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Abstract

A wide variety of decision problems in operations research are defined on temporal networks,

that is, workflows of time-consuming tasks whose processing order is constrained by precedence

relations. For example, temporal networks are used to formalise the management of projects,

the execution of computer applications, the design of digital circuits and the scheduling of

production processes. Optimisation problems arise in temporal networks when a decision maker

wishes to determine a temporal arrangement of the tasks and/or a resource assignment that

optimises some network characteristic such as the network’s makespan (i.e., the time required

to complete all tasks) or its net present value.

Optimisation problems in temporal networks have been investigated intensively for more than

fifty years. To date, the majority of contributions focus on deterministic formulations where all

problem parameters are known. This is surprising since parameters such as the task durations,

the network structure, the availability of resources and the cash flows are typically unknown

at the time the decision problem arises. The tacit understanding in the literature is that the

decision maker replaces these uncertain parameters with their most likely or expected values

to obtain a deterministic optimisation problem. It is well-documented in theory and practise

that this approach can lead to severely suboptimal decisions.

The objective of this thesis is to investigate solution techniques for optimisation problems in

temporal networks that explicitly account for parameter uncertainty. Apart from theoretical

and computational challenges, a key difficulty is that the decision maker may not be aware

of the precise nature of the uncertainty. We therefore study several formulations, each of

which requires different information about the probability distribution of the uncertain problem

parameters. We discuss models that maximise the network’s net present value and problems

that minimise the network’s makespan. Throughout the thesis, emphasis is placed on tractable

techniques that scale to industrial-size problems.
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Chapter 1

Introduction

1.1 Motivation

We define a temporal network as a directed, acyclic graph G = (V,E) whose nodes V =

{1, . . . , n} represent the network tasks and whose arcs E ⊆ V × V describe the temporal

precedences between the tasks. This convention is known as activity-on-node notation; an

alternative activity-on-arc notation is discussed in [DH02]. In our notation, an arc (i, j) ∈ E

signalises that task j must not be started before task i has been completed. For ease of

exposition, we assume that 1 ∈ V represents the unique source and n ∈ V the unique sink

of the network. This can always be achieved by introducing dummy nodes and/or arcs. We

assume that the processing of each task requires a non-negative amount of time. Depending

on the problem under consideration, the tasks may also give rise to cash flows. Positive cash

flows denote cash inflows (e.g., received payments), whereas negative cash flows represent cash

outflows (e.g., accrued costs). Figure 1.1 illustrates a temporal network with cash flows.

Optimisation problems arise in temporal networks when the decision maker is able to influence

the processing of the network tasks. Most frequently, it is assumed that this is possible in one

or two complementary ways. On one hand, the decision maker may be able to decide on the

temporal orchestration of the tasks, that is, on the times at which the tasks are processed.

On the other hand, the decision maker may be able to change the task durations through the

1
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1

2

3

4

5

6(2, 1)

(5, 2)

(1, 3)

(4, 3)

(3,−2)

(1, 8)

Figure 1.1: Example temporal network. Attached to each node is the duration (first value) and
the cash flow (second value) associated with the task.

assignment of resources. A rational decision maker influences the processing of the network

tasks in order to optimise an objective function. In this thesis we focus on two prominent

objectives, namely the minimisation of the network’s makespan (i.e., the time required to

process all tasks) and the maximisation of the network’s net present value. Other objectives

(e.g., cost minimisation or a level resource consumption) are discussed in [DH02].

Temporal networks and their associated optimisation problems are ubiquitous in operations

research. In the following, we provide some illustrative examples.

1. Project Scheduling. Much of the research on temporal networks originates from the

area of project scheduling, see [BDM+99, DH02, NSZ03, Sch05]. In project scheduling, the

network tasks represent the various activities in a project (e.g., ‘conduct market research’

or ‘develop prototype’), and the precedence relations describe temporal constraints be-

tween the activities (e.g., ‘the prototype cannot be developed before the market research

has been completed’). The minimisation of a project’s makespan and the maximisation

of a project’s net present value are among the most wide-spread objective functions in

project scheduling. We will consider a project scheduling problem in Chapter 4.

2. Execution of Computer Applications. Computer applications can be described

through flowgraphs whose nodes represent the application commands and whose arcs

describe the execution flow. Although a flowgraph typically accommodates sophisticated

flow constructs such as loops and conditional branches, it can be converted into a set of

alternative execution flows, each of which constitutes a temporal network [vdAtHKB03,

WHK08]. The execution of computer applications poses several challenging problems
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such as the scheduling of multiple applications on one or more processors and the as-

signment of resources (e.g., processor time, memory space and I/O access) to application

commands, see [BEP+96]. The minimisation of an application’s runtime can be cast as a

makespan minimisation problem [WHK08].

3. Design of Digital Circuits. Modern VLSI (Very-Large-Scale Integration) circuits can

contain millions of interconnected logical gates. A key problem in VLSI design relates

to the selection of suitable gate sizes [BKPH05]. The gate sizes crucially affect the three

primary design objectives ‘operating speed’, ‘total circuit size’ and ‘power consumption’.

A circuit can be expressed as a temporal network whose tasks represent the gates and

whose precedences denote the interconnections between the gates. Since the gate delay

(i.e., the ‘task duration’) is a function of the gate size, the maximisation of the circuit

speed, subject to constraints on the power consumption and the overall circuit size, can

be cast as a makespan minimisation problem in a temporal network. We will investigate

circuit sizing problems in Chapter 5.

4. Process Scheduling. A typical problem in process scheduling is to manufacture a set of

products through a sequence of processing steps. Each processing step can be executed

by a number of machines. At any time, a machine can process at most one product, and a

product can be processed by at most one machine. Additionally, the processing times can

depend on the assignment of resources (e.g., fuel, catalysts and additional manpower). A

common objective is to find a resource allocation and processing sequences that optimise

the makespan or net present value of the production plan. Process scheduling problems

are reviewed in [Bru07, Pin08].

In the remainder of this section, we highlight some of the difficulties that arise when the

problem parameters of a temporal network are uncertain. To this end, let us first assume

that all parameters are deterministic and that the resource assignment is fixed. We want to

determine a vector of start times for the network tasks that optimises the network’s makespan
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or its net present value. The makespan is minimised by the following model.

min
y∈Y

yn + dn, (1.1a)

where

Y =
{
y ∈ R

n
+ : yj ≥ yi + di ∀ (i, j) ∈ E

}
. (1.1b)

In this problem, yi and di denote the start time (a variable) and the duration (a parameter)

of the ith task, respectively. The set Y contains the admissible start time vectors for the

network tasks, that is, all start time vectors that satisfy the precedence constraints. Since n

is the unique sink of the network, yn + dn represents the network’s makespan. Note that (1.1)

constitutes a linear program that can be solved efficiently. Indeed, the minimal makespan can

be determined much more efficiently if we exploit the following observation. Every admissible

start time schedule y ∈ Y has to satisfy y1 ≥ 0 and

yj ≥ max
i∈V

{yi + di : (i, j) ∈ E} for all j ∈ V \ {1} .

Since the makespan is a non-decreasing function of y, the early start schedule y∗ ∈ Y with

y∗j =





0 if j = 1,

maxi∈V {y∗i + di : (i, j) ∈ E} otherwise

(1.2)

is optimal. Note that the recursion is well-defined because G is acyclic. Hence, we can determine

the minimal makespan through a topological sort. In Figure 1.1, the minimal makespan of 12

time units is attained by the start time vector y∗ = (0, 2, 2, 7, 7, 11)⊤.

The optimality of the early start schedule distinguishes the makespan from other objective

functions in temporal networks. To illustrate this point, consider the following net present

value maximisation problem.

max
y∈Y

∑

i∈V

ζiβ
yi (1.3)

Here, ζi denotes the cash flow arising at the start time yi of task i, β ∈ (0, 1) represents



1.1. Motivation 5

1

2

3

4

5

6

Figure 1.2: Nominal models underestimate the makespan. In the temporal network, tasks 1
and n have duration zero, while the durations of the other tasks follow independent uniform
distributions with support [0, 1].

the discount factor, and the set Y of admissible start time schedules is defined in (1.1b).

Although the objective function of (1.3) is nonconvex, the problem can be converted into an

equivalent linear program by substituting the expressions βyi with new variables zi, i ∈ V .

We will elaborate on this substitution in Chapter 3. Note that (1.3) is no longer guaranteed

to be optimised by the early start schedule y∗ if negative cash flows are present. Indeed, for

sufficiently large β, the net present value of the network in Figure 1.1 is maximised by the

start time vector y = (0, 2, 2, 7, 8, 11)⊤. As we will see throughout this thesis, the optimality of

the early start schedule can dramatically simplify decision-making in temporal networks when

uncertainty is present.

From the previous discussion we conclude that the makespan and the net present value of a

deterministic temporal network can be optimised efficiently if the resource assignment is fixed.

Let us now assume that the task durations are uncertain. A common suggestion is to solve a

nominal problem where the uncertain task durations are replaced with their expected values.

To see why this approach can be problematic, consider the temporal network G = (V,E)

with V = {1, . . . , n} and E = {(1, i) : 1 < i < n} ∪ {(i, n) : 1 < i < n}, n ≥ 3 [Elm05, M0̈1].

We illustrate the temporal network for n = 6 in Figure 1.2. Assume that the tasks 1 and n

have zero duration, while the durations di of the tasks i ∈ {2, . . . , n− 1} follow independent

uniform distributions with support [0, 1]. In this case, the expected duration of tasks 1 and n

is zero, while all other tasks have an expected duration of 1/2. From our previous discussion

we know that the early start schedule y∗ = (0, . . . , 0, 1/2)⊤ minimises the nominal makespan

minimisation problem, and hence the obtained estimate for the network’s makespan is 1/2.

However, the probability that the makespan of the early start schedule does not exceed t ∈ [0, 1]
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is given by the expression

P(max {d2, . . . , dn−1} ≤ t) = P(d2 ≤ t, . . . , dn−1 ≤ t) =
∏

1<i<n

P(di ≤ t) = tn−2.

Thus, the probability to complete all tasks before time t < 1 goes to zero as n tends to infinity,

and the approximation obtained from solving the nominal problem becomes increasingly weak.

More generally, one can show that the nominal problem always underestimates the expected

makespan of the early start schedule. To see this, assume that the task durations di, i ∈ V ,

are random and that each task is started according to the early start policy y∗. Note that y∗

constitutes a random vector now because it depends on the random task durations through (1.2).

As before, the makespan is y∗n + dn. The right-hand side of (1.2) is convex and non-decreasing

in y∗ and d. Hence, we can reformulate the makespan as a convex function of the random

task durations di by recursively replacing each component of y∗ with its definition in (1.2).

Jensen’s inequality tells us that for a measurable convex function ϕ and a random vector d,

ϕ(E(d)) ≤ E(ϕ(d)). When we solve the nominal problem, we evaluate the left-hand side of this

equation (deterministic makespan using expected durations) to approximate the right-hand side

(expected makespan using random durations).

These rather pessimistic results on the approximation quality of nominal problems suggest that

we should explicitly account for the stochastic nature of temporal networks. Unfortunately, the

existence of precedence constraints severely complicates this goal. To see this, consider again

the temporal network in Figure 1.1 and assume that di, the duration of task i ∈ V , is described

by its probability density function fi and its cumulative distribution function Fi. For ease

of exposition, we assume that the task durations are independently distributed. We want to

determine the cumulative distribution function of the makespan if each task is started according

to the early start schedule y∗. If we denote the cumulative distribution function of y∗i by Gi,

we obtain for the first three tasks

G1(t) =





1 if t ≥ 0,

0 otherwise;

and G2(t) = G3(t) = P(d1 ≤ t) = F1(t). (1.4)
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The distribution of y4 is obtained as follows.

G4(t) = P(d1 + d2 ≤ t) = (F1 ∗ f2) (t), (1.5)

where (χ1 ∗ χ2)(t) :=
∫
τ∈R

χ1(τ)χ2(t − τ) dτ denotes the convolution of two functions χ1 and

χ2. The start time of task 5 depends on the maximum of two independent random variables:

G5(t) = P(max {d1 + d2, d1 + d3} ≤ t) = P(d1 +max {d2, d3} ≤ t)

= (f1 ∗ G̃)(t) = (f1 ∗ [F2 · F3]) (t),

where

G̃(t) := P(max {d2, d3} ≤ t) = P(d2 ≤ t, d3 ≤ t)

= P(d2 ≤ t)P(d3 ≤ t) = F2(t)F3(t).

Here, we used the notation (χ1 · χ2)(t) := χ1(t)χ2(t). Calculating G6 is more involved as it

depends on the maximum of dependent random variables:

G6(t) = P(max {d1 + d2 + d4, d1 + d2 + d5, d1 + d3 + d5} ≤ t)

= P(d1 +max {d2 + d4, d2 + d5, d3 + d5} ≤ t)

= (f1 ∗ Ĝ)(t),

where

Ĝ(t) := P(max {d2 + d4, d2 + d5, d3 + d5} ≤ t)

=

∫

δ2,δ5≥0

P(δ2 + d4 ≤ t)P(δ2 + δ5 ≤ t)P(d3 + δ5 ≤ t)f2(δ2) f5(δ5) dδ2 dδ5

=

∫

δ2,δ5≥0,
δ2+δ5≤t

P(d4 ≤ t− δ2)P(d3 ≤ t− δ5) f2(δ2) f5(δ5) dδ2 dδ5

=

∫
δ2,δ5≥0,
δ2+δ5≤t

F4(t− δ2)F3(t− δ5) f2(δ2) f5(δ5) dδ2 dδ5.



8 Chapter 1. Introduction

The cumulative distribution function of the network’s makespan is given by G6 ∗ f6. Clearly,

this approach becomes impractical for large networks. In fact, we cannot expect that there is

an algorithm that determines the cumulative distribution function of the makespan efficiently.

It has been shown in [Hag88] that even if the task durations are independent random variables

with a two-valued support, the calculation of the expected value or any pre-specified quantile of

the makespan of y∗ is #PSPACE-hard. The situation is complicated by the practical difficulty

to estimate the distributions of all task durations.

1.2 Contributions and Structure of the Thesis

We develop solution techniques for optimisation problems in temporal networks under uncer-

tainty. The problems that we consider vary in the required information about the uncertain

problem parameters, the employed risk measure (expected value, quantiles and the worst case)

and the objective function (makespan and net present value). We apply our techniques to prob-

lems in project scheduling and VLSI design. However, we stress that the proposed techniques

apply to other application areas of temporal networks as well.

Apart from a review of the background theory in Chapter 2 and conclusions in Chapter 7, the

thesis is divided into four chapters. Each of these chapters investigates one specific class of

optimisation problems in temporal networks, which can be summarised as follows.

In Chapter 3 we maximise a network’s expected net present value when the task durations and

cash flows are described by a discrete set of alternative scenarios with associated occurrence

probabilities. In this setting, the choice of scenario-independent task start times frequently

leads to infeasible schedules or severe losses in revenues. We determine an optimal target

processing time policy for the network tasks instead. Such a policy prescribes a task to be

started as early as possible in the realised scenario, but never before its (scenario-independent)

target processing time. We formulate the resulting model as a global optimisation problem

and present a branch-and-bound algorithm for its solution. The contents of this chapter are

published in
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1. W. Wiesemann, D. Kuhn and B. Rustem. Maximizing the Net Present Value of a Project

under Uncertainty. European Journal of Operational Research 202(2):356–367, 2010.

Chapter 4 investigates a resource allocation model that minimises the makespan of a temporal

network. The model accommodates multiple resources and decision-dependent task durations

inspired by microeconomic theory. First, we elaborate a deterministic problem formulation. In

a second stage, we enhance the model to account for uncertain problem parameters. Assuming

that the first and second moments of these parameters are known, the stochastic model min-

imises an approximation of the value-at-risk of the network’s makespan. As a salient feature,

our approach employs a scenario-free formulation which approximates the durations of the net-

work’s task paths via normal distributions. We extend our model to situations in which the

moments of the random parameters are ambiguous and describe an iterative solution procedure.

The contents of this chapter can be found in

2. W. Wiesemann, D. Kuhn and B. Rustem. Multi-Resource Allocation in Stochastic Project

Scheduling. Accepted for Publication in Annals of Operations Research, 2009.

In Chapter 5 we study a robust resource allocation problem in temporal networks where the

task durations are uncertain, and the goal is to minimise the worst-case makespan. We show

that this problem is generically NP-hard. We then develop families of optimisation problems

that provide convergent lower and upper bounds on the optimal value of the problem. The

upper bounds correspond to feasible allocations whose objective values are bracketed by the

bounds. Hence, we obtain a series of feasible allocations that converge to the optimal solution

and whose optimality gaps can be quantified. The contents of this chapter are based on

3. W. Wiesemann, D. Kuhn and B. Rustem. Robust Resource Allocations in Temporal

Networks. Under Revision for Mathematical Programming, 2010.

Chapter 6 investigates Markov decision processes (MDPs), which provide a generic framework

that is used to model and solve dynamic net present value maximisation problems in temporal
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networks. Unfortunately, the solutions of MDPs are often of limited practical use due to

their sensitivity to distributional model parameters, which are typically unknown and have to

be estimated by the decision maker. To counter the detrimental effects of estimation errors,

Chapter 6 considers robust MDPs that offer probabilistic guarantees in view of the unknown

parameters. To this end, we assume that an observation history of the MDP is available. Based

on this history, we derive a confidence region that contains the unknown parameters with a

pre-specified probability 1 − β. Afterwards, we determine a decision that attains the highest

worst-case performance over this confidence region. By construction, this decision achieves or

exceeds its worst-case performance with a confidence of at least 1 − β. The method involves

the solution of tractable conic programs of moderate size. We illustrate how our approach can

be applied to temporal networks. The contents of this chapter are based on

4. W. Wiesemann, D. Kuhn and B. Rustem. Robust Markov Decision processes. Under

Review for Mathematics of Operations Research, 2010.

During my doctoral studies, I was in the fortunate position to collaborate with colleagues on a

number of different research projects. Since the resulting publications are not directly related

to the topic of this thesis, I shall only list them in the following.

5. D. Kuhn, W. Wiesemann and A. Georghiou. Primal and Dual Linear Decision Rules in

Stochastic and Robust Optimization. Accepted for Publication in Mathematical Program-

ming, 2009.

6. R. Fonseca, S. Zymler, W. Wiesemann and B. Rustem. Robust Optimization of Currency

Portfolios. Accepted for Publication in Journal of Computational Finance, 2009.

7. A. Tsoukalas, W. Wiesemann and B. Rustem. Global Optimisation of Pessimistic Bi-Level

Problems. In: P. M. Pardalos and T. F. Coleman (eds.): Lectures on Global Optimization,

Fields Communications Series, American Mathematical Society, 2009.

8. W. Wiesemann, R. Hochreiter and D. Kuhn. A Stochastic Programming Approach for

QoS-Aware Service Composition. Proceedings of the 8th IEEE International Symposium
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on Cluster Computing and the Grid, Lyon, 2008.

9. R. Fonseca, W. Wiesemann and B. Rustem. International Portfolio Management under

Uncertainty. Under Review for European Journal of Operational Research, 2010.

10. T. Charalambous, E. Klerides and W. Wiesemann. Transmission Scheduling of Wireless

Networks under SINR Constraints. Under Review for IEEE Transactions on Wireless

Communications, 2010.

11. E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn and P. Pietzuch. Efficient Query

Planning with Reuse in Distributed Stream Processing Systems. Under Review for 36th

International Conference on Very Large Data Bases, 2010.

12. S. A. Spacey, W. Wiesemann, D. Kuhn, W. Luk and P. H. J. Kelly. Robust Software

Partitioning. Under Review for INFORMS Journal on Computing, 2009.

1.3 Notation

By default, all vectors are column vectors. We denote the p-norm of a vector x by ‖x‖p. We

denote by ek the kth canonical basis vector, while e denotes the vector whose components are

all ones. In both cases, the dimension will usually be clear from the context. We denote the set

of real numbers, non-negative real numbers and strictly positive real numbers by R, R+ and

R++, respectively. We denote the set of natural numbers (including zero) by N0.

We say that a set has a tractable representation if set membership can be described by finitely

many convex constraints and, potentially, auxiliary variables. Similarly, a function has a

tractable representation if its epigraph does. An explicit optimisation problem has finitely

many variables and constraints.

Some of the chapters in this thesis require additional notation. We defer the introduction of

that notation to the relevant chapters.
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Chapter 2

Background Theory

We start with a review of deterministic optimisation problems in temporal networks. We then

discuss three popular methodologies to model and solve generic optimisation problems under

uncertainty. We close with an overview of the issues that arise when these methodologies are

applied to temporal networks, and we review the relevant literature. More specific reviews of

related work are provided in the Chapters 3–6.

2.1 Temporal Networks

The literature on temporal networks is vast and has been reviewed, amongst others, in [BDM+99,

BEP+96, BKPH05, Bru07, DH02, FL04, NSZ03, Pin08, Sch05]. Instead of giving a detailed

account of all contributions, we classify some of the most popular research directions according

to the three dimensions ‘resources’, ‘network’ and ‘objective’. More elaborate classification

schemes can be found in [BDM+99, Bru07, DH02].

Resource Characteristics. Optimisation problems in temporal networks may assume that

a resource allocation has been fixed, or they can involve the assignment of one or multiple

resources. In the latter case, we can distinguish between three prevalent types of resources.

Non-renewable resources are available in pre-specified quantities and are not replenished during

13
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the planning horizon. Typical examples of non-renewable resources are cash and man-hours. In

contrast, renewable resources are replenished every time period, but the decision maker has to

meet specified per-period consumption quotas. Examples of renewable resources are processing

times on manufacturing machines and processors. In practise, many resources are doubly-

constrained, that is, they share the restrictions of non-renewable and renewable resources. Other

resource characteristics include time windows during which the resources are available, as well

as spatial aspects (e.g., immobile resources such as a shipyard).

Network Characteristics. Network characteristics describe the properties of the network

tasks and precedences. Tasks are preemptive if their processing can be interrupted to execute

other tasks. For example, modern operating systems use preemptive multitasking to generate

the illusion of executing multiple computer applications in parallel on a single processor. If the

execution of network tasks must not be interrupted, then the tasks are called non-preemptive.

Project scheduling, circuit design and many problems in machine scheduling assume that the

network tasks are non-preemptive. In the introduction, we assumed that all precedences in

the temporal network are of finish-start type, that it, an arc from node i to node j in the

temporal network prescribes that task j cannot be started before task i has been completed.

Alternatively, one can consider generalised precedences that stipulate lower and upper bounds

on the time that may pass between the start and completion of any two network tasks. Other

network characteristics include time windows during which the tasks must be executed (e.g.,

ready times and deadlines) and cash flows that arise when certain tasks are processed.

Objective Function. One commonly distinguishes between regular objective functions, which

are optimised by the early start schedule (1.2), and nonregular objective functions, which

may not be optimised by the early start schedule. Typical regular objective functions are

the makespan and the lateness of the makespan beyond a given deadline. An example of a

nonregular objective is the net present value.

The methods developed in this thesis address several combinations of the aforementioned prob-

lem characteristics. Chapter 3 assumes that the resource allocation is fixed and maximises the

net present value under non-preemptive tasks and generalised precedences. In Chapters 4 and 5
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tt
x ξ y ξ1 ξ2 ξ3

x y2 y3 y4

Figure 2.1: Temporal structure of two-stage (left) and multi-stage (right) recourse problems.
In the left time line, the wait-and-see decision y may depend on x and ξ. In the right time line,
the wait-and-see decision yt may depend on x and ξs, s < t.

we determine assignments of non-renewable resources that minimise the makespan under non-

preemptive tasks and finish-start precedences. Chapter 6 studies a generic solution technique

that is primarily suited for net present value maximisation problems with renewable resources,

non-preemptive tasks and finish-start precedences.

2.2 Optimisation under Uncertainty

In practise, most decisions are taken under significant uncertainty about relevant data such as

future market developments and resource availabilities. If such decision problems are formu-

lated as optimisation models, the models contain parameters whose values are uncertain. In

the following, we review three popular approaches to model and solve optimisation problems

with uncertain parameters. In the remainder of the thesis, we will apply these approaches to

optimisation problems in temporal networks.

2.2.1 Stochastic Programming

Stochastic programming models the uncertain problem parameters as random variables with

known probability distributions. One of the basic models is the two-stage recourse problem.

inf
x∈X

{f(x) + E [Q(x; ξ)]} , (2.1a)

where

Q(x; ξ) := inf
y∈Y (x,ξ)

{q(y; x, ξ)} . (2.1b)
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x

y(x; ξ1)

y(x; ξ2)

ξ1 ξ1

ξ2 ξ2

ξ3 ξ3

ξ4 ξ4
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tt

Figure 2.2: Scenario representation of two-stage recourse problems. The left chart shows that
for each realisation (scenario) ξk of the random vector ξ, a separate recourse decision y(x; ξk)
can be selected. The right chart visualises the acquisition of information over time. At the
beginning of the first time period, the decision maker is unaware of the realised scenario ξk. Her
information set (i.e., the set of scenarios that may be realised) therefore contains all scenarios.
In the second time period, the decision maker knows the realised scenario ξk. Her information
set has therefore shrunk to one of the singleton sets on the right.

In this problem, the parameter vector ξ is assumed to be uncertain. The decision maker needs

to take a here-and-now decision x ∈ X before the value of ξ is known, while the wait-and-

see decision y ∈ Y (x, ξ) can be selected under full knowledge of ξ. Conceptually, we can

assume that x is chosen at the beginning of time period 1, ξ is revealed during time period

1, and y is selected at the beginning of time period 2 (after ξ is known), see Figure 2.1 (left).

The goal is to minimise the sum of first-stage costs f(x) and expected second-stage costs

E [Q(x; ξ)], where the expectation is taken with respect to ξ. Note that for any value of x

and ξ, the second-stage problem Q(x; ξ) is deterministic. If there is a finite set of values

ξ1, ξ2, . . . such that ξ ∈ {ξ1, ξ2, . . .} with probability one, then (2.1) can be formulated as an

explicit optimisation problem. Otherwise, (2.1) can be approximated by a surrogate model that

replaces the probability distribution of ξ with a finite-valued approximation. In either case, the

resulting optimisation model has the structure of a scenario fan whose branches represent the

possible realisations of ξ, see Figure 2.2.

Several variations of problem (2.1) are common. On one hand, the expected value in (2.1a) is

often replaced with other risk measures such as the (conditional) value-at-risk or the variance.

On the other hand, the two-stage structure (decision – realisation of uncertainty – decision)

can be extended to multiple decision stages. In a multi-stage recourse problem, the parameter

vector ξ can be subdivided into vectors ξ1, . . . , ξT such that ξ = (ξ1, . . . , ξT ) and ξt is revealed
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Figure 2.3: Scenario representation of multi-stage recourse problems. In analogy to Figure 2.2,
ξk,t denotes the tth subvector of the scenario ξk = (ξk,1, . . . , ξk,T ). In the chart on the left, each
path from the root node to a leaf node constitutes one scenario. Two scenarios ξk and ξl are
undistinguishable at the beginning of period t if ξk,s = ξl,s for all s < t. In this case, ξk and
ξl are contained in the same information set at time t, and non-anticipativity stipulates that
yt(x; (ξk,1, . . . , ξk,t−1)) = yt(x; (ξl,1, . . . , ξl,t−1)). For example, non-anticipativity requires that
y2(x; ξk,1) = y2(x; ξl,1) for k, l ∈ {1, . . . , 4} and y3(x; (ξ5,1, ξ5,2)) = y3(x; (ξ6,1, ξ6,2)).

during time period t = 1, . . . , T . The decision maker can take a recourse decision yt at the

beginning of every time period t = 2, . . . , T+1, and yt may depend on the values of ξ1, . . . , ξt−1,

see Figure 2.1 (right). Note that yt may not depend on the values of ξs, s ≥ t, since this infor-

mation is not available at the time the recourse decision is taken. This causality requirement

is called non-anticipativity. If the probability distribution of ξ has finitely many values, then

the optimisation model associated with a multi-stage recourse problem has the structure of

a scenario tree, see Figure 2.3. While convex two-stage recourse problems can be efficiently

approximated, multi-stage problems ‘generically are computationally intractable already when

medium-accuracy solutions are sought’ [SN05]. We will revisit recourse problems in Chapter 3,

where we model a net present value maximisation problem as a two-stage recourse problem.

Apart from recourse problems, stochastic programming studies problems with chance con-

straints. The basic two-stage chance constrained problem can be formulated as follows.

inf
x∈X

{f(x) : P (Q(x; ξ) ≤ 0) ≥ 1− ǫ} , (2.2)

where Q is defined in (2.1b). The temporal structure of problem (2.2) is the same as for two-
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stage recourse problems, see Figure 2.1 (left). The goal is to find a here-and-now decision x

such that with a probability of at least 1− ǫ, there is a wait-and-see decision y(x; ξ) ∈ Y (x, ξ)

that satisfies q(y(x; ξ); x, ξ) ≤ 0. Chance constrained problems are notoriously difficult to solve.

Indeed, even if the second-stage problem Q is a linear program, the feasible region of (2.2) is

typically nonconvex and disconnected. Moreover, calculating the left-hand side of the constraint

in (2.2) requires the evaluation of a multi-dimensional integral, which itself constitutes a difficult

problem. As a result, most solution approaches for (2.2) settle for approximate solutions.

Similar to recourse problems, chance constrained problems can be extended to multiple decision

stages. In Chapter 4 we will model a makespan minimisation problem as a two-stage chance

constrained problem.

For an in-depth treatment of stochastic programming, see [KW94, Pré95, RS03].

2.2.2 Robust Optimisation

In its basic form, robust optimisation studies semi-infinite problems of the following type.

inf
x∈X

{f(x) : gi(x; ξ) ≤ 0 ∀ ξ ∈ Ξ, i = 1, . . . , I} (2.3)

We interpret x as a here-and-now decision and ξ as an uncertain parameter vector with support

Ξ. The goal is to minimise the deterministic costs f(x) while satisfying the constraints for all

possible realisations of ξ. Note that (2.3) is a single-stage problem since it does not contain

any recourse decisions. If Ξ constitutes a finite set of scenarios ξ1, ξ2, . . ., then (2.3) can be

formulated as an explicit optimisation problem. If Ξ is of infinite cardinality, then (2.3) can be

solved with iterative solution procedures from semi-infinite optimisation [HK93]. One of the

key contributions of robust optimisation has been to show that for sets Ξ of infinite cardinality

but specific structure, one can apply duality theory to transform problem (2.3) into an explicit

optimisation problem. We illustrate this approach with an example.

Example 2.2.1 Assume that I = 1, X ⊆ Rn, Ξ =
{
ξ ∈ Rk

+ : Wξ ≤ h
}

for W ∈ Rm×k and
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h ∈ Rm and g1(x; ξ) = ξ⊤Ax for A ∈ Rk×n. Also assume that Ξ is non-empty and bounded.

We can then reformulate the constraint in (2.3) as follows.

g1(x; ξ) ≤ 0 ∀ ξ ∈ Ξ ⇔ sup
ξ∈Ξ

{g1(x; ξ)} ≤ 0

⇔ max
ξ∈Rk

+

{
ξ⊤Ax : Wξ ≤ h

}
≤ 0

⇔ min
λ∈Rm

+

{
h⊤λ : W⊤λ ≥ Ax

}
≤ 0

⇔ h⊤λ ≤ 0, W⊤λ ≥ Ax for some λ ∈ R
m
+

Here, the third equivalence follows from linear programming duality. We have thus transformed

the semi-infinite constraint in (2.3) into a finite number of constraints that involve x and some

auxiliary variables λ.

Much of the early work on robust optimisation focuses on generalisations of the reformulation

scheme illustrated in Example 2.2.1. Unfortunately, single-stage models such as (2.3) are too

restrictive for decision problems in temporal networks. Indeed, the task start times can typically

be chosen as a wait-and-see decision, and optimisation problems that account for this flexibility

provide significantly better solutions. We discuss this issue in more detail in the next section

and in Chapters 3–6. We are therefore interested in two-stage robust optimisation problems

such as the following one.

inf
x∈X

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

{f(x) + q(y; x, ξ)} (2.4)

Here, q is the objective function of the second-stage problem Q defined in (2.1b), and Y (x, ξ) ⊆

Rl
+. In this problem, the here-and-now decision x is accompanied by a wait-and-see decision

y ∈ Y (x, ξ) that can be selected under full knowledge of ξ. The temporal structure of this

problem is analogous to the two-stage recourse problem (2.1), see Figure 2.1 (left). The goal is

to minimise the sum of first-stage costs f(x) and worst-case second-stage costs supξ∈ΞQ(x; ξ),

see (2.1b), where the worst case is taken with respect to ξ. Two-stage robust optimisation
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ΞΞ

yy

Figure 2.4: Approximations employed by two-stage recourse problems (left) and two-stage
robust optimisation problems (right) for a random vector ξ with a continuous probability dis-
tribution. In the left chart, the support Ξ of ξ is replaced with a discrete-valued probability
distribution. For each possible realisation (scenario) ξk, an individual second-stage decision
y(x; ξk) may be chosen. In the right chart, the support Ξ remains unchanged, but the second-
stage decision y(x; ξ) is restricted to be an affine function of ξ.

problems are generically intractable, see [BTGGN04]. A tractable approximation can be derived

from the following identity.

inf
x∈X

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

{f(x) + q(y; x, ξ)} = inf
x∈X,
y∈Y(x)

sup
ξ∈Ξ

{f(x) + q(y(ξ); x, ξ)} , (2.5a)

where for x ∈ X,

Y(x) =
{
(y : Ξ 7→ R

l
+) : y(ξ) ∈ Y (x, ξ) ∀ ξ ∈ Ξ

}
. (2.5b)

The identity (2.5a) allows us to reduce the min-max-min problem (2.4) to the min-max problem

on the right-hand side of (2.5a) at the cost of augmenting the set of first-stage decisions. For

a given here-and-now decision x ∈ X, Y(x) denotes the space of all functions on Ξ that map

parameter realisations to feasible wait-and-see decisions. A function y is called a decision rule

because it specifies the second-stage decision in (2.4) as a function of the uncertain parameters

ξ. Note that the choice of an appropriate decision rule on the right-hand side of (2.5a) is part

of the first-stage decision. The identity (2.5a) holds regardless of the properties of X and Ξ

because Y(x) does not impose any structure on the decision rules (such as measurability).

Since Y(x) constitutes a function space, further assumptions are required to ensure that the

problem on the right-hand side of (2.5a) can be solved. A popular approach is to restrict Y(x)

to the space of affine or piecewise affine functions of ξ, see [BTGN09, CSSZ08]. As we will
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show in Chapter 5, this restriction allows us to reformulate the model on the right-hand side

of (2.5a) as an explicit optimisation problem. Figure 2.4 compares the scenario approximation

from the previous section with the decision rule approximation.

