to the selec-
tion of several correlated covariates by using the elastic net. A further novelty described
in Chapter 2 was the use of a probabilistic score that combined assessments of stability
and predictive performance. For classification problems, this represents an alternative
to the procedure described by Meinshausen and Bühlmann (2010), which instead seeks
to control the proportion of “falsely selected” covariates. Since the distinction between
“relevant” and “noise” (i.e. “irrelevant”) covariates might not be clear-cut in practical ap-
plications, we believe that incorporating an assessment of predictive performance might
provide a more pragmatic approach. However, our approach is limited to classification
problems, and it is unclear how it might be extended to the regression case. The main
challenge is to devise a principled means to combine an assessment of predictive perfor-
mance for a regression model with an assessment of stability. However, in the context of
biomarker discovery (our main focus), this limitation is a relatively minor one, since we
are usually presented with case/control data rather than continuous outcomes.

In Chapter 3, we applied our approach to the problem of identifying SELDI-TOF-MS
peaks whose intensities allowed us to distinguish between sufferers of HAM/TSP and
asymptomatic carriers (ACs). Our current understanding of the pathogenesis of HAM/TSP
is incomplete, and hence this novel proteomic data set provided an opportunity to shed fur-
ther light on the development of disease. Our analysis identified several putative biomark-
ers, two of which have been experimentally identified. These two proteins are well-known
markers of inflammatory conditions (Xie and Yi, 2003; Foell and Roth, 2004), which has
both negative and positive implications. On the one hand, it means that we have not (yet)
identified any protein biomarkers that are specific to HAM/TSP, rather than being general
markers of inflammation (although we note that the abundances of these proteins might
vary significantly between HAM/TSP and other inflammatory conditions; this remains to
be established). On the other hand, it implies that our results are highly plausible, and adds
further weight to the argument that additional experimental resources should be allocated
to identify the other putative biomarkers. At the very least, we have added HAM/TSP to
the list of inflammatory conditions with which these proteins are associated.

One additional outcome of our work with SELDI-TOF-MS data was to establish that these
data can provide useful results. As discussed in Chapter 3, as a result of the work of Bag-
gerly et al. (2004), there has been a degree of concern about the viability of conclusions
drawn from SELDI-TOF-MS data. However, the difficulties identified with previous anal-
yses concerned experimental design and statistical methodologies. Provided appropriate
precautions are taken (randomising samples across chips, using consistent and appropri-
ate normalisation procedures, and — ideally — treating the SELDI-TOF-MS analysis as
a filtering step in a larger protein identification study), these difficulties may be avoided.

The work of Chapter 4 and subsequent chapters focused upon the use of a multivariate
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Gaussian model to perform a bootstrap of time course data. Of paramount importance
for these approaches was the use of a function, k, to model the covariance structure of
the data. When applied to gene expression time course data (Chapter 5), the relative
instability of networks inferred using GeneNet was striking. We posited that this instabil-
ity might be due to the effects of correlation amongst the gene expression time courses.
However, this remains a hypothesis, and it would be useful to perform comprehensive
simulation studies in order to confirm or reject this possibility. Such a method could also
be applied in order to determine the effects of small sample sizes upon network stabil-
ity. In the Arabidopsis thaliana example that we considered, there were only two time
courses for each gene. Having a larger number of replicates might allow us to estimate
the variability in these time courses (and resulting partial correlation estimates) more ac-
curately. We believe that the nonparametric bootstrap approaches that we considered are
liable to underestimate the variability in the data (simply because, as a result of there be-
ing so few replicates, there are relatively few different bootstrap data sets for each time
course). Thus, the stability results that we obtained using these methods might actually
be overoptimistic.

Applying our multivariate Gaussian bootstrap in the context of ODE parameter estimation
(Chapter 6) yielded some interesting results. The existence of a second set of plausible
parameter estimates for the JAK2-STAT5 model provides an excellent illustration of the
importance of quantifying the uncertainty in our inferences. Bayesian approaches (in
which we specify and then update a prior for the parameters) would also be applicable here
(Toni et al., 2009; Calderhead et al., 2009). Our discovery of a second plausible parameter
set for this model might manifest itself as a bimodal likelihood surface and hence, if a flat
prior is assumed, a bimodal posterior. The use of Gaussian process regression models in
order to speed up parameter estimation for ODE systems (Section 6.4) would seem to be
a worthwhile pursuit, and we are pleased that the approach of Calderhead et al. (2009)
has been demonstrated to provide significant computational savings relative to alternative
methods.

7.3 Further work

A number of possible directions for further work have been suggested throughout this
thesis. In the immediate future, we will extend the results of Chapter 3 by considering re-
cently generated data comparing patients with HAM/TSP to those with multiple sclerosis
(MS). Additionally, experimental work is ongoing in order to identify more of the protein
peaks selected in Chapter 3.

The apparent instability of networks inferred from gene expression data (Chapter 5) de-
mands further investigation. As we have suggested, devising and conducting a controlled
simulation study to probe the properties of this and similar inference algorithms would
seem a useful means to establish their strengths and limitations. This is in good agree-
ment with the sentiments of (Werhli et al., 2006), who also advocate the use of simulation
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studies to assess the utility of network inference algorithms.

The multivariate Gaussian bootstrap approach of Chapter 3 could be extended in a number
of obvious ways. Firstly, the current approach is limited to treating time course data sets
independently of one another. Procedures exist for fitting dependent Gaussian process
regression models (Boyle and Frean, 2005), and we could apply these when constructing
our bootstrap model. Secondly, in Section 4.2.4, we only considered hyperparameter
estimation by maximisation of the marginal likelihood. An alternative approach would be
to infer these parameters using Markov chain Monte Carlo sampling (as in Neal, 1999).
This would add to the computational cost of our approach, and it is unclear whether or
not it would make a significant difference to the results. Nevertheless, it might be an
interesting alternative to explore.

Throughout this thesis, we have been concerned with the approximation of DGPs, either
by using subsampling or bootstrap procedures. A related concept that has been recently
proposed is stochastic emulation (Henderson et al., 2009). Here, the “observed data”
comprise samples generated by simulating from a stochastic model (using, for example,
the stochastic simulation algorithm of Gillespie 1977). Crucially, we simulate these data
using a variety of different values for the stochastic model’s inputs (typically its param-
eters). The aim of emulation is to approximate the stochastic model, so that, given input
x, we can sample (“emulate”) a corresponding output, y. The idea is that, once we have
such an approximation, we can dispense with the original stochastic model (from which
it is typically much slower to generate samples). This problem has previously been con-
sidered in the context of deterministic models (Kennedy and O’Hagan, 2001; Conti and
O’Hagan, 2010), but stochastic systems remain relatively unexplored (with the exception
of Henderson et al. 2009). We believe that stochastic emulation represents an interesting
future direction, which we believe may be of particular value given the current popular-
ity of simulation-based inference procedures (Marjoram et al., 2003; Sisson et al., 2007).
For this reason, we include in Appendix B a pilot study that explores stochastic emulation,
which we hope will prove valuable for future work in this area.

7.4 Final remark

In addition to showing the benefits of including stability amongst the objectives that we
seek to attain (Chapter 2), we have also demonstrated that conclusions drawn from current
biological data can be unstable (as illustrated in Chapter 5 in the case of gene networks),
and that small perturbations to the data can have significant effects upon the quantities
derived from them (as we saw for the parameter estimates of the JAK2-STAT5 model in
Chapter 6). Our final remark must therefore be to reiterate the importance of assessing
the stability of conclusions drawn from experimental data (whether using the approaches
considered here or any other techniques).



Appendix A

Node labels for Chapter 5

For completeness, we provide over the next few pages the sequence IDs corresponding
to the node labels used in Chapter 5, Figure 5.4. Sequence annotations and further infor-
mation may be found by visiting the Plant Expression Database (Wise et al., 2007).
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Node number (#) Sequence ID (ID)
1 AFFX-Athal-GAPDH 3 s at
2 AFFX-Athal-Actin 3 f at
3 267612 at
4 267520 at
5 267517 at
6 267516 at
7 267456 at
8 267454 at
9 267432 at
10 267423 at
11 267383 at
12 267377 at
13 267341 at
14 267274 at
15 267262 at
16 267123 at
17 267063 at
18 267005 at
19 267000 at
20 266995 at
21 266993 at
22 266991 at
23 266928 at
24 266927 at
25 266925 at
26 266897 at
27 266864 at
28 266835 at
29 266820 at
30 266813 at
31 266809 at
32 266805 at
33 266789 at
34 266719 at
35 266671 at
36 266572 at
37 266511 at
38 266481 at
39 266460 at
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# ID
40 266458 at
41 266437 at
42 266417 at
43 266399 at
44 266314 at
45 266297 at
46 266293 at
47 266247 at
48 266235 at
49 266226 at
50 266172 at
51 266139 at
52 266089 at
53 266065 at
54 266059 at
55 265998 at
56 265968 at
57 265892 at
58 265857 s at
59 265842 at
60 265768 at
61 265721 at
62 265695 at
63 265674 at
64 265646 at
65 265569 at
66 265480 at
67 265474 at
68 265386 at
69 265338 at
70 265309 at
71 265287 at
72 265281 at
73 265248 at
74 265244 at
75 265182 at
76 265097 at
77 265078 at
78 264986 at
79 264959 at

# ID
80 264930 at
81 264924 at
82 264916 at
83 264901 at
84 264838 at
85 264837 at
86 264832 at
87 264820 at
88 264806 at
89 264779 at
90 264774 at
91 264728 at
92 264738 at
93 264585 at
94 264580 at
95 264553 s at
96 264479 at
97 264428 at
98 264427 at
99 264383 at
100 264382 at
101 264355 at
102 264313 at
103 264262 at
104 264261 at
105 264250 at
106 264211 at
107 264207 at
108 264179 at
109 264131 at
110 264102 at
111 264063 at
112 264061 at
113 264057 at
114 264038 at
115 264004 at
116 263985 at
117 263906 at
118 263882 at
119 263880 at