In Chapter 5 we will solve a makespan minimisation problem as a two-stage robust optimisa-

tion problem. Instead of approximating the optimal second-stage decision via decision rules,

however, this chapter will develop convergent lower and upper bounds on the optimal value

of the problem. The upper bounds correspond to feasible solutions whose objective values are

bracketed by the bounds. We will compare our method with two popular classes of decision

rules. Moreover, in Chapter 6 we will apply robust optimisation to immunise stochastic dy-

namic programs against estimation errors. In that chapter, we will employ decision rules to

approximate several NP-hard optimisation problems.

For an introduction to robust optimisation, see [BS04, BTGN09]. Two-stage robust optimisa-

tion problems are discussed in [BTGN09, CSSZ08, JLF07, LJF04, LLMS09, Sti09].

2.2.3 Stochastic Dynamic Programming

Stochastic dynamic programming studies the modelling and solution of optimisation problems

via Markov decision processes (MDPs). MDPs allow to model dynamic decision problems in

which the outcomes are partly random and partly under the control of the decision maker.

At each time period, the MDP is in some state s, and the decision maker takes an action a.

The state s′ in the successive time period is random and depends on both the current state s

and the selected action a. However, the new state does not depend on any other past states

or actions: this is the Markov property. For each transition of the MDP, the decision maker

receives a reward that depends on the old state, the new state and the action that triggered

the transition.

For the purposes of this thesis, it will suffice to consider discrete-time MDPs with finite state

and action spaces. We therefore assume that an MDP is defined through its state space S =

{1, . . . , S}, its action space A = {1, . . . , A} and a discrete planning horizon T = {0, 1, 2, . . .}
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that can be finite or infinite. The initial state is a random variable with known probability

distribution p0. If action a ∈ A is chosen in state s ∈ S, then the subsequent state is s′ ∈ S

with probability p(s′|s, a). We assume that the probabilities p(s′|s, a), s′ ∈ S, sum up to one

for each state-action pair (s, a) ∈ S × A. The decision maker receives an expected reward

of r(s, a, s′) ∈ R if action a ∈ A is chosen in state s ∈ S and the subsequent state is s′ ∈ S.

Without loss of generality, we can assume that every action is admissible in every state. Indeed,

if action a ∈ A is not allowed in state s ∈ S, we can ‘forbid’ this action by setting all rewards

r(s, a, s′), s′ ∈ S, to a large negative value. For the objective functions that we consider, we can

furthermore assume that all rewards r(s, a, s′) are non-negative. This can always be achieved

by adding a sufficiently large positive constant to each reward r(s, a, s′).

The MDP is controlled through a policy π = (πt)t∈T , where πt(a|s0, a0, . . . , st−1, at−1; st) repre-

sents the probability to choose action a ∈ A if the current state is st and the state-action history

is given by (s0, a0, . . . , st−1, at−1). Note that contrary to the state transitions of the MDP, the

policy π need not be Markovian. If the planning horizon T is infinite, then we evaluate a policy

π in view of its expected total reward under the discount factor λ ∈ (0, 1):

E

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
(2.6)

Here, E denotes the expectation with respect to the random process defined by the transition

probabilities p and the policy π. The notation s0 ∼ p0 indicates that the initial state s0 is a

random variable with probability distribution p0. We will define an analogous objective function

for finite horizon MDPs in Chapter 6. For a fixed policy π, the policy evaluation problem asks

for the value of expression (2.6). The policy improvement problem, on the other hand, asks for

a policy π that maximises (2.6). For the objective (2.6), the policy evaluation and improvement

problems can be solved efficiently via policy and value iteration.

Example 2.2.2 (Inventory Management) Consider the following infinite horizon inven-

tory problem. At the beginning of each time period, the decision maker can order a ∈ N0 units

of a product at unit costs c. The ordered products arrive at the beginning of the next time period.

During each time period, an independent and identically distributed random demand δ arises
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for the product. This demand is served at a unit price p from the current inventory, and there

is no backlogging (i.e., demand that cannot be satisfied within the period is lost). The inventory

can hold at most I units of the product. The goal is to find an inventory control policy that

maximises the expected total reward under some discount factor λ.

We can formulate this problem as an infinite horizon MDP as follows. The state set S =

{0, . . . , I} describes the inventory level at the beginning of each time period. In state s ∈ S,

the admissible actions {0, . . . , I − s} determine the order quantity. Note that the actions are

state-dependent in this example. The transition probabilities are

p(s′|s, a) =





P(δ = s+ a− s′) if s′ 6= 0,

∑∞
i=s+a P(δ = i) otherwise,

and the rewards are given by r(s, a, s′) = p(s + a− s′)− ca. Here we assume that the random

demand δ is non-negative with probability one. A policy π could order ω ∈ N units when-

ever the current inventory falls below some threshold Ω ∈ N0. This policy is defined through

πt(a|s0, a0, . . . , st−1, at−1; st) = 1 if st < Ω and a = ω and πt(a|s0, a0, . . . , st−1, at−1; st) = 0

otherwise. Note that this policy π is Markovian.

Most of the literature on MDPs assumes that the expected rewards r and the transition kernel

P are known, with a tacit understanding that they have to be estimated in practise. However,

it is well-known that the expected total reward (2.6) can be very sensitive to small changes

in r and P , see [MSST07]. Thus, a decision maker is confronted with two different sources of

uncertainty. On one hand, she faces internal variation due to the stochastic nature of MDPs.

On the other hand, she needs to cope with external variation because the estimates for r and P

may deviate from their true values. In Chapter 6 we will apply robust optimisation to counter

the detrimental effects of estimation errors. We will furthermore show how MDPs can be used

to solve multi-stage net present value maximisation problems in temporal networks.

There are numerous variations of the Markov decision process defined in this section. For an

overview of the major models and solution approaches, see [Ber07, Put94].
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2.3 Optimisation of Temporal Networks under Uncertainty

Decisions in temporal networks are often taken under significant uncertainty about the network

structure (i.e., the tasks and precedences of the network), the task durations, the ready times

and deadlines of the tasks, the cash flows and the availability of resources. In this thesis, we

focus on problems in which the task durations (Chapters 3–6), the cash flows (Chapters 3 and 6)

and the tasks’ ready times and deadlines (Chapter 3) are uncertain. Problems with uncertain

network structure are studied in the literature on GERT networks, see [Neu79, Neu99, Pri66].

A problem that accounts for uncertain resource availabilities is considered in [Yan05].

An optimisation problem under uncertainty needs to specify when information about the uncer-

tain parameters becomes available, and what information is revealed about them. Both issues

are straightforward in the optimisation problems reviewed in Section 2.2. In a multi-stage

recourse problem, for example, we observe the subvector ξt of the uncertain parameters ξ at

the beginning of time period t + 1, see Figure 2.1 (right). Likewise, in a stochastic dynamic

program, we observe the current state of the MDP at the beginning of each time period.

The situation is different for temporal networks, and it is this difference that complicates the

modelling and solution of decision problems in temporal networks. It is customary to assume

that the duration and cash flow of a task is observed when the task is completed. However,

the completion time of a task depends on the task’s start time, which is chosen by the decision

maker. Hence, in contrast to the problems studied in Section 2.2, the times at which we

learn about the random parameters depend on the chosen decision. Recourse problems with

decision-dependent uncertainty are studied in [GG06, JWW98], and a robust optimisation

problem with decision-dependent uncertainty is formulated in [CGS07]. However, the resulting

optimisation problems are computationally demanding, and they typically have to undergo

drastic simplifications before they can be solved.

Apart from the time points at which information becomes available, optimisation problems in

temporal networks differ from other problems in the type of the revealed information. In many

cases, the task durations and cash flows in a temporal network do not correspond to individual
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parameters, but they are functions of multiple parameters (as is the case in factor models).

In such problems, we do not observe the uncertain parameters themselves, but we accumulate

knowledge about them with the completion of each task. We can use this information to exclude

parameter realisations that are not compatible with the observed durations and cash flows. In

contrast, the multi-stage recourse problem reviewed in Section 2.2.1 assumes that the decision

maker can directly observe the uncertain parameter vector ξ.

Similar to the problems in Section 2.2, optimisation problems in temporal networks can contain

here-and-now as well as wait-and-see decisions. Here-and-now decisions are taken before any

of the network tasks are started, whereas a wait-and-see decision associated with task i ∈ V

(e.g., its start time or resource assignment) may depend on all information that is available at

the time task i is started. Since the early start schedule optimises regular objective functions

(see Section 2.1), it is relatively straightforward to model the task start times as a wait-and-see

decision in makespan minimisation problems. We will consider problems with a here-and-

now resource allocation and wait-and-see task start times in Chapters 4 and 5. The situation

is fundamentally different in net present value maximisation problems where the early start

schedule is no longer guaranteed to be optimal. In Chapters 3 and 6 we consider net present

value problems in which the resource allocation is fixed, while the task start times can be chosen

as a wait-and-see decision.

We close this section with an overview of the literature on temporal networks under uncertainty.

Detailed reviews of specific topics will be provided in later chapters.

Although temporal networks have been analysed for more than fifty years [Ful61, Kel61,

MRCF59], the literature on temporal networks under uncertainty is surprisingly sparse. Until

recently, most research on temporal networks under uncertainty assumed a fixed resource al-

location and focused on the makespan of the early start schedule. Following the classification

in [M0̈1], we can categorise the literature into methods that identify ‘critical’ tasks or task

paths [Elm00], simulation techniques to approximate the makespan distribution [AK89], ap-

proaches that bound the expected makespan [BM95, BNT02, MN79], and methods that bound

the cumulative distribution function of the makespan [LMS01, M0̈1].
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Optimisation problems that maximise a network’s net present value under uncertainty generally

model the task start times as a wait-and-see decision, while the resource allocation is assumed

to be fixed. The problem has been approximated by a two-stage recourse model in [Ben06],

where an optimal delay policy is sought that prescribes how long each task should be delayed

beyond its earliest start time. Under the assumption that the task durations are independent

and exponentially distributed, the net present value maximisation problem is formulated as

a continuous-time Markov decision process in [BR97, TSS06]. Finally, approximate solutions

for net present value maximisation problems have been obtained with a number of heuristics,

see [Bus95, OD97, Ö98, TFC98, WWS00]. For an overview of net present value maximisation

problems in temporal networks, see [HDD97].

Makespan minimisation problems under uncertainty typically assume that a resource assign-

ment is selected here-and-now, while the task start times are modelled as a wait-and-see

decision. For non-renewable resources, the makespan minimisation problem has been for-

mulated as a two-stage recourse model in [Wol85] and as a robust optimisation problem

in [CGS07, CSS07, JLF07, LJF04]. Except for [CGS07], all of these contributions model the

resource assignment as a here-and-now decision. A makespan minimisation problem with re-

newable resources is studied in [MS00].

For an in-depth review of optimisation problems in temporal networks under uncertainty,

see [AK89, BKPH05, Elm05, HL04, HL05, JW00, LI08, M0̈1, Pin08, Sah04].



Chapter 3

Maximisation of the Net Present Value

3.1 Introduction

This chapter studies a temporal network whose tasks give rise to cash flows. Positive cash

flows denote cash inflows (e.g., received payments), whereas negative cash flows represent cash

outflows (e.g., accrued costs). We maximise the network’s net present value (NPV), which

is the discounted sum of all arising cash flows. NPV maximisation problems arise in project

management, process scheduling and several other application areas. For example, in capital-

intensive IT and construction projects, large amounts of money are invested over long periods

of time, and the wise coordination of cash in- and outflows crucially affects the profitability of

such projects. The NPV can be regarded as the ‘cash equivalent’ of undertaking a project.

We consider temporal networks whose task durations and cash flows are described by a discrete

set of alternative scenarios with associated occurrence probabilities. Since the cash flows can

be positive or negative, the early start policy (1.2) does not yield an optimal solution, see

Section 1.1. Similarly, the choice of scenario-independent task start times frequently leads to

infeasible schedules or severe losses in revenues. In Chapter 6 we will determine truly adaptive

schedules for NPV maximisation problems that react to the uncertainties revealed over time.

However, such schedules become computationally demanding for large networks. To overcome

this difficulty, this chapter determines an optimal (scenario-independent) target processing time

27
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(TPT) policy for the network tasks. In case task i ∈ V could be started earlier than its TPT

in the realised scenario, it will be postponed to its TPT. If, on the other hand, task i cannot

be started at its TPT (because preceding tasks finish late), then it will be started as soon as

possible thereafter. Following the terminology from Section 2.2.1, we solve a two-stage recourse

problem in which the TPT policy is chosen here-and-now, whereas the factual task start times

are modelled as a wait-and-see decision. The class of TPT policies is a strict subset of the class

of non-anticipative scheduling decisions. By restricting ourselves to this class, we can solve

the NPV maximisation problem for networks of non-trivial size. Our model accommodates

generalised precedence relations [EK90, EK92] but disregards resource restrictions. We discuss

these assumptions in Section 3.3.

The remainder of this chapter is organised as follows. In the next section we summarise related

literature. Section 3.3 introduces our problem formulation, while Section 3.4 describes the

components of a branch-and-bound solution procedure. Section 3.5 presents and interprets the

results of an extensive numerical study. We conclude in Section 3.6.

3.2 Literature Review

Maximising the NPV of a temporal network was first suggested in [Rus70].1 The paper consid-

ers problem instances (G, ζ, d, β), where G = (V,E) represents the structure of the temporal

network, ζi the cash flow arising at the start time of task i ∈ V , di the duration of task i

and β = 1/(1 + α) the discount factor with internal rate of return α > 0. An arc (i, j) ∈ E

prescribes that task j must not be started before task i has been completed. The assumption

that the cash flows are realised at the beginning of the tasks is not restrictive; we come back

to this point in Section 3.3. All parameters are assumed to be deterministic, and there are no

1We will use a consistent notation for all models reviewed in this section. Therefore, we may slightly modify
some of the original formulations without changing their meaning.
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resource restrictions. The objective is to

maximise
y

∑

i∈V

ζiβ
yi (3.1a)

subject to y ∈ R
n

yj ≥ yi + di ∀ (i, j) ∈ E, (3.1b)

y1 = 0. (3.1c)

In this formulation, the components of the decision vector y represent the task start times.

The objective function maximises the sum of discounted cash flows. The constraints ensure

satisfaction of the precedence relations and non-negativity of the schedule. Without loss of

generality, it is assumed that the first task is started at time zero. A deadline ∆ can be

imposed by adding the constraint yn ≤ ∆. In [Rus70], (3.1) is solved through a sequence

of linear programs whose objective functions are obtained by linearisation around the current

candidate solution. The duals of these approximations can be formulated as network flow

problems, and the author proves local convergence of the overall procedure.

It is shown in [Gri72] that the variable substitution zi := βyi converts (3.1) into an equivalent

linear program:

maximise
z

∑

i∈V

ζizi

subject to z ∈ R
n

zj ≤ βdizi ∀ (i, j) ∈ E,

z1 = 1,

zn ≥ 0.

A deadline ∆ can be enforced by replacing the last constraint with zn ≥ β∆. In [Gri72] this

problem is solved with a network simplex variant.

In [NZ00], the network simplex algorithm from [Gri72] is extended to temporal networks Γ =

(G, ζ, d, β) with generalised precedences. Here, G = (V,E) represents the network structure,



30 Chapter 3. Maximisation of the Net Present Value

ζi the cash flow arising at the start time of task i ∈ V , dij the minimum time lag between the

start times of tasks i and j (dij < 0 is allowed; hence, the precedences are called ‘generalised’)

and β the discount factor.2 The authors solve problems of the following type.

maximise
y

g(y) :=
∑

i∈V

ζiβ
yi (3.2a)

subject to y ∈ R
n

yj ≥ yi + dij ∀ (i, j) ∈ E, (3.2b)

y1 = 0. (3.2c)

It is shown in [DH02, SZ01] that the algorithm presented in [NZ00] performs favourably in

practise. In Section 3.4.1 we will use this algorithm to solve subproblems that arise in our

branch-and-bound procedure.

In [EH90], an approximate solution procedure to the NPV maximisation problem is proposed,

while an exact method based on the steepest ascent principle is developed in [SZ01]. Compar-

isons of the various approaches can be found in [DH02, SZ01].

Over the last two decades, numerous publications have addressed extensions of the determin-

istic NPV maximisation problem, the majority of which allow for different types of resource

constraints. We do not provide more details on those efforts and refer the interested reader to

the extensive surveys [DH02, HDD97]. Interestingly, the incorporation of uncertainty has at-

tracted significantly less attention, just as temporal networks under uncertainty have in general

been neglected for a long time.

Assuming independent and exponentially distributed task durations, a stochastic version of (3.1)

is considered in [BR97, TSS06]. Both contributions employ continuous-time Markov chains

whose states assign labels ‘not yet started’, ‘in progress’ and ‘finished’ to all tasks. Continuous-

time Markov chains were first applied to temporal networks in [KA86]. The restriction to

exponentially distributed durations can be relaxed at the cost of augmenting the state space.

Unfortunately, the number of states in the Markov chain grows exponentially with the network

2Generalised precedences are explained further in Section 3.3.
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size, even when assuming exponentially distributed task durations. As a result, these methods

are primarily applicable to small networks.

Several heuristics have been suggested for general task duration distributions. A suboptimal

task delay policy is determined via simulation-based optimisation in [Bus95]. The author points

out that the problem is very challenging since the objective function is highly variable but flat

near the (suspected) optimum. A simulated annealing heuristic for discretised task duration

distributions is presented in [WWS00]. A general solution approach for stochastic temporal

networks based on floating factor policies can be found in [TFC98]. The authors define the

total float of task i ∈ V as the difference between its latest (κi) and earliest (λi) start times

given some deadline and average task durations. For a fixed float factor α ∈ [0, 1], task i should

be started as early as possible but not before time λi + α(κi − λi). It is suggested to evaluate

the impact of α via Monte Carlo simulation and to choose the value of α that minimises a

composite risk measure (e.g., the probability that the makespan or the overall costs exceed

specified tolerances).

The method that comes closest to ours is developed in [Ben06]. Again, the network structure

is assumed to be given as G = (V,E), where an arc (i, j) ∈ E stipulates that task j cannot be

started before task i has been finished. The author assumes that the cash flows are deterministic,

whereas finitely many scenarios s ∈ S with associated occurrence probabilities ps specify the

uncertain task durations dsi , i ∈ V . The goal is to maximise the expected net present value

over all scenarios, which is done heuristically by determining a delay policy with the following

two-stage procedure. In the first stage, the optimal ‘average’ task start times are approximated

as follows.

maximise
y

∑

i∈V

ζiβ
yi

subject to y ∈ R
n

yj ≥
∑

s∈S

psmax
i∈V

{yi + dsi : (i, j) ∈ E} ∀ j ∈ V \ {1} ,

y1 = 0.
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In this model, cash flow ζi is assumed to arise at the start time yi of task i ∈ V ; we refer

to Section 3.3 for a further discussion. The precedence constraints are imposed to hold in

expectation. This model is not convex, and the author uses a local search procedure to obtain

locally optimal start times. In the second stage, a fixed-delay policy r is determined by setting

r1 := y∗1 and

rj := y∗j −
∑

s∈S

psmax
i∈V

{y∗i + dsi : (i, j) ∈ E} ∀ j ∈ V \ {1} ,

where y∗ denotes an optimal solution to the first-stage problem. The fixed-delay policy r

prescribes to delay the start time of task i ∈ V by ri time units (compared to its earliest

possible start time, which itself depends on the realised scenario). This approach is very

attractive from a computational point of view, but it does not give any guarantees with respect

to optimality. We will revisit this method in Section 3.5 when we compare its solutions with

schedules obtained from TPT policies.

Finally, we mention the contributions [OD97, Ö98], which maximise a network’s NPV subject

to capital constraints and multiple task execution modes. Capital is treated as a randomly

replenished resource which can be temporarily acquired at given costs. The authors present an

online scheduling heuristic to solve this problem.

3.3 Problem Formulation

We study temporal networks in activity-on-node notation (see Section 1.1) with generalised

precedence relations. This means that we allow for both minimum and maximum time lags

between the start and completion times of the network tasks. A minimum time lag of length

δ ≥ 0 between the start times of tasks i and j is modelled as a precedence relation (i, j) ∈ E

with positive value dij = δ, whereas a similar maximum time lag of length δ ≥ 0 corresponds

to a precedence relation (j, i) ∈ E with negative value dji = −δ. This allows us to represent

both minimum and maximum time lags by inequalities of type yq ≥ yp+ dpq, (p, q) ∈ E, where

yp and yq represent the start times of tasks p and q, respectively. Since the completion time of
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a task equals its start time plus its duration, this approach immediately extends to time lags

specified in terms of both start and completion times. A finish-start precedence between tasks

i and j (i.e., ‘j cannot start before i has been completed’) reduces to a minimum time lag of

value 0 between the completion time of i and the start time of j. We refer to [EK90, EK92]

for a detailed discussion of generalised precedence relations, together with convenient ways of

specifying temporal networks in this format.

We consider problem instances Υ = (G, S, p, ζ, d,∆, β), where G = (V,E) represents the net-

work structure and S = {1, . . . , m} the index set of discrete scenarios with occurrence proba-

bilities ps for s ∈ S. ζsi denotes the cash flow arising at the start time of task i ∈ V in scenario

s ∈ S. The assumption that cash flows arise at the task start times is not restrictive: imagine,

for example, that a cash flow zsi in scenario s ∈ S arises when task i ∈ V is completed. As-

suming that the discount factor is β and that the duration of task i amounts to δsi in scenario

s, the end-of-task cash flow zsi is equivalent to a cash flow ζsi = βδ
s
i zsi at the start time of

task i in scenario s. The value of precedence relation (i, j) ∈ E in scenario s ∈ S is denoted

by dsij. Without loss of generality, we assume that for a given precedence (i, j) ∈ E, dsij is of

equal sign for all s ∈ S. We can then define the subset of positive-valued and negative-valued

precedence relations by E+ =
{
(i, j) ∈ E : dsij ≥ 0 ∀ s ∈ S

}
and E− = E \E+, respectively. In

Section 1.1 we stipulated that task 1 (n) constitutes the unique source (sink) of the network.

In the light of generalised precedence relations, we now impose the same requirements for the

subgraph G = (V,E+). In order to avoid unbounded problem instances, that is, instances

in which it is beneficial to delay some network tasks indefinitely, we assume that there is a

scenario-independent deadline ∆. Since we can choose ∆ as large as we wish, this assumption

does not restrict the generality of our model. As before, β denotes the discount factor.
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With the notation introduced above, our model can be formulated as follows.

maximise
r,y

f(r, y) :=
∑

s∈S

ps
∑

i∈V

ζsi β
ysi (3.3a)

subject to r ∈ R
n, y ∈ R

nm

ysj = max

{
sup
i∈V

{
ysi + dsij : (i, j) ∈ E+

}
, rj

}
∀ j ∈ V, s ∈ S, (3.3b)

ysj ≥ ysi + dsij ∀ (i, j) ∈ E−, s ∈ S, (3.3c)

ysn ≤ ∆ ∀ s ∈ S, (3.3d)

rj ≥ 0 ∀ j ∈ V. (3.3e)

For future use, we also define YΥ := {(r, y) ∈ Rn × Rnm : (r, y) satisfies (3.3b)–(3.3e)}. In

model (3.3), r represents the desired TPT policy. This policy is chosen here-and-now, that is,

before the realised scenario is known. The wait-and-see decision ysi denotes the factual start

time of task i ∈ V if scenario s ∈ S is realised. Since the cash flows are realised at the task start

times, the objective function represents the expected NPV over all scenarios. (3.3b) uniquely

specifies the task start times y as a function of preceding start times and the TPT policy r. In

particular, the start time of task j in scenario s only depends on the start times of preceding

tasks i, (i, j) ∈ E+, in this scenario, the respective minimum time lags and rj. Note that

the value of vector y is uniquely determined by r and d. Hence, y is not a decision vector

in the ordinary sense, but it rather constitutes an ancillary variable vector that is required to

evaluate the expected NPV over all scenarios. (3.3c) ensures satisfaction of the negative-valued

precedence relations, while (3.3d) enforces the deadline in all scenarios. Note that (3.3d) cannot

be replaced with maximum time lags between events 1 and n since ys1 is allowed to be strictly

positive (by choosing r1 > 0). (3.3e) ensures non-negativity of the solution. We remark that

r can be chosen freely as long as the corresponding vector y satisfies all precedence relations

in every scenario. Fixing r to the zero vector, for example, entails that all tasks are started

as early as possible in every scenario. The relation enforced between r and y as described by

(3.3b) is in accordance with our definition of TPT policies (see Section 3.1), and it constitutes

a sufficient condition for non-anticipativity of the solution. However, it is not a necessary
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condition for non-anticipativity, and there might be feasible scheduling policies that result in

better solutions.

Model (3.3) employs the expected value as decision criterion, which is in line with the majority of

contributions for NPV maximisation under uncertainty. Sometimes, however, cautious decision

makers might take a more conservative stance and wish to avoid excessive losses in any particular

scenario. Our model can account for individual risk preferences if the task cash flows ζ are

replaced with associated utilities. In this case, model (3.3) maximises the expected (discounted)

overall utility [Fis70]. Note also that the described model allows both the cash flows and the

task durations to depend on the realised scenario. This is desirable as longer task durations

typically imply higher task costs, which themselves have a direct impact on the associated cash

flows. In accordance with the existing body of literature, we disregard resource constraints and

assume a constant discount factor β. Absence of resource restrictions constitutes a compromise

that facilitates tractability of the resulting model. Apart from computational considerations,

one could justify the absence of resource restrictions by the fact that NPV maximisation models

are typically employed in the early stages of the planning process to evaluate the profitability

of an investment opportunity. At this stage, resource constraints may be of minor concern

and can sometimes be dealt with by managerial intervention (e.g., in the context of project

management by acquiring additional resources, shifting holidays or relying on overtime).

A possible variation of our model is to find optimal task delays in the spirit of [Ben06], see

Section 3.2. Instead of target processing times, we would then seek for a scenario-independent

task delay policy that specifies how much to defer task j beyond the expiry of minimum time

lags (i, j) ∈ E+. The resulting model is neither a special case nor a generalisation of our

formulation: for a given problem instance, either model can lead to a superior expected NPV.

In view of exact solution procedures, however, such a task delay formulation seems significantly

more involved than model (3.3).3 In Section 3.5.1, we compare TPT policies with task delay

policies obtained from the two-stage procedure developed in [Ben06]. Finally, if the durations

in model (3.3) do not depend on the realised scenario, then the optimal TPT policy can be

3The reason for this becomes clear when we discuss the nodal bounds of our branch-and-bound scheme.
While our bounds are determined through linear programs, the bounding problems that arise in the task delay
formulation constitute nonconvex problems.
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determined by solving a deterministic NPV maximisation problem with averaged cash flows

ζ ′i :=
∑

s∈S psζ
s
i . This follows from the linearity of the expectation operator.

Let us examine the convexity properties of model (3.3). Leaving the objective function aside for

the moment (we could potentially linearise it by using the variable substitution from [Gri72]),

only constraint set (3.3b) requires investigation. Its right-hand sides are convex but generically

not affine as they constitute maxima of affine functions. Thus, (3.3b) leads to a nonconvex set

of feasible solutions. We cannot replace the equalities by greater or equal constraints, however,

as otherwise non-anticipativity can be violated in the presence of network tasks with cash

outflows. To illustrate this, let us assume that ζsj < 0 for (j, s) ∈ V × S. Ceteris paribus, it

would be beneficial to start task j in scenario s at the latest possible time consistent with all

precedence relations, that is, at time infk∈V
{
ysk − dsjk : (j, k) ∈ E

}
. As this time can exceed

both maxi∈V
{
ysi + dsij : (i, j) ∈ E+

}
and rj , such a decision would anticipate the realised

scenario and as such violate causality.

Figure 3.1: Stochastic NPV maximisation problem with two scenarios. The numbers attached
to the arcs denote the values of the precedences, while the numbers attached to the nodes
represent cash flows. In both cases, the first (second) number refers to the value in scenario 1
(2). Node 4 represents a dummy task that signalises the completion of all network tasks.

Figure 3.2: Gantt charts for the scenario-wise optimal schedules (left) and the TPT schedule
r = (0, 0, 0, 0) (right). The horizontal axis displays the elapsed time, while the vertical axis
lists the precedence relations. Arrows indicate the task start times.

The nonconvexity of problem Υ can also be illustrated by the temporal network in Figure 3.1.
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For two scenarios, p = (0.5, 0.5), ∆ = 20 and any β > 0, the scenario-wise optimal (i.e.,

anticipative) solutions y1 and y2 are visualised on the left side of Figure 3.2. We see that task

2 is started as early as possible in scenario 1 as it leads to a cash inflow. The same task starts

as late as possible in scenario 2, however, since it leads to a cash outflow there. The right part

of Figure 3.2 shows the (non-anticipative) schedules stipulated by TPT vector r = (0, 0, 0, 0).

Set ϕ(λ) := f((0, λ, 0, 0), yλ), λ ∈ [0, 16], where yλ denotes the unique task start time vector

that satisfies ((0, λ, 0, 0), yλ) ∈ YΥ for a given λ. For a sufficiently large β, ϕ has zero slope for

λ ∈ [0, 2) (changing r2 has no impact), a negative slope for λ ∈ (2, 5) (the start time of task 2 is

postponed in scenario 1), a positive slope for λ ∈ (5, 8) (task 2 is postponed in both scenarios),

and finally a negative slope for λ ∈ (8, 16] (tasks 2, 3 and 4 are postponed in both scenarios).

Thus, the network’s NPV is neither convex nor concave in r.

In view of the solution approach to be proposed, we require the scenario set S to be of small

cardinality, that is, it should not contain more than 20–30 elements. While this may be seen as

a limitation of our method, we remark that stochastic NPV maximisation problems are known

to be challenging [HDD97, HL05]. As an alternative to our approach, one could try to employ

a scenario-free uncertainty model. Popular scenario-free approaches to optimisation problems

in temporal networks are based on exponentially distributed task durations [BR97, TSS06] or

employ a min-max objective [CGS07, CSS07]. We will discuss min-max resource allocation

problems in temporal networks in Chapter 5, and Chapter 6 studies temporal networks with

Markovian task durations. However, both approaches lead to challenging optimisation prob-

lems themselves, the former one due to the curse of dimensionality in dynamic programming

and the latter one due to the nonconvexity and two-stage nature of model (3.3). Despite its

shortcomings, we thus believe that the proposed approach constitutes a viable tool for the

maximisation of a network’s NPV. In the future, heuristic solution procedures may help to

tackle models with larger scenario sets. Our (exact) solution procedure can be used to assess

the performance of such heuristics.

Suitable task duration and cash flow scenarios can be obtained from task-wise estimates or via

scenario planning techniques. In the former case, alternative outcomes for the duration and the

cash flow of a given task can be determined, for example, by employing three point estimates as
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in the classical PERT model [MRCF59]. The scenario set S then results from the cross product

of all individual task outcomes. Clearly, this approach produces huge scenario sets: even if we

assume that every task contributes only three different scenarios, we end up with a scenario set

of cardinality 3|V |. However, scenario reduction techniques may be used to determine a small

subset of scenarios that describes the aforementioned cross product as well as possible [HKR09,

HR03]. Scenario planning techniques, on the other hand, ask the decision maker to identify the

key drivers that affect the durations and cash flows of all (or many) tasks. In the context of

project management, key drivers could be the weather, commodity prices and future exchange

rates. One can then construct an initial set of scenarios by attaching probabilities to the various

combinations of possible driver outcomes (e.g., via cross-impact analysis [GH68]). The number

of scenarios can subsequently be reduced by clustering techniques. Scenario planning techniques

have gained popularity in both theory [KY97, Sch01] and practise [Sch95].

We close this section with an example that illustrates our problem formulation (3.3).

Example 3.3.1 Consider the temporal network in Figure 3.1, and assume that p = (0.5, 0.5),

the deadline is ∆ = 20, and the discount factor is β = 0.95. In this case, model (3.3) becomes

maximise
r,y

1/2
(
100 · 0.95y11 + 10 · 0.95y12 + 100 · 0.95y13

)
+

1/2
(
100 · 0.95y21 − 50 · 0.95y22 + 100 · 0.95y23

)

subject to r ∈ R
4, y ∈ R

8

y11 = r1, y12 = max
{
y11 + 2, r2

}
,

y13 = max
{
y11 + 10, y12 + 2, r3

}
, y14 = max

{
y13 + 2, r4

}
,

y21 = r1, y22 = max
{
y21 + 5, r2

}

y23 = max
{
y21 + 10, y22 + 2, r3

}
, y24 = max

{
y23 + 2, r4

}
,

y14 ≤ 20, y24 ≤ 20,

r1, r2, r3, r4 ≥ 0.
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As we will show later on in Example 3.4.1, this model is optimised by r̂ = (0, 8, 0, 0) and

(ŷs1, ŷ
s
2, ŷ

s
3, ŷ

s
4) = (0, 8, 10, 12), s ∈ {1, 2}. Thus, the optimal TPT policy assigns a target

processing time of 8 to task 2, while all other tasks should be started as early as possible. The

factual task start times for this policy are 0, 8, 10 and 12 for tasks 1, 2, 3 and 4, respectively,

and they do not depend on the realised scenario. The optimal objective value is f(r̂, ŷ) = 116.96.

Assume now that in either scenario, task 3 must be started at most 7 time units after task 1

has been started. We achieve this by adding a precedence (3, 1) to E with duration (d131, d
2
31) =

(−7,−7). In this case, we would add the constraints

y11 ≥ y13 − 7, y21 ≥ y23 − 7

to the model. The TPT policy r̂ is no longer feasible under this additional constraint.

3.4 Solution Procedure

In the following, we develop a branch-and-bound procedure for the solution of model (3.3).

Branch-and-bound algorithms solve optimisation problems by implicitly enumerating the set

of feasible solutions in a branch-and-bound tree T . Every node of T represents a subset of the

feasible solutions. The tree construction starts at the root node, which represents the entire

set of feasible solutions. Branch-and-bound algorithms iteratively select tree nodes τ ∈ T for

branching. When a node τ is branched, its set of feasible solutions, Yτ , is split into several

subsets whose union coincides with Yτ . Every subset thus generated represents a ‘child’ node

of τ in T . In principle, nodes of T can be split until their associated solution sets reduce (or

converge) to singletons. In order to avoid such a complete enumeration, one calculates bounds

on the optimal objective value achievable at each tree node. A node may then be fathomed as

soon as it is guaranteed that it does not contain any better solution than the best one currently

known. The crucial components of branch-and-bound procedures are the employed bounds, the

branching scheme and the node selection rule, that is, a recipe that specifies which node of T

to split next.
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In our branch-and-bound algorithm we determine an upper bound on the optimal objective

value achievable at tree node τ by maximising f , the objective function of (3.3), over a relaxation

of Yτ that neglects non-anticipativity. This is done by replacing the equalities in (3.3b) by

greater or equal relations. As long as the optimal solution (r, y) to such a relaxation contains

an ysj that satisfies the strict inequality

ysj > max

{
sup
i∈V

{
ysi + dsij : (i, j) ∈ E+

}
, rj

}
,

non-anticipativity is violated (see Sections 2.2.1 and 3.3). In this case, our branching scheme

fixes ysj to either rj or ysi + dsij for one i ∈ V with (i, j) ∈ E+, and every such fixation leads to

a child node of τ .