# ID
120 263852 at
121 263805 at
122 263796 at
123 263780 at
124 263779 at
125 263761 at
126 263717 at
127 263711 at
128 263696 at
129 263668 at
130 263664 at
131 263583 at
132 263529 at
133 263497 at
134 263495 at
135 263489 at
136 263473 at
137 263461 at
138 263460 at
139 263448 at
140 263433 at
141 263426 at
142 263410 at
143 263375 s at
144 263296 at
145 263287 at
146 263264 at
147 263255 at
148 263252 at
149 263250 at
150 263243 at
151 263209 at
152 263193 at
153 263158 at
154 263115 at
155 263047 at
156 263010 at
157 262996 at
158 262988 at
159 262978 at

# ID
160 262940 at
161 262888 at
162 262885 at
163 262882 at
164 262879 at
165 262875 at
166 262877 at
167 262826 at
168 262786 at
169 262784 at
170 262748 at
171 262717 s at
172 262644 at
173 262635 at
174 262626 at
175 262609 at
176 262604 at
177 262597 at
178 262569 at
179 262504 at
180 262503 at
181 262501 at
182 262498 at
183 262473 at
184 262455 at
185 262432 at
186 262426 s at
187 262407 at
188 262343 at
189 262341 at
190 262295 at
191 262277 at
192 262232 at
193 262201 at
194 262194 at
195 262174 at
196 262173 at
197 262164 at
198 262134 at
199 262127 at
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# ID
200 262089 s at
201 261958 at
202 261956 at
203 261951 at
204 261949 at
205 261945 at
206 261920 at
207 261913 at
208 261904 at
209 261895 at
210 261827 at
211 261810 at
212 261792 at
213 261791 at
214 261790 at
215 261774 at
216 261772 at
217 261767 s at
218 261715 at
219 261696 at
220 261692 at
221 261663 at
222 261661 at
223 261642 at
224 261635 at
225 261639 at
226 261576 at
227 261569 at
228 261530 at
229 261486 at
230 261484 at
231 261457 at
232 261456 at
233 261440 at
234 261425 at
235 261417 at
236 261407 at
237 261379 at
238 261368 at
239 261355 at

# ID
240 261353 at
241 261350 at
242 261255 at
243 261252 at
244 261206 at
245 261167 at
246 261129 at
247 261122 at
248 261080 at
249 261059 at
250 261046 at
251 261032 at
252 260913 at
253 260896 at
254 260837 at
255 260831 at
256 260794 at
257 260727 at
258 260725 at
259 260693 at
260 260676 at
261 260602 at
262 260590 at
263 260570 at
264 260569 at
265 260566 at
266 260552 at
267 260455 at
268 260412 at
269 260390 at
270 260380 at
271 260308 at
272 260143 at
273 260137 at
274 260125 at
275 260116 at
276 260099 at
277 260075 at
278 260055 at
279 260045 at

# ID
280 260036 at
281 260028 at
282 260026 at
283 260010 at
284 259983 at
285 259950 at
286 259943 at
287 259936 at
288 259927 at
289 259875 s at
290 259860 at
291 259840 at
292 259821 at
293 259791 at
294 259789 at
295 259768 at
296 259757 at
297 259681 at
298 259669 at
299 259645 at
300 259538 at
301 259511 at
302 259488 at
303 259460 at
304 259406 at
305 259396 at
306 259395 at
307 259373 at
308 259363 at
309 259357 at
310 259354 at
311 259295 at
312 259277 at
313 259275 at
314 259224 at
315 259194 at
316 259185 at
317 259140 at
318 259131 at
319 259123 at

# ID
320 259111 at
321 259081 at
322 259070 at
323 259068 at
324 259069 at
325 258972 at
326 258958 at
327 258925 at
328 258871 at
329 258781 at
330 258771 at
331 258764 at
332 258749 at
333 258736 at
334 258729 at
335 258724 at
336 258723 at
337 258622 at
338 258614 at
339 258497 at
340 258463 at
341 258432 at
342 258379 at
343 258350 at
344 258315 at
345 258249 s at
346 258244 at
347 258218 at
348 258196 at
349 258188 at
350 258181 at
351 258150 at
352 258089 at
353 258060 at
354 258054 at
355 257985 at
356 257984 at
357 257933 at
358 257911 at
359 257849 at
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# ID
360 257790 at
361 257744 at
362 257743 at
363 257730 at
364 257722 at
365 257710 at
366 257714 at
367 257705 at
368 257410 at
369 257311 at
370 257285 at
371 257269 at
372 257252 at
373 257237 at
374 257235 at
375 257222 at
376 257204 at
377 257193 at
378 257188 at
379 257131 at
380 257101 at
381 257057 at
382 257045 at
383 257044 at
384 257021 at
385 256984 at
386 256856 at
387 256819 at
388 256787 at
389 256751 at
390 256746 at
391 256725 at
392 256676 at
393 256666 at
394 256655 at
395 256626 at
396 256596 at
397 256548 at
398 256547 at
399 256543 at

# ID
400 256541 at
401 256527 at
402 256524 at
403 256480 at
404 256468 at
405 256456 at
406 256441 at
407 256322 at
408 256266 at
409 256263 at
410 256233 at
411 256232 at
412 256216 at
413 256198 at
414 256169 at
415 256100 at
416 256096 at
417 256076 at
418 256057 at
419 256049 at
420 256020 at
421 255982 at
422 255844 at
423 255827 at
424 255764 at
425 255763 at
426 255723 at
427 255716 at
428 255674 at
429 255645 at
430 255614 at
431 255572 at
432 255513 at
433 255479 at
434 255457 at
435 255455 at
436 255437 at
437 255325 at
438 255304 at
439 255104 at

# ID
440 255087 at
441 255070 at
442 255039 at
443 255012 at
444 254930 at
445 254923 at
446 254891 at
447 254874 at
448 254862 at
449 254859 at
450 254804 at
451 254790 at
452 254785 at
453 254746 at
454 254715 at
455 254705 at
456 254691 at
457 254687 at
458 254684 at
459 254657 s at
460 254642 at
461 254594 at
462 254549 at
463 254530 at
464 254515 at
465 254496 at
466 254448 at
467 254376 at
468 254371 at
469 254356 at
470 254328 at
471 254306 at
472 254298 at
473 254275 at
474 254262 at
475 254250 at
476 254239 at
477 254233 at
478 254227 at
479 254211 at

# ID
480 254162 at
481 254125 at
482 254083 at
483 254053 s at
484 254034 at
485 253951 at
486 253949 at
487 253946 at
488 253928 at
489 253927 at
490 253926 at
491 253922 at
492 253876 at
493 253838 at
494 253776 at
495 253730 at
496 253708 at
497 253702 at
498 253700 at
499 253695 at
500 253693 at
501 253636 at
502 253592 at
503 253581 at
504 253577 at
505 253559 at
506 253550 at
507 253548 at
508 253523 at
509 253484 at
510 253460 at
511 253438 at
512 253425 at
513 253394 at
514 253331 at
515 253252 at
516 253251 at
517 253243 at
518 253235 at
519 253202 at
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# ID
520 253200 at
521 253174 at
522 253116 at
523 253059 s at
524 253039 at
525 252981 at
526 252917 at
527 252915 at
528 252880 at
529 252859 at
530 252785 at
531 252678 s at
532 252625 at
533 252603 at
534 252562 s at
535 252481 at
536 252468 at
537 252442 at
538 252429 at
539 252427 at
540 252420 at
541 252412 at
542 252337 at
543 252326 at
544 252192 at
545 252098 at
546 251989 at
547 251985 at
548 251962 at
549 251954 at
550 251935 at
551 251902 at
552 251869 at
553 251860 at
554 251855 at
555 251852 at
556 251846 at
557 251840 at
558 251834 at
559 251815 at

# ID
560 251786 at
561 251775 s at
562 251768 at
563 251758 at
564 251753 at
565 251742 at
566 251730 at
567 251673 at
568 251664 at
569 251658 at
570 251598 at
571 251524 at
572 251519 at
573 251483 at
574 251391 at
575 251338 at
576 251326 at
577 251322 at
578 251324 at
579 251310 at
580 251287 at
581 251243 at
582 251232 at
583 251227 at
584 251146 at
585 251123 at
586 251084 at
587 251074 at
588 251031 at
589 251024 at
590 251011 at
591 250993 at
592 250972 at
593 250926 at
594 250906 at
595 250844 at
596 250735 at
597 250705 at
598 250661 at
599 250625 at

# ID
600 250565 at
601 250563 at
602 250529 at
603 250520 at
604 250477 at
605 250439 at
606 250433 at
607 250423 s at
608 250408 at
609 250394 at
610 250261 at
611 250254 at
612 250253 at
613 250243 at
614 250226 at
615 250217 at
616 250155 at
617 250097 at
618 250088 at
619 250033 at
620 250006 at
621 250005 at
622 249997 at
623 249894 at
624 249861 at
625 249836 at
626 249829 at
627 249817 at
628 249785 at
629 249777 at
630 249774 at
631 249701 at
632 249677 at
633 249645 at
634 249610 at
635 249582 at
636 249569 at
637 249546 at
638 249521 at
639 249510 at