We now formalise this idea. The relaxed feasible set ZΥ is defined through

ysj ≥ ysi + dsij ∀ (i, j) ∈ E, s ∈ S

ysj ≥ rj ∀ j ∈ V, s ∈ S

ysn ≤ ∆ ∀ s ∈ S

rj ≥ 0 ∀ j ∈ V





⇔ (r, y) ∈ ZΥ. (3.4)

Note that ZΥ constitutes a convex relaxation of YΥ as defined in (3.3). The requirement that

ysj has to equal ysi + dsij for an i ∈ V with (i, j) ∈ E+ or rj will be enforced by restricting (r, y)

to one of the hyperplanes

Zs
ij :=





{
(r, y) : ysj = ysi + dsij

}
for (i, j) ∈ E+, s ∈ S,

{
(r, y) : ysj = rj

}
for i = j ∈ V, s ∈ S,

∅ otherwise.

(3.5)

We identify a tree node τ ∈ T with the hyperplane restrictions it enforces, that is, τ ⊆ V 2×S.

For a given node τ , we define the set of feasible solutions, Yτ , as well as its relaxation, Zτ , as

Yτ = YΥ ∩
⋂

(i,j,s)∈τ

Zs
ij and Zτ = ZΥ ∩

⋂

(i,j,s)∈τ

Zs
ij . (3.6)
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YΥ ⊆ ZΥ implies that Yτ ⊆ Zτ , and hence we obtain an upper bound on the achievable

objective value at node τ by maximising f over Zτ instead of Yτ .

Given a TPT policy r ∈ Rn
+, we define the induced schedule y(r) ∈ Rnm recursively as follows.

ysj (r) := max

{
sup
i∈V

{
ysi (r) + dsij : (i, j) ∈ E+

}
, rj

}
. (3.7)

Remember that the precedence relations in E+ are non-negative valued in all scenarios s ∈ S.

If there is a cycle in E+, then all arcs in the cycle must be associated with zero-valued prece-

dences, for otherwise the network structure is inconsistent (a task cannot be completed before

it is started). Thus, the induced schedule is well-defined. Due to the relation between (3.7)

and (3.3b), ysj (r) equals the factual start time of task j if TPT policy r is implemented and

scenario s is realised. By construction, y(r) satisfies all minimum time lags in every scenario.

If y(r) also satisfies all maximum time lags in every scenario, that is, if (r, y(r)) ∈ YΥ, then we

call r a feasible policy.

With this notation, our solution approach can be described as follows.

Algorithm 3.1 Branch-and-bound scheme for model (3.3).

1. Initialisation. Set L := {τ0} with τ0 = ∅, r∗ := 0, f ∗ := f(r∗, y(r∗)) if r∗ is feasible and

f ∗ := −M otherwise.4

2. Node Selection. If L = ∅ or

max
τ∈L

sup
(r,y)∈Zτ

f(r, y) ≤ f ∗,

then go to Step 5. Otherwise, select a node τ ∈ L with

τ ∈ argmax
τ∈L

sup
(r,y)∈Zτ

f(r, y)

and set L := L \ {τ}.
4Here, M denotes a sufficiently large number, for example M =

∑
s∈S

∑
i∈V

|ζs
i
|.
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3. Bounding. For the node τ selected in Step 2, let

(r̂, ŷ) := argmax {f(r, y) : (r, y) ∈ Zτ}

be a solution to the upper bound problem at τ . If r̂ is feasible and

f(r̂, y(r̂)) > f ∗,

where y(r̂) is defined in (3.7), then set r∗ := r̂ and f ∗ := f(r̂, y(r̂)), that is, a new

incumbent TPT policy has been found.5

4. Branching. Let

Vτ =

{
(j, s) ∈ V × S : ŷsj > max

{
sup
i∈V

{
ŷsi + dsij : (i, j) ∈ E+

}
, r̂j

}}

be the set of task-scenario pairs violating non-anticipativity in (r̂, ŷ). If Vτ 6= ∅, then

select (j, s) ∈ Vτ according to some branching scheme and set

L := L ∪
( ⋃

i∈V :
(i,j)∈E+

{τ ∪ {(i, j, s)}}
)
∪ {τ ∪ {(j, j, s)}} .

Go to Step 2 (next iteration).

5. Termination. If f ∗ 6= −M , then r∗ represents the optimal TPT policy. Otherwise, the

problem is infeasible.

Instead of storing the branch-and-bound tree T explicitly, the algorithm keeps a list L of nodes

that have been constructed by Steps 1 and 4 but not yet selected by Step 2. The relation

between T and L is that τ ∈ T if and only if τ ∈ L at some point during the execution of the

algorithm.

In Step 1, L only contains the root node τ0 = ∅ ⊆ V 2 × S. Hence, all non-anticipativity

5Note that ŷ 6= y(r̂) in general. We will revisit this point later in the text.
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constraints in (3.3b) are relaxed in the beginning. r∗ denotes the best TPT policy found so far,

and f ∗ denotes its expected NPV. We assign an expected NPV of −M to infeasible policies.

In Step 2, we first check whether we can terminate. This is the case if no more nodes are

available or eligible for further processing. Nodes are available for further processing if L is

nonempty. Note that after Step 1, L contains the root node τ0 = ∅ ⊆ V 2 × S and thus is not

empty. A node is eligible for further processing if its upper bound exceeds f ∗, that is, if it can

contain a better TPT policy than r∗. In case L contains eligible nodes, we select a node that

attains the maximal upper bound. In the following, we refer to this node as τ .

In Step 3, we calculate an upper bound on the maximal value of f over Yτ . This bound is

determined by the maximal value of f over the relaxed constraint set Zτ as defined in (3.6),

and the corresponding optimal solution is denoted by (r̂, ŷ). In case r̂ constitutes a feasible

TPT policy, we also obtain a lower bound f(r̂, y(r̂)) on the (globally) best TPT policy. We use

this lower bound to improve (r∗, f ∗) if possible. Note that ŷ 6= y(r̂) in general: ŷ contains the

optimal task start times when neglecting some of the non-anticipativity constraints. As such,

ŷ typically violates non-anticipativity, that is, the set Vτ defined in Step 4 is usually nonempty.

y(r̂), on the other hand, represents the task start times that result from implementing the

TPT policy r̂ (see Section 3.1). Although y(r̂) is non-anticipative by construction, it may

violate some negative-valued precedences (i, j) ∈ E−. In model (3.3), the constraint set (3.3b)

ensures that feasible solutions (r, y) ∈ YΥ satisfy y = y(r). In our branch-and-bound algorithm,

coincidence of ŷ and y(r̂) is established gradually by adding hyperplane restrictions Zs
ij .

In case the upper bound solution (r̂, ŷ) violates non-anticipativity, we select an anticipating

task-scenario pair (j, s) ∈ V × S in Step 4 according to some branching scheme. We analysed

several branching schemes, including rules based on task start times, numbers of incoming

positive-valued precedences and gaps between task start times and their incoming positive-

valued precedences. In our experiments, the following strategy performed best: for every

anticipative task-scenario pair (j, s) ∈ V×S, determine the minimum decrease in objective value

caused by shifting j to the expiration time of any of its incoming positive-valued precedences



44 Chapter 3. Maximisation of the Net Present Value

or to rj in scenario s:

η(j, s) := ps
∣∣ζsj
∣∣min

{
inf
i∈V

{
β ŷ

s
i+d

s
ij − β ŷ

s
j : (i, j) ∈ E+

}
, β r̂j − β ŷ

s
j

}
.

η(j, s) approximates the minimum additional expected costs of ensuring non-anticipativity for

(j, s). We select the anticipative task-scenario pair (j, s) with maximal η(j, s). The hope is that

this greedy selection rule leads to a fast decrease of the nodal upper bounds. Having selected

a pair (j, s) ∈ V × S, we create one child node for every possible fixation of ysj to one of its

predecessors i ∈ V , (i, j) ∈ E+. We also create a child node that fixes ysj to rj. These new

child nodes τ ∪ {(i, j, s)} and τ ∪ {(j, j, s)} are appended to L, and then we go back to Step 2.

After finitely many iterations, L does not contain any further available or eligible nodes in

Step 2. At this point, the algorithm enters Step 5 and delivers either an optimal TPT policy

or establishes the infeasibility of (3.3).

The correctness of our branch-and-bound algorithm is proved in two steps. First, we show that

the algorithm always terminates after a finite number of iterations. Afterwards, we show that

if the algorithm terminates, then it provides the correct result. The proofs of these assertions

require some additional notation. We already described the correspondence between the node

list L and the implicitly generated branch-and-bound tree T . For any node τ ∈ T we denote

the set of direct descendants by DT (τ). Thus, we have that τ ′ ∈ DT (τ) if and only if τ ′ is added

to L as a result of branching τ in Step 4 of our algorithm. We denote the set of all (transitive)

descendants of τ in T by D∗
T (τ), that is, D∗

T (τ) contains all direct descendants of τ , all direct

descendant of τ ’s direct descendants, etc. Similarly, AT (τ) denotes the set of direct ancestors

of τ (a singleton). We have τ ∈ AT (τ
′) if and only if τ ′ ∈ DT (τ). Finally, A∗

T (τ) refers to all

(transitive) ancestors of τ in T .

We now prove finite termination and completeness of our algorithm.

Theorem 3.4.1 (Termination) For any given problem instance, the algorithm terminates

after finitely many iterations.
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Proof We show that the generated branch-and-bound tree T is finite. By the correspondence

between L and T , the claim then follows immediately. For every τ ∈ T , |DT (τ)| is bounded

by |V |, because an anticipating task-scenario pair (j, s) ∈ V × S can only be fixed to either

one of its preceding tasks i ∈ V with (i, j) ∈ E+ or to rj . If (j, s) ∈ Vτ is branched upon, then

(j, s) /∈ Vτ ′ for any transitive descendant τ ′ ∈ D∗
T (τ), because either (i, j, s) ∈ τ ′ for i ∈ V with

(i, j) ∈ E+ or (j, j, s) ∈ τ ′. As a result, no node τ ∈ T can possess more than nm fixations.

Hence, both the number of levels in T and the fan-out within each level are bounded, which

proves finiteness of T .

Theorem 3.4.2 (Completeness) The algorithm returns f ∗ = −M if the problem is infeasible

and a TPT policy r∗ with

(r∗, y(r∗)) ∈ argmax {f(r, y) : (r, y) ∈ YΥ}

otherwise.

Proof We first show that the algorithm correctly identifies infeasible instances. The algorithm

classifies a problem as infeasible if f ∗ = −M after termination. Note that f ∗ can only change

in Step 3. For this to happen, however, r∗ needs to be feasible, implying that a feasible solution

in Yτ (and, a fortiori, in YΥ) has been found. Thus, for any infeasible instance, our algorithm

returns f ∗ = −M , that is, it correctly recognises the problem’s infeasibility.

If instance Υ is feasible, then it has an optimal solution: the existence of a finite deadline,

together with the assumption of a unique source in the subgraph (V,E+), ensures that YΥ

is compact. The continuous function (3.3a) thus attains its maximum over YΥ due to the

Weierstrass maximum theorem.

We now prove that if the problem is feasible, then the algorithm finds an optimal solution.

To show this, let ropt be an optimal TPT policy. We examine the branch-and-bound tree T

generated by our procedure. Let T ′ :=
{
τ ∈ T : (ropt, y(ropt)) ∈ Yτ

}
, that is, T ′ consists

of all the tree nodes of T that contain the optimal solution (ropt, y(ropt)). Note that T ′ 6= ∅
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since it contains at least the root node of T . We now remove from T ′ all nodes that have

descendants in T ′, that is, T ′′ := T ′ \ ⋃τ∈T ′ A∗
T ′(τ). By construction, T ′′ 6= ∅ holds as well.

Let us fix an arbitrary τ ∈ T ′′. During the execution of our algorithm, τ has either been

selected in Step 2 or not. If it has never been selected, then the inequality f(ropt, y(ropt)) ≤

max {f(r, y) : (r, y) ∈ Zτ} ≤ f ∗ must hold at the end of the algorithm, implying that a TPT

policy at least as good as ropt has been found. In case τ has been selected in Step 2 at some

point, we know by definition of T ′′ that τ has not been branched. This is only possible if Vτ = ∅,

that is, if (r̂, ŷ) ∈ argmax {f(r, y) : (r, y) ∈ Zτ} is non-anticipative, where (r̂, ŷ) denotes the

upper bound for τ determined in Step 3. In that case, however, r∗ has been updated to r̂ in

Step 3 (if necessary) and thus, a TPT policy at least as good as ropt has been identified by our

method.

In our algorithm description, we did not consider any dominance rules. In fact, the dominance

rules that prevail in the literature (see [BDM+99, DH02]) are based on partial schedules. The

tree nodes of T , on the other hand, represent sets of complete schedules which may not yet be

feasible due to their anticipativity. As a result, classical dominance rules such as the ‘superset-

subset’ rule [DH02] are not (directly) applicable. Whether other dominance rules can be used

beneficially to enhance our algorithm remains an area for further research.

Step 3 of our branch-and-bound procedure requires the efficient solution of

max {f(r, y) : (r, y) ∈ Zτ} (Υ(τ))

for nodes τ ∈ T , where Zτ results from the intersection of ZΥ with the hyperplanes indexed by

τ , see (3.4)–(3.6). In the following, we refer to this problem as Υ(τ).
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Υ(τ) is equivalent to the following optimisation problem:

maximise
r,y

∑

s∈S

ps
∑

i∈V

ζsi β
ysi

subject to r ∈ R
n, y ∈ R

nm

ysj





= ysi + dsij if (i, j, s) ∈ τ

≥ ysi + dsij otherwise

∀ (i, j) ∈ E, s ∈ S,

ysj





= rj if (j, j, s) ∈ τ

≥ rj otherwise

∀ j ∈ V, s ∈ S,

ysn ≤ ∆ ∀ s ∈ S,

rj ≥ 0 ∀ j ∈ V.

In analogy to the deterministic model (3.1), we could employ the substitutions tj := βrj , j ∈ V ,

and zsj := βy
s
j , j ∈ V and s ∈ S, to transform this problem into an equivalent linear program.

As we will show in Section 3.4.1, however, Υ(τ) can also be reformulated as a deterministic

NPV maximisation problem. The latter approach improves the performance of our branch-

and-bound procedure since the specialised algorithms reviewed in Section 3.2 outperform linear

programming solvers by several orders of magnitude [SZ01]. In Section 3.4.2 we discuss how

to exploit information from the father node in the branch-and-bound tree when solving Υ(τ).

This allows us to further speed up the calculation of nodal upper bounds as the algorithms

reviewed in Section 3.2 require significantly fewer iterations when warm-started from near-

optimal solutions.

We close this section with an illustration of our branch-and-bound procedure.

Example 3.4.1 Consider again the temporal network in Figure 3.1 with scenario probabilities

p = (0.5, 0.5), deadline ∆ = 20 and discount factor β = 0.95. For this problem instance, the

branch-and-bound algorithm proceeds as follows.

We start with Step 1, where we set L := {τ0} with τ0 = ∅ and r∗ = 0. The induced schedule
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y(r∗) is the early start schedule visualised in Figure 3.2 (right). Since there are no maximum

time lags, this schedule is feasible and leads to an objective value of

1/2
(
100 · 0.950 + 10 · 0.952 + 100 · 0.9510

)
+1/2

(
100 · 0.950 − 50 · 0.955 + 100 · 0.9510

)
≈ 115.40.

Hence, we set f ∗ = 115.40.

The node τ = τ0 ∈ L does not enforce any fixations yet. Hence, the problem sup(r,y)∈Zτ
f(r, y)

in Step 2 is maximised by r̂ = 0 and the anticipative task start time vector ŷ visualised in

Figure 3.2 (left). The objective value is

1/2
(
100 · 0.950 + 10 · 0.952 + 100 · 0.9510

)
+1/2

(
100 · 0.950 − 50 · 0.958 + 100 · 0.9510

)
≈ 118.16.

Since this value exceeds f ∗ = 115.40, we remove node τ0 from L and continue.

In Step 3 we check whether the objective value of the induced schedule y(r̂) exceeds the objective

value of the induced schedule y(r∗). Since r̂ and r∗ are identical, this is not the case.

In Step 4 we identify the set of anticipative task-scenario pairs for τ = τ0 as Vτ = {(2, 2)}. We

create two new nodes τ1 := {(1, 2, 2)} (‘start task 2 in scenario 2 immediately d212 time units

after task 1 has been started’) and τ2 := {(2, 2, 2)} (‘start task 2 in scenario 2 at time r2’) and

add them to L.

We are back in Step 2 with L = {τ1, τ2}. For node τ = τ1, the problem sup(r,y)∈Zτ
f(r, y) is

maximised by r̂ = 0 and the early start schedule ŷ shown in Figure 3.2 (right). We have already

seen that the associated objective value is 115.40 ≤ f ∗ = 115.40. For node τ = τ2, the problem

sup(r,y)∈Zτ
f(r, y) is maximised by r̂ = (0, 8, 0, 0) and the scenario-independent task start times

(ŷs1, ŷ
s
2, ŷ

s
3, ŷ

s
4) = (0, 8, 10, 12), s ∈ {1, 2}. The objective value of this solution is

1/2
(
100 · 0.950 + 10 · 0.958 + 100 · 0.9510

)
+1/2

(
100 · 0.950 − 50 · 0.958 + 100 · 0.9510

)
≈ 116.96.

Since 116.96 > f ∗ = 115.40, we remove τ2 from L and continue.
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For node τ = τ2, we have y(r̂) = ŷ. Hence, f(r̂, y(r̂)) = 116.96, and we update f ∗ and r∗ in

Step 3 to f ∗ = 116.96 and r∗ = (0, 8, 0, 0).

Since the solution (r̂, ŷ) is non-anticipative, we have Vτ = ∅ in Step 4. We do not branch τ2.

Back in Step 2, the list L only contains node τ1. Since the objective value of sup(r,y)∈Zτ
f(r, y)

for τ = τ1 is 115.40 and 115.40 ≤ f ∗ = 116.96, no eligible nodes are left for branching.

We therefore go to Step 5 and return the optimal TPT policy r∗ = (0, 8, 0, 0). Figure 3.3

visualises the branch-and-bound tree that we generated during the execution of our algorithm.

v
1

v
1

v
1

τ0

τ1 τ2

(r, y) ∈ YΥ

LB = 115.40, UB = 118.16

(r, y) ∈ YΥ ∩ Z2
12

LB = 115.40, UB = 115.40
(r, y) ∈ YΥ ∩ Z2

22

LB = 116.96, UB = 116.96

Figure 3.3: Branch-and-bound tree generated in Example 3.4.1. We denote the nodal upper
and lower bounds by ‘UB’ and ‘LB’, respectively. Node τ1 is fathomed because its upper bound
does not exceed the objective value of the incumbent solution, whereas τ2 is fathomed because
its upper bound is attained by a feasible (i.e., non-anticipative) solution.

3.4.1 Efficient Nodal Bounds

Given a stochastic NPV maximisation instance Υ = (G, S, p, ζ, d,∆, β) and a tree node τ ∈ T ,

we define an instance Γ(τ) = (G̃, ζ̃, d̃, β) of the deterministic NPV maximisation problem

(3.2) as follows. G̃ = (Ṽ , Ẽ) represents a network whose node set Ṽ = {0, . . . , ñ} consists

of three categories. The first category encompasses the artificial start node 0, which provides

a unique source for the network. The second category consists of TPT nodes i = 1, . . . , n,

which correspond to the target processing times ri, i ∈ V . The last category encompasses

task-scenario nodes p = sn + i for i ∈ V and s ∈ S, which represent the task start times

in the different scenarios. For a network with two scenarios, for example, nodes n + 1, . . . , 2n

describe the start times of tasks 1, . . . , n in scenario 1, respectively, and nodes 2n+1, . . . , 3n = ñ

describe the corresponding start times in scenario 2. We assign a cash flow of magnitude psζsi

to task-scenario node p = sn+ i, i ∈ V and s ∈ S, while the other nodes in Ṽ do not give rise
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to cash flows. Thus, the node-related data of Γ(τ) can be summarised as follows:

Ṽ := {0, . . . , ñ} with ñ = n(m+ 1), (3.8)

ζ̃p :=





psζ
s
i if p = sn + i, i ∈ V and s ∈ S,

0 otherwise.

(3.9)

We now construct the precedences Ẽ of Γ(τ). We establish zero-valued precedences between

the artificial start node 0 and all TPT nodes i = 1, . . . , n to ensure non-negativity of the

solution. Next, we add zero-valued precedences between the TPT nodes i = 1, . . . , n and the

corresponding task-scenario nodes p = sn+ i, s ∈ S. This guarantees that tasks are not started

before their TPTs. For every precedence (i, j) ∈ E, we add to Γ(τ) a precedence of value dsij

between p = sn + i and q = sn + j for every scenario s ∈ S. This ensures that Γ(τ) obeys the

original precedence relations of Υ in all scenarios. Fixations (i, j, s) ∈ V 2 × S are modelled as

tight maximum time lags between the respective nodes in Ṽ . Satisfaction of the deadline ∆,

finally, is ensured by adding maximum time lags of duration ∆ between 0 and sn + n for all

scenarios s ∈ S.

Summing up, Ẽ and d̃ are defined as follows.

Ẽ := {(0, i) : i = 1, . . . , n} ∪ {(i, sn+ i) : i ∈ V, s ∈ S}

∪ {(sn + i, i) : (i, i, s) ∈ τ} ∪ {(sn+ i, sn+ j) : (i, j) ∈ E, s ∈ S} (3.10)

∪ {(sn + j, sn+ i) : (i, j, s) ∈ τ, i 6= j} ∪ {(sn+ n, 0) : s ∈ S} ,

d̃pq :=





dsij if p = sn + i, q = sn+ j, (i, j) ∈ E and (j, i, s) /∈ τ,

−dsji if p = sn + i, q = sn+ j, (j, i) ∈ E and (j, i, s) ∈ τ,

−∆ if p = sn + n, q = 0 and s ∈ S,

0 otherwise.

(3.11)

Note that in case both an ordinary precedence (inherited from Υ) and a fixation exist between

two nodes in Ṽ , the latter constraint must be more restrictive. Hence, the definition of d̃ ignores
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the precedence from Υ in such cases.

Example 3.4.2 The construction of Γ(τ) for a small example network and τ0 = ∅ (the root

node of T ) is shown in Figure 3.4, while the fixation process is illustrated in Figure 3.5.

Figure 3.4: For the stochastic NPV maximisation instance in the left chart (only the network
structure is shown), the deterministic NPV maximisation problem Γ(τ0) with τ0 = ∅ is visualised
on the right side. 0 represents the artificial source, 1, . . . , 4 the TPT nodes and 5, . . . , 12 the
task-scenario nodes. The precedences (8, 0) and (12, 0) enforce the deadline ∆.

p jq p jq
d̃pq = dsij = 1

d̃qp = dsji = −2

ỹp ≥ ỹq − dsij d̃pq = dsij = 1

d̃qp = −dsij = −1

Figure 3.5: For i, j ∈ V with a minimum time lag (i, j) ∈ E+ of duration 1 and a maximum
time lag (j, i) ∈ E− of duration 2 in scenario s ∈ S, the left chart visualises the corresponding
subgraph of G̃ with p = sn + i and q = sn + j. Conducting the fixation (i, j, s) replaces the
value of precedence (q, p) ∈ Ẽ as shown on the right side.

The following theorem establishes the link between Υ(τ) and Γ(τ).

Theorem 3.4.3 Consider a problem instance Υ = (G, S, p, ζ, d,∆, β), a tree node τ ∈ T and

the deterministic NPV maximisation problem Γ(τ) = (G̃, ζ̃, d̃, β) as defined in (3.8)–(3.11). Let

ỹ be an optimal solution to Γ(τ), where ỹp denotes the start time of task p ∈ Ṽ . Then

(ỹ1, . . . , ỹñ) ∈ argmax {f(r, y) : (r, y) ∈ Yτ} .

Proof Under the natural identification

((ỹ1, . . . , ỹn), (ỹn+1, . . . , ỹñ)) = ((r1, . . . , rn), (y1, . . . , ynm)) = (r, y),
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the feasible sets of Γ(τ) and Υ(τ) coincide. Furthermore, the objective value of ỹ in Γ(τ) equals

the objective value of (r, y) in Υ(τ).

Example 3.4.3 Consider the branch-and-bound node τ1 that is generated in the solution of the

stochastic NPV maximisation problem in Example 3.4.1. Figure 3.6 visualises the deterministic

NPV maximisation problem Γ(τ1) for this node.

The desired instance Γ(τ1) of the deterministic NPV maximisation problem (3.2) is

maximise
y

50 · 0.95y5 + 5 · 0.95y6 + 50 · 0.95y7+

50 · 0.95y9 − 25 · 0.95y10 + 50 · 0.95y11

subject to y ∈ R
13

y1 ≥ y0, y2 ≥ y0, y3 ≥ y0, y4 ≥ y0,

y5 ≥ y1, y9 ≥ y1, y6 ≥ y2, y10 ≥ y2,

y7 ≥ y3, y11 ≥ y3, y8 ≥ y4, y12 ≥ y4,

y6 ≥ y5 + 2, y7 ≥ y5 + 10, y7 ≥ y6 + 2, y8 ≥ y7 + 2,

y10 ≥ y9 + 5, y11 ≥ y9 + 10, y11 ≥ y10 + 2, y12 ≥ y11 + 2,

y9 ≥ y10 − 5,

y0 ≥ y8 − 20, y0 ≥ y12 − 20,

y0 = 0.

The optimal solution to this problem is (y0, . . . , y12) = (0, 0, 0, 0, 0, 0, 2, 10, 12, 0, 5, 10, 12) with

objective value 115.40, see Example 3.4.1.
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Figure 3.6: Deterministic NPV maximisation problem Γ(τ1) associated with the branch-and-
bound node τ2 in Example 3.4.1. Node 0 represents the artificial source, 1, . . . , 4 the TPT nodes
and 5, . . . , 12 the task-scenario nodes. A dotted arc (p, q) refers to a precedence with duration
dpq = 0. Nodes 0, . . . , 4 have zero cash flows (not shown).

3.4.2 Warm-Start Technique

A non-root node τ ′ differs from its ancestor τ ∈ AT (τ
′) by exactly one fixation. Hence, an

optimal solution to Υ(τ) is likely to be very similar to an optimal solution to Υ(τ ′). This

property carries over to the optimal solutions to the deterministic NPV maximisation problems

Γ(τ) and Γ(τ ′). This similarity of nodal solutions is typical for branch-and-bound algorithms

and is exploited by warm-start techniques. In our context, this means that at node τ ′ we should

warm-start the algorithm developed in [NZ00] (hereafter referred to as NZ) with an optimal

solution to Γ(τ). The hope is that NZ requires significantly fewer iterations than if we apply it

to a standard initial solution.

Let us elaborate this idea. Assume that τ ′ \ τ = {(i, j, s)} for (i, j) ∈ E+; the case τ ′ \ τ =

{(j, j, s)} for j ∈ V is analogous. The precedence that relates i and j is more constraining in

Γ(τ ′) than it is in Γ(τ). The modified precedence is not fulfilled by the optimal solution found

for Γ(τ), for otherwise (i, j, s) /∈ Vτ in Step 4 of our branch-and-bound algorithm and hence

(i, j, s) /∈ τ ′ \ τ . Since NZ is a variant of the network simplex algorithm, it has to be started

from a (primal) feasible solution. If we enforced the fixation (i, j, s) ∈ τ ′\τ as a hard constraint,

then we would need to specify a feasible initial solution to Γ(τ ′). Instead, we incorporate it
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implicitly by penalising its violation in the objective function:

gπ(ỹ) := g(ỹ) + π(β ỹsn+j − β ỹsn+i+dsij ).

Here, g denotes the objective function of problem Γ(τ), while gπ constitutes the penalised func-

tion for some penalty factor π > 0. Note that ỹsn+j ≥ ỹsn+i+ dsij holds for all feasible solutions

to Γ(τ) and Γ(τ ′) because the respective minimum time lag is enforced in both problems. Hence,

gπ(ỹ) ≤ g(ỹ) for all feasible solutions ỹ, and gπ(ỹ) = g(ỹ) if and only if ỹsn+j = ỹsn+i+ dsij, that

is, if ỹ obeys the new fixation (i, j, s) ∈ τ ′ \ τ . Note also that the penalised objective function

gπ can be obtained from g by merely modifying two cash flows in Γ(τ):

ζ̃π,p :=





ζ̃p − πβd
s
ij if p = sn+ i,

ζ̃p + π if p = sn+ j,

ζ̃p otherwise.

(3.12)

Hence, we can solve the penalty formulation by applying NZ to the slightly modified problem

instance Γπ(τ) = (G̃, ζ̃π, d̃, β). The following theorem shows how this penalty formulation

relates to Γ(τ ′):

Theorem 3.4.4 Consider a problem instance Υ = (G, S, p, ζ, d,∆, β) and τ, τ ′ ⊆ V 2 × S,

where Zτ 6= ∅ and τ ′ \ τ = {(i, j, s)}, (i, j) ∈ E+. Moreover, let Γπ(τ) = (G̃, ζ̃π, d̃, β) be the

modified deterministic NPV maximisation problem that penalises the violation of (i, j, s) ∈ Vτ

in the branch-and-bound node τ . There exists a π0 ≥ 0 such that for all π ≥ π0, the optimal

solution ỹ to Γπ(τ) found by NZ satisfies

(i) ỹsn+j = ỹsn+i + dsij ⇐⇒ ỹ ∈ argmax Γ(τ ′);

(ii) ỹsn+j 6= ỹsn+i + dsij ⇐⇒ Γ(τ ′) is infeasible.

Proof We can assume that ZΥ ∩ Zs
ij 6= ∅ since otherwise the assertion trivially holds for any

π0 ≥ 0. Grinold’s variable substitution transforms Γ(∅) to an equivalent LP. Being a derivate
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of the network simplex algorithm, NZ always terminates at a vertex of this LP, which in turn

corresponds to a vertex of ZΥ [NZ00]. Moreover, by the nature of the hyperplane fixations, the

application of NZ to Γ(τ) (and hence Γπ(τ)) always terminates in a vertex of ZΥ, too. Let V

be the finite set containing all vertices of ZΥ that do not lie on the hyperplane Zs
ij . We can

assume V 6= ∅ since otherwise the assertion is trivially satisfied for any π0 ≥ 0. For every v ∈ V,

we can determine a finite πv such that for all π ≥ πv,

gπ(v) < min
{
gπ(z̃) : z̃ ∈ ZΥ ∩ Zs

ij

}
.

Existence of πv follows from the fact that ZΥ is compact and g is bounded.

Set π0 = maxv∈V πv and choose any π ≥ π0. If the optimal solution ỹ to Γπ(τ) lies on the

hyperplane Zs
ij, then it is optimal among all elements of Zτ ∩ Zs

ij. Since gπ coincides with g

on Zs
ij, ỹ must then be optimal for Γ(τ ′). If, on the other hand, ỹ /∈ Zs

ij , then the choice of

π implies that Zτ ∩ Zs
ij = ∅, which is equivalent to Zτ ′ = ∅. The reverse implications, finally,

hold by definition.

In practise, we do not need to choose π explicitly to solve Γπ(τ). Indeed, if we employ NZ to

solve Γπ(τ), then the values of all cash flows and dual variables in the algorithm description (see

[NZ00]) are of the form πa+ b for a, b ∈ R. Hence, we can employ a variant of NZ that operates

on tuples of cash flows and dual variables, where tuple (a, b) corresponds to the value πa+ b for

some undefined but sufficiently large π. The algorithm description from [NZ00] remains valid,

the only differences being that (i) operations on cash flows and dual variables are performed

entry-wise and (ii) the variable that leaves the dual basis is chosen in lexicographic order. This

is reminiscent of the Big-M method in linear programming [Tah97].

Once we have obtained an optimal solution to Γπ(τ), we can either discard tree node τ ′ (in

case infeasibility has been detected) or update the time lag d̃pq, p = sn + j and q = sn + i,

indexed by τ ′ \ τ = {(i, j, s)}. This allows us to use the optimal solution to Γπ(τ) not just for

the upper bound of node τ ′, but also as an initial solution to τ ′′ ∈ DT (τ
′). The imposition of a

tight maximum time lag between p and q entails that we do not require the introduced penalty
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terms anymore but can rather reuse the original cash flows ζ in subsequent iterations of the

branch-and-bound procedure.

We close this section with an example of the warm-start procedure.

Example 3.4.4 Consider the solution to the deterministic NPV maximisation problem Γ(τ1)

associated with the branch-and-bound node τ1 in Example 3.4.1. In comparison to the problem

Γ(τ0) associated with the root node of the branch-and-bound tree, Γ(τ1) contains an additional

precedence (10, 9) of value d̃10,9 = −5, see Figure 3.6. The optimal solution ỹ to Γ(τ0) satisfies

ỹ9 = 0 and ỹ10 = 8 and therefore violates the new precedence constraint ỹ9 ≥ ỹ10 − 5 contained

in Γ(τ1). According to Theorem 3.4.4, we can enforce this new constraint by changing the cash

flows associated with tasks 9 and 10 to

ζ̃π,9 = 50− 0.95−5π and ζ̃π,10 = −25 + π.

For π = 1,000, for example, we obtain ζ̃π,9 = −723.78 and ζ̃π,10 = 975. This choice of cash

flows guarantees that ỹ10 = ỹ9+5 in any optimal solution, that is, task 10 will be started exactly

5 time units after task 9 has been started. Note that the combined cash flow of tasks 9 and 10

evaluates to

ζ̃π,9 β
ỹ9 + ζ̃π,10 β

ỹ10 = −723.78 · 0.95ỹ9 + 975 · 0.95ỹ9+5 = 30.66 · 0.95ỹ9.

This cash flow is identical to the original combined cash flow of tasks 9 and 10 if they are started

in immediate succession:

ζ̃9 β
ỹ9 + ζ̃10 β

ỹ10 = 50 · 0.95ỹ9 − 25 · 0.95ỹ9+5 = 30.66 · 0.95ỹ9

Hence, the changes in ζ̃π do not influence the task start times beyond the desired fixation.



3.5. Numerical Results 57

3.5 Numerical Results

In the first part of this section, we compare TPT policies with alternative policy classes for

the stochastic NPV maximisation problem. In the second part, we report on the scalability of

our solution procedure and assess its performance as compared to CPLEX, a general purpose

optimisation package.