# ID
640 249508 at
641 249470 at
642 249411 at
643 249385 at
644 249377 at
645 249355 at
646 249354 at
647 249327 at
648 249315 at
649 249276 at
650 249230 at
651 249211 at
652 249134 at
653 249122 at
654 249046 at
655 249002 at
656 248984 at
657 248953 at
658 248952 at
659 248910 at
660 248891 at
661 248839 at
662 248828 at
663 248763 at
664 248756 at
665 248751 at
666 248709 at
667 248658 at
668 248624 at
669 248607 at
670 248573 at
671 248537 at
672 248512 at
673 248511 at
674 248494 at
675 248493 at
676 248467 at
677 248321 at
678 248309 at
679 248295 at
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# ID
680 248248 at
681 248246 at
682 248207 at
683 248195 at
684 248191 at
685 248190 at
686 248176 at
687 248155 at
688 248139 at
689 248126 at
690 248105 at
691 248083 at
692 248064 at
693 248062 at
694 248028 at
695 247987 at
696 247931 at
697 247923 at
698 247921 at
699 247910 at
700 247899 at
701 247891 at
702 247858 at
703 247817 at
704 247791 at
705 247787 at
706 247770 at
707 247766 at
708 247760 at
709 247724 at
710 247694 at
711 247692 s at
712 247689 at
713 247651 at
714 247554 at
715 247544 at
716 247340 at
717 247328 at
718 247320 at
719 247318 at

# ID
720 247295 at
721 247266 at
722 247232 at
723 247222 at
724 247193 at
725 247192 at
726 247097 at
727 247077 at
728 247069 at
729 247055 at
730 247042 at
731 247037 at
732 247025 at
733 247006 at
734 247000 at
735 246997 at
736 246976 s at
737 246949 at
738 246920 at
739 246895 at
740 246837 at
741 246784 at
742 246783 at
743 246756 at
744 246744 at
745 246701 at
746 246700 at
747 246603 at
748 246554 at
749 246550 at
750 246548 at
751 246547 at
752 246540 at
753 246523 at
754 246522 at
755 246486 at
756 246439 at
757 246421 at
758 246403 at
759 246334 at

# ID
760 246310 at
761 246304 at
762 246284 at
763 246249 at
764 246199 at
765 246154 at
766 246076 at
767 246043 at
768 245936 at
769 245877 at
770 245806 at
771 245775 at
772 245745 at
773 245734 at
774 245730 at
775 245724 at
776 245684 at
777 245642 at
778 245627 at
779 245619 at
780 245601 at
781 245435 at
782 245407 at
783 245404 at
784 245359 at
785 245348 at
786 245347 at
787 245340 at
788 245331 at
789 245319 at
790 245276 at
791 245270 at
792 245242 at
793 245218 s at
794 245207 at
795 245195 at
796 245164 at
797 245152 at
798 245101 at
799 245094 at

# ID
800 244996 at



Appendix B

Future directions: stochastic emulation

Abstract This appendix provides a brief discussion of stochastic emulation,
and illustrates ideas with a few simple examples. In both emulation and boot-
strapping, we seek to approximate data generating processes (DGPs) using
statistical models. However, in the emulation case, the “observed data” are
simulated from a mathematical model. We note that many of the challenges
associated with emulation (high dimensional feature spaces, large numbers
of observations) are currently being tackled in the closely related context of
simulation-based Bayesian inference (so-called “approximate Bayesian com-
putation”). We draw some connections between these currently separate ar-
eas, which we believe may provide interesting directions for future research.

B.1 Introduction

In Section 6.4 of the previous chapter, we illustrated a two-step approach for estimating
the parameters of ODE systems. We demonstrated that this approach can provide sig-
nificant computational savings relative to simulation-based procedures. This was largely
because the two-step approach avoided having to solve the ODE numerically. Finding
numerical solutions to ODE systems represents a significant computational bottleneck for
simulation-based estimation procedures.

As we shall now discuss, emulation is a statistical learning approach that seeks to address
this and similar problems. The goal is to reduce the computational cost of running an
expensive computer program (such as a numerical integration routine) by approximating
the relationship between the program’s inputs and its outputs.
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B.1.1 Deterministic emulation

We illustrate ideas in the deterministic case with a simple example. Consider the re-
pressilator system of ODEs (Elowitz and Leibler, 2000), which was originally used to
describe a synthetic gene network (and is now frequently considered in the literature as a
toy model),

dm1

dt
= −m1 +

α

1 + pn3
+ α0,

dp1

dt
= −β(p1 −m1),

dm2

dt
= −m2 +

α

1 + pn1
+ α0,

dp2

dt
= −β(p2 −m2),

dm3

dt
= −m3 +

α

1 + pn2
+ α0,

dp3

dt
= −β(p3 −m3). (B.1)

Here, the pi are protein concentrations, and the mi are their corresponding mRNA con-
centrations. The four constants (β, n, α, α0) are parameters of the system. We assume that
the α0 and α parameters are known, and are respectively equal to 1 and 1,000. We further
assume that the initial conditions are given, with [m1, p1,m2, p2,m3, p3] = [0, 2, 0, 1, 0, 3]
at time t = 0.

We suppose that we obtain a single observation, mobs
1 , of m1 at time t = 10, and that

we wish to use this in order to estimate the model’s parameters. A simulation-based
estimation routine would proceed by searching through a large number of different values
for the β and n parameters. We denote by (β(i), n(i)) the ith pair of parameter values
considered by the estimation routine, and bym(i)

1 the simulated value ofm1 at time t = 10;
that is, m(i)

1 = m1(t = 10; β(i), n(i)). The final estimates returned for β and n would be
the pair, (β(i), n(i)), for which the discrepancy between m

(i)
1 and mobs

1 is minimal (as
quantified by some predefined error function, such as the squared difference).

Suppose that we were to stop our estimation procedure once it had searched through 500
pairs of values for β and n. Then we could plot the 500 simulated outputs, m(i)

1 , against
their corresponding inputs, (β(i), n(i)), as in Figure B.1a (note that here we actually sam-
pled the parameter values β(i) and n(i) uniformly at random in the intervals β(i) ∈ [0, 10]
and n(i) ∈ [0, 4], rather than using an optimisation procedure to suggest values). We can
perhaps see from this figure that there is a pattern in the simulated output. This is better
visualised by fitting an interpolating surface to the simulated outputs, as shown in Figure
B.1b. There are many ways in which we could obtain such a surface, including: Gaussian
process (Kennedy and O’Hagan, 2001); spline (Daughety and Turnquist, 1978); and arti-
ficial neural network (Anjum et al., 1997) approaches. Regardless of how it is obtained,
let us denote the interpolation model by ĝ(β, n). For future (previously unseen) values,
β∗ and n∗, of the parameters, we may approximate m1(t = 10; β∗, n∗) by ĝ(β∗, n∗). If we
were now to resume our estimation procedure, then we could use the approximate model,
ĝ(β, n), instead of numerically solving the ODE system.

This general procedure of simulating a (large) number of times from a deterministic com-
puter program, and then fitting an interpolating model, ĝ, in order to approximate the
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Figure B.1: (a) Simulated outputs, m1(t = 10), plotted against corresponding inputs, β and n;
(b) a surface fitted to the points in (a) using the griddata function in Matlab (MATLAB, 2009)

input-output relationship is know as emulation (Conti et al., 2009; Conti and O’Hagan,
2010; Liu and West, 2009). A closely related approach is response surface modelling
(RSM), in which real experiments take the place of simulations, and the “parameters” cor-
respond to variable experimental conditions (see Box and Wilson, 1951; Box and Draper,
2007).

One of the principal challenges of emulation is to ensure that the statistical model, ĝ,
provides a good (or good enough) approximation to the model that generated the data
(often referred to as the simulator). A judicious choice of design points (the selection
of inputs that we use to generate the initial, simulated data set) can be helpful, and latin
hypercube sampling (McKay et al., 1979) is often employed in order to obtain a good
coverage of the input space. Once we have trained ĝ, we may quantify its goodness
of fit with reference to a validation data set, generated using the simulator (Bastos and
O’Hagan, 2009). If we deem the fit to be poor, simulating more training data might
improve matters (although, of course, this will add to the overall computational cost of
training the emulator).

It is common to use emulation in sensitivity analyses (Saltelli et al., 2000), which seek to
quantify the rate of change of a model’s outputs with respect to its inputs (see, for example
Kennedy et al., 2006). However, more elaborate applications have also been proposed,
including the use of emulators to speed up inference procedures (Rasmussen, 2003).
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B.2 Stochastic emulation

Recently, there has been interest in extending emulation to stochastic models, which may
also be computationally costly to simulate (Henderson et al., 2009). The difficulty here
lies in the fact that, for any given choice of the model’s inputs (parameters), there is now
a distribution of possible outputs. As we shall shortly discuss, this requires us to consider
methods for density estimation in place of methods for interpolation.

To provide an example, we follow Toni et al. (2009) and transform the repressilator model
of Equation (B.1) into the following set of reactions 1,

mRNA synthesis: ∅ → mi with hazard
α

1 + pnj
+ α0

mRNA degradation: mi → ∅ with hazard mi

Protein synthesis: mi → mi + pi with hazard βmi

Protein degradation: pi → ∅ with hazard βpi (B.2)

We simulate these reactions using the stochastic simulation algorithm (SSA) of Gillespie
1977 (see also Wilkinson, 2006). In Figure B.2a we show the results of simulating 20
times using the SSA, using randomly chosen values for n and β (and fixing α and α0

as before). This should be compared to Figure B.2b, in which we have simulated the
deterministic system.

t

m1(t)

(a)

t

(b)

Figure B.2: Simulating the repressilator system when n = 2.9627 and β = 0.8753, in (a) stochas-
tic, and (b) deterministic cases.

It is clear from Figure B.2a that we may no longer use interpolation in order to approxi-
mate the relationship between the inputs of our stochastic model and its output. Even for

1We refer to Wilkinson (2006) for background regarding stochastic modelling.
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fixed input values (n = 2.9627 and β = 0.8753 in Figure B.2a), the stochastic nature of
the model means that — in contrast to the deterministic case — there is not a single, fixed
value for the model’s output (e.g. m1(t) at time t = 10). For the sake of generality, we
shall henceforth denote the model’s output(s) by y, and its inputs by x.