Apart from the illustrative example at the beginning of Section 3.5.1, all considered test

instances are randomly constructed with an adapted version of the network generator Pro-

Gen/max [NSZ03], which is known to generate difficult network instances. For the construc-

tion of the network structure, we adopt the parameter values used in the UBO instances of the

PSP/max benchmark library6 (scaled to the respective problem size). For every scenario, the

task cash flows are sampled from a uniform distribution on [−100, 100], while the durations of

the minimum time lags are selected from a uniform distribution with support [1, 10]. As for the

maximum time lags, let δsij denote the start time difference between tasks i and j in scenario

s ∈ S of the early start schedule. If the network structure (as obtained from ProGen/max)

prescribes a maximum time lag between i and j, then we set its duration in scenario s to θijδsij ,

where θij is chosen from a uniform distribution with support
[
θ, θ
]
. The parameters θ and θ

describe the tightness of maximum time lags; their values will be specified later. Similarly, we

choose a value of θmaxs∈S ∆
s for the deadline, where ∆s denotes the minimum makespan for

scenario s ∈ S and θ is sampled from a uniform distribution on
[
θ, θ
]
. The described generation

procedure ensures that feasible TPT policies exist for all instances. Throughout this section,

we employ a discount factor of 0.9675.

3.5.1 TPT Policies and Alternative Problem Formulations

Consider the example network encoded through the data in Table 3.1 and Figure 3.7. In

order to obtain the corresponding problem instance Υ (see Section 3.3), we apply the following

transformations: (i) we discount the cash flows to the task start times; (ii) we convert the

6See http://www.wior.uni-karlsruhe.de/LS Neumann/Forschung/ProGenMax.
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maximum time lags to minimum time lags between the task start times; and (iii) we introduce

an artificial sink node. The resulting network is illustrated in Figure 3.8.

scenario 1 scenario 2 scenario 3
δ1i z1i ζ1i δ2i z2i ζ2i δ3i z3i ζ3i

task 1 9 -99.6 -74.0 3 61.0 55.2 3 43.9 39.8
task 2 5 80.7 68.4 6 145.7 119.5 4 -126.3 -110.7
task 3 5 -136.4 -115.6 6 4.5 3.7 3 -78.1 -70.7
task 4 7 -28.6 -22.7 8 74.6 57.3 10 172.3 123.8
task 5 6 -32.7 -26.8 3 -92.6 -83.9 8 -37.4 -28.7

Table 3.1: Example temporal network with 3 scenarios and occurrence probabilities p =
(0.3, 0.2, 0.5). Specified are the durations δsi of tasks i ∈ V in scenarios s ∈ S, the corre-
sponding cash flows zsi which are realised at the task completion times and their discounted
equivalents ζsi at the task start times.

For a deadline of ∆ = 30, the optimal TPT policy is r∗ = (0, 12, 18, 3, 22). Here and in the

remainder of this section, we suppress the artificial sink node in the results. Policy r∗ has an

expected NPV of 6.25, which results from NPVs of −121.2, 151.6 and 24.6 in scenarios 1, 2

and 3, respectively. The corresponding schedules are presented in Figure 3.9. We can identify

the tendency to schedule tasks 1 and 4 early, whereas tasks 3 and 5 are delayed. This is in line

with the expected cash flows of the tasks. Note that task 2 has a negative expected cash flow

and should as such be scheduled late. We cannot assign a TPT larger than 12 to it, however,

since otherwise the maximum time lag between tasks 1 and 3 would be violated in scenario 2.

Figure 3.7: Structure of the example network in the notation of [EK92]. For i ∈ V , node is
(if) represents the start (completion) event of task i. The triple of numbers attached to an arc
from node i to node j describes the minimum amount of time that event i must be realised
before event j in the three scenarios: the arc (5s, 3f), for example, stipulates that task 5 must
start at most 7 time units after task 3 has been completed.

Our formulation properly takes into account uncertainty but results in a difficult optimisation
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Figure 3.8: The (standardised) problem instance Υ for the network described in Table 3.1 and
Figure 3.7. The triples of numbers attached to the arcs represent the values of the corresponding
precedences in the three scenarios. The cash flow vector ζ is given in Table 3.1.

problem. Hence, it is tempting to relax the computational burden by solving a simplified model

to obtain a feasible schedule with an acceptable expected NPV. In the following, we compare

TPT policies with three alternative approaches, namely rigid policies, nominal TPT policies and

task delay policies obtained from the two-stage approach in [Ben06], see Section 3.2 (hereafter

referred to as TD policies). Rigid policies stipulate scenario-independent task start times that

satisfy the minimum and maximum time lags in all scenarios. Contrary to TPT policies,

rigid policies never require tasks to be delayed beyond their specified start times. Optimal

rigid policies can be determined by solving a deterministic NPV maximisation problem which

contains the time lags of all scenarios. Nominal TPT policies are obtained from a deterministic

NPV maximisation problem with expected values for both the uncertain time lags and the cash

flows. The solution to this deterministic problem can be interpreted as a TPT policy: every

task is started as early as possible, but never before its start time in the nominal solution.

Even if the optimisation problem which determines an optimal nominal policy is feasible, the

resulting TPT policy may be infeasible due to the use of expected time lags. Note that by

construction, both rigid and nominal policies form subsets of the class of TPT policies, and as

such they can never lead to better schedules than the optimal TPT policy as determined by

model (3.3). TD policies are discussed in Section 3.2.

For our example, the optimal rigid policy corresponds to the task start vector (0, 10, 16, 9, 22)

and an expected NPV of −9.5. The optimal nominal policy is r∗ = (0, 14.7, 19.4, 4.8, 23.6);

this policy is infeasible, however, because the deadline is violated in scenarios 1 and 3, and

the maximum time lag between tasks 1 and 3 is exceeded in scenarios 2 and 3. Hence, the

nominal policy leads to infeasible schedules in all scenarios. The TD policy, finally, results in
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Figure 3.9: Gantt charts for the optimal TPT policy. The horizontal axis represents the
elapsed time, while the vertical axis lists the network tasks. Arrows between the tasks indicate
ordinary (finish–start) precedences, whereas maximum time lags are visualised by bars above
the respective chart.

an expected NPV of 3.7.

Let us now determine schedules for a whole range of deadlines. Plotting the expected NPVs

versus the underlying deadlines results in a curve that can be interpreted as the efficient frontier

of the respective policy class. The efficient frontiers of the TPT, rigid, nominal and TD policies

are shown in Figure 3.10. The TPT schedules are feasible for all considered deadlines and

outperform all other schedules. TD policies perform only slightly worse than TPT policies for

deadlines below 36 time units but become infeasible for larger deadlines. This undesirable effect

is caused by the approximation of a stochastic problem via a deterministic one in the two-stage

approach from [Ben06] (see Section 3.2) and cannot occur for the TPT policies determined

by our procedure. The class of rigid policies provides feasible solutions for deadlines above 29
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time units, but the resulting schedules perform substantially worse than the TPT schedules.

Nominal policies, finally, yield infeasible schedules for all considered deadlines.

Figure 3.10: Efficient frontiers of TPT, rigid and TD policies. Nominal policies result in
infeasible schedules for all considered deadlines.

Since the findings from one single test instance may not be representative, we compare the

performance of the aforementioned policy classes on 500 random test instances. Every instance

accommodates 3 scenarios and 10 tasks and is constructed according to the specification out-

lined in the beginning of Section 3.5 with (θ, θ) = (1.25, 1.50). For the resulting test set, feasible

TPT policies exist in 493 cases (98.6%). In contrast, feasible rigid policies can be determined

for 258 instances (51.6%), feasible nominal policies for 148 instances (29.6%) and feasible TD

policies for 303 instances (60.6%). For those cases where feasible policies have been found, Ta-

ble 3.2 compares the resulting expected NPVs. It becomes apparent that optimal TPT policies

outperform the other policy classes on the chosen test set. Although nominal and TD policies

perform reasonably well on instances where they lead to feasible schedules, they are of limited

use due to frequent infeasibilities.

q0.1 q0.25 q0.5 q0.75 q0.9

rigid policies 5.35% 8.93% 16.02% 30.24% 63.66%
nominal policies 1.71% 2.17% 4.74% 7.64% 13.47%

TD policies −16.65% −3.72% 2.50% 23.43% 49.32%

Table 3.2: NPV gains of TPT policies over rigid, nominal and TD policies. The entries represent
the relative increase in expected NPV when optimal TPT policies are employed instead of the
policy class printed in front of the respective row. qα denotes the α-quantile over the considered
instances.
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3.5.2 Performance of the Branch-and-Bound Procedure

In this section, we investigate the performance of our branch-and-bound procedure and compare

it with CPLEX 11.2, a state-of-the-art mixed-integer linear programming solver.7 We also

analyse the change in complexity when some of the problem parameters are varied.

We first generate random test instances of problem (3.3) with 10 scenarios, (θ, θ) = (1.25, 1.5)

and 10, 20, . . . , 50 tasks (minimum time lags) according to the specification in the beginning

of Section 3.5. For every network size, we solve 100 instances with an implementation of our

branch-and-bound procedure and CPLEX 11.2 on a quad-core Intel Xeon system with 2.33GHz

clock speed. In order to solve (3.3) with CPLEX, we reformulate constraint set (3.3b) via special

ordered sets of type 1 [Wil99] to obtain a mixed-integer linear program. For every instance, we

limit the runtime of both CPLEX and our procedure to 10 minutes and allow an optimality

gap of 1%. In case an instance is not solved within this time, the respective optimisation run

is considered unsuccessful and we record the incurred optimality gap. Table 3.3 summarises

the test results. As expected, larger problem instances are more difficult to solve with either

method. Nevertheless, our procedure was able to find optimal solutions for the majority of

the test instances. In cases where an optimal solution could not be secured, the procedure

determined feasible TPT policies with moderate optimality gaps. CPLEX, on the other hand,

failed to find feasible TPT policies for a large percentage of the test instances. Indeed, 10

minutes runtime only proved sufficient for small instances with up to 20 tasks. We conclude

that the proposed branch-and-bound procedure compares favourably to standard mixed-integer

linear programming solvers.

We now investigate the impact of two important problem parameters, namely the number of

scenarios and the tightness of maximum time lags. To this end, we first consider test instances

with 30 tasks, (θ, θ) = (1.25, 1.5) and 5, 10, 20 and 30 scenarios. Table 3.4 summarises the

performance of our branch-and-bound procedure for this test set. As expected, the difficulty of

problem (3.3) increases with the number of scenarios. Although the time limit is not sufficient

to guarantee optimality for problem instances with 20–30 scenarios, our solution procedure

7CPLEX is a registered trademark of IBM ILOG.
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runtimes optimality gaps
size opt. feas. no sol. q0.25 q0.5 q0.75 q0.25 q0.5 q0.75

10 98 2 0 0.00s 0.04s 0.57s 1.3% 1.5% 1.5%
100 0 0 0.08s 0.13s 0.41s n/a n/a n/a

20 82 18 0 0.09s 0.70s 47.29s 3.1% 5.8% 7.8%
79 11 10 2.20s 20.20s 398.96s 5.5% 172.8% ∞

30 74 26 0 0.11s 10.84s 600.00s 2.1% 4.9% 10.3%
27 12 61 256.42s 600.00s 600.00s ∞ ∞ ∞

40 73 27 0 0.14s 13.04s 600.00s 1.9% 6.0% 11.5%
19 6 75 600.00s 600.00s 600.00s ∞ ∞ ∞

50 69 31 0 0.11s 15.36s 600.00s 3.0% 5.0% 14.3%
2 2 96 600.00s 600.00s 600.00s ∞ ∞ ∞

Table 3.3: Performance of our procedure and CPLEX for various instance sizes. Columns 2–
4 describe the numbers of instances for which optimal TPT policies, suboptimal but feasible
TPT policies, and no feasible TPT policies have been determined, respectively. The remaining
columns document the runtimes and optimality gaps (in order) by the 0.25, 0.5 and 0.75-
quantiles. For every instance size, the first and second row describe the results of our procedure
and CPLEX, respectively.

consistently determined feasible TPT policies with moderate optimality gaps. Let us now

consider problem instances with 30 tasks, 10 scenarios and varying values of (θ, θ). Table 3.5

shows that tighter maximum time lags (and deadlines) increase the difficulty of problem (3.3).

Further investigations revealed that tighter maximum time lags reduce the set of feasible TPT

policies, which in turn entails that the solutions (r̂, ŷ) corresponding to the nodal upper bounds

(see Step 3 of our branch-and-bound procedure) are more likely to violate constraint set (3.3b).

This, however, results in a less effective pruning of the branch-and-bound tree T since the nodal

upper bounds differ largely from the objective values of feasible TPT policies. Nevertheless, our

solution procedure determined optimal or near-optimal TPT policies for all considered settings.

runtimes optimality gaps
scenarios opt. feas. no sol. q0.25 q0.5 q0.75 q0.25 q0.5 q0.75

5 98 2 0 0.01s 0.14s 1.6s 4.5% 4.8% 4.8%
10 74 26 0 0.11s 10.84s 600.00s 2.1% 4.9% 10.3%
20 34 66 0 58.90s 600.00s 600.00s 3.0% 6.6% 21.1%
30 22 77 1 600.00s 600.00s 600.00s 4.2% 7.0% 20.7%

Table 3.4: Impact of the number of scenarios (first column) on the complexity of the problem
instances. All instances exhibit 30 tasks and (θ, θ) = (1.25, 1.5).
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runtimes optimality gaps
tightness opt. feas. no sol. q0.25 q0.5 q0.75 q0.25 q0.5 q0.75

[1.00, 1.25] 67 33 0 0.79s 21.55s 600.00s 2.7% 5.1% 13.2%
[1.25, 1.50] 74 26 0 0.11s 10.84s 600.00s 2.1% 4.9% 10.3%
[1.50, 1.75] 78 22 0 0.09s 8.62s 282.06s 1.8% 4.9% 7.9%
[1.75, 2.00] 88 12 0 0.01s 0.25s 11.05s 2.0% 4.9% 6.6%

Table 3.5: Impact of the maximum time lag and deadline tightness (θ, θ) on the complexity of
the problem instances. All instances exhibit 30 tasks and 10 scenarios.

3.6 Conclusion

We proposed a model for maximising the expected NPV of a temporal network under un-

certainty and developed a branch-and-bound algorithm for its solution. We illustrated the

favourable performance of the model and demonstrated the superiority of the suggested solu-

tion algorithm over a state-of-the-art solver.

There is common agreement that in practise, NPV maximisation problems in temporal networks

are affected by significant uncertainty. Our tests reveal that a rigorous treatment of uncertainty

is necessary in order to avoid infeasible or severely suboptimal schedules. Properly accounting

for uncertainty, however, inevitably leads to computationally challenging problems, even when

resource restrictions are disregarded. Thus, the results in this chapter highlight the need for

suitable heuristics that allow the approximate solution of large-scale (and possibly resource

constrained) problem instances.

Apart from the development of heuristic solution procedures, two promising directions for fu-

ture work can be identified. Firstly, although being a popular decision criterion in the literature

on temporal networks, maximising the expected NPV seems to be in conflict with the risk aver-

sion of decision makers. This problem can be alleviated by mapping cash flows to utilities (see

Section 3.3), but the resulting decision criterion seems difficult to interpret. Our model and

parts of the suggested solution procedure can be extended to maximise the conditional value-

at-risk of the NPV. The conditional value-at-risk is a popular and well understood risk measure

in the financial literature [RU00]. Secondly, formulating and solving the stochastic NPV max-

imisation problem as a multi-stage recourse problem with decision-dependent structure would
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be of interest. Albeit intractable for realistic problem sizes, such a formulation would allow the

precise quantification of suboptimality incurred from the restriction to policy classes such as

TPT and task delay policies. We will come back to this point in Chapter 6, where we consider

dynamic NPV maximisation problems.
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Chapter 4

Minimisation of Makespan Quantiles

4.1 Introduction

In this chapter, we consider temporal networks whose task durations are functions of a resource

allocation that can be chosen by the decision maker. The goal is to find a feasible resource

allocation that minimises the network’s makespan. We focus on non-renewable resources, that

is, the resources are not replenished, and specified resource budgets must be met. The resource

allocation model developed in this chapter is primarily suited for project scheduling problems,

and for ease of exposition we will use project scheduling terminology throughout this chapter. In

project scheduling, it is common to restrict attention to non-renewable resources and disregard

the per-period consumption quotas that exist for renewable and doubly-constrained resources,

see Section 2.1. Apart from computational reasons, this may be justified by the fact that

resource allocation decisions are often drawn at an early stage of a project’s lifecycle at which

the actual resource availabilities (which are unpredictable due to staff holidays, illness and other

projects) are not yet known. Thus, the goal of such resource allocation models is to decide on

a rough-cut plan which will be refined later.

The first resource allocation models for project scheduling have been proposed almost 50 years

ago. The basic model is the linear time/cost trade-off problem [Ful61, Kel61], which consid-

ers a single resource and postulates affine relationships between investment levels and activity

67
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durations. The affinity assumption implies that the marginal costs of reducing a task’s dura-

tion do not depend on the current investment level. In reality, however, the marginal costs

typically increase with the investment level because additional time savings are more costly to

achieve (due to reliance on overtime, rented machinery, complex process changes etc.). Indeed,

linear programming theory implies that the assumption of constant marginal costs results in

a pathological resource allocation behaviour: the investment level of most activities will be at

one of the pre-specified investment bounds. This does not reflect reality, where prudent project

managers refrain from depleting their reserves in the planning stage.

In order to overcome this weakness, several nonlinear resource allocation models have been

suggested. A single-resource model with convex quadratic relationships between investment

levels and task durations is presented in [DHV+95]. The resulting quadratic program can be

solved very efficiently. Furthermore, the marginal costs of reducing a task’s duration are in-

creasing, as desired. A resource allocation problem that assigns the single resource ‘overtime’ to

project tasks is formulated in [JW00]. The authors postulate an inverse-proportional relation-

ship between a task’s duration and the amount of overtime spent on that task. Furthermore,

the per-period costs of overtime are assumed to be quadratic in the amount of overtime, which

leads to task expenditures that are linear in the investment levels. With this choice of functions,

the resulting model is convex and can be solved efficiently. Apart from these two prototypical

models, several solution procedures for single-resource models have been been proposed [DH02].

So far we only mentioned single-resource models. By convention, these models concentrate on

the bottleneck resource within a company. In practise, however, one frequently faces situations

where multiple resources (e.g., both labour and capital) are scarce and need careful rationing.

Note that due to market frictions different resources (such as permanent and temporary workers)

are typically not equivalent or exchangeable. Hence, a multi-resource problem cannot generally

be converted to a problem with a single ‘canonical’ resource such as capital. To the best of our

knowledge, the only problem class that accounts for multiple resources is the class of discrete

multi-mode problems [DH02], which also accommodates per-period consumption quotas for the

resources. Multi-mode problems assume that every project task is performed in one of finitely

many different execution modes, and every execution mode implies a predefined per-period
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consumption of every resource. Multi-mode problems are very difficult to solve due to their

combinatorial nature. Firstly, it is well known that consumption quotas per unit time lead to

NP-hard ‘packing’ problems since the early start policy (1.2) is no longer guaranteed to be

feasible, see Section 1.1. Secondly, the number of execution modes per activity is likely to be

exponential in the number of resources. As a result, exact solution techniques are limited to

very small projects, and one typically has to resort to heuristics.

In this chapter, we present a continuous resource allocation model for project scheduling. Con-

trary to existing continuous models, it can accommodate multiple resources. Unlike multi-

mode problems, however, the resulting optimisation model is convex and hence computationally

tractable. The relationship between investment levels and task durations is inspired by microe-

conomic theory, which makes the model justifiable and amenable to economic interpretation.

Note that in practise, some of the resources might be discrete (such as staff or machinery).

In this case, one can either solve our model as a continuous relaxation and use randomised

rounding techniques, or one can treat the respective investment levels as integer variables and

solve the resulting mixed-integer nonlinear program via branch-and-bound techniques.

In practise, some of the parameters of project scheduling problems (most notably the work

contents of the project tasks) are subject to a high degree of uncertainty. One way to account

for this uncertainty is to minimise the expected project makespan, see Chapter 3. However,

as we have discussed in that chapter, the expected value is often not an appropriate decision

criterion due to the non-recurring nature of projects and the high risks involved. Instead, it

may be better to optimise a risk measure that also accounts for the variability of the makespan.

The classical approach to quantify the variability of a random variable is to calculate its vari-

ance [Mar52]. The variance is a reasonable risk measure when the goal is to hedge against the

two-sided deviation from some target value. It is not appropriate, however, when the goal is

to hedge only against the transgression of such a target: in the context of project scheduling

we are concerned about the makespan exceeding a certain value, while we do not want to pe-

nalise downward deviations. Two one-sided risk measures have gained notable popularity: the

value-at-risk (VaR) and the conditional value-at-risk (CVaR). The α-VaR of a random variable
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is defined as its α-quantile. For high values of α (e.g., α ≥ 0.9), minimising the α-VaR of the

project makespan leads to resource allocations that perform well in most cases. In recent years,

VaR has come under criticism due to its nonconvexity, which makes the resulting optimisation

models difficult to solve. Moreover, the nonconvexity implies that VaR is not sub-additive

and hence not a coherent risk measure in the sense of [ADEH99]. Finally, VaR only refers

to a particular quantile of a random variable but does not quantify the degree by which that

quantile is exceeded ‘on average’, if it is exceeded. All three shortcomings are rectified by

CVaR. Roughly speaking, the α-CVaR of a random variable is defined as the expected value

of its (1−α) ∗ 100% ‘worst’ possible realisations. Contrary to VaR, CVaR is a coherent and, a

fortiori, convex risk measure, which makes it attractive for optimisation models. In the context

of project scheduling, however, the advantages of CVaR over VaR seem less clear. Firstly,

although the exact optimisation of the α-VaR is indeed difficult, we will see in Sections 4.3

and 4.4 that we can efficiently approximate this value with high precision. Furthermore, al-

though being a convex risk measure, there is usually no ‘attractive’ closed-form expression for

the CVaR, and one has to rely on costly approximation or bounding techniques. Secondly, in

the context of project scheduling it is not obvious why a risk measure should be sub-additive.

In a financial context, sub-additivity relates the risk of individual asset portfolios to the risk

of their combination. Sub-additivity becomes more difficult to interpret in the context of man-

aging an individual project, however, since such a project cannot be combined with others to

form a project portfolio. Whether a quantification of the risk beyond a certain quantile of the

project makespan is desirable, finally, depends strongly on the contractual agreements between

client and contractor. For an overview of stochastic programming-based project scheduling

techniques, see [HL05].

A popular alternative to the optimisation of VaR and CVaR is robust optimisation, see Sec-

tion 2.2.2. Since robust optimisation in its ‘classical’ form evaluates solutions in view of their

worst-case performance, it can lead to very cautious decisions. To alleviate this problem, robust

optimisation has been extended to incorporate distributional information about the random

variables [CSS07]. Since only partial knowledge is required about the distributions of the un-

derlying random variables, this is particularly attractive for applications in which distributions
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are difficult to estimate. However, this comes at the cost of rather weak approximations of

the real distributions in common cases. Indeed, as we will see in Sections 4.3 and 4.4, the use

of robust optimisation techniques can result in a significant overestimation of the uncertain

makespan of a project under commonly accepted distributional assumptions. Robust optimi-

sation techniques have been applied to project scheduling problems in [CGS07, CSS07].

As part of this chapter, we extend our deterministic resource allocation model to the case

of parameter uncertainty. We consider a two-stage chance constrained problem in which the

resource allocation is chosen here-and-now, whereas the task start times are modelled as a

wait-and-see decision, see Sections 2.2.1 and 2.3. We assume that the first and second moments

of the uncertain parameters are known, and we minimise an approximation of the α-VaR of the

project makespan. We also generalise our formulation to accommodate imprecise knowledge

about the moments. Contrary to existing resource allocation models under uncertainty, we

utilise normal approximations of the task path durations. This allows us to employ a scenario-

free approach which scales favourably with the problem size. At the same time, we will see that

normal approximations describe the uncertain makespan significantly better than some bounds

commonly used in robust optimisation. Normal approximations of task paths have been first

suggested for analysing project makespans [DH02]. Recently, they have been used to obtain

bounds for ‘risk-adjusted’ deterministic circuit design [KBY+07]. To the best of our knowledge,

the use of normal approximations in the optimisation of temporal networks is new. Although

we develop our VaR approximation in the context of project scheduling, our formulation readily

applies to other application areas of temporal networks (e.g., the design of digital circuits and

the handling of production processes) as well.

The remainder of this chapter is organised as follows. In the next section we present our deter-

ministic resource allocation model. In Section 4.3 we assume that some of the problem param-

eters are random, and we minimise an approximation of the α-VaR of the project makespan.

Section 4.4 provides numerical results. In Section 4.5 we illustrate how we can accommodate

imprecise moment information. We also discuss the iterative solution of our stochastic resource

allocation model based on semi-infinite programming principles. We conclude in Section 4.6.
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4.2 Deterministic Resource Allocation

We define a project as a temporal network G = (V,E) whose nodes V = {1, . . . , n} denote the

activities (e.g., ‘conduct market research’ or ‘develop prototype’) and whose arcs E ⊆ V × V

denote the temporal precedences among the activities in finish-start notation, see Section 1.1.

Our goal is to find an optimal resource allocation x ∈ Rmn
+ , where xki denotes the amount

of resource k ∈ K = {1, . . . , m} assigned to activity i ∈ V . Typical project resources are

capital and different categories of labour and machinery. Admissible resource allocations must

satisfy process and budget constraints. We assume that the process constraints are of box

type, c ≤ x ≤ c, where c and c are given vectors in Rmn
+ . The components cki and cki denote the

minimal and maximal investment levels of resource k in activity i, respectively. The budget of

resource k is denoted by Bk, that is, we require that
∑

i∈V x
k
i ≤ Bk for all k ∈ K. Note that

all project resources are assumed to be non-renewable, which has an impact on the admissible

units of measure. The resource ‘labour’, for example, can be measured in terms of man-hours.

This implies that higher numbers of man-hours lead to shorter activity durations, which is

justified by the fact that disproportionally many workers are needed in order to speed up the

task execution. Indeed, if this was not the case, the resource allocation problem would (in

absence of per-period consumption quotas) become trivial.

In multi-resource allocation problems, we need to specify how the joint deployment of several

resources affects the duration of a project activity. In the following, we assume that activity

i’s duration, di : Rm
+ × R++ 7→ R+, is defined as di(xi;ωi) := ωi/ρi(xi). Here, ωi > 0 denotes

the work content of activity i. The work content is dimensionless and can be interpreted as the

level of ‘difficulty’ or ‘complexity’ of performing task i. xi = (x1i , . . . , x
m
i ) ∈ Rm

+ is the subvector

of x that describes the resources spent on activity i. ρi : Rm
+ 7→ R++ maps an investment vector

xi to its associated ‘productivity’. The inverse-proportional relation between di and ρi has

intuitive appeal since higher productivities should result in shorter task durations. As we will

see in the following, this relation preserves desirable properties of the productivity mapping ρi.

We are thus led to the problem of specifying appropriate productivity mappings ρi. Natural

candidates are production functions from microeconomics: a production function determines



4.2. Deterministic Resource Allocation 73

the output quantity (e.g., the lot size of a certain product) of a production process as a function

of the input factors (e.g., the amount of labour and capital employed). In our case, the output

is a productivity, that is, the capacity to carry out work that is related to the completion of

a project task. Two classes of production functions are common in microeconomics since they

describe resource interactions often observed in practise [MCWG95]. Limitational functions

describe production processes which combine the input factors in a fixed proportion (e.g., cars

consist of four tyres and one steering wheel). Substitutional functions, on the other hand,

reflect processes where the abundance of some input factors can be used to partially offset the

shortage of others (e.g., different types of fertiliser in the cultivation of land).

We define limitational productivity mappings as

ρLi (xi) := δimin
{
ψki x

k
i : k ∈ K, ψki > 0

}γi
. (4.1)

δi > 0 describes the efficiency of the process underlying activity i but can be omitted when ωi

is suitably scaled. ψi ∈ Rm
+ characterises the optimal input factor ratio, that is, the investment

weights that lead to zero wastage. The exponent γi > 0 determines the degree of homogeneity:

for any scaling parameter λ ≥ 0 we have di(λxi;ωi) = λ−γidi(xi;ωi). Hence, a λ-fold increase

of every input factor leads to a λγi-fold decrease in task duration. Limitational productivity

mappings have zero substitution elasticity, that is, it is not possible to substitute one input

factor by another. The left part of Figure 4.1 visualises this type of productivity mapping. In

the context of project scheduling, typical examples of limitational productivity mappings are

predefined team structures (e.g., one foreman and five untrained workers form a team) and

the incorporation of machinery or materials (e.g., four workers are required to operate one

flexible manufacturing system). One can show that if all activity durations are determined by

limitational productivity mappings, the allocation problem can be reformulated as a single-

resource problem.

We define substitutional (Cobb-Douglas) productivity mappings as

ρSi (xi) := δi
∏

k∈K

(xki )
ψk
i , (4.2)
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Figure 4.1: Activity duration depending on two input factors which are combined in a limita-
tional (left) and substitutional (right) process. Abundance of a single resource leads to wastage
in the former case, whereas it leads to further time savings in the latter one.

where δi > 0 is again an efficiency parameter that can be transformed away. The exponents

ψi ∈ Rm
+ specify the partial elasticities of di with respect to xi:

∂di(xi;ωi)/∂x
p
i

di(xi;ωi)/x
p
i

=
−(ωi/δi)ψ

p
i (x

p
i )

−ψp
i −1∏

k 6=p (x
k
i )

−ψk
i

(ωi/δi)(x
p
i )

−ψp
i −1∏

k 6=p (x
k
i )

−ψk
i

= −ψpi .

Hence, a marginal increase of xpi leads, ceteris paribus, to a ψpi -fold decrease of di. We further-

more see that di is homogeneous of degree −∑k∈K ψ
k
i ; this term has the same interpretation

as −γi in (4.1). The marginal rate of technical substitution (MRTS) of input p for input q

amounts to

MRTSp,q =
∂di(xi;ωi)/∂x

p
i

∂di(xi;ωi)/∂x
q
i

=
−(ωi/δi)ψ

p
i (x

p
i )

−ψp
i −1∏

k 6=p (x
k
i )

−ψk
i

−(ωi/δi)ψ
q
i (x

q
i )

−ψq
i −1∏

k 6=q (x
k
i )

−ψk
i

=
ψpi x

q
i

ψqi x
p
i

.

Thus, in order to keep activity duration di unchanged, a marginal decrease of xpi requires a

(ψpi x
q
i )/(ψ

q
i x

p
i )-fold increase of xqi . The right part of Figure 4.1 visualises the Cobb-Douglas

productivity mapping. In project scheduling, substitutional productivity mappings arise from

outsourcing decisions (part of an activity is done in-house, the rest is outsourced), flexible

degrees of automation (labour and capital are often substitutes within certain ranges) and

flexible team structures (several untrained workers can replace a trained worker).

In the following, we denote by V L and V S the sets of activities whose durations are determined
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by limitational and substitutional productivity mappings, respectively. We assume that V =

V L ∪ V S and V L ∩ V S = ∅. The resulting deterministic resource allocation model can be

described as follows.

minimise
x,y

yn + dn(xn;ωn) (4.3a)

subject to x ∈ R
mn
+ , y ∈ R

n
+

yj ≥ yi + di(xi;ωi) ∀ (i, j) ∈ E (4.3b)
∑

i∈V

xki ≤ Bk ∀ k ∈ K (4.3c)

xki ∈
[
cki , c

k
i

]
∀ i ∈ V, k ∈ K (4.3d)

In this model, decision vector y ∈ Rn
+ contains the start times of the project activities. The

objective is to minimise the project makespan, which is given by the completion time of activity

n. Constraint (4.3b) enforces the temporal precedences between the project tasks, while con-

straints (4.3c) and (4.3d) enforce the budget and process constraints, respectively. For future

use, we define X :=
{
x ∈ Rmn

+ : x satisfies (4.3c) and (4.3d)
}
.

From a computational viewpoint, the following observation is crucial.

Proposition 4.2.1 (4.3) can be formulated as a convex optimisation model.

Proof Without loss of generality, we can assume that ωn = 0. As a result, the only nonlinearity

occurs in constraint (4.3b). By a slight abuse of notation, we introduce variables d ∈ Rn
+ for

the task durations and replace constraint (4.3b) with

yj ≥ yi + di ∀ (i, j) ∈ E (4.3b′)

diρi(xi) ≥ ωi ∀ i ∈ V. (4.3b′′)

Because we are minimising the project’s makespan, there is always an optimal solution to the

new model that satisfies (4.3b′′) as equality. This establishes equivalence to the original model.
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By construction, diρi(xi) is log-concave in (di, xi) for substitutional activities. For a limitational

activity, we note that

diρ
L
i (xi) ≥ ωi ⇐⇒ diδi(ψ

k
i x

k
i )
γi ≥ ωi ∀ k ∈ K : ψki > 0,

and the left-hand sides of the latter constraint group are log-concave in (di, xi) as well. Thus,

the feasible region of the extended optimisation problem is convex.

We illustrate model (4.3) with an example.
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Figure 4.2: Deterministic resource allocation for an example project. The left chart illustrates
the project network and the activities’ work contents (attached to the nodes). The right chart
presents the project’s makespan as a function of the resource budgets. Two of the curves vary
the budget of one resource while the other budget is fixed at 6. The third curve simultaneously
varies the budget of both resources.

Example 4.2.1 Consider the project in Figure 4.2 (left). Apart from the missing cash flows,

it is identical to the temporal network in Figure 1.1. Now, however, we interpret the num-

bers attached to the network tasks as the work contents of the project activities. We consider

two resources with process constraints xk ∈ [(1/4)e, 2e] and budget constraints
∑

i∈V x
k
i ≤ 6,

k ∈ {1, 2}. Activity 4 has a limitational productivity mapping, whereas all other activities are

described by substitutional productivity mappings:

ρi(xi) :=





min {2x1i , x2i } if i = 4,

(x1i )
2
(x2i )

3/2
otherwise.
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Since the work content attached to the sink node 6 is nonzero, we introduce an auxiliary variable

τ that represents the completion of the project. Using the reformulation from Proposition 4.2.1,

we can then formulate the deterministic resource allocation model (4.3) as follows.

minimise
d,x,y,τ

τ

subject to d ∈ R
6
+, x ∈ R

12
+ , y ∈ R

6
+, τ ∈ R+

y2 ≥ y1 + d1, y3 ≥ y1 + d1, y4 ≥ y2 + d2

y5 ≥ y2 + d2, y5 ≥ y3 + d3, y6 ≥ y4 + d4

y6 ≥ y5 + d5, τ ≥ y6 + d6

d1
(
x11
)2 (

x21
)3/2 ≥ 2, d2

(
x12
)2 (

x22
)3/2 ≥ 5,

d3
(
x13
)2 (

x23
)3/2 ≥ 1, d5

(
x15
)2 (

x25
)3/2 ≥ 3,

d6
(
x16
)2 (

x26
)3/2 ≥ 1,

2d4x
1
4 ≥ 4, d4x

2
4 ≥ 4,

x1, x2 ∈ [(1/4)e, 2e] ,

6∑

i=1

x1i ≤ 6,

6∑

i=1

x2i ≤ 6.