How should we approach emulation in the stochastic case? For given inputs, x∗, the
stochastic model’s outputs are described by the conditional distribution p(y|x = x∗). A
stochastic emulator must therefore provide an approximation to this conditional distribu-
tion for any choice of x∗. From this point, there would seem to be two ways in which to
proceed, which we now discuss (Sections B.2.1 and B.2.2).

B.2.1 The parametric approach

Suppose that we were to take the mean of the 20 values of m1(t) at time t = 10 in
Figure B.2a. Then, corresponding to this particular choice for β and n, we would have
a single summary of the model’s output, which we shall denote by ρ. Repeating this for
many different values of β and n, we obtain a large number of triples, (β(i), n(i), ρ(i)).
We may then fit a regression model to these data to describe how ρ varies with β and n.
More generally, ρ could be any summary (or combination of summaries) of the simulated
data. If we were to assume a parametric model for the conditional density, say p(y|x) =
q(y|θ(x)), then we could take ρ = θ(x) to be this model’s parameters.

For example, this regression approach forms part of the procedure adopted by Henderson
et al. (2009) in order to emulate a stochastic model of mitochondrial DNA deletions in
substantia nigra neurons. We now very briefly distil some of the main ideas of this paper,
with some simplifications for the sake of brevity. The authors construct a training data
set by considering 250 different inputs, and — for each one — they simulate 1000 times2

from their model. For each input, the authors calculate the sample mean and standard
deviation of the corresponding simulated output. They then fit independent Gaussian
process regression models to describe how these two summaries vary as a function of the
inputs. It is assumed that the conditional distribution, p(y|x), is approximately univariate
normal, and hence is completely specified by the two summaries. That is, for any given
input, x = x∗, the authors may use their GP regression models in order to predict the
mean and standard deviation, µ∗ and σ∗, of the corresponding output. The conditional
density, p(y|x), is then approximated as N (µ∗, σ∗).

The main limitation of this approach is immediately apparent: what if there is an x for
which a Gaussian is a poor model for p(y|x)? Indeed, any choice of parametric model,
q(y|θ(x)), places constraints on the behaviour that may be described, and these may
prove unreasonable for (at least) some choices of x. Stochastic bifurcations (where, for
example, there is some critical value of x at which p(y|x) switches from a unimodal to a

2In fact, for each input, the authors group their simulations into 40 sets of 25. This is due to a feature of
their stochastic model, which permits null outcomes. We refer to Henderson et al. (2009) for full details of
their approach.
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bimodal distribution) might provide particular difficulties for such parametric approaches
(see Song et al., 2010, for illustrations of stochastic bifurcations in cellular networks).
The principal difficulty, however, is that it is very difficult to decide upon a parametric
form that is appropriate for all choices of x.

B.2.2 The nonparametric approach

Instead of assuming a fixed parametric model, we may instead consider nonparametric
methods for estimating p(y|x). We illustrate using kernel density estimators, and refer to
Hall et al. (2004) and references therein for details of these approaches.

To provide an example, we return to the stochastic repressilator of Equation (B.2). As
previously, we assume that the α0 and α parameters are known, and are respectively
equal to 1 and 1,000. Additionally, we now assume that β is known and equal to 5. We
sample 10,000 values for n uniformly at random from the interval [0, 4], and — for each
one — we simulate from Equation (B.2) using the stochastic simulation algorithm. For
simplicity, we assume that we are again interested in the value of m1(t) at time t = 10.
The simulated input-output pairs are plotted in Figure B.3a. We apply kernel density
estimation (KDE) to these data, using of the np package in R (Hayfield and Racine,
2008). We use a second order Gaussian kernel, whose bandwidth is estimated using a
maximum likelihood cross-validation approach (see Li and Racine, 2007, Chapter 5).
We approximate both p(m1(t = 10), n) (see Figure B.3b) and also p(m1(t = 10)|n)
(for a variety of choices for n) using kernel density estimation. When approximating
p(m1(t = 10)|n), we deliberately chose values of n that did not appear amongst our
original 10,000 sampled values; namely, n = 0.88, 1.24, 2.17 and 3.66. We then assess
the quality of these approximate conditionals by simulating 100 times for each value of
n. Both the kernel density estimates and the distributions of simulated outputs are plotted
in Figure B.4.
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Figure B.3: (a) Data generated by simulating from the stochastic repressilator of Equation (B.2).
(b) Contour lines illustrating the kernel density estimate of p(m1(t = 10), n)
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Figure B.4: Plots showing both kernel density estimates of p(m1(t = 10)|n) (red curves) and
samples drawn from the true distribution by simulation (blue histograms). The title of each plot
provides the relevant value for n. Note that each of these plots can be considered as a vertical
“slice” through Figure B.3b, taken at the values of n given in the plot titles.