The optimal resource allocation to this problem is x1 ≈ (1.22, 1.38, 0.80, 0.52, 1.03, 1.05) and

x2 ≈ (1.10, 1.25, 0.73, 1.05, 0.93, 0.95), and the associated makespan is τ ≈ 7.85.

Let us now investigate the impact of the resource budgets on the project’s makespan. As Fig-

ure 4.2 (right) shows, the project makespan decreases if we increase the resource budgets. If

we only increase the budget of resource 1, then resource 2 soon becomes a bottleneck and we

cannot decrease the makespan beyond 3.72. This is due to the fact that task 4 requires a larger

amount of resource 2. If we simultaneously increase the budget of both resources, however, we

can avoid this bottleneck by substituting resource 2 with resource 1 in the activities i ∈ V \ {4}.

We obtain the minimal project makespan 2.71 by assigning a budget of 9.8 to both resources.
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We close with three remarks about our deterministic resource allocation model.

Firstly, if all productivity mappings contain rational exponents, model (4.3) can be formulated

as a conic quadratic program [AG03]. Depending on the values of these exponents, this can

lead to performance improvements over solving the model with a general convex optimiser.

Secondly, model (4.3) only accommodates simple productivity mappings. Sometimes one may

require nested productivity mappings that map investment levels and/or productivity values

to (new) productivity values. For example, a trade-off between a limitational labour process

(e.g., foreworkers and untrained labour have to satisfy a proportion of 1:4) and capital (e.g., an

outsourcing decision) can be modelled as a two-stage process. It is easy to extend our scheme to

nested productivity mappings such that the resulting model remains convex and representable

as conic quadratic program.

Finally, the parameter values of the productivity mappings might be unavailable in practise.

Nevertheless, one can assume that at least the type of productivity mapping (limitational or

substitutional) is known for each activity. With this knowledge, one can estimate the missing

parameter values based on a set of expected durations for different resource combinations.

4.3 Resource Allocation under Uncertainty

In the remainder of this chapter, we assume that the vector of work contents ω̃ constitutes

a random vector with finite first and second moments. By convention, all random objects

in this chapter, which are indicated by the tilde sign, are defined on an abstract probability

space (Ω,F ,P). In contrast to the work contents, all other parameters remain deterministic.

For references to models in which the project graph G or the process and budget constraints

are uncertain, see Section 2.3. The parameters of the productivity mappings should in our

view be treated as deterministic numbers. In fact, it is unlikely that the decision maker can

specify meaningful distributions for them. Moreover, the impact of uncertain work contents

can outweigh by far the consequences of not knowing the exact productivity mappings. Thus,

little accuracy might be lost when we assume the latter to be deterministic.
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We consider static resource allocations that are chosen before any of the uncertain work con-

tents is revealed. The corresponding decision vector x is thus a here-and-now decision, see Sec-

tion 2.2.1. Static allocations are frequently required when some resources (such as labour and

machinery) cannot be shifted between different activities on short notice [HL05]. Even if it was

admissible to adapt the resource allocation during project implementation, a static allocation

might still be preferable from the viewpoint of computational tractability, see [GG06, JWW98]

and Chapter 6. Contrary to the resource allocation x, we assume that the activity start times

y are allowed to depend on the realisation of the uncertain work contents ω̃. In the terminology

of Section 2.2.1, y is thus a wait-and-see decision. Indeed, if y was modelled as a here-and-now

decision, we would seek for a schedule of a priori fixed activity start times that can always

(or with high reliability) be met [HL05]. Since we assume absence of consumption quotas per

unit time (see Section 4.1), however, there is no benefit in knowing the activity start times be-

fore project implementation. Thus, fixed start times would unnecessarily increase the project’s

makespan in our setting.

We recall the definition of the value-at-risk at level α (α-VaR) of a random variable X̃:

α-VaR
(
X̃
)
:= min

{
t : P(X̃ ≤ t) ≥ α

}
.

Hence, the α-VaR of X̃ is simply the α-quantile of the distribution of X̃. In the face of

uncertainty about the work contents, our new goal is to minimise the α-VaR of the random

project makespan. This results in the following reformulation of the deterministic model (4.3).

minimise
x,τ

τ (4.4a)

subject to x ∈ R
mn
+ , τ ∈ R+

P


∃ y ≥ 0 :





τ ≥ yn + dn(xn; ω̃n)

yj ≥ yi + di(xi; ω̃i) ∀ (i, j) ∈ E






 ≥ α, (4.4b)

x ∈ X. (4.4c)
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Model (4.4) constitutes a two-stage chance constrained stochastic program, see Section 2.2.1.

The uncertain work contents ω̃ are revealed after the resource allocation x has been chosen,

but before the activity start times y are selected. The joint chance constraint (4.4b) ensures

that τ is a valid upper bound on the project makespan with probability at least α. Since τ is

minimised, model (4.4) indeed minimises the α-VaR of the project makespan.

The fact that y is chosen after all uncertain work contents have been revealed seems to violate

non-anticipativity [Pré95, RS03]: in order to be implementable, the start time yj of activity

j must only depend on work contents that are known at the time when j is started. The

uncertain work content of an activity, however, is only known after its completion. Since model

(4.4) principally allows yj to depend on all components of ω̃, the resulting optimal policy could

therefore be acausal. Fortunately, it turns out that the non-anticipative ‘early start schedule’

is always among the optimal solutions to problem (4.4). Since our project graph is acyclic, the

early start schedule can be calculated recursively via

y∗j (x;ω) = max
{
0, sup

i∈V
{y∗i (x;ω) + di(xi;ωi) : (i, j) ∈ E}

}
∀ j ∈ V

for every fixed x and ω. Note that this schedule is non-anticipative since the start time of an

activity only depends on the completion times of predecessor activities, that is, only knowledge

about work contents of completed activities is required. Furthermore, absence of per-period

resource consumption quotas guarantees that the early start schedule is always feasible. Finally,

since the makespan is a non-decreasing function of the activity start times, the early start

schedule minimises the scenario makespan of the project for any fixed x and ω. Hence, if an

optimal solution to problem (4.4) contains an anticipative start time schedule y, we can replace

it with the (non-anticipative) early start schedule without sacrificing optimality.

Two-stage chance constrained problems of type (4.4) are notoriously difficult to solve [EI07].

Several approximate solution methods have been suggested in the literature, such as sampling-

based variants of the ellipsoid method [EI07, NS06b], convex approximation via CVaR con-

straints [WA08] and methods based on affine decision rules [CSS07]. In the following, we will

consider a reformulation of problem (4.4) that eliminates the two-stage structure. We will
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compare our approach with direct approximations of (4.4) via CVaR constraints in Section 4.4.

Affine decision rules are studied in Chapter 5.

We eliminate the two-stage structure of problem (4.4) by enumerating the activity paths of the

project graph. Apart from reducing the model to a single-stage problem, this approach enables

us to employ normal approximations for the distributions of the path durations that can be

justified by a generalised central limit theorem. It is well known that in the worst case, the

number of activity paths is exponential in the size of the project graph. Since our reformulation

will contain one constraint per activity path, this implies that our model can potentially contain

an exponential number of constraints. As we will see in Section 4.4, however, typical project

instances seem to contain only moderate numbers of activity paths. Furthermore, we will discuss

a technique which alleviates the problem of large path numbers in Section 4.5.2. We caution

the reader that in other application areas of temporal networks, the number of network paths

can be huge. In Chapter 5 we will discuss a technique to minimise the worst-case makespan of

networks with large numbers of paths.

We recall that a path in a directed graph G = (V,E) constitutes a list of nodes (i1, . . . , ip)

such that (i1, i2), . . . , (ip−1, ip) ∈ E. We define an activity path P = {i1, . . . , ip} ⊆ V as a

set of project activities that form a path in the project graph G. We denote by P the set of

inclusion-maximal paths, that is, P contains all activity paths that are not strictly included

in any other path. Observe that a project’s makespan in a given scenario equals the duration

of the most time-consuming path in that scenario. Hence, we can reformulate problem (4.4)

equivalently as follows.

minimise
x,τ

τ (4.5a)

subject to x ∈ R
mn
+ , τ ∈ R+

P

(
τ ≥

∑

i∈P l

di(xi; ω̃i) ∀P l ∈ P
)
≥ α, (4.5b)

x ∈ X. (4.5c)
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Note that (4.5) only involves here-and-now decisions (x, τ) and hence constitutes a single-

stage chance constrained problem. Like constraint (4.4b), however, (4.5b) still constitutes a

joint chance constraint in which the random variables cannot easily be separated from the

decision variables. Apart from some benign special cases, problems of type (4.5) generically

have nonconvex or even disconnected feasible sets, which severely complicates their numerical

solution. Well-structured chance constrained problems that have convex feasible sets for all or

for sufficiently high values of α are discussed in [HS08, Pré95]. One readily verifies, however,

that model (4.5) does not belong to these problem classes. The following example shows that

model (4.5) is indeed nonconvex.

Example 4.3.1 Consider the project G = (V,E) with node set V = {1, . . . , 4} and precedences

E = {(1, 2), (1, 3), (2, 4), (3, 4)}. For the sake of simplicity, let us assume that ω̃1 = ω̃4 = 0

almost surely, ω̃2 and ω̃3 follow independent standard normal distributions and ρi(xi) = xi,

i = 2, 3. The process constraints are 1/2 ≤ x2, x3 ≤ 2, and there is no resource budget. We

want to investigate the convexity of the feasible region

X(α) :=
{
(τ, x2, x3) ∈ R+ × [1/2, 2]2 : P (τ ≥ ω̃2/x2, τ ≥ ω̃3/x3) ≥ α

}

=
{
(τ, x2, x3) ∈ R+ × [1/2, 2]2 : Φ(τx2) Φ(τx3) ≥ α

}
.

It is easy to see that X(α) is generically nonconvex. Indeed, for α = 2/3 one can verify that

(τ 1, x12, x
1
3) = (1, 2, 1/2), (τ 2, x22, x

2
3) = (1, 1/2, 2) ∈ X(2/3), but (τ, x2, x3) = 1/2(τ 1, x12, x

1
3) +

1/2(τ 2, x22, x
2
3) = (1, 5/4, 5/4) /∈ X(2/3).

Recently, sample approximation [LA08] and scenario approximation techniques [CC05, CC06]

have been proposed for solving joint chance constrained problems of type (4.5). Applied to our

setting, however, sample approximation would lead to large mixed-integer nonlinear programs

(even in absence of discrete resources), which themselves constitute difficult optimisation prob-

lems. Likewise, solving (4.5) with scenario approximation techniques would result in a problem

whose number of constraints is proportional to the cardinality of P times the number of sce-

narios employed. Since this product is large in realistic settings, this approach seems primarily
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interesting for small projects.

In this chapter, we employ Boole’s inequality to approximate (4.5) as follows.

minimise
x,β,τ

τ (4.6a)

subject to x ∈ R
mn
+ , β ∈ R

|P|
+ , τ ∈ R+

P

(
τ ≥

∑

i∈P l

di(xi; ω̃i)
)
≥ βl ∀P l ∈ P, (4.6b)

∑

P l∈P

βl ≥ α + (
∣∣P
∣∣− 1), (4.6c)

βl ∈ [0, 1] ∀P l ∈ P, (4.6d)

x ∈ X. (4.6e)

For future use, we define B :=
{
β ∈ R

|P|
+ : β satisfies (4.6c) and (4.6d)

}
. Note that in

(4.6b) we have split up the joint chance constraint of model (4.5) into independent separated

chance constraints. The following proposition shows that model (4.6) constitutes a conservative

approximation of (4.5), see also [NS06a].

Proposition 4.3.1 If (x, β, τ) is a feasible solution to model (4.6), then (x, τ) is also feasible

in model (4.5).

Proof Using the feasibility of (x, β, τ) in problem (4.6), we find that

P

(
τ ≥

∑

i∈P l

di(xi; ω̃i) ∀P l ∈ P
)

= 1− P

( ⋃

P l∈P

{
τ <

∑

i∈P l

di(xi; ω̃i)
})

≥ 1−
∑

P l∈P

P

(
τ <

∑

i∈P l

di(xi; ω̃i)
)

= 1−
∑

P l∈P

[
1− P

(
τ ≥

∑

i∈P l

di(xi; ω̃i)
)]

≥ 1−
∑

P l∈P

(1− βl) = 1−
∣∣P
∣∣ +

∑

P l∈P

βl ≥ α.

Here, the first inequality follows from Boole’s inequality.1

1Boole’s inequality: For a countable set of events A1, A2, . . . ∈ F , P (
⋃

i
Ai) ≤

∑
i
P(Ai).
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Observe that for α < 1, both (4.5) and (4.6) are feasible if and only if X 6= ∅. The optimal

objective value of (4.6), however, is greater than or equal to the optimal objective value of (4.5).

The approximation (4.6) can in principle be tightened by incorporating pairs of activity paths

via Bonferroni’s inequalities [Pré95]. This, however, either requires an a priori fixed choice of

admissible path pairs or a selection procedure that determines optimal pairs in an iterative

manner [Pré95]. The former approach is likely to result in a substantial increase of problem

size, while the latter technique requires the repeated solution of model (4.6). Since Boole’s

approximation turns out to be remarkably tight in our numerical tests (see Section 4.4), the

potential gains of either approach are likely to be outweighed by the increase in complexity.

Hence, we settle for Boole’s inequality in the following.

Model (4.6) still constitutes a generically nonconvex problem. More so, even the verification

whether a given point is feasible requires the evaluation of multi-dimensional integrals and thus

becomes prohibitively expensive for realistic problem sizes. In recent years, several inequalities

from probability theory have been employed to obtain conservative convex approximations

of separated chance constraints [CSS07, NS06a]. We will not pursue these approaches here.

Instead, we simplify constraint (4.6b) by approximating the path durations
∑

i∈P l di(xi; ω̃i),

P l ∈ P , via normal distributions. As we will see, this approximation has theoretical appeal

and leads to superior results in numerical tests.

Let the first and second moments of ω̃ be given by µ = (E [ω̃1] , . . . ,E [ω̃n])
⊤ and Σ ∈ Rn×n,

Σij = Cov (ω̃i, ω̃j). In order to simplify the notation, we furthermore introduce functions

̺l : R
mn
+ 7→ R

n
+, P l ∈ P , with

[̺l(x)]i =





1/ρi(xi) if i ∈ P l,

0 otherwise.

Using this notation, we can express the mean and variance of the path duration
∑

i∈P l di(xi; ω̃i)

as µ⊤̺l(x) and ̺l(x)⊤ Σ ̺l(x), respectively, for each P l ∈ P. Our proposed solution method for

problem (4.6) approximates the duration of path P l by a normal distribution with the same

first and second moments. The following generalised central limit theorem justifies the use of
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such normal approximations in project scheduling under three alternative regularity conditions.

Theorem 4.3.1 Let Pν = {1, . . . , ν}, ν = 1, 2, . . ., be an inclusion-increasing sequence of

project paths with task durations di(xi; ω̃i) = ω̃i/ρi, ρi ∈
[
ρ, ρ
]
, ρ > 0, and ω̃i ≥ ω > 0 P-a.s.

for all i. Assume that the first three moments of ω̃i are finite and satisfy

µi = E(ω̃i) ≤ µ,

σ2
i = Var(ω̃i) ∈ [σ2, σ2] with σ2 > 0

and γ3i = E
(
|ω̃i − µi|3

)
≤ γ3.

Then for any fixed resource allocation, the standardised path durations converge in distribution

to a standard normal distribution as ν −→ ∞ if either of the following three conditions holds:

(C1) The components of ω̃ follow a multivariate normal distribution.

(C2) The components of ω̃ are independent.

(C3) There is a time lag T ∈ R+ such that ω̃i and ω̃j are independent if the start times of tasks

i and j differ by at least T time units. Furthermore, the covariances of dependent work

contents are bounded from above by some ζ ∈ R+ and limν−→∞ ν−1Var(
∑

i∈Pν
di(xi; ω̃i))

exists and is nonzero.

Proof Since the duration of any project path is linear in ω̃, it is normally distributed if ω̃

follows a multivariate normal distribution. Thus, we obtain the stronger result that under

(C1), all path durations are normally distributed.

In the following, we abbreviate di(xi; ω̃i) by d̃i. Under assumption (C2), the assertion follows

from Lyapunov’s central limit theorem [Pet75]. Apart from finite first and second moments

(which are implied by our assumptions), this theorem requires that

lim
ν−→∞

(∑
i∈Pν

E

(∣∣d̃i − E(d̃i)
∣∣3
))1/3

(∑
i∈Pν

Var
(
d̃i
))1/2 = 0.
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Employing the estimates

E

(∣∣d̃i − E(d̃i)
∣∣3
)
≤ 1

ρ3
E
(
|ω̃i − E(ω̃i)|3

)
≤ γ3

ρ3

and

Var(d̃i) ≥
1

ρ2
Var(ω̃i) ≥

σ2

ρ2
,

we obtain (∑
i∈Pν

E

(∣∣d̃i − E(d̃i)
∣∣3
))1/3

(∑
i∈Pν

Var
(
d̃i
))1/2 ≤

(
νγ3/ρ3

)1/3
(
νσ2/ρ2

)1/2 = ν−
1

6

γ ρ

σ ρ
,

and the last term indeed converges to zero for ν −→ ∞.

Under condition (C3), the claim follows from Berk’s central limit theorem for m-dependent ran-

dom variables, see [Ber73]. Translated into our context, this theorem is based on the following

assumptions:

(A1) There is m ∈ N0 such that d̃i and d̃j are independent if |i− j| > m.

(A2) E(|d̃i|3) is uniformly bounded for all i.

(A3) Var(d̃i+1 + . . .+ d̃j) ≤ (j − i)M for some M ∈ R+ and all i, j.

(A4) limν−→∞ ν−1Var(
∑

i∈Pν
d̃i) exists and is nonzero.

By condition (C3), ω̃i and ω̃j are independent if the start times of the respective activities differ

by at least T time units. For i < j, the start time difference between activities i and j amounts

to at least
∑j−1

l=i d̃l ≥ (j − i)ω/ρ. Thus, m = ⌈(Tρ)/ω⌉ is sufficient to guarantee independence

of ω̃i and ω̃j (and hence, of d̃i and d̃j) whenever |i− j| > m, as required by (A1). Concerning

(A2), we see that

0 ≤ E

(∣∣d̃i
∣∣3
)
≤ 1

ρ3
E

(
ω̃3
i

)
.
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Since E(|ω̃i − µi|3) is uniformly bounded for all i, so is E(ω̃3
i ). As for (A3), we note that

Var
(
d̃i+1 + . . .+ d̃j

)
=

j∑

p=i+1

( 1

ρ2p
Var(ω̃p) + 2

min{j,p+m}∑

q=p+1

1

ρpρq
Cov(ω̃p, ω̃q)

)

≤ 1

ρ2

j∑

p=i+1

(
Var(ω̃p) + 2

min{j,p+m}∑

q=p+1

Cov(ω̃p, ω̃q)
)

≤ 1

ρ2

j∑

p=i+1

(
σ2 + 2mζ

)
≤ (j − i)M

for M = (σ2 + 2mζ)/ρ2. Finally, (A4) directly follows from (C3).

Condition (C3) is particularly appealing for project scheduling since typical sources of uncer-

tainty (such as weather conditions, staff holidays and illness) tend to be of temporary nature.

Apart from the requirement that the limit of ν−1Var(
∑

i∈Pν
di(xi; ω̃i)) for ν −→ ∞ exists, the

assumptions of (C3) are rather mild and do not require further explanation. Note that the

aforementioned limit is likely to exist in all but pathological cases. It exists, for example,

when the (co-)variances of dependent work contents can themselves be regarded as random

variables with distributions that satisfy the assumptions of a central limit theorem. However,

the limit does not exist, for example, if the task durations are independent random variables

with variances

Var
(
di(xi; ω̃i)

)
=





a if i ∈ [22k, 22k+1) for some k ∈ N0,

b if i ∈ [22k+1, 22k+2) for some k ∈ N0

with a < b.

Indeed, one can show that in this case

1

ν
Var
(∑

i∈Pν

di(xi; ω̃i)
)




≤ 5
8
a+ 3

8
b if ν = 22k+1 − 1 for some k ∈ N0,

≥ 3
8
a+ 5

8
b if ν = 22k+2 − 1 for some k ∈ N0.

Due to the challenges involved in solving chance constrained problems directly, separated chance

constraints are frequently approximated by conservative convex constraints that can be ex-

pressed in closed form, that is, without sampling. Such approximations are based on inequali-
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ties from probability theory [CSS07, NS06a]. In the following, we compare the quality of several

such approximations with our approach. We consider a project path with five activities and a

fixed resource allocation. Figure 4.3 illustrates the probability density functions of the activity

durations. Note that we deliberately chose distributions that significantly deviate from nor-

mal distributions. Furthermore, a path with five activities is very short and hence seemingly

unsuited for normal approximation. Figure 4.4 compares the error of several popular approx-

imations with our approach for both independent and dependent activity durations. Unlike

these approximations, our approach does not provide a conservative estimate of the path du-

ration. However, it approximates the true cumulative distribution function significantly better

than all other approximations considered. This might be surprising since normal approxima-

tions cannot be expected to correctly predict the tail probabilities of generic random variables.

The reason for the high accuracy observed here is that project path durations are composite

random variables whose components (i.e., the activity durations) are typically of the same or-

der of magnitude and follow smooth, close-to-unimodal distributions. Furthermore, although

activity durations may exhibit interdependencies, durations of tasks that are well separated in

time can essentially be regarded as independent. We remark that for the probabilities of inter-

est (i.e., α ≥ 0.9), the only reasonably tight bound is obtained by Chernoff’s inequality. This

inequality, however, requires complete knowledge about the moment generating function of the

path duration. Compared to this, the normal approximation poses a very modest burden to

the decision maker by requiring information about the first two moments of the work contents.

Summing up, our preliminary conclusion (which will be supported by the numerical results in

Section 4.4) is that normal approximations seem well suited to simplify the chance constraints

appearing in (4.6b).

Under our normal approximation, the individual (pathwise) chance constraints in (4.6b) are

replaced with

Φ

(
τ − µ⊤̺l(x)√
̺l(x)⊤ Σ ̺l(x)

)
≥ βl ⇐⇒ τ ≥ µ⊤̺l(x) + Φ−1(βl)

√
̺l(x)⊤ Σ ̺l(x),

where Φ denotes the cumulative distribution function of the standard normal distribution. This
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Figure 4.3: Probability density functions for five activity durations
{
d̃i
}5
i=1

. In the subsequent
comparison, we use these durations both directly (‘independent’ durations) and as disturbances
in a first-order autoregressive process

{
d̃′i
}5
i=1

(‘dependent’ durations) where d̃′1 = d̃1 and d̃′i =

1/3d̃′i−1 + 2/3d̃i, i = 2, . . . , 5.
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Figure 4.4: Approximation error of inequalities from probability theory and our normal approx-
imation for independent (left) and dependent (right) activity durations. Chebychev’s (single-
sided) inequality and our normal approximation assume knowledge about the first two moments,
Markov’s inequality about the first moments and Hoeffding’s inequality about the first moments
and the supports of the activity durations. Chernoff’s inequality, on the other hand, requires
the specification of the complete moment generating function of the path duration. Note that
Hoeffding’s inequality requires independence among the activity durations.
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leads us to the following approximation of (4.6):

minimise
x,β,τ

τ (4.7a)

subject to x ∈ R
mn
+ , β ∈ R

|P|
+ , τ ∈ R+

τ ≥ µ⊤̺l(x) + Φ−1(βl)
√
̺l(x)⊤ Σ ̺l(x) ∀P l ∈ P , (4.7b)

x ∈ X, β ∈ B. (4.7c)

The following example shows that model (4.7) is still generically nonconvex.

Example 4.3.2 Consider again the project G = (V,E) from Example 4.3.1, that is, V =

{1, . . . , 4}, E = {(1, 2), (1, 3), (2, 4), (3, 4)}, ω̃1 = ω̃4 = 0 almost surely and ω̃2 and ω̃3 follow

independent standard normal distributions. One readily verifies that the set

Y (α) :=
{
(τ, x2, x3) ∈ R+ × [1/2, 2]2 : Φ(τx2) + Φ(τx3) ≥ α + 1

}

is generically nonconvex. Indeed, for α = 2/3, (τ 1, x12, x
1
3) = (1, 2, 1/2) and (τ 2, x22, x

2
3) =

(1, 1/2, 2) are elements of Y (2/3), but their convex combination (τ, x2, x3) = 1/2(τ 1, x12, x
1
3) +

1/2(τ 2, x22, x
2
3) = (1, 5/4, 5/4) is not part of Y (2/3). However, the set Y (α) represents the

projection of

Z(α) :=
{
(τ, x, β) ∈ R+ × [1/2, 2]4 × B : τ ≥ Φ−1(β1)/x2, τ ≥ Φ−1(β2)/x3

}

onto (τ, x2, x3), and Z(α) equals the feasible region of (4.7) for this example. We conclude that

(4.7) is generically nonconvex.

The next proposition further analyses the convexity of model (4.7).

Proposition 4.3.2 Assume that α ≥ 1/2 and Σ ≥ 0 component-wise, and let (x̂, β̂, τ̂) be

feasible in (4.7). With the additional constraints x = x̂ or β = β̂, (4.7) becomes a convex

optimisation problem in (β, τ) or (x, τ), respectively.



4.3. Resource Allocation under Uncertainty 91

Proof First note that for α ≥ 1/2, the requirement β ∈ B implies that βl ≥ 1/2, P l ∈ P,

in every feasible solution (x, β, τ). In the following, we will exploit the fact that Φ−1 is non-

negative and convex on the interval [1/2, 1].

We only need to investigate constraint (4.7b) since the other constraints and the objective

function are clearly convex in (x, β, τ). For x = x̂ fixed, convexity of constraint (4.7b) in τ

and β follows from the convexity of Φ−1 for βl ≥ 1/2. For β = β̂ fixed, on the other hand, we

introduce auxiliary variables y ∈ Rn
+ and z ∈ Rn2

+ with auxiliary constraints

yi ρ(xi) ≥ µi ∀ i ∈ V and z2ij ρi(xi) ρj(xj) ≥ σij ∀ i, j ∈ V. (4.7e)

Similar arguments as in Proposition 4.2.1 can be used to prove the convexity of constraints

(4.7e). Note that the right-hand sides of these constraints are non-negative and hence, there

are always variables y and z that satisfy (4.7e) as equalities. We replace constraint (4.7b) with

τ ≥
∑

i∈V

yi + Φ−1(β̂l)

√∑

i,j∈P l

z2ij ∀P l ∈ P. (4.7f)

Since the right-hand sides of (4.7f) are non-decreasing in y and z and we minimise the maximum

of these right-hand sides, there is always an optimal solution to (4.7) that satisfies (4.7e) as

equalities. Hence, (4.7e)–(4.7f) is indeed an equivalent reformulation of (4.7b). The first term

on the right-hand side of (4.7f) is linear, while the second one represents a product of a non-

negative scalar with the Frobenius norm of the matrix (zij). Both terms are manifestly convex.

Since the activity durations are nonlinear functions of the decision variables, we need to re-

quire that the components of Σ are non-negative in order to guarantee convexity of (4.7) in

(x, τ) for fixed β. Hence, we have to assume that the work contents of different activities

have non-negative covariances, that is, all activity durations are either independent or posi-

tively correlated. This is not a very restrictive assumption when considering typical sources

of uncertainty, such as motivational factors, staff availability, weather conditions and interac-

tions between concurrent projects. It is rather unlikely that such a phenomenon increases the
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difficulty of some tasks but decreases the complexity of other tasks. In fact, it is a standard as-

sumption in the literature that activity durations are independent [CSS07, DH02, HL05], which

is a special case of our non-negativity assumption. An inspection of Proposition 4.3.2 reveals

that if Σ 6≥ 0, replacing Σ with Σ+ =
(
[σij ]

+), [σij ]+ = max {0, σij}, results in a conservative

approximation of (4.7). Hence, even if the assumption of non-negative correlations is violated,

a reasonable surrogate problem that satisfies this assumption can be readily constructed.

Proposition 4.3.2 suggests a sequential convex optimisation scheme which optimises over (x, τ)

and (β, τ) in turns, keeping either β or x fixed to the optimal value of the previous iteration.

The following algorithm provides an outline of such a procedure.

Algorithm 4.1 Sequential convex optimisation procedure for model (4.7).

1. Initialisation. If c /∈ X, then abort: (4.7) is infeasible. Otherwise, set x0 = c, τ 0 = ∞

(current objective value) and t = 1 (iteration counter).

2. Optimisation over (β, τ ). Solve problem (4.7) in (β, τ) with x = xt−1 fixed. If the

optimal solution (β∗, τ ∗) satisfies τ ∗ < τ t−1, then set βt = β∗, otherwise keep βt = βt−1.

3. Optimisation over (x, τ ). Solve problem (4.7) in (x, τ) with β = βt fixed. If the

optimal solution (x∗, τ ∗) satisfies τ ∗ < τ t−1, then set xt = x∗, otherwise keep xt = xt−1.

Set τ t = τ ∗.

4. Termination. If (xt, βt) = (xt−1, βt−1), then stop. Otherwise, set t = t + 1 and go back

to Step 2.

Algorithm 4.1 is in the spirit of alternate convex search procedures. In the following, we

discuss the main properties of this algorithm. For a more detailed study of alternate convex

search procedures, see [KPK07]. We say that a feasible solution (x∗, β∗, τ ∗) to (4.7) is a partial

optimum if (x∗, τ ∗) minimises (4.7) for β = β∗ fixed and (β∗, τ ∗) minimises (4.7) for x = x∗

fixed. The following lemma shows that partial optimality is a necessary (but not sufficient)

condition for local optimality.



4.3. Resource Allocation under Uncertainty 93

Lemma 4.3.1 For Σ ≥ 0 component-wise, a local optimum (x∗, β∗, τ ∗) of model (4.7) is a

partial optimum.

Proof Let (x∗, β∗, τ ∗) be a local optimum. Then (x∗, τ ∗) is a local optimum for β = β∗ fixed.

Due to Proposition 4.3.2, (x∗, τ ∗) is then a global minimiser of (4.7) for β = β∗ fixed. The

same reasoning applies to (β∗, τ ∗) if we fix x to x∗. Hence, (x∗, β∗, τ ∗) satisfies the definition of

a partial optimum.

However, a partial optimum need not be locally optimal even for convex problems [KPK07].

The following proposition summarises the key properties of Algorithm 4.1.

Proposition 4.3.3 Algorithm 4.1 identifies the (in-)feasibility of an instance of (4.7) in Step 1.

For feasible instances, the following properties are satisfied:

(P1) A different feasible solution is identified in every (but the last) iteration.

(P2) The objective values {(τ t)}t are monotonically decreasing and convergent.

(P3) If the algorithm terminates in finite time, then the final iterate is a partial optimum of

(4.7). If the algorithm does not terminate, then every accumulation point of {(xt, βt, τ t)}t
is a partial optimum of (4.7). Furthermore, all accumulation points have the same objec-

tive value.

Proof If c ∈ X, then (x0, β0, τ 0) defined through x0 := c, β0
l := 1 − (1 − α)/

∣∣P
∣∣ for P l ∈ P

and

τ 0 := max
P l∈P

{
µ⊤̺l(x

0) + Φ−1(β0
l )
√
̺l(x0)⊤ Σ ̺l(x0)

}

constitutes a feasible solution to (4.7). If c /∈ X, on the other hand, then X = ∅. Thus, (4.7)

is feasible if and only if c ∈ X, and hence the algorithm correctly identifies the (in-)feasibility

of a problem instance in Step 1. Furthermore, the algorithm determines a feasible solution in

every iteration since τ t = τ t−1 together with βt = βt−1 and xt = xt−1 are feasible for xt = xt−1

and βt = βt−1 fixed, respectively.
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Since the algorithm stops in Step 4 once τ t ≥ τ t−1, {(τ t)}t is strictly monotonically decreasing

until the penultimate iteration. Together with the feasibility of (xt, βt, τ t) for all t, this proves

(P1). Since the sequence {(τ t)}t is also bounded from below (for example by zero), assertion

(P2) follows. If the algorithm terminates after finitely many iterations, then (P3) is satisfied

by construction. Assume that the algorithm does not terminate. One can show that the

algorithmic map of the procedure is closed [BSS06, KPK07]. This implies that (xt+1, βt+1, τ t+1)

satisfies the termination criterion in Step 4 if we set (xt, βt, τ t) to any accumulation point

(x̂, β̂, τ̂) of the sequence {(xt, βt, τ t)}t. Hence, (x̂, β̂, τ̂) satisfies that (x̂, τ̂) is a minimiser of

(4.7) for β = β̂ fixed and (β̂, τ̂) is a minimiser of (4.7) for x = x̂ fixed. This, however, is just

the definition of a partial optimum.

For a given instance of (4.7) one can easily find finite a priori bounds on the problem variables

that do not change the set of optimal solutions. In this case, the feasible set of (4.7) is compact

and the constructed solution sequence contains accumulation points if Algorithm 4.1 does not

terminate. We emphasise again that partial optima need not constitute local optima of (4.7).

Note, however, that even the verification whether a particular solution to a biconvex problem

is locally optimal is NP-complete.2 Thus, it seems justified to settle for the modest goal to

find a partial optimum here.

Instead of employing an alternating search on x and β as outlined above, we can locally optimise

over (x, β, τ). Note that in this case, the feasible region is generically nonconvex, and there

is no guarantee that a local search procedure determines a local optimum or even a feasible

solution to (4.7). In the next section, we will compare both solution approaches on a large set

of problem instances.

We close with an example that illustrates model (4.7) and Algorithm 4.1.

Example 4.3.3 Consider again the deterministic resource allocation problem described in Ex-

ample 4.2.1. We now assume that the work content of each task i ∈ V is a uniformly distributed

2Indeed, a procedure that decides local optimality in bilinear problems can be used to verify local optimality
in indefinite quadratic problems. The latter problem, however, is known to be NP-complete [HPT00].
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random variable ω̃i with support [(1− ζ)ωi, (1 + ζ)ωi], where ωi denotes the nominal work con-

tent (taken from Example 4.2.1) and ζ = 0.2. For ease of exposition, we assume that the work

contents of different project activities are independent.

The expected value and variance of a uniform distribution with support [(1− ζ)ωi, (1 + ζ)ωi]

is ωi and (ζωi)
2 /3, respectively. We therefore have µ = (2, 5, 1, 4, 3, 1)⊤, while Σ is given

by Σ11 ≈ 0.053, Σ22 ≈ 0.333, Σ33 ≈ 0.013, Σ44 ≈ 0.213, Σ55 ≈ 0.120, Σ66 ≈ 0.013 and

Σij = 0 for all i 6= j. The project in Example 4.2.1 has activity paths P = {P 1, P 2, P 3} with

P 1 = {1, 2, 4, 6}, P 2 = {1, 2, 5, 6} and P 3 = {1, 3, 5, 6}.

For α = 0.95, model (4.7) reads as follows.

minimise
r,x,β,τ

τ

subject to r ∈ R
6
+, x ∈ R

12
+ , β ∈ R

3
+, τ ∈ R+

τ ≥ 2r1 + 5r2 + 4r4 + r6 + Φ−1 (β1)
√
0.053r21 + 0.333r22 + 0.213r24 + 0.013r26,

τ ≥ 2r1 + 5r2 + 3r5 + r6 + Φ−1 (β2)
√
0.053r21 + 0.333r22 + 0.120r25 + 0.013r26,

τ ≥ 2r1 + r3 + 3r5 + r6 + Φ−1 (β3)
√
0.053r21 + 0.013r23 + 0.120r25 + 0.013r26,

r1
(
x11
)2 (

x21
)3/2 ≥ 1, r2

(
x12
)2 (

x22
)3/2 ≥ 1, r3

(
x13
)2 (

x23
)3/2 ≥ 1,

r5
(
x15
)2 (

x25
)3/2 ≥ 1, r6

(
x16
)2 (

x26
)3/2 ≥ 1, 2r4x

1
4 ≥ 1, r4x

2
4 ≥ 1,

x1, x2 ∈ [(1/4)e, 2e] ,

6∑

i=1

x1i ≤ 6,

6∑

i=1

x2i ≤ 6,

β1 + β2 + β3 ≥ 2.95, β ∈ [0, e] .

Table 4.1 documents the steps of Algorithm 4.1 when being applied to this instance. Note

that apart from the increased objective value, the determined solution is very similar to the

deterministic resource allocation found in Example 4.2.1. This is due to the fact that the

variance of activity i’s duration is chosen to be proportional to the expected value of i’s duration.
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x1
1

x2
1

x1
2

x2
2

x1
3

x2
3

x1
4

x2
4

x1
5

x2
5

x1
6

x2
6

β1 β2 β3 τ
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 n/a n/a n/a ∞

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 ≈ 1 0.950 ≈ 1 1483.41
1.20 1.08 1.40 1.26 0.79 0.71 0.55 1.10 1.03 0.93 1.03 0.92 ≈ 1 0.950 ≈ 1 8.72
1.20 1.08 1.40 1.26 0.79 0.71 0.55 1.10 1.03 0.93 1.03 0.92 0.997 ≈ 1 0.953 8.38
1.21 1.09 1.40 1.26 0.79 0.71 0.54 1.09 1.02 0.92 1.04 0.93 0.997 ≈ 1 0.953 8.37
1.21 1.09 1.40 1.26 0.79 0.71 0.54 1.09 1.02 0.92 1.04 0.93 0.997 ≈ 1 0.953 8.37
1.21 1.09 1.40 1.26 0.79 0.71 0.54 1.09 1.02 0.92 1.04 0.93 0.997 ≈ 1 0.953 8.37

Table 4.1: Application of Algorithm 4.1 to the project in Example 4.3.3. The first data row
documents the initial solution determined in Step 1. The following rows present the interme-
diate solutions generated in three consecutive iterations of Steps 2 and 3. Variables printed in
bold are updated in the respective step of the procedure. The algorithm terminates because
the improvement of the objective value τ does not exceed a tolerance of 10−4.
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Figure 4.5: Impact of the confidence level α on the optimal solution to problem (4.7). For
higher confidence levels, the estimated makespan increases disproportionally.

In general, this is not the case, and the determined resource allocations differ significantly.

Figure 4.5 shows the impact of the confidence level α on the optimal solution to problem (4.7).

4.4 Numerical Results

In the following, we provide numerical results for the stochastic resource allocation problem

(4.4). We do not consider the deterministic model (4.3) for two reasons. Firstly, (4.3) is a

convex problem of moderate size and as such, it is clear that it can be solved efficiently even

for large projects. Secondly, it is difficult to compare (4.3) with other deterministic models (as

the ones discussed in the introduction) which rely on different assumptions.

This section is structured as follows. We start with a comparison of sequential convex and

local optimisation for solving problem (4.7). We remind the reader that model (4.7) constitutes
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the approximation of the original resource allocation problem under uncertainty (4.4) obtained

by separating the joint chance constraint and approximating the path durations via normal

distributions. Afterwards, we compare model (4.7) with alternative approaches to solve problem

(4.4). All numerical results are based on randomly generated projects with n activities and 2n

precedences. The project graphs are constructed with a variant of the deletion method presented

in [DDH93]. The work contents follow independent normal or Beta distributions with randomly

selected parameters. All instances involve two resources, and resource consumption is limited

to a third of the sum of upper investment bounds. The activity types (i.e., substitutional or

limitational) and the parameters (ci, ci), ψi, δi and γi are also chosen randomly. Throughout this

section, our goal is to find a resource allocation that minimises the 0.95-VaR of the uncertain

project makespan. All results in this section were obtained with the freely available optimisation

package Ipopt.3

In Section 4.3 we proposed two alternative methods for solving problem (4.7): sequential con-

vex optimisation (Algorithm 4.1) determines a partial optimum by solving a series of convex

optimisation problems, whereas a local search procedure jointly optimises over all problem vari-

ables. Since problem (4.7) is generically nonconvex (see Example 4.3.2), neither approach is

guaranteed to provide globally optimal solutions. More so, the local search procedure cannot

even guarantee to provide a feasible solution. Table 4.2 compares both approaches on a set of

test instances with normally distributed work contents. The quality of the resulting approxi-

mate solutions is measured relative to the true global optima, which we determine exactly for

these small problem instances (n ≤ 20) by means of a branch-and-bound algorithm [HPT00].

Table 4.2 reveals that the local search procedure found global optima in all test cases. Although

this procedure is more likely to fail on larger problems, it turns out to be very reliable on all

considered instances. For sequential convex optimisation, we provide the results for a single

trial (‘1x’) and several multi-start (‘10x’ and ‘100x’) versions. As expected, repeating the search

with different start points leads to better solutions. Although sequential convex optimisation

manages to find good solutions, it is clearly outperformed by the local search procedure. Thus,

we will employ the local search procedure in all subsequent tests.

3Ipopt homepage: https://projects.coin-or.org/Ipopt.
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instance size n
5 10 15 20

Local search # trials 1.00 1.03 1.04 1.05
procedure suboptimality 0.00% 0.00% 0.00% 0.00%

Sequential
convex

optimisation

# iterations 3.00 3.09 3.25 3.98
suboptimality (1x) 0.74% 2.96% 3.79% 3.61%
suboptimality (10x) 0.36% 1.55% 2.75% 2.79%
suboptimality (100x) 0.01% 0.86% 1.94% 2.07%

Table 4.2: Comparison of sequential convex and local optimisation. The table provides the
number of optimisation runs required to determine a feasible solution (for the local search
procedure) and the number of iterations required to determine a partial optimum (for the
sequential convex optimisation algorithm). Furthermore, the relative suboptimality of the
solution is given for both approaches. All results represent average values over 100 randomly
generated test instances.

In the remainder of this section, we compare our model (4.7) with three alternative approaches

to approximate the original problem (4.4): a nominal problem formulation, a convex approxi-

mation via CVaR constraints and a formulation based on robust optimisation. In the nominal

problem formulation, the uncertain work contents are replaced with their expected values. The

resulting model is a deterministic resource allocation problem of type (4.3). This approach

is very simple, but it completely ignores the risk inherent to the chosen resource allocation.

Nevertheless, nominal formulations are very popular in both theory and practise, and they

allow us to quantify the benefits of an honest treatment of uncertainty. As for the CVaR

approximation, we replace the joint chance constraint (4.4b) by a related CVaR constraint,

which results in a conservative approximation [RU00]. Although the CVaR constraint does

not require enumeration of the activity paths, it has no closed-form representation, and we

need to employ scenario approximation techniques. In our tests, we approximate the CVaR

via 1,000, 2,500 and 5,000 scenarios and a Benders decomposition scheme [Pré95]. As for the

approximation based on robust optimisation, finally, we use the approach presented in [CSS07].

Since the activity durations fail to be conic functions of the resource investments (in the sense

of [CSS07]), we need to enumerate the activity paths in a similar manner as in model (4.7).

Contrary to the other formulations, the robust optimisation approach is only applicable in the

presence of Beta-distributed work contents. This is due to the fact that robust optimisation

requires all random variables to possess bounded supports. For a further discussion on this
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topic and possible remedies, see [CSS07].

Our comparison proceeds in two steps. First, we consider instances with normally distributed

work contents. It follows from Section 4.3 that in this case model (4.7) provides a conserva-

tive approximation of the VaR. Afterwards, we compare the formulations on instances with

Beta-distributed work contents. In this case, model (4.7) does not provide a conservative ap-

proximation anymore.

Figure 4.6 and Table 4.3 summarise the results for normally distributed work contents. The

‘prediction error’ denotes the relative difference between the a priori 0.95-VaR implied by the

solutions of the respective optimisation models and the a posteriori 0.95-VaR determined by

Monte Carlo sampling. We also compare the solutions obtained from the various models in

terms of their 0.95-VaR and average makespan, again using Monte Carlo sampling. Both the

0.95-VaR and the average makespan are measured relative to the solution to model (4.7).

The results reveal that the nominal problem grossly underestimates the makespan. This is

caused by two factors. Firstly, the nominal problem considers the expected makespan, which is

in most cases significantly smaller than the 0.95-VaR. Secondly, by interchanging maximum and

expectation operators in the problem formulation, the nominal model underestimates the ex-

pected makespan due to Jensen’s inequality [DH02]. This underestimation leads to substantial

prediction errors and a poor performance of the resulting resource allocations. Indeed, nominal

solutions are only acceptable for very large projects, where the assumption of independent work

contents makes it increasingly unlikely that the project duration differs significantly from the

expected makespan. Note that model (4.7) and the CVaR approximations perform more or less

equally well on the considered test instances.

Table 4.4 compares the computational requirements of the considered approaches. Problem

(4.7) needs to be solved only once, but it can involve a large number of activity paths. The

table shows, however, that the number of paths remains moderate even for large instances.

The CVaR approximations, on the other hand, require the repeated solution of certain Benders

subproblems. It turns out that the number of subproblems increases rapidly with the project

size. Thus, the CVaR approximations require substantially more computing resources than
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the (local) solution of formulation (4.7). This becomes particularly important if some of the

considered project resources in model (4.4) are discrete. Note that the nominal model is a

deterministic resource allocation problem of type (4.3) and can hence be solved efficiently for

all considered sizes.
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Figure 4.6: Comparison of model (4.7) with alternative problem formulations for normally
distributed work contents. The left graph shows the relative difference between the estimated
and exact 0.95-VaR. The right graph relates the 0.95-VaR of the solutions determined by the
alternative formulations to the one obtained from solving model (4.7). All results represent
average values over 100 randomly generated test instances.

Figure 4.7 and Table 4.5 summarise the results for Beta-distributed work contents. In this set-

ting, the nominal problem performs even worse than before: both the prediction errors and the

0.95-VaR have deteriorated. Again, model (4.7) and the CVaR approximations perform more

of less equally well. It becomes apparent that robust optimisation leads to large prediction

errors. In contrast to the nominal problem, however, robust optimisation overestimates the

0.95-VaR. Although the obtained resource allocations are better than the nominal solutions,

they are still substantially worse than the allocations obtained from model (4.7) and the CVaR

approximations. Table 4.6 compares the computational requirements of model (4.7) and the

CVaR approximations. The results are similar to those of Table 4.4, although the CVaR ap-

proximations require slightly more cuts than before. Note that the computational requirements

for solving model (4.7) and the robust optimisation problem are roughly similar since both

formulations scale with the number of activity paths.

In conclusion, although model (4.7) is nonconvex, it seems very well-behaved: in our numerical

tests, the model could be solved efficiently and reliably by standard local optimisation tech-
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instance size n
50 100 150 200

Our model prediction error 2.15% 1.96% 2.36% 2.73%

Nominal
prediction error 35.02% 32.05% 27.34% 22.68%

0.95-VaR +15.70% +12.11% +6.04% +2.40%
average makespan +8.45% +6.03% +1.07% -1.44%

CVaR
(1000)

prediction error 0.90% 1.55% 2.71% 3.53%
0.95-VaR +0.52% +0.52% -0.06% -0.54%

average makespan +0.55% +0.42% -0.36% -0.37%

CVaR
(2500)

prediction error 0.37% 0.79% 1.63% 2.44%
0.95-VaR +0.16% +0.13% -0.30% -0.69%

average makespan +0.05% +0.16% -0.51% -0.60%

CVaR
(5000)

prediction error 0.27% 0.50% 1.06% 1.88%
0.95-VaR +0.04% -0.07% -0.42% -0.63%

average makespan -0.14% -0.09% -0.71% -0.58%

Table 4.3: Comparison of model (4.7) with alternative problem formulations for normally dis-
tributed work contents. ‘Prediction error’ refers to the relative difference between the estimated
and exact 0.95-VaR. The 0.95-VaR and average makespan are measured relative to the optimal
solution to model (4.7). All results represent average values over 100 randomly generated test
instances.

instance size n
50 100 150 200

Our model 46.34 115.77 189.35 270.96
CVaR (1000) 139.53 283.54 521.78 692.63
CVaR (2500) 141.41 294.06 537.50 678.95
CVaR (5000) 142.56 284.00 522.22 708.35

Table 4.4: Computational requirements of the various problem formulations for normally dis-
tributed work contents. For model (4.7), the table documents the cardinality of P. For the
CVaR approximations, the table provides the number of introduced Benders cuts. All results
represent average values over 100 randomly generated test instances.
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Figure 4.7: Comparison of model (4.7) with alternative problem formulations for Beta-
distributed work contents. See Figure 4.6 for further explanations.
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instance size n
50 100 150 200

Our model prediction error 1.51% 1.57% 1.95% 1.31%

Nominal
prediction error 46.11% 34.45% 32.92% 28.43%

0.95-VaR +33.02% +14.29% +10.42% +5.68%
average makespan +15.28% +5.70% +2.32% -0.42%

CVaR
(1000)

prediction error 0.85% 1.57% 2.64% 2.71%
0.95-VaR +0.08% -0.06% -0.28% -0.66%

average makespan +1.59% +0.74% +0.23% -0.39%

CVaR
(2500)

prediction error 0.44% 1.10% 1.71% 1.97%
0.95-VaR -0.25% -0.37% -0.44% -0.67%

average makespan +1.19% +0.42% +0.17% -0.10%

CVaR
(5000)

prediction error 0.30% 0.77% 1.35% 1.37%
0.95-VaR -0.37% -0.44% -0.40% -0.60%

average makespan +1.02% +0.31% +0.11% +0.07%

Robust
Optimisation

prediction error 18.70% 31.10% 30.61% 28.26%
0.95-VaR +5.53% +4.78% +3.56% +3.57%

average makespan +7.91% +4.28% +3.14% +2.35%

Table 4.5: Comparison of model (4.7) with alternative problem formulations for Beta-
distributed work contents. See Table 4.3 for further explanations.

instance size n
50 100 150 200

Our model 46.26 114.87 190.58 266.43
CVaR (1000) 139.43 319.78 574.38 771.26
CVaR (2500) 139.14 318.89 587.91 808.19
CVaR (5000) 140.41 318.62 582.09 794.38

Table 4.6: Computational requirements of the various problem formulations for Beta-distributed
work contents. See Table 4.4 for further explanations.
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niques. Furthermore, the solution quality is comparable to that obtained by convex CVaR

approximations of the original model (4.4), even though model (4.7) requires significantly fewer

computational resources. The nominal problem and the approximation based on robust op-

timisation can both be solved very efficiently, but they lead to poor makespan estimates and

thus suggest severely suboptimal resource allocations.

4.5 Extensions

In this section, we first illustrate how one can robustify model (4.7) against uncertainty in the

first and second moments of the work contents. Afterwards, we present an iterative solution

procedure for model (4.7) which applies to projects with large numbers of activity paths. In

the following, we abbreviate the βl-quantile of the duration of activity path P l ∈ P by

ql(x, βl;µ,Σ) := µ⊤̺l(x) + Φ−1(βl)
√
̺l(x)⊤ Σ ̺l(x).

4.5.1 Moment Ambiguity

The stochastic resource allocation model (4.7) minimises the α-VaR of the project makespan

and therefore hedges against the uncertainty underlying the factual work contents. The model

assumes rather detailed knowledge about the nature of this uncertainty, though, since it requires

precise specification of its first two moments. Here, we relax this assumption and require instead

that these moments are merely known to be contained in the set U = Uµ × UΣ with

Uµ =
{
µ ∈ R

n
+ : µ = µ0 + wµ • µ̂,

∥∥µ̂
∥∥
2
≤ 1, µ̂ ∈ R

n
}

and UΣ =
{
Σ ∈ S

n
+ : Σ = Σ0 +WΣ • Σ̂,

∥∥Σ̂
∥∥
2
≤ 1, Σ̂ ∈ S

n
+

}
,

where µ0 ∈ R
n
+ and Σ0 ∈ S

n
+. The operator ‘•’ denotes the element-wise (Hadamard) product,

while Sn+ denotes the subspace of symmetric and positive semidefinite matrices in Rn×n. The

parameters µ0 and Σ0 can be interpreted as nominal values, while wµ ∈ Rn
+ and WΣ ∈ R

n×n
+
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represent ‘degrees of ambiguity’.

In the spirit of robust optimisation [BTN98, BS06], our goal is to minimise the worst-case α-

VaR of the project makespan under the assumption that the true moments (µ,Σ) can be any

element of U . This can be expressed as

min
x∈X,
β∈B

max
P l∈P

max
(µ,Σ)∈U

ql(x, βl;µ,Σ)

︸ ︷︷ ︸
ϕl(x,βl)

.

Due to the separability of U with respect to the first and second moments, the worst-case α-VaR

is representable as

ϕl(x, βl) = max
(µ,Σ)∈U

{
µ⊤̺l(x) + Φ−1(βl)

√
̺l(x)⊤Σ ̺l(x)

}

= max
µ∈Uµ

{
µ⊤̺l(x)

}
+ Φ−1(βl) max

Σ∈UΣ

{√
̺l(x)⊤ Σ ̺l(x)

}
.

The first maximisation term reduces to

max
µ∈Uµ

{
µ⊤̺l(x)

}
= (µ0)

⊤̺l(x) + max
‖µ̂‖

2
≤1,

µ0+µ̂≥0

(
wµ • µ̂

)⊤
̺l(x)

= (µ0)
⊤̺l(x) + max

‖µ̂‖2≤1,
µ0+µ̂≥0

µ̂⊤
[
wµ • ̺l(x)

]

= (µ0)
⊤̺l(x) + ‖wµ • ̺l(x)‖2 .

Concerning the last identity, note that all components of wµ •̺l(x) are non-negative, and hence

µ̂ ≥ 0 and µ0+ µ̂ ≥ 0 are vacuously satisfied at optimality. By applying similar transformations

as described in Proposition 4.3.2, the last term can be expressed by convex constraints.

Similarly, one can show that the Σ-term reduces to

max
Σ∈UΣ

{√
̺l(x)⊤ Σ ̺l(x)

}
=
√
̺l(x)⊤ Σ0̺l(x) +

∥∥WΣ •
[
̺l(x)̺l(x)⊤

]∥∥
2
.

For Σ0 ≥ 0 (see Section 4.3), the latter term can be expressed by convex constraints, too. Hence,

the convexity properties of model (4.7) are preserved when the moments of the work contents
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are ambiguous, and the increase in model size is moderate. This contrasts with the optimisation

of CVaR under distributional ambiguity, which is considerably more involved [PW07, ZF09].

4.5.2 Iterative Path Selection Procedure

The runtime behaviour of the stochastic resource allocation model (4.7) depends on the number

of activity paths in P . Recall that P has been of moderate size in all of our numerical tests

(see Section 4.4). However, it is well-known that in the worst-case the number of activity paths

can be exponential in the size of the project graph. In this section, we propose an iterative

solution procedure for (4.7) based on the principles of semi-infinite programming. The outline

of the procedure is as follows.

Algorithm 4.2 Iterative path selection procedure for model (4.7).

1. Initialise L as a (nonempty) subset of P . Choose ǫ ∈ (0, (1− α)/
∣∣P \ L

∣∣).

2. Determine a feasible (possibly suboptimal) solution (x∗, β∗) to

minimise
x,β

max
P l∈L

ql(x, βl;µ,Σ)

subject to x ∈ R
mn
+ , β ∈ R

|L|
+

∑

P l∈L

βl ≥ α+ (
∣∣P
∣∣− 1)−

∣∣P \ L
∣∣ (1− ǫ),

x ∈ X, β ∈ [0, e] .

Let τ ∗ denote the resulting objective value.

3. Check whether there is a path P s ∈ P \L with qs(x∗, 1− ǫ;µ,Σ) > τ ∗. If this is the case,

then add one such path to L and return to Step 2. Otherwise, stop: x∗ represents the

best resource allocation found.

Step 1 initialises L, the subset of activity paths P l ∈ P currently considered. It also assigns a

value to ǫ, the probability assigned to paths in P \ L not (yet) considered. In Step 2, model
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(4.7) is solved for the activity paths P l ∈ L. Note that the first constraint implicitly assigns a

probability of 1−ǫ to every path in P \L. Step 3 checks whether there is a path in P \L whose

(1 − ǫ)-duration quantile exceeds the α-VaR determined in the previous step. If this is the

case, then one such path is added to L, and the procedure iterates. Otherwise, the procedure

terminates. We will present a strategy to determine a suitable path in P \ L below.

If the subproblem in Step 2 is infeasible, then X = ∅ and (4.7) does not possess a feasible

solution. For any ǫ ∈ (0, (1 − α)/
∣∣P \ L

∣∣), the final resource allocation obtained by Algo-

rithm 4.2 is feasible in (4.7), and τ ∗ represents a conservative estimate of its objective value.

Note that for fixed ǫ, only a near-optimal solution is determined if L 6= P at termination. This

statement is true even if the subproblems arising in Step 2 are solved to global optimality. In-

deed, a better ‘probability arrangement’ can potentially be obtained by assigning βl > 1− ǫ to

paths P l ∈ P \L. This is not restrictive for practical applications, however, since optimisation

algorithms typically require an upper bound strictly below 1 for βl, P l ∈ P, anyway (since

Φ(βl) −→ ∞ for βl −→ 1). For any given value of ǫ, let x(ǫ) and f(ǫ) denote any final resource

allocation and its objective value, respectively, that are determined by Algorithm 4.2 when

solving the subproblems to global optimality. One can show that the sequence {f(ǫ)}ǫ−→0 con-

verges monotonically to the optimal objective value of (4.7). Furthermore, every accumulation

point of {x(ǫ)}ǫ−→0 constitutes a globally optimal resource allocation for (4.7).

Note that in the third step, we have to examine a potentially large number of paths P s ∈ P \L.

We can obtain an upper bound on the (1− ǫ)-duration quantile of path P s ∈ P \ L as follows.

qs(x
∗, 1− ǫ;µ,Σ) = µ⊤̺s(x

∗) + Φ−1(1− ǫ)
√
̺s(x∗)⊤ Σ ̺s(x∗)

≤ µ⊤̺s(x
∗) + Φ−1(1− ǫ)

√∑

i∈P s

ηi with ηi =

[
max
P l∈P:
i∈P l

∑

j∈P l

σij/
[
ρi(x

∗
i )ρj(x

∗
j )
]
]+

≤
∑

i∈P s

φi with φi = µi/ρi(x
∗
i ) + Φ−1(1− ǫ)

√
ηi.

Here, we use the abbreviation [·]+ := max {0, ·}. The first inequality holds because i ∈ P s

implies that P s ∈
{
P l ∈ P : i ∈ P l

}
. The second inequality follows from the fact that the

2-norm of a vector is no larger than its 1-norm and ηi ≥ 0. Note that ηi (and hence, φi) can
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be determined in polynomial time (relative to the size of the project graph) for all i ∈ V .

The described upper bound allows us to construct a deterministic project with durations φi

for i ∈ V . Every path duration in this project yields an upper bound on the (1 − ǫ)-duration

quantile of the respective path in model (4.7). Thus, we can use techniques for determining

the κ largest paths in a directed, acyclic graph to obtain candidates paths P s ∈ P \ L for

inclusion in L. In particular, we can stop our search in Step 3 once we have examined all paths

P s ∈ P \ L with
∑

i∈P s φi > τ ∗. A method for determining the κ largest paths of a project

graph G = (V,E) in time O(|E|+ κ) is presented in [Epp94].

We will refine Algorithm 4.2 in the next chapter, where we use a variant of this algorithm to

generate convergent lower bounds on the optimal objective value of two-stage robust resource

allocation problem. In that chapter, we will also provide a numerical example of the algorithm.

4.6 Conclusion

Resource allocation problems constitute a vital class of project scheduling problems. To the best

of our knowledge, this chapter proposes the first deterministic multi-resource allocation model

that is convex and hence tractable for realistic problem sizes. Resource allocation models have

to stipulate functional relations between resource investments and task durations. We employed

production functions from microeconomic theory, which lead to intuitively appealing duration

functions that are amenable to economic interpretation.

In a second step, we extended our model to accommodate uncertainty. Our formulation assumes

knowledge about the first two moments of the uncertain parameters and optimises the α-VaR

of the project makespan. Although VaR is a nonconvex risk measure, we showed that the

specific properties of project scheduling problems enable us to approximately optimise it very

efficiently. Furthermore, the resulting model readily accommodates distributional ambiguity.

This is crucial in project scheduling, because the moments of the uncertain parameters are

often unknown due to the lack of historical data.

While the proposed resource allocation model seems to be primarily suitable for project schedul-
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ing problems, the VaR approximation readily applies to other application areas of temporal

networks such as process scheduling [JM99] and digital circuit design [KBY+07]. It would

therefore be instructive to apply variants of our approximate problem formulation (4.7) to

models in these application areas as well.



Chapter 5

Minimisation of the Worst-Case

Makespan

5.1 Introduction

In this chapter we study a robust resource allocation problem that minimises the worst-case

makespan. As in the previous chapter, we assume that the resource allocation is a here-and-now

decision, whereas the task start times are modelled as a wait-and-see decision [RS03], which may

depend on random parameters affecting the task durations. In the terminology of Section 2.2.2,

we therefore study a two-stage robust optimisation problem. In contrast to its stochastic coun-

terpart, the complexity of the robust resource allocation problem is unknown [Hag88]. All

existing solution approaches have in common that they determine suboptimal solutions with-

out bounding the incurred optimality gap. In this chapter, we show that the robust resource

allocation problem is NP-hard, which explains the lack of exact solution approaches in the

literature. We then develop two hierarchies of approximate problems that provide convergent

lower and upper bounds on the optimal value of the original problem. The upper bounds cor-

respond to feasible allocations whose objective values are bracketed by the bounds. Hence, we

obtain a sequence of feasible allocations that are asymptotically optimal and whose optimality

gaps can be quantified at any time.

109
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There are three robust resource allocation problems in temporal networks that directly relate

to our problem. A production scheduling problem that minimises the worst-case makespan

under uncertain processing times, product demands and market prices is proposed in [JLF07,

LJF04]. The decision maker can influence the makespan by choosing a processing sequence and

assigning resources to the individual processing steps, and the optimal process start times are

approximated by constant decision rules. A robust variant of the time/cost trade-off problem

in project scheduling is discussed in [CSS07]. Assuming that the durations of the project

activities are uncertain, this model determines a resource allocation that minimises the worst-

case makespan. To obtain a tractable optimisation problem, the optimal task start times

are approximated by affine decision rules. A related time/cost trade-off problem is studied

in [CGS07], where the resource allocation for a specific activity is allowed to adapt to all

uncertain parameters that have been observed until the respective task start time. Affine

decision rules are used to obtain a tractable approximation for the problem. We review decision

rules in Section 5.2.2.

Research in the wider area of robust network optimisation started with the seminal paper [BS03],

which develops solution techniques for single-stage robust network flow problems. In recent

years, several two-stage robust network optimisation problems have been solved under the

name of recoverable robust optimisation. In [LLMS09], a railway scheduling problem is consid-

ered which selects a here-and-now timetable that can be made feasible for a range of train

delays in the second stage. A two-stage robust freight transportation problem is studied

in [EMS09]. This model determines a here-and-now repositioning plan for empty containers

that can be recovered for a range of supply and demand scenarios in the second stage. In both

papers, tractable optimisation problems are derived through carefully chosen problem reformu-

lations. In [AZ07, OZ07], a two-stage robust network optimisation problem is proposed which

treats the network design as a here-and-now decision, while the network flows are modelled

as wait-and-see decisions which are chosen after the uncertain parameters have been observed.

Recently, approximation algorithms have been developed for two-stage robust combinatorial

problems [FJMM07, KKMS08]. Here, a feasible solution to the combinatorial problem has to

be found for any possible realisation of the random parameters. Since the second stage decision
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incurs a higher cost, there is a trade-off between over-protection in the first stage and a costly

recovery in the second stage. Finally, there is an extensive literature on network problems that

optimise the worst-case regret, see [Ave01].

The remainder of this chapter is organised as follows. In the next section, we define the robust

resource allocation problem. After a review of popular approximations for the problem, we show

that the robust resource allocation problem is generically NP-hard. In Section 5.3 we discuss a

path-wise formulation that provides the basis for our solution technique. In Sections 5.4 and 5.5

we develop families of optimisation problems that provide convergent lower and upper bounds,

respectively. Section 5.6 presents the results of a numerical evaluation on randomly generated

test instances, and Section 5.7 applies our bounding scheme to VLSI design. We conclude in

Section 5.8.

In addition to the notation introduced in Section 1.3, this chapter uses the following convention.

For a set A ⊆ {1, . . . , n}, we denote by IA the n-dimensional vector with (IA)i = 1 if i ∈ A and

(IA)i = 0 otherwise. As we will see shortly, this allows us to express the sum of task durations

on a network path P ⊆ V as the inner product between the indicator vector IP of the path and

the vector of all task durations.

5.2 Robust Resource Allocations

We first define the robust resource allocation problem that we consider in this chapter. We then

review how decision rules can be applied to obtain a tractable approximation for this problem.

In Section 5.2.3 we analyse the complexity of the robust resource allocation problem.

5.2.1 The Robust Resource Allocation Problem

We assume that the structure of the temporal network (i.e., V and E) is deterministic, whereas

the task durations are uncertain, see Section 2.3. We model the duration of task i ∈ V by a

continuous function di : X × Ξ 7→ R+ that maps resource allocations x ∈ X and realisations
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of the uncertain parameters ξ ∈ Ξ to non-negative durations. We assume that both X, the

set of admissible resource allocations, and Ξ, the support of the uncertain parameters, are

nonempty and compact subsets of finite-dimensional spaces. Having in mind the application

areas outlined in Section 1.1, we assume that ξ cannot be observed directly, but that it can

only be gradually inferred from the durations of completed tasks, see Section 2.3. In strategic

decision problems, Ξ is sometimes specified as a discrete set of rival scenarios (e.g., different

forecasts of market developments). We will see that under rather general convexity assumptions,

robust allocation problems that minimise the worst-case makespan over finite discrete supports

Ξ can be formulated as explicit convex programs. Often, however, Ξ is better described by a set

of infinite cardinality, such as an ellipsoid around a nominal parameter vector. In this chapter,

we focus on uncertainty sets that are of infinite cardinality but specific structure.

We define the robust resource allocation problem on temporal networks as

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} , (RT N )

where

Y (x, ξ) =
{
y ∈ R

n
+ : yj ≥ yi + di(x; ξ) ∀ (i, j) ∈ E

}
. (5.1)

For x ∈ X and ξ ∈ Ξ, Y (x, ξ) denotes the set of admissible start time vectors for the network

tasks. RT N is a two-stage robust optimisation problem: the uncertain parameters ξ ∈ Ξ

are revealed after the allocation x has been chosen, but before the task start times y have

been decided upon. Hence, we are interested in a static resource allocation which cannot

be adapted once information about ξ becomes available. We have already mentioned the

reasons for our interest in static allocations in Chapter 4: resource allocations are frequently

required to be static due to the inflexibility of resources and limitations of the manufacturing

process, or to enhance the planning security and the compatibility with concurrent operations

outside the scope of the model. Even in situations where recourse decisions are principally

possible, static allocations might be preferable to ensure computational tractability [GG06,

JWW98]. To illustrate the importance of static resource allocations, consider the gate sizing

problem outlined in Section 1.1. The gate sizes have to be chosen before the impact of process
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deviations is known. Hence, only static allocations are meaningful in digital circuit design. In

the applications described in Section 1.1, unlike the resource allocation x, the task start times

y may depend on the available knowledge about ξ. Note that every component of y is chosen

after all uncertain parameters are revealed, which seems to violate non-anticipativity [RS03]:

the uncertain parameters are revealed gradually when tasks are completed, and yj, j ∈ V ,

must only depend on information that is available at the time when task j is started. The

justification for the chosen two-stage structure is the same as in the previous chapter. The

early start schedule y∗ : X × Ξ 7→ Rn
+ with y∗1(x, ξ) = 0 and

y∗j (x, ξ) = max
i∈V

{y∗i (x, ξ) + di(x; ξ) : (i, j) ∈ E} for all j ∈ V \ {1}

is non-anticipative since the task start times only depend on the completion times of predecessor

tasks. Moreover, since the makespan is a non-decreasing function of the task start times, the

early start schedule is also optimal. Hence, if a solution to RT N employs an anticipative start

time schedule y, then we can replace it with the corresponding (non-anticipative) early start

schedule without sacrificing optimality.

The robust resource allocation problem treated in this chapter has relevance in all application

areas outlined in Section 1.1. The solution approach proposed in this chapter is also suited for

several variants of RT N , such as multi-objective problems that contain the makespan as one

of several goals and problems with makespan restrictions as side constraints. We will see an

example of such an extension in our case study in Section 5.7.

5.2.2 Decision Rule Approximations

RT N constitutes a min-max-min problem with coupled constraints and is as such not amenable

to standard optimisation techniques. Most existing solution approaches rely on the following

observation to obtain a tractable approximation to RT N .
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Observation 5.2.1 For the robust resource allocation problem RT N , we have

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = min
x∈X,
y∈Y(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)} , (5.2a)

where for x ∈ X,

Y(x) =
{
(y : Ξ 7→ R

n
+) : y(ξ) ∈ Y (x, ξ) ∀ ξ ∈ Ξ

}
. (5.2b)

For a resource allocation x ∈ X, Y(x) denotes the space of all functions on Ξ that map

parameter realisations to feasible start time vectors for the tasks.