Figure B.4 shows that the kernel density estimates of p(m1(t = 10)|n) are generally
very good. For the smallest value, n = 0.88, we have the worst fit, with the estimated
density being broader and rather less peaked than the true distribution. Depending on
the task of interest, however, even this approximation may be adequate. Perhaps the
most important feature of these plots, however, is that they show that the shape of the
conditional distribution changes with n. A Gaussian certainly would not provide a good
approximation to p(m1(t = 10)|n) for all values of n (although it does appear that a
log-normal distribution might provide a reasonable fit).

B.2.2.1 Emulation versus inference

In the previous section, we illustrated the use of kernel density estimators for approximat-
ing the conditional distributions p(y|x). In the caption to Figure B.4, we explained that
these conditionals may be considered as vertical “slices” taken through the plots shown
in Figure B.3. We could employ similar approaches in order to take horizontal “slices”
instead, and hence approximate p(x|y). Since y denotes the outputs of our simulator, it
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will often represent quantities that can be measured experimentally (e.g. in our repressila-
tor example, the number of molecules of a species of mRNA). We would hence be able to
approximate p(x|y = yobs), where yobs represents an experimentally obtained observa-
tion of y. In the particular case where the distribution from which we sampled our design
points may be assumed to represent a prior distribution for the inputs, this approximation
to p(x|y = yobs) represents an approximation to the usual Bayesian posterior.

This approach for approximating the posterior is similar in spirit to the one taken in ap-
proximate Bayesian computation (ABC) procedures (Marjoram et al., 2003; Sisson et al.,
2007; Ratmann et al., 2009). In the simplest such procedure (ABC rejection), a sample
is drawn from the prior for the inputs, p(x), and is “accepted” if the resulting simulator
output is sufficiently close to yobs. Here, “closeness” is quantified by a pre-specified dis-
tance function, d, and “sufficiently close” means that the distance between the simulated
output and yobs falls below some threshold level, ε. Repeating a large number of times
generates a collection of “accepted” samples. As explained in Marjoram et al. (2003),
these represent samples from the distribution, p(x|d(y,yobs) < ε), which is taken as an
approximation to the posterior p(x|y = yobs). This is very similar to the procedure out-
lined in the previous paragraph, with the only difference being the method by which the
conditional distribution, p(x|y = yobs), is approximated.

B.2.2.2 Alternative nonparametric methods

The kernel density estimation approach is relatively simple, and seems to provide reason-
able results. However, for large data sets (such as the 10,000 simulated observations that
we have in our example), bandwidth estimation can be slow. Additionally, the final model
is rather unwieldy, since it comprises a weighted sum of M kernel functions, where M is
the number of observations. An alternative approach is to fit a Gaussian mixture model
(GMM) to data sampled from the joint distribution, p(x,y). Choosing an optimal number
of components is a challenging problem, but there are a number of possibilities, includ-
ing: optimising the Bayesian information criterion (Fraley and Raftery, 2002); variational
Bayesian approaches (Teschendorff et al., 2005); and approximate procedures derived
from a nonparametric Bayesian (Dirichlet process) standpoint (Heller and Ghahramani,
2005; Daumé III, 2009). “Fully” Bayesian nonparametric approaches are also possible
(Müller et al., 1996; Dunson et al., 2007; Jara, 2007); however, it seems likely that the
computational costs of applying such methods would limit their practicality. Regardless
of how we choose the number of components, once we have fitted the GMM — which we
shall denote by q(x,y) — it is possible to calculate the conditionals, q(y|x), analytically
(see Müller et al., 1996). We may hence use these to approximate p(y|x). The principal
advantage of such an approach is that, in contrast to the kernel density approaches, the
final model will typically have far fewer components than the number of observations. In
light of Section B.2.2.1 above, an additional advantage is that we approximate p(x|y) for
any given y just as easily as we may approximate p(y|x).
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B.3 Discussion

The principal challenge for stochastic emulation is approximating the (usually) high-
dimensional distribution, p(y|x). Assuming a parametric model for this distribution and
determining how its parameters, θ, vary as a function of x (as in Section B.2.1), may
provide a method for simplifying this problem. Essentially, θ(x) is being used as a
(lower-dimensional) summary for y(x). As discussed, however, the limitation of such
an approach is that it places strong constraints on the possible behaviours that may be
described. If we wish to use nonparametric methods instead, one way to reduce the di-
mensionality of y might be to choose a summary statistic, ρ(y), and to use this in place of
y. We may consider, for example, that in Section B.2, we used the value of m1(t) at time
t = 10 as a summary for the trajectories illustrated in Figure B.2a (which are themselves a
summary of the output of the stochastic repressilator model given in Equation B.2). Sum-
marising high-dimensional simulator outputs using low dimensional statistics is one of
the “tricks” that is often employed by ABC procedures (Marjoram et al., 2003), for much
the same reasons as they might be used here. Given the similarities between stochas-
tic emulation and approximate Bayesian computation (and the common challenges faced
by both) we believe that an interesting direction for future research would be to deter-
mine how recent innovations for ABC (e.g. Blum and Francois, 2010) may be applied to
stochastic emulation problems.
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