Note that the identity (5.2a) holds regardless of the properties of X and d because Y(x) does

not impose any structure on the decision rules (such as measurability). Observation 5.2.1

allows us to reduce the min-max-min problem RT N to a min-max problem at the cost of

augmenting the set of first-stage decisions. We have already encountered this transformation

in Section 2.2.2 when we discussed generic two-stage robust optimisation problems. A function

y is called a decision rule because it specifies the second-stage decision as a function of the

uncertain parameters. Note that the choice of an appropriate decision rule is part of the first-

stage decision. Since Y(x) constitutes a function space, further assumptions are required to

ensure solvability. For example, if Ξ contains finitely many scenarios, Ξ =
{
ξ1, . . . , ξL

}
, then

Y(x) is isomorphic to a subset of RLn
+ and we can reformulate RT N as

min
x∈X,
y∈RLn

+

{
max
l=1,...,L

{
yln + dn(x, ξ

l)
}

: ylj ≥ yli + di(x; ξ
l) ∀ l = 1, . . . , L, (i, j) ∈ E

}
.

This problem is convex if X is convex and d is convex in its first component for all ξl ∈ Ξ.

Similar finite-dimensional problems arise when a semi-infinite programming algorithm is used

to solve RT N with an uncertainty set of infinite cardinality [HK93]. This approach, however,

would only provide lower bounds on the optimal value of RT N , and it is not clear how to

efficiently obtain upper bounds.1 Furthermore, one would not be able to exploit structural

properties of Ξ and d beyond convexity. Finally, the number of constraints and variables grows

1As we will see in Section 5.2.3, evaluating the worst-case makespan of the optimal second-stage policy in
RT N constitutes a difficult problem even for fixed x ∈ X .
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with L, which itself is likely to become large for tight approximations.

Due to the absence of standard optimisation techniques for the solution of RT N when Ξ

has infinite cardinality, one commonly settles for feasible but suboptimal solutions. These are

obtained from conservative approximations of RT N that restrict the set of admissible second-

stage decisions. For example, it has been suggested in [LJF04] to restrict Y to constant decision

rules, that is, to

Y0(x) = {y ∈ Y(x) : ∃ γ ∈ R
n such that y(ξ) = γ ∀ ξ ∈ Ξ} for x ∈ X.

In this case, RT N is equivalent to

min
x∈X,

y∈Y0(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)}

= min
x∈X,
γ∈Rn

+

{
max
ξ∈Ξ

{γn + dn(x; ξ)} : γj ≥ γi + di(x; ξ) ∀ ξ ∈ Ξ, (i, j) ∈ E
}

= min
x∈X,
γ∈Rn

+

{
γn +max

ξ∈Ξ
{dn(x; ξ)} : γj − γi ≥ max

ξ∈Ξ
{di(x; ξ)} ∀ (i, j) ∈ E

}
.

The tractability of this problem is determined by the properties of X and the functions

maxξ∈Ξ {di(x; ξ)} for i ∈ V . For general Ξ and d the problem can be formulated as a semi-

infinite program [HK93]. For specific choices of Ξ and d, robust optimisation techniques can be

used to obtain equivalent (or approximate) explicit reformulations [BS06, BTGN09]. Although

they are computationally attractive, constant decision rules can result in poor approximations

of the optimal second-stage policies and – as a consequence – the optimal resource allocations.

Example 5.2.1 Consider the temporal network G = (V,E) with tasks V = {1, . . . , n} and

precedence relations E = {(i, i+ 1) : 1 ≤ i < n}. Let Ξ =
{
ξ ∈ Rn

+ : e⊤ξ ≤ 1
}

and the (decision-

independent) task durations be defined as di(x; ξ) = ξi for i ∈ V . The optimal second-stage

policy incurs a worst-case makespan of 1, whereas the restriction to constant decision rules

results in a worst-case makespan of n.

In order to improve on the approximation quality of constant decision rules, it has been sug-
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gested in [BTGN09, CSS07] to approximate Y(x) by a set of affine decision rules: for x ∈ X

and Ξ ⊆ Rk, we define

Y1(x) =
{
y ∈ Y(x) : ∃Γ ∈ R

n×k, γ ∈ R
n such that y(ξ) = Γξ + γ ∀ ξ ∈ Ξ

}
.

Under this approximation, RT N reduces to

min
x∈X,

y∈Y1(x)

max
ξ∈Ξ

{yn(ξ) + dn(x; ξ)}

= min
x∈X,

Γ∈Rn×k,
γ∈Rn

{
γn +max

ξ∈Ξ

{
Γ⊤
n ξ + dn(x; ξ)

}
: (Γ, γ) ∈ S+ ∩ SE(x)

}

with

S+ = {(Γ, γ) : Γξ + γ ≥ 0 ∀ ξ ∈ Ξ}

=
{
(Γ, γ) : γi ≥ max

ξ∈Ξ

{
−Γ⊤

i ξ
}

∀ i ∈ V
}

and SE(x) =
{
(Γ, γ) : Γ⊤

j ξ + γj ≥ Γ⊤
i ξ + γi + di(x; ξ) ∀ ξ ∈ Ξ, (i, j) ∈ E

}

=
{
(Γ, γ) : γj − γi ≥ max

ξ∈Ξ

{
(Γi − Γj)

⊤ξ + di(x; ξ)
}

∀ (i, j) ∈ E
}
.

Here, Γ⊤
i denotes the ith row of matrix Γ. As in the case of constant decision rules, this model

can be solved via semi-infinite programming, and under certain conditions we can employ robust

optimisation techniques to obtain explicit reformulations. Much like constant decision rules,

however, affine decision rules can lead to poor approximations of RT N .

Example 5.2.2 Consider the class of temporal networks illustrated in Figure 5.1. For k ∈ N,

the network structure is given by V = {1, . . . , 3k + 1} and

E = {(3l + 1, 3l + p), (3l + p, 3l + 4) : 0 ≤ l < k, p = 2, 3} .

Let d3l+2 = ξl+1 and d3l+3 = 1− ξl+1 for 0 ≤ l < k, while the remaining task durations are zero.

For Ξ =
{
ξ ∈ Rk

+ : ‖ξ − (1/2)e‖1 ≤ 1/2
}
, the optimal second-stage policy leads to a worst-case
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Figure 5.1: Example temporal network that illustrates the suboptimality of affine decision rules.
The graph visualises the network structure for k = 4. The task durations (next to the nodes)
are defined in the text.

makespan of (k + 1)/2. For 0 ≤ l < k, we obtain y3l+4(ξ) ≥ y3l+1(ξ) + max {ξl+1, 1− ξl+1} for

all ξ ∈ Ξ. In particular, this inequality holds for ξ ∈ {(1/2)e± (1/2)el+1}, where el+1 denotes

the (l + 1)th vector of the standard basis in Rk. If we restrict y to be affine in ξ, the previous

observation implies that y3l+4(ξ) ≥ y3l+1(ξ) + 1 for ξ = (1/2)e ∈ Ξ and

y3k+1(ξ) ≥ y3k−2(ξ) + 1 ≥ . . . ≥ y1(ξ) + k ≥ k for ξ = (1/2)e.

Here, the last inequality holds by non-negativity of y. Thus, the restriction to affine decision

rules results in a worst-case makespan of at least k.

Recently, the use of piecewise affine decision rules has been advocated to overcome some of the

deficiencies of affine decision rules [CSSZ08].

Examples 5.2.1 and 5.2.2 show that the existing solution approaches for RT N can lead to

poor approximations of the optimal decisions. This is supported by our numerical results

in Section 5.6. In the next section, we show that RT N constitutes a difficult optimisation

problem, which explains the lack of exact solution procedures in the literature.

5.2.3 Complexity Analysis

It is clear that RT N is difficult to solve if we impose no further regularity conditions beyond

compactness of X and Ξ. In the following, we show that evaluating the worst-case makespan of

the optimal second-stage policy constitutes an NP-complete problem even when the resource
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allocation x ∈ X is fixed, while Ξ and d have ‘simple’ descriptions. This implies that RT N

is NP-hard since we can restrict X to a singleton and thus obtain a procedure that evaluates

the worst-case makespan of the optimal second-stage policy.

In view of the aforementioned objective, we define the worst-case makespan of a temporal

network (WCMTN) problem as follows.

Instance. A temporal network G = (V,E) with V = {1, . . . , n} and 1 and n as unique source

and sink, respectively. Vectors w, u ∈ Nn
0 and scalars W,U ∈ N0.

Question. Is there a ξ ∈ Ξ =
{
ξ ∈ Rn

+ : ξ ≤ e, w⊤ξ ≤W
}

such that

min
y∈Rn

+

{yn + unξn : yj ≥ yi + uiξi ∀ (i, j) ∈ E} ≥ U? (5.3)

WCMTN considers instances of RT N with a fixed resource allocation x ∈ X, task durations

that are linear in ξ and a support that results from intersecting the unit hypercube with a

halfspace. WCMTN asks whether the worst-case makespan exceeds U when an optimal start

time schedule is implemented.

Theorem 5.2.1 WCMTN is NP-complete.

Proof We first show that WCMTN belongs to NP. Afterwards, we prove NP-hardness

of WCMTN by constructing a polynomial transformation of the Continuous Multiple Choice

Knapsack problem to WCMTN. In this proof, we abbreviate ‘polynomial in the input length

of WCMTN’ by ‘polynomial’.

To establish WCMTN’s membership in NP, we show that we can guess a ξ, check whether

ξ ∈ Ξ, construct an admissible y∗ that minimises the left-hand side of (5.3) and verify whether

y∗n + unξn ≥ U in polynomial time. Assume that we can restrict attention to values of ξ whose

bit lengths are polynomial. Then we can check in polynomial time whether ξ ∈ Ξ. Moreover,

optimality of the early start schedule (see Section 5.2.1) ensures that y∗ with y∗1 = 0 and

y∗j = maxi∈V {y∗i + uiξi : (i, j) ∈ E} for j ∈ V \ {1} minimises the left-hand side of (5.3). In

particular, this y∗ also possesses a polynomial bit length and can be determined in polynomial
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di(ξ) = ûiξi

i
s t

B1 B2 BQ

Ξ =
{
ξ ∈ R

m+2
+ : ξ ≤ e,

∑m
i=1 ŵiξi ≤ Ŵ

}

Figure 5.2: WCMTN instance constructed from a CMCK instance.

time. This implies that the validity of (5.3) can be verified in polynomial time, which in turn

implies membership of WCMTN in NP. It remains to be shown that we can indeed restrict

attention to values of ξ with polynomial bit lengths. Note that (5.3) is satisfied for some ξ ∈ Ξ

if and only if

max
ξ∈Ξ

min
y∈Rn

+

{yn + unξn : yj ≥ yi + uiξi ∀ (i, j) ∈ E} ≥ U.

Since the inner minimisation represents a convex function of ξ, its maximum over Ξ is attained

by at least one extreme point of Ξ [HPT00]. Since Ξ is a polyhedron, however, all of its extreme

points possess polynomial bit lengths [LP94].

In order to prove NP-hardness of WCMTN, we consider the Continuous Multiple Choice

Knapsack (CMCK) problem [GJ79, Iba80]:

Instance. A set B = {1, . . . , m}, together with weights ŵi ∈ N0 and utilities ûi ∈ N0 for i ∈ B.

A partition {Bq}Qq=1 of B, that is,
⋃
q B

Q
q=1 = B and Bq ∩Br = ∅ for q 6= r. A maximum weight

Ŵ ∈ N0 and a minimum utility Û ∈ N0.

Question. Is there a choice of bq ∈ Bq and ξ̂q ∈ [0, 1], q = 1, . . . , Q, such that
∑Q

q=1 ŵbq ξ̂q ≤ Ŵ

and
∑Q

q=1 ûbq ξ̂q ≥ Û?

We construct a polynomial-time transformation that converts a CMCK instance to a WCMTN

instance such that the answer to the former problem is affirmative if and only if the answer to

the latter one is.

The desired WCMTN instance is defined by G = (V,E), V = {s, 1, . . . , m, t} and E =

EB ∪EG with EB = {(i, j) : (i, j) ∈ Bq × Bq+1, q = 1, . . . , Q− 1} and EG = {(s, i) : i ∈ B1}∪
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{(i, t) : i ∈ BQ}. The nodes s and t represent the unique source and sink of G, respectively.

We set wi = ŵi and ui = ûi for i = 1, . . . , m, while wi = ui = 0 for i ∈ {s, t}. We identify W

and U with Ŵ and Û , respectively. The transformation is illustrated in Figure 5.2.

For the constructed WCMTN instance, assume that there is a ξ ∈ Ξ which satisfies (5.3). Let

y∗ be a minimiser for the left-hand side of (5.3). By construction of G and optimality of y∗,

there is a critical path (s, b1, . . . , bQ, t) in G with bq ∈ Bq for q = 1, . . . , Q, y∗s = y∗b1 = 0, y∗bq+1
=

y∗bq + ubqξbq for q = 1, . . . , Q− 1 and y∗t = y∗bQ + ubQξbQ [DH02]. Since y∗t ≥ U , we conclude that
∑Q

q=1 ubqξbq =
∑Q

q=1 ûbqξbq ≥ U = Û . Similarly, we have
∑Q

q=1wbqξbq =
∑Q

q=1 ŵbqξbq ≤ W = Ŵ

because ξ ∈ Ξ. Thus, b and ξ̂ with ξ̂q = ξbq , q = 1, . . . , Q, certify that the answer to the CMCK

instance is affirmative as well. In the same way, one can show that the absence of a ξ ∈ Ξ

which satisfies (5.3) implies that the answer to the CMCK instance is negative.

Theorem 5.2.1 extends to problem instances whose uncertainty sets are polyhedral [BS06] or

that result from intersections of general ellipsoids as in [BTGN09]. However, it is easy to

see that WCMTN can be decided in polynomial time for box uncertainty sets of the form

Ξ =
{
ξ : ξ ≤ ξ ≤ ξ

}
with ξ, ξ ∈ Rk. The same holds true for the special case of WCMTN in

which w = αe and u = βe for α, β ∈ N0.

We close with a review of two related complexity results. The complexity of optimisation

problems in temporal networks with probabilistic uncertainty is investigated in [Hag88]. In this

paper the task durations are modelled as independent random variables with known, discrete

distributions, and it is shown that calculating the mean or certain quantiles of the makespan

distribution is #PSPACE-hard. We remark, however, that the worst-case duration (i.e., the

100%-quantile of the makespan distribution) can be calculated in polynomial time in that

setting. In contrast, the additional complexity of WCMTN is due to the fact that our task

durations are related through Ξ. The NP-hardness of a generic robust resource allocation

problem is proven in [KY97]. However, this problem is not defined on a network, and it

assumes that X and Ξ are discrete.
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5.3 Path-Wise Problem Formulation

In contrast to the techniques reviewed in Section 5.2.2, our solution approach for RT N does

not approximate the optimal second-stage decision by decision rules. Instead, we eliminate the

inner minimisation in RT N by enumerating the task paths of the network. We have seen a

solution scheme based on path enumeration for two-stage chance constrained problems in the

previous chapter. In this section, we present a path-wise reformulation of RT N and argue that

its direct solution is prohibitive for temporal networks with large numbers of task paths. In

the next two sections, we will use this path-wise reformulation to derive convergent bounds on

the optimal value of RT N .

We recall that a path in a directed graph G = (V,E) constitutes a list of nodes (i1, . . . , ip) such

that (i1, i2), . . . , (ip−1, ip) ∈ E. Accordingly, we define a task path P = {i1, . . . , ip} ⊆ V as a

set of tasks whose nodes form a path in the temporal network. We denote by P the set of all

task paths. The following observation re-iterates the well-known fact (see for example [DH02])

that for fixed x and ξ, the minimal makespan of a temporal network equals the sum of all task

durations along any of its critical (i.e., most time-consuming) task paths.

Observation 5.3.1 For a temporal network G = (V,E) with fixed resource allocation x ∈ X

and parameters ξ ∈ Ξ, the minimal makespan is given by

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = max
P∈P

{
I
⊤
P d(x; ξ)

}
, (5.4)

where d(x; ξ) = (d1(x; ξ), . . . , dn(x; ξ))
⊤ and Y (x, ξ) is defined in (5.1).

Note that the maximum on the right-hand side of (5.4) can be attained by several task paths

P ∈ P. Observation 5.3.1 is crucial as it allows us to replace the inner minimisation in RT N

with a maximisation. In analogy to Observation 5.2.1, this reduces the two-stage robust optimi-

sation problem to an equivalent single-stage problem. Readers familiar with robust optimisation

may wonder whether a similar reduction can be achieved through duality arguments, see Sec-

tion 2.2.2. Due to the structure of Y (x, ξ), this approach results in a maximisation problem
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whose objective function is nonconvex, and the resulting single-stage robust optimisation prob-

lem would be difficult to solve. Observation 5.3.1 bypasses this problem at the expense of

optimising over a potentially large number of task paths.

Example 5.3.1 Consider the temporal network defined by the subgraph that contains the first

four nodes in Figure 5.1. Its minimal makespan is given by

min
y∈R4

+

{
y4 + d4(x; ξ) : yj ≥ y1 + d1(x; ξ) for j = 1, 2,

y4 ≥ yj + dj(x; ξ) for j = 1, 2
}
.

By linear programming duality, this problem is equivalent to

max
λ∈R2

+

{
[d1(x; ξ) + d2(x; ξ)]λ1 + [d1(x; ξ) + d3(x; ξ)]λ2 + d4(x; ξ) : λ1 + λ2 ≤ 1

}
.

For most task duration functions of interest, the objective function of this problem is nonconvex

in ξ and λ. In contrast, enumerating the tasks paths yields

max {d1(x; ξ) + d2(x; ξ) + d4(x, ξ), d1(x; ξ) + d3(x; ξ) + d4(x, ξ)} .

The expressions in this maximisation are convex in ξ if d(x; ξ) is convex in ξ.

Applying Observation 5.3.1 to RT N , we find

min
x∈X

max
ξ∈Ξ

min
y∈Y (x,ξ)

{yn + dn(x; ξ)} = min
x∈X

max
P∈P

max
ξ∈Ξ

{
I
⊤
P d(x; ξ)

}
.

In the following, we will employ robust optimisation techniques to replace the maximisation over

Ξ. We are thus concerned with the following approximate robust resource allocation problem

on temporal networks:

min
x∈X

max
P∈P

φ(x;P ), (ART N )

where φ(·;P ) represents a real-valued function on X. We call ART N a conservative reformu-
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lation of RT N if

φ(x;P ) ≥ max
ξ∈Ξ

{
I
⊤
P d(x; ξ)

}
for x ∈ X, P ⊆ V. (5.5)

If (5.5) holds, optimal allocations for ART N constitute suboptimal but feasible allocations for

RT N , and the optimal value of ART N overestimates the worst-case makespan in RT N . If the

inequality in (5.5) can be replaced with an equality, we call ART N an exact reformulation of

RT N . In this case, ART N and RT N are equivalent. Our bounding approach is applicable to

exact and conservative reformulations of RT N alike. Note, however, that our method provides

upper and lower bounds on ART N , and that these bounds will only bracket the optimal value

of RT N if ART N constitutes an exact reformulation.

Apart from ART N being an exact or conservative reformulation of RT N , our bounding

approach requires φ to satisfy the following two properties:

(A1) Monotonicity. If P ⊂ P ′ ⊆ V , then φ(x;P ) ≤ φ(x;P ′) for all x ∈ X.

(A2) Sub-Additivity. If P ⊂ P ′ ⊆ V , then φ(x;P ) + φ(x;P ′ \ P ) ≥ φ(x;P ′) for all x ∈ X.

We call P ∈ P an inclusion-maximal path if there is no P ′ ∈ P, P ′ 6= P , such that IP ≤ IP ′.

As in the previous chapter, we denote the set of inclusion-maximal paths by P ⊆ P. If (A1)

is satisfied, then the optimal allocations and the optimal value of ART N do not change if we

replace P with P . (A2) implies that φ(x;P ) is bounded from above by
∑R

r=1 φ(x;Pr) for all

x ∈ X if {Pr}Rr=1 forms a partition of P . As we will see, this bounding property facilitates

the construction of lower and upper bounds on the optimal value of ART N . The following

proposition shows that exact reformulations of RT N necessarily satisfy (A1) and (A2).

Proposition 5.3.1 If ART N is an exact reformulation of RT N , then (A1) and (A2) are

satisfied.

Proof For P ⊂ P ′ ⊆ V and x ∈ X, we obtain

φ(x;P ′) = max
ξ∈Ξ

{
I
⊤
P ′ d(x; ξ)

}
≥ max

ξ∈Ξ

{
I
⊤
P d(x; ξ)

}
= φ(x;P ),
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where the inequality follows from IP ′ ≥ IP and non-negativity of d. Similarly, for P ⊂ P ′ ⊆ V

and x ∈ X, we obtain

φ(x;P ′) = max
ξ∈Ξ

{
I
⊤
P ′ d(x; ξ)

}

= max
ξ∈Ξ

{
I
⊤
P d(x; ξ) + I

⊤
[P ′\P ] d(x; ξ)

}

≤ max
ξ∈Ξ

{
I
⊤
P d(x; ξ)

}
+max

ξ∈Ξ

{
I
⊤
[P ′\P ] d(x; ξ)

}

= φ(x;P ) + φ(x;P ′ \ P ).

In the following, we focus on instances of ART N that can be reformulated as explicit convex

optimisation problems. More precisely, we assume that

(A3) Tractability. X and φ(·;P ), P ⊆ V , possess tractable representations.

Remember that a set has a tractable representation if set membership can be described by

finitely many convex constraints and auxiliary variables. Likewise, a function has a tractable

representation if its epigraph does. Although our solution approach does not rely on (A3),

the repeated solution of lower and upper bound problems becomes computationally prohibitive

if (A3) fails to hold. In the following, we show that robust optimisation techniques allow us

to construct exact or conservative reformulations of RT N that satisfy (A1)–(A3) for natural

choices of X, Ξ and d.

Proposition 5.3.2 If X has a tractable representation, then the following choices of Ξ and d

allow for exact reformulations of RT N that satisfy (A1)–(A3):

1. Affine Uncertainty. di(x; ξ) = δ0i (x)+ξ
⊤[δ1i (x)] with δ0i : X 7→ R tractable, δ1i : X 7→ Rk

affine and ξ ∈ Ξ =
⋂L
l=1 Ξl ⊆ Rk with

Ξl =
{
ξ ∈ R

k : ∃ u ∈ R
Jl such that ξ = σl + Σlu,

∥∥Πlu
∥∥
2
≤ 1
}
,
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where σl ∈ Rk, Σl ∈ Rk×Jl and Πl denotes a projection of RJl onto a subspace, l =

1, . . . , L. We require Ξ to be bounded and to have a nonempty relative interior.

2. Quadratic Uncertainty. di(x; ξ) = δ0i (x) + ξ⊤[δ1i (x)] + ‖[∆2
i (x)] ξ‖22 with δ0i : X 7→ R

tractable, δ1i : X 7→ Rk and ∆2
i : X 7→ Rl×k affine and ξ ∈ Ξ ⊆ Rk with

Ξ =
{
ξ ∈ R

k : ∃ u ∈ R
J such that ξ = σ + Σu, ‖u‖2 ≤ 1

}
,

where σ ∈ Rk and Σ ∈ Rk×J .

Proof Let δ0(x) =
[
δ01(x), . . . , δ

0
n(x)

]⊤
. In the case of affine uncertainty, we define φ through

φ(x;P ) = I
⊤
P

[
δ0(x)

]
+max

ξ∈Ξ

{
ξ⊤
(∑

i∈P

[
δ1i (x)

])}
for x ∈ X, P ∈ P,

and in the case of quadratic uncertainty, we define φ through

φ(x;P ) = I
⊤
P

[
δ0(x)

]
+max

ξ∈Ξ

{
ξ⊤
(∑

i∈P

[
δ1i (x)

])
+

∥∥vec
(
[IP ]1

[
∆2

1(x)
]
ξ, . . . , [IP ]n

[
∆2
n(x)

]
ξ
)∥∥2

2

}
for x ∈ X, P ∈ P.

Here, the operator ‘vec’ returns the concatenation of its arguments as a column vector. We

have [IP ]i = 1 if P contains task i and [IP ]i = 0 otherwise. Note that both definitions of φ(x;P )

constitute exact reformulations of maxξ∈Ξ
{
I⊤P d(x; ξ)

}
. In either case, the epigraph of φ can

be described by a semi-infinite constraint which has to hold for all ξ ∈ Ξ. Robust optimisation

techniques [BTGN09] enable us to reformulate these semi-infinite constraints such that (A3) is

satisfied. Due to Proposition 5.3.1, (A1) and (A2) are satisfied as well.

The uncertainty set considered in the first part of Proposition 5.3.2 covers all bounded polyhedra

as special cases. Sometimes, the durations of network tasks are approximated by conic-quadratic

functions, see Chapter 4. It is therefore desirable to extend the results of Proposition 5.3.2 also

to problems with conic-quadratic uncertainty.
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Proposition 5.3.3 (Conic-Quadratic Uncertainty) Assume that the task durations are de-

scribed by di(x; ξ) = δ0i (x) + ξ⊤[δ1i (x)] + ‖[∆2
i (x)] ξ‖2 with δ0i : X 7→ R tractable, δ1i : X 7→ Rk

and ∆2
i : X 7→ R

l×k affine and ξ ∈ Ξ ⊆ R
k with

Ξ =
{
ξ ∈ R

k : ∃ u ∈ R
J such that ξ = σ + Σu, ‖u‖2 ≤ 1

}
,

where σ ∈ Rk, Σ ∈ Rk×J . If X has a tractable representation, then Ξ and d allow for a

conservative reformulation of RT N that satisfies (A1)–(A3).

Remark 5.3.1 In contrast to the case of quadratic uncertainty, the last term of the task dura-

tion is not squared under conic-quadratic uncertainty.

Proof of Proposition 5.3.3 We construct an upper bound on

max
ξ∈Ξ

{∑

i∈P

(
δ0i (x) + ξ⊤

[
δ1i (x)

]
+
∥∥[∆2

i (x)
]
ξ
∥∥
2

)}
for x ∈ X, P ∈ P. (5.6)

The terms in the objective of this problem either do not depend on ξ, or they are convex and

linear homogeneous in ξ. Thus, we can apply the results from [BS06] and bound (5.6) from

above by

φ(x;P ) = max
û∈Û

{
I
⊤
P

[
d̂(x; û)

]}
, (5.7)

where û = (û+, û−), and Û is defined through

Û =
{
û = (û+, û−) ∈ R

J
+ × R

J
+ :

∥∥û+ + û−
∥∥
2
≤ 1
}
.

Moreover, d̂ : X×R2J
+ 7→ Rn has components d̂(x; û) =

[
d̂1(x; û), . . . , d̂n(x; û)

]⊤
that are defined

through

d̂i(x; û) = δ0i (x) +
[
σ + Σ(û+ − û−)

]⊤[
δ1i (x)

]
+

∥∥[∆2
i (x)

]
σ
∥∥
2
+

J∑

j=1

∥∥[∆2
i (x)

]
Σj
∥∥
2
(û+j + û−j )

︸ ︷︷ ︸
αi(x;û)

,
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where Σj denotes the jth column of Σ. The epigraph of φ(x;P ) can be described by a semi-

infinite constraint that has to hold for all û ∈ Û . Due to the specific shape of Û and the

fact that d̂ is affine in û, robust optimisation techniques can be employed to reformulate this

semi-infinite constraint such that (A3) is satisfied. It remains to be shown that φ also satisfies

(A1) and (A2).

As for (A1), we show that d̂i(x; û), i ∈ V , is non-negative for all x ∈ X and û ∈ Û . To this

end, we fix some û = (û+, û−) ∈ Û and set u = û+ − û−. Then ξ = σ + Σu is contained in Ξ

since ‖u‖2 ≤ 1. Hence, for x ∈ X,

di(x; ξ) = δ0i (x) +
[
σ + Σu

]⊤[
δ1i (x)

]
+
∥∥[∆2

i (x)
][
σ + Σu

]∥∥
2︸ ︷︷ ︸

βi(x;u)

≥ 0

by non-negativity of d. Note that d̂i(x; û) − di(x; ξ) = αi(x; û) − βi(x; u) for this choice of

ξ. Since di(x; ξ) ≥ 0, non-negativity of d̂i(x; û) is ensured if αi(x; û) ≥ βi(x; u). The latter

inequality follows the triangle inequality, the positive homogeneity of norms and the fact that

|uj| ≤ û+j + û−j .

As for (A2), we need to show that φ(x;P )+φ(x;P ′\P ) ≥ φ(x;P ′) for x ∈ X and P ⊂ P ′ ⊆ V .

This is the case since

max
û∈Û

{
I
⊤
P

[
d̂(x; û)

]}
+max

û∈Û

{
I
⊤
[P ′\P ]

[
d̂(x; û)

]}
≥ max

û∈Û

{
I
⊤
P ′

[
d̂(x; û)

]}
.

Proposition 5.3.3 provides a conservative reformulation of RT N . Exact reformulations of

robust optimisation problems subject to conic-quadratic uncertainty are discussed in [BTGN09].

However, the path durations φ(x;P ) resulting from conic-quadratic uncertainty are not of the

form required in [BTGN09], and the corresponding reformulation does not seem to be applicable

to our context.

Note that even if (A3) is satisfied, ART N remains generically intractable since its size grows
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with the the cardinality of P, which in turn can be exponential in the size of G. Indeed, the

expected number of paths in a uniformly sampled random temporal network is exponential. We

defer the proof of this statement to Appendix A. Hence, even though ART N can be expressed

as an explicit convex optimisation problem, it remains difficult to solve.

We close with an example that illustrates our path-wise problem formulation ART N .

Example 5.3.2 Consider the temporal network in Figure 5.3. Apart from the missing cash

flows, it is identical to the temporal network in Figure 1.1. Now, however, we interpret the

number attached to task i ∈ V as the nominal duration of task i. We consider a resource

allocation problem with one resource and task durations

di(x; ξ) := d0i (1− xi) (1 + ξi) for i ∈ V,

where d0i denotes the nominal task duration from Figure 5.3, xi the amount of the resource that

is assigned to task i, and ξi the uncertainty inherent to the task duration. We set

X :=
{
x ∈ R

6
+ : xi ≤ 1/2, e⊤x ≤ 1

}

and Ξ :=
{
ξ ∈ R

6
+ : ξi ≤ 1/2, e⊤ξ ≤ 1

}
.

Thus, the duration of task i can fall below or exceed its nominal duration d0i by 50%, depending

on the resource allocation and the realisation of the uncertain parameter vector ξ. Up to two

tasks can be sped up to their minimal durations, and up to two tasks on each inclusion-maximal

path can attain their worst-case durations.

For the network in Figure 5.3, the set P of all task paths contains 22 elements. Elements of

P are, amongst others, {1}, {2}, . . . , {6}, {1, 2}, {1, 3}, . . . , {5, 6} and {1, 2, 5}. The set

P of inclusion-maximal task paths only contains three elements, namely {1, 2, 4, 6}, {1, 2, 5, 6}

and {1, 3, 5, 6}. Since our problem instance satisfies the conditions of the first part of Proposi-

tion 5.3.2, we can develop an exact reformulation of RT N that satisfies (A1)–(A3). Indeed,
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for our choice of functions we have

φ(x;P ) = max
ξi∈R+ : i∈P

{∑

i∈P

d0i (1− xi)(1 + ξi) : ξi ≤ 1/2 ∀ i ∈ P,
∑

i∈P

ξi ≤ 1

}

= min
λi∈R+ : i∈P,

γ∈R+

{[∑

i∈P

d0i (1− xi) + λi/2

]
+ γ : λi + γ ≥ d0i (1− xi) ∀ i ∈ P

}
,

where the first identity holds by definition, and the second one follows from linear programming

duality. Note that our reformulation ART N satisfies (A3) since

τ ≥ φ(x;P ) ⇔ ∃ (λi ∈ R+ : i ∈ P ), γ ∈ R+ : τ ≥
[∑

i∈P

d0i (1− xi) + λi/2

]
+ γ,

λi + γ ≥ d0i (1− xi) ∀ i ∈ P,

and the right-hand side of this equivalence can be expressed by finitely many linear constraints

and auxiliary variables. For the temporal network in Figure 5.3, our reformulation ART N

results in the following optimisation problem.

minimise
τ,x,λ,γ

τ

subject to τ ∈ R+, x ∈ R
6
+, λ ∈ R

12
+ , γ ∈ R

3
+

τ ≥ 2(1− x1) + λ11/2 + 5(1− x2) + λ12/2 + 4(1− x4) + λ14/2 + 1(1− x6) + λ16/2 + γ1,

λ11 + γ1 ≥ 2(1− x1), λ12 + γ1 ≥ 5(1− x2), λ14 + γ1 ≥ 4(1− x4), λ16 + γ1 ≥ 1(1− x6),

τ ≥ 2(1− x1) + λ21/2 + 5(1− x2) + λ22/2 + 3(1− x5) + λ25/2 + 1(1− x6) + λ26/2 + γ2,

λ21 + γ2 ≥ 2(1− x1), λ22 + γ2 ≥ 5(1− x2), λ25 + γ2 ≥ 3(1− x5), λ26 + γ2 ≥ 1(1− x6),

τ ≥ 2(1− x1) + λ31/2 + 1(1− x3) + λ33/2 + 3(1− x5) + λ35/2 + 1(1− x6) + λ36/2 + γ3,

λ31 + γ3 ≥ 2(1− x1), λ33 + γ3 ≥ 1(1− x3), λ35 + γ3 ≥ 3(1− x5), λ36 + γ3 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.



130 Chapter 5. Minimisation of the Worst-Case Makespan

The optimal allocation to this problem is x = (0, 0.50, 0, 0.36, 0.14, 0)⊤ and leads to a worst-case

makespan of 10.61.

1

2

3

4

5

62
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1

4

3

1

Figure 5.3: Example temporal network. The chart illustrates the network structure and the
nominal durations d0i of the network tasks i ∈ V (attached to the nodes).

5.4 Lower Bounds

We determine convergent lower bounds on ART N by solving relaxations that omit some of

the paths in ART N :

Algorithm 5.1 Convergent lower bounds on ART N .

1. Initialisation. Choose a subset P1 ⊆ P , for example P1 = ∅. Set t = 1.

2. Master Problem. Solve ART N , restricted to the paths in Pt:

min
x∈X,
τ∈R+

{
τ : τ ≥ φ(x;P ) ∀P ∈ Pt

}
. (LART N t)

Let xt denote an optimal solution to LART N t and τ t its objective value.

3. Subproblem. Determine a path P ∈ P \ Pt with φ(xt;P ) > τ t.

(a) If no such path exists, stop: x∗ = xt constitutes an optimal solution to ART N and

τ ∗ = τ t its objective value.

(b) Otherwise, set Pt+1 = Pt ∪ {P}, t→ t + 1 and go to Step 2.
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The following proposition is an immediate consequence of the algorithm outline.

Proposition 5.4.1 Algorithm 5.1 terminates with an optimal allocation x∗ for ART N , to-

gether with its worst-case makespan τ ∗. Furthermore, {τ t}t represents a monotonically non-

decreasing sequence of lower bounds on τ ∗.

Proof Since t ≤ t′ implies that Pt ⊆ Pt′ , LART N t constitutes a relaxation of LART N t′ .

Hence, τ t ≤ τ t
′

, that is, {τ t}t is monotonically non-decreasing. Similarly, every τ t constitutes

a lower bound on the optimal value of ART N , because the latter problem considers all paths

in P and Pt ⊆ P for all t.

In iteration t, Step 3 either terminates or adds a path P ∈ P \ Pt to Pt. Hence, the algorithm

terminates after T ≤
∣∣P \ P1

∣∣ + 1 iterations. It is clear that x∗ is optimal if PT = P in the

last iteration. Otherwise, φ(x∗;P ) ≤ τ ∗ for all P ∈ P \ PT . Thus, (x∗, τ ∗) minimises the

relaxation LART N T and x∗ is feasible in ART N . Since x∗ attains the same objective value

τ ∗ in ART N , x∗ is an optimal allocation and τ ∗ the optimal value of ART N .

The size of LART N t, t ≥ 1, grows with the cardinality of Pt. Hence, Algorithm 5.1 allows us

to determine coarse initial lower bounds with little effort, whereas tighter lower bounds become

increasingly difficult to obtain.

The quality of the lower bounds determined by Algorithm 5.1 crucially depends on the path

selection in Step 3. In iteration t it seems natural to select a path P that maximises φ(xt;P )

over P \ Pt. Theorem 5.2.1 implies that this choice may require the solution of an NP-hard

optimisation problem. A naive alternative is to enumerate all paths in P \ Pt and stop once

a path P is found that satisfies φ(xt;P ) > τ t. This ‘first fit’ method, however, suffers from

two limitations. Firstly, this approach is likely to require many iterations since there is no

prioritisation among the paths P that satisfy φ(xt;P ) > τ t. Secondly, in the last (T th) itera-

tion of Algorithm 5.1 all paths in P \ PT are investigated before the procedure can terminate.

This implies that the algorithm needs to inspect all elements of P at least once. In view of

the cardinality of P (see Section 5.3), this is computationally prohibitive. To alleviate both
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problems, we replace Step 3 of Algorithm 5.1 with the following procedure.

Algorithm 5.2 Determine P ∈ P \ Pt with φ(xt;P ) > τ t.

3(a) Initialisation. Construct the temporal network G = (V,E) with deterministic task dura-

tions δ = (δ1, . . . , δn)
⊤, where δi = max

{
φ(xt; {i}), ǫ

}
. Here, {i} represents a degenerate

path that contains a single task i ∈ V , while ǫ denotes a small positive constant. Set

s = 1.

3(b) Path Selection. Let Ps be the sth longest path in G, where the length of a path P ∈ P

is defined as I⊤P δ.

(i) If I⊤Ps
δ ≤ τ t or G contains less than s paths, stop: x∗ = xt is an optimal allocation

in ART N and τ ∗ = τ t its worst-case makespan.

(ii) If φ(xt;Ps) > τ t, set Pt+1 = Pt ∪ {Ps}, t→ t+ 1 and go to Step 2 of Algorithm 5.1.

(iii) Otherwise, set s→ s+ 1 and repeat Step 3(b).

The algorithm uses I⊤P δ as an overestimator for φ(xt;P ). Indeed, we have I⊤P δ ≥
∑

i∈P φ(x
t; {i})

by definition of δ, while
∑

i∈P φ(x
t; {i}) exceeds φ(xt;P ) due to (A2). Note that φ(xt; {i})

represents the worst-case duration of task i.

Depending on the problem instance, Algorithm 5.2 may certify the optimality of xt without

inspecting all paths in P. Furthermore, if ǫ is sufficiently small, then the paths P ∈ P are

inspected in the order of decreasing task-wise worst-case durations
∑

i∈P φ(x
t; {i}). Thus,

as long as these quantities approximate φ(xt;P ), P ∈ P, reasonably well, one can expect

Algorithm 5.1 to outperform the ‘first fit’ approach outlined above. Note that the s longest

paths in a directed, acyclic graph G = (V,E) can be enumerated in time O(|E| + s |V |),

see [Epp94]. The following proposition establishes the correctness of Algorithm 5.2.

Proposition 5.4.2 Algorithm 5.2 terminates and either correctly concludes that xt is an op-

timal allocation in ART N or it determines a path P ∈ P \ Pt with φ(xt;P ) > τ t.
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Proof G contains a finite number of paths, and hence the algorithm terminates. In the fol-

lowing, we denote by Ps the sth longest path in G according to the metric defined in Step 3(b)

of the algorithm. Furthermore, we assume that the algorithm terminates in iteration S.

Assume that the algorithm terminates in case (i) of Step 3(b) because G contains less than S

paths. In this case, all paths P ∈ P satisfy τ t ≥ φ(xt;P ) since otherwise the algorithm would

have terminated in case (ii) of Step 3(b) of an earlier iteration. From Proposition 5.4.1 we

conclude that xt constitutes an optimal allocation in ART N .

If the algorithm terminates in case (i) of Step 3(b) because I⊤PS
δ ≤ τ t, we know that τ t ≥

φ(xt;Ps) for all s < S. Also, τ t ≥ I⊤Ps
δ for s ∈ {S + 1, . . . , |P|} since these paths are not longer

than PS. This, however, implies that for P ∈
{
PS, . . . , P|P|

}
, we have

τ t ≥ I
⊤
P δ ≥

∑

i∈P

φ(xt; {i}) ≥ φ(xt;P ),

where δ is defined in Step 3(a) of Algorithm 5.2. The second inequality follows from the

definition of δ, while the third one is due to (A2). We conclude that τ t ≥ φ(xt;P ) for all

P ∈ P, and hence Proposition 5.4.1 ensures that xt is an optimal allocation in ART N .

If the algorithm terminates in case (ii) of Step 3(b), it has determined a task path PS ∈ P with

φ(xt;PS) > τ t. We need to show that PS is inclusion-maximal, that is, PS ∈ P. Assume to the

contrary that PS ∈ P \ P . Then there is a task path P ∈ P with P 6= PS and IP ≥ IPS
. Since

δ > 0 component-wise, I⊤P δ =
(
IPS

+ I[P\PS]

)⊤
δ > I⊤PS

δ. Hence, P must have been considered

in some iteration s < S. Due to (A1), however, φ(xt;P ) ≥ φ(xt;PS), and the algorithm must

have terminated in case (ii) of Step 3(b) of that iteration because φ(xt;P ) ≥ φ(xt;PS) > τ t.

Since this yields a contradiction, we conclude that PS is indeed inclusion-maximal.

Note that prior to its termination, Algorithm 5.1 only provides monotonically increasing lower

bounds on the optimal value of ART N . Since the intermediate allocations xt are feasible,

their worst-case makespans in ART N also constitute upper bounds on the optimal value of

ART N . From Theorem 5.2.1, however, we know that evaluating the worst-case makespan of

xt in ART N may require the solution of an NP-hard optimisation problem. Hence, we need
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Figure 5.4: Auxiliary deterministic temporal networks generated by Algorithm 5.2. The upper
left, upper right and bottom chart visualises the auxiliary graph in iteration t = 1, t = 2 and
t = 3, respectively. Attached to each node i ∈ V is its task-wise worst-case duration δi.

to pursue a different approach to generate upper bounds efficiently.

We close with an example that illustrates Algorithms 5.1 and 5.2.

Example 5.4.1 Consider again the resource allocation problem defined in Example 5.2.1. We

generate lower bounds on the optimal objective value of this problem with Algorithms 5.1 and 5.2.

We start with Step 1 of Algorithm 5.1, in which we choose the subset P1 = ∅ and set t = 1.

In Step 2 we solve the following lower bound problem LART N 1.

minimise
τ,x

τ

subject to τ ∈ R+, x ∈ R
6
+

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation is x1 = (0, 0, 0, 0, 0, 0)⊤ with an estimated worst-case makespan of τ 1 = 0.

We now enter Step 3(a) of Algorithm 5.2. Figure 5.4 (upper left) illustrates the deterministic

temporal network with worst-case task durations δ = (3, 7.5, 1.5, 6, 4.5, 1.5)⊤. We set s = 1.
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In Step 3(b), we identify P1 = {1, 2, 4, 6} as the longest path in the deterministic temporal

network. This path has a task-wise worst-case duration of I⊤P1
δ = 18 and a path-wise worst-case

duration of φ(x1;P1) = 16.5. This path therefore satisfies condition (ii) of Step 3(b), and we

set P2 = {{1, 2, 4, 6}} and t = 2.

We are back in Step 2 of Algorithm 5.1. The new lower bound LART N 2 is obtained from the

following optimisation problem.

minimise
τ,x,λ,γ

τ

subject to τ ∈ R+, x ∈ R
6
+, λ ∈ R

4
+, γ ∈ R+

τ ≥ 2(1− x1) + λ11/2 + 5(1− x2) + λ12/2 + 4(1− x4) + λ14/2 + 1(1− x6) + λ16/2 + γ1,

λ11 + γ1 ≥ 2(1− x1), λ12 + γ1 ≥ 5(1− x2), λ14 + γ1 ≥ 4(1− x4), λ16 + γ1 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation to this problem is x2 = (0, 0.5, 0, 0.5, 0, 0)⊤ and leads to an estimated

worst-case makespan of τ 2 = 9.75.

We enter Step 3(a) of Algorithm 5.2 again. Figure 5.4 (upper right) illustrates the deterministic

temporal network with worst-case task durations δ = (3, 3.75, 1.5, 3, 4.5, 1.5)⊤. We set s = 1.

In Step 3(b), we identify P1 = {1, 2, 5, 6} as the longest path in the deterministic temporal

network. This path has a task-wise worst-case duration of I⊤P1
δ = 12.75 and a path-wise worst-

case duration of φ(x2;P1) = 11.25. This path therefore satisfies condition (ii) of Step 3(b), and

we set P3 = {{1, 2, 4, 6} , {1, 2, 5, 6}} and t = 3.
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We are back in Step 2 of Algorithm 5.1. The new lower bound LART N 3 is obtained from the

following optimisation problem.

minimise
τ,x,λ,γ

τ

subject to τ ∈ R+, x ∈ R
6
+, λ ∈ R

8
+, γ ∈ R

2
+

τ ≥ 2(1− x1) + λ11/2 + 5(1− x2) + λ12/2 + 4(1− x4) + λ14/2 + 1(1− x6) + λ16/2 + γ1,

λ11 + γ1 ≥ 2(1− x1), λ12 + γ1 ≥ 5(1− x2), λ14 + γ1 ≥ 4(1− x4), λ16 + γ1 ≥ 1(1− x6),

τ ≥ 2(1− x1) + λ21/2 + 5(1− x2) + λ22/2 + 3(1− x5) + λ25/2 + 1(1− x6) + λ26/2 + γ2,

λ21 + γ2 ≥ 2(1− x1), λ22 + γ2 ≥ 5(1− x2), λ25 + γ2 ≥ 3(1− x5), λ26 + γ2 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation to this problem is x3 = (0, 0.5, 0, 0.36, 0.14, 0)⊤ and leads to an estimated

worst-case makespan of τ 3 = 10.61.

We enter Step 3(a) of Algorithm 5.2 again. Figure 5.4 (bottom) illustrates the deterministic

temporal network with worst-case task durations δ = (3, 3.75, 1.5, 3.86, 3.86, 1.5)⊤. We set s = 1.

In Step 3(b), we identify P1 = {1, 2, 4, 6} as the longest path in the deterministic temporal

network. This path has a task-wise worst-case duration of I⊤P1
δ = 12.11 and a path-wise worst-

case duration of φ(x3;P1) = 10.61. This path therefore satisfies condition (iii) of Step 3(b), and

we set s = 2.

In Step 3(b), we identify P2 = {1, 2, 5, 6} as the second-longest path in the deterministic tempo-

ral network. Like the previous path, this path has a task-wise worst-case duration of I⊤P2
δ = 12.11

and a path-wise worst-case duration of φ(x3;P2) = 10.61. This path therefore also satisfies con-

dition (iii) of Step 3(b), and we set s = 3.

In Step 3(b), we identify P3 = {1, 3, 5, 6} as the third-longest path in the deterministic tem-

poral network. This path has a task-wise worst-case duration of I⊤P3
δ = 9.86. This path
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therefore satisfies condition (i) of Step 3(b), and we terminate with the optimal allocation

x∗ = (0, 0.50, 0, 0.36, 0.14, 0)⊤ and its worst-case makespan τ ∗ = 10.61.

5.5 Upper Bounds

Consider a task path P ∈ P, together with a partition {Pr}Rr=1 that satisfies
⋃R
r=1 Pr = P and

Pr∩Pq = ∅ for all r 6= q. According to (A2), we can bound P ’s worst-case duration φ(x;P ) from

above by
∑R

r=1 φ(x;Pr). Intuitively, this is the case because
∑R

r=1 φ(x;Pr) predicts different

worst-case realisations of ξ for each block Pr, whereas φ(x;P ) considers the same worst-case

realisation for all tasks in P . If we partition all paths P ∈ P in this way, we obtain an upper

bound on the optimal value of ART N . The granularity of the path partitions trades off the

quality of the bound with the size of the associated bounding problem. If we use singleton

partitions {{i}}i∈P for each path P ∈ P , for example, the associated optimisation problem

can be solved efficiently as a deterministic resource allocation problem with task durations

φ(x; {i}), i ∈ V . However, this approximation is very crude since it allows each task to attain

its worst-case duration individually. At the other extreme, we recover ART N if we employ

single-block partitions {P} for each path P ∈ P . In the following, we develop an algorithm

that iteratively advances from singleton partitions to single-block partitions. We illustrate this

idea with an example.

Example 5.5.1 Consider the temporal network in Figure 5.5(a). Assume that φ(x; {5}) = 0,

that is, task 5 has duration zero, and fix a resource allocation x ∈ X. Due to (A1) and (A2),

the objective value of ART N is the maximum of φ(x; {1, 2, 3}) and φ(x; {1, 2, 4}). We can

bound this value from above if we replace the worst-case duration φ(x;P ) of both paths P ∈

{{1, 2, 3} , {1, 2, 4}} with
∑

i∈P φ(x; {i}). To calculate this bound, let y ∈ R5
+ denote the vector

of task start times. We minimise y5 subject to

y2 ≥ y1 + φ(x; {1}), y3 ≥ y2 + φ(x; {2}), y4 ≥ y1 + φ(x; {1}),

y4 ≥ y2 + φ(x; {2}), y5 ≥ y3 + φ(x; {3}), y5 ≥ y4 + φ(x; {4}).
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This problem contains one constraint for each precedence in Figure 5.5(a). By construction, y5

exceeds φ(x; {1})+φ(x; {2})+φ(x; {3}) and φ(x; {1})+φ(x; {2})+φ(x; {4}). We thus conclude

that y5 bounds ART N from above.

1111

2222 3333

4444

5555

{1, 2} {1, 2}

{1, 2}
{1, 2, 4}

{1, 2, 3}

{1, 2, 4}

(a) (b) (c) (d)

Figure 5.5: Bounding graphs for the temporal network in (a). Dotted nodes (arcs) represent
redundant variables (constraints) in the bounding problem.

This upper bound relies on the assumption that different tasks can attain different worst-case

durations. To obtain a tighter bound, we coarsen our path partitions. We can achieve this by

replacing the precedence (1, 2) in Figure 5.5(a) with the two new precedences shown in Fig-

ure 5.5(b). The labels attached to these precedences list the tasks that need to be processed

between the corresponding components of y. To calculate our new upper bound, we minimise y5

subject to

y3 ≥ y1 + φ(x; {1, 2}), y4 ≥ y1 + φ(x; {1, 2}),

y5 ≥ y3 + φ(x; {3}), y5 ≥ y4 + φ(x; {4})

and the constraints corresponding to the dotted arcs in Figure 5.5(b). In the figure, dotted

arcs lie on paths that are not inclusion-maximal, and (A1) allows us to ignore the associated

precedences. By construction, y5 exceeds φ(x; {1, 2}) + φ(x; {3}) and φ(x; {1, 2}) + φ(x; {4}).

Hence, y5 still bounds ART N from above. Our new bound is at least as tight as the old one

since φ(x; {1, 2}) ≤ φ(x; {1}) + φ(x; {2}). Note that the components of y cannot be interpreted

as task start times anymore.

We now replace the labelled arc (1, 4) in Figure 5.5(b) with the new labelled arc in Figure 5.5(c).

To obtain our new upper bound, we minimise y5 subject to

y3 ≥ y1 + φ(x; {1, 2}), y5 ≥ y1 + φ(x; {1, 2, 4}), y5 ≥ y3 + φ(x; {3}).
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Since y5 exceeds φ(x; {1, 2})+φ(x; {3}) and φ(x; {1, 2, 4}), it bounds ART N from above. Again,

our new upper bound is at least as tight as the previous one since φ(x; {1, 2, 4}) ≤ φ(x; {1, 2})+

φ(x; {4}).

If we replace the labelled arc (1, 3) in Figure 5.5(c), then we obtain the graph in Figure 5.5(d).

The associated bounding problem minimises y5 subject to

y5 ≥ y1 + φ(x; {1, 2, 3}), y5 ≥ y1 + φ(x; {1, 2, 4}).

This problem is equivalent to ART N . Note that for the path {1, 2, 3, 5}, we iteratively gen-

erated the partitions {{1} , {2} , {3}} in Figure 5.5(a), {{1, 2} , {3}} in Figure 5.5(b)+(c) and

{{1, 2, 3}} in Figure 5.5(c).

We now formalise our approach. To simplify the exposition, we assume that φ(x; {n}) = 0 for

all x ∈ X, that is, the sink node of the network has duration zero. This can always be achieved

by introducing a dummy task.

For a temporal network G = (V,E), we define a sequence of bounding graphs G1, G2, . . . as

follows. Each bounding graph Gt = (V,Et) is directed and acyclic with nodes V and labelled

arcs Et. The arcs are of the form (j, k, Pjk), where j, k ∈ V and the label Pjk satisfies Pjk ⊆

V \ {n}. There can be multiple arcs between j and k as long as they have different labels.

The networks in Figure 5.5 constitute bounding graphs if we attach the label {j} to the each

unlabelled arc from j to k.

We associate with Gt the following bounding problem.

min
x∈X,
y∈Rn

+

{yn : yk − yj ≥ φ(x;Pjk) ∀ (j, k, Pjk) ∈ Et} (UART N t)

UART N t assigns a variable yj to every node j ∈ V . The constraints ensure that yk exceeds yj

by at least φ(x;Pjk) time units if (j, k, Pjk) ∈ Et. In Example 5.5.1 we formulated UART N t

for the four bounding graphs in Figure 5.5.
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For a bounding graph Gt, we say that P ∈ P is an induced path if every feasible solution (x, y)

to Gt’s bounding problem satisfies yn ≥ φ(x;P ). To obtain an upper bound on ART N , we

are interested in bounding graphs that induce all paths P ∈ P. Formally, we define the set of

induced paths as

P(Gt) =
{
P ∈ P : ∃ {(ir, ir+1, Pr)}Rr=1 ⊆ Et

such that iR+1 = n and (P \ {n}) =
R⋃

r=1

Pr

}
.

Hence, P ∈ P(Gt) if the tasks in P \ {n} are contained in the union of arc labels on a path

in Gt that ends at the sink node n. Intuitively, yn exceeds φ(x;P ) because there is a partition

{Pr}Rr=1 of P \ {n} such that yn ≥∑R
r=1 φ(x;Pr). Note that we can ignore the sink node n in

this consideration since its duration is zero. The following lemma makes this argument explicit.

Lemma 5.5.1 (Induced Paths) If P ∈ P(Gt), then any feasible solution (x, y) to UART N t

satisfies yn ≥ φ(x;P ).

Proof By definition of P(Gt), there is {(ir, ir+1, Pr)}Rr=1 ⊆ Et with iR+1 = n and (P \ {n}) =
⋃R
r=1 Pr. We thus have

yn
(a)

≥ yn − yi1 =

R∑

r=1

(yir+1
− yir)

(b)

≥
R∑

r=1

φ(x;Pr)
(c)

≥ φ(x;P \ {n}) (d)
= φ(x;P ),

where (a) follows from non-negativity of y, (b) from the fact that (x, y) is feasible in UART N t,

and (c) and (d) from (A1), (A2) and φ(x; {n}) = 0.

As an illustration of induced paths, consider the path {1, 2, 4, 5} in Example 5.5.1. It is induced

by G1 via {(1, 2, {1}), (2, 4, {2}), (4, 5, {4})}, by G2 via {(1, 4, {1, 2}), (4, 5, {4})}, and by G3 and

G4 via {(1, 5, {1, 2, 4})}, see Figure 5.5. Lemma 5.5.1 implies that the objective value of any

feasible solution (x, y) to UART N t provides an upper bound on the worst-case makespan of

x with respect to all induced task paths. We conclude that UART N t bounds ART N from

above if P ⊆ P(Gt).
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An initial upper bound on ART N is obtained from UART N 1 where

G1 = (V,E1) with E1 = {(j, k, {j}) : (j, k) ∈ E} . (5.8)

UART N 1 comprises one constraint for every arc (j, k, Pjk) ∈ E1. Since E1 contains |E| arcs,

UART N 1 is a tractable optimisation problem. The following lemma shows that UART N 1

bounds ART N from above.

Lemma 5.5.2 (Initial Bound) P ⊆ P(G1) for G1 defined in (5.8).

Proof Consider any path P = {i1 = 1, i2, . . . , iR+1 = n} ∈ P with (ir, ir+1) ∈ E for r =

1, . . . , R. For Pr = {ir}, r = 1, . . . , R, we have {(ir, ir+1, Pr)}Rr=1 ⊆ E1 and (P \{n}) = ⋃R
r=1 Pr,

so that P ∈ P(G1).

Figure 5.5(a) visualises G1 for the temporal network in Example 5.5.1. The initial bound-

ing graph approximates the worst-case duration φ(x;P ) of every path P ∈ P by the dura-

tion
∑

i∈P φ(x; {i}) of the singleton partition {{i}}i∈P . If this approximation is tight, then

UART N 1 and ART N are equivalent. This is the case, for example, if all task durations

depend on disjoint parts of ξ that are not related to each other through Ξ. In general, however,

φ(x;P ) <
∑

i∈P φ(x; {i}), and the optimal value of UART N 1 constitutes a strict upper bound

on the optimal value of ART N .

By suitably transforming the graph G1, we can coarsen the path partitions to tighten the upper

bound provided by UART N 1.

Definition 5.5.1 (Replacements) For a bounding graph Gt = (V,Et) we construct Gt+1 =

(V,Et+1) via the following two types of replacements.

1. Predecessor Replacement. Gt+1 results from a predecessor replacement of (j, k, Pjk) ∈

Et if j 6= 1 and

Et+1 = Et \ {(j, k, Pjk)} ∪
⋃

i∈V,Pij∈P:
(i,j,Pij)∈Et

{(i, k, Pij ∪ Pjk)} .
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2. Successor Replacement. Gt+1 results from a successor replacement of (j, k, Pjk) ∈ Et

if k 6= n and

Et+1 = Et \ {(j, k, Pjk)} ∪
⋃

l∈V,Pkl∈P:
(k,l,Pkl)∈Et

{(j, l, Pjk ∪ Pkl)} .

The two replacements are illustrated in Figures 5.6 and 5.7. We call (j, k, Pjk) ∈ Et replaceable

if it qualifies for either of the two replacements. The application of a replacement to (j, k, Pjk) ∈

Et reduces the approximation error for every path P ∈ P(Gt) whose partition {Pr}Rr=1 contains

the block Pjk. At the same time, however, the number of arcs in the resulting bounding graph

(and hence the size of the bounding problem) typically increases. In Example 5.5.1 we applied

successor replacements to (1, 2, {1}) ∈ E1, (1, 4, {1, 2}) ∈ E2 and (1, 3, {1, 2}) ∈ E3. As the

result of a replacement, some nodes and/or arcs in the bounding graph may become redundant,

see Figure 5.5. We will identify such redundancies at the end of this section.

i1

i2

j k

Pi1j

Pi2j

Pjk

i1

i2

j k

Pi1j

Pi2j

Pi1j ∪ Pjk

Pi2j ∪ Pjk

Figure 5.6: Predecessor replacement of (j, k, Pjk) with two predecessor nodes.

l1

l2

j k

Pkl1

Pkl2

Pjk

l1

l2

j k

Pkl1

Pkl2

Pjk ∪ Pkl1

Pjk ∪ Pkl2

Figure 5.7: Successor replacement of (j, k, Pjk) with two successor nodes.

From now on, we assume that (Gt)t is a sequence of bounding graphs where G1 is defined

in (5.8) and G2, G3, . . . result from an iterated application of replacements in the sense of
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Definition 5.5.1. In this case, the label Pjk of an arc (j, k, Pjk) ∈ Et contains precisely the tasks

on a path from j to k (excluding k) in the temporal network G.

Lemma 5.5.3 For each arc (j, k, Pjk) ∈ Et the temporal network G contains a directed path

{(lr, lr+1)}Rr=1 ⊆ E with R ≥ 1, (l1, lR+1) = (j, k) and Pjk = {l1, . . . , lR}.

Proof We prove the assertion by induction on t. By construction of G1, the assertion holds

for t = 1. Assume now that the assertion holds for Gt and that Gt+1 results from a predecessor

replacement of (j, k, Pjk) ∈ Et (an analogous argument can be made for successor replacements).

According to Definition 5.5.1, any new arc in Et+1\Et must be of the form (i, k, Pik), and Et must

contain an arc (i, j, Pij) ∈ Et with Pij ∪Pjk = Pik. Since the assertion holds for Gt, G contains

directed paths {(lr, lr+1)}Rr=1 ,
{
(l′r, l

′
r+1)

}R′

r=1
⊆ E with (l1, lR+1) = (i, j), (l′1, l

′
R′+1) = (j, k),

Pij = {l1, . . . , lR} and Pjk = {l′1, . . . , l′R′}. Since lR+1 = l′1, we can connect both paths to prove

the assertion for (i, k, Pik). Since the arc (j, k, Pjk) ∈ Et was chosen arbitrarily, the assertion of

the lemma follows.

The next lemma shows that replacements preserve the upper bound property.

Lemma 5.5.4 (Bound Preservation) If P ⊆ P(Gt), then P ⊆ P(Gt+1).

Proof Choose any path P ∈ P. By assumption, P ∈ P(Gt), that is, there exists a set of arcs

{(ir, ir+1, Pr)}Rr=1 ⊆ Et with iR+1 = n and (P \ {n}) = ⋃R
r=1 Pr. We show that P ∈ P(Gt+1).

Assume that Gt+1 results from a predecessor replacement of (j, k, Pjk) ∈ Et; the proof is widely

parallel for successor replacements.

If (j, k) 6= (ir, ir+1) for all r ∈ {1, . . . , R}, then P ∈ P(Gt+1) is vacuously satisfied. Hence,

assume that (j, k) = (is, is+1) for some s ∈ {1, . . . , R}. Since 1 is the unique source of G (see

Section 1.1) and P ∈ P , we have 1 ∈ P . Lemma 5.5.3 then implies that i1 = 1. Hence, s 6= 1

since (i1, i2, P1) does not qualify for a predecessor replacement. Let i′r = ir for r = 1, . . . , s− 1

and i′r = ir+1 for r = s, . . . , R. Similarly, let P ′
r = Pr for r = 1, . . . , s − 2 (if s > 2),

P ′
s−1 = Ps−1 ∪ Ps and P ′

r = Pr+1 for r = s, . . . , R− 1. We have that
{
(i′r, i

′
r+1, P

′
r)
}R−1

r=1
⊆ Et+1,
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i′R = n and (P \ {n}) =
⋃R−1
r=1 P

′
r, which ensures that P ∈ P(Gt+1). Since P was chosen

arbitrarily, the assertion follows.

We can now prove that the proposed replacements result in a monotonically non-increasing,

convergent sequence of upper bounds on ART N .

Proposition 5.5.1 Let (xt, yt) denote an optimal solution to UART N t. Then:

(a) For every t, xt is a feasible allocation in ART N and ytn is an upper bound on the worst-

case makespan of xt in ART N .

(b) There is T ∈ N such that there are no replaceable arcs in GT . For this T , xT is an optimal

allocation in ART N and yTn is the worst-case makespan of xT in ART N .

(c) The sequence {ytn}Tt=1 is monotonically non-increasing.

Proof By construction, xt constitutes a feasible allocation for every t. Due to Lemma 5.5.1,

assertion (a) is therefore satisfied if P ⊆ P(Gt) for every t. Employing Lemmas 5.5.2 and 5.5.4,

this follows by induction on t.

As for (b), we recall that G1 is acyclic. Hence, we can relabel the nodes of G1 such that all

(j, k, Pjk) ∈ E1 satisfy j < k. Every replacement removes one arc (j, k, Pjk) ∈ Et, t = 1, 2, . . .,

and adds less than |Et| arcs (i, l, Pil) with i ≤ j and l ≥ k, where one of these inequalities is

strict. Since all (j, k, Pjk) ∈ Et satisfy 1 ≤ j, k ≤ n, there is T ∈ N such that there are no

replaceable arcs in GT .

All arcs in ET are of the form (1, n, P1n) for some P1n ⊆ V \ {n} since otherwise, further

replacements would be possible. Hence, UART N T is equivalent to

min
x∈X

max
(1,n,P1n)∈ET

φ(x;P1n).

We have P ⊆ {P1n ∈ P : (1, n, P1n) ∈ ET} ⊆ P due to Lemma 5.5.3 and part (a) of this proof.

Hence, UART N T is equivalent to ART N , and claim (b) follows.
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To prove (c), we first show that if (x, y) is feasible in UART N t, t ∈ {1, . . . , T − 1}, then it

is also feasible in UART N t+1. Assume that Gt+1 is obtained from a predecessor replacement

of (j, k, Pjk) ∈ Et. The argument is widely parallel for successor replacements. UART N t+1

results from UART N t by replacing the constraint yk − yj ≥ φ(x;Pjk) with new constraints of

the form yk − yi ≥ φ(x;Pij ∪ Pjk) for i ∈ V and Pij ⊆ V \ {n} with (i, j, Pij) ∈ Et. These new

constraints are less restrictive, however, because

yk − yi = (yk − yj) + (yj − yi)
(i)

≥ φ(x;Pij) + φ(x;Pjk)
(ii)

≥ φ(x;Pij ∪ Pjk).

Here, (i) follows from the fact that (x, y) is feasible in UART N t, while (ii) is due to (A2).

Hence, (x, y) is feasible in UART N t+1, too. Since UART N t and UART N t+1 share the same

objective function, assertion (c) follows.

Proposition 5.5.1 provides the justification for the following algorithm.

Algorithm 5.3 Convergent upper bounds on ART N .

1. Initialisation. Construct G1 as defined in (5.8). Set t = 1.

2. Bounding Problem. Find an optimal solution (xt, yt) to UART N t.

3. Replacement. Choose a replaceable arc (j, k, Pjk) ∈ Et.

(a) If there is no such arc, terminate: x∗ = xt is an optimal allocation in ART N and

y∗n = ytn is the worst-case makespan of x∗ in ART N .

(b) Otherwise, construct Gt+1 by applying a replacement to arc (j, k, Pjk), set t→ t+1

and go to Step 2.

Algorithm 5.3 does not prescribe the choice of any specific replacement. We will discuss a

selection scheme below. Before that, we summarise the following algorithm properties which

are a direct consequence of Proposition 5.5.1.
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Corollary 5.5.1 Algorithm 5.3 terminates with an optimal resource allocation x∗ in ART N

and its worst-case makespan y∗n. Moreover, {xt}Tt=1 represents a sequence of feasible alloca-

tions in ART N and {ytn}Tt=1 a monotonically non-increasing sequence of upper bounds on their

objective values in ART N .

By combining Algorithms 5.1 and 5.3, we obtain monotonically convergent lower and upper

bounds on the optimal value of ART N , together with feasible allocations xt ∈ X whose worst-

case makespans are bracketed by these bounds. This provides us with feasible allocations that

converge to the optimal allocation and whose suboptimality can be quantified at any iteration.

The tractability assumption (A3) allows us to reduce the set of meaningful replacement candi-

dates in Step 3 of Algorithm 5.3 as follows.

Proposition 5.5.2 Assume that (A3) holds, and let (xt, yt) denote any optimal solution to

UART N t. We have:

(a) If ytk − ytj > φ(xt;Pjk) for some replaceable arc (j, k, Pjk) ∈ Et, then UART N t+1 with

Gt+1 obtained from Gt by replacing (j, k, Pjk) has an optimal value of ytn, too.

(b) If ytk − ytj > φ(xt;Pjk) for all replaceable arcs (j, k, Pjk) ∈ Et, then UART N s with s > t

and Gs obtained from Gt by any sequence of replacements has an optimal value of ytn, too.

Remark 5.5.1 According to assertion (a), replacing any arc (j, k, Pjk) ∈ Et that satisfies the

described condition leads to the same upper bound as UART N t. Since we intend to reduce

this bound, we may disregard all such replacement candidates in Step 3 of Algorithm 5.3. Part

(b) describes a condition under which xt is the optimal allocation and ytn the optimal value of

ART N .

Proof of Proposition 5.5.2 Assume that (a) is false, that is, ytk − ytj > φ(xt;Pjk), but there

is a feasible solution (xt+1, yt+1) to UART N t+1 that has an objective value smaller than ytn.
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From the argumentation in the proof of Proposition 5.5.1 (c) we know that (xt, yt) is feasible

in UART N t+1. Due to (A3),

(xλ, yλ) = λ(xt+1, yt+1) + (1− λ)(xt, yt) for λ ∈ (0, 1]

is also feasible for UART N t+1 and has an objective value smaller than ytn. We show that for

small λ, (xλ, yλ) is feasible in UART N t, too. Since Et \ Et+1 = {(j, k, Pjk)}, we only need to

show that yλk −yλj ≥ φ(xλ;Pjk). For sufficiently small λ, this follows from continuity of φ(·;Pjk)

in its first component, which is a consequence of (A3), and the fact that ytk − ytj > φ(xt;Pjk).

Since UART N t and UART N t+1 share the same objective function, this implies that (xt, yt)

is not optimal for UART N t. Thus, our assumption is false and (a) must be true.

As for (b), let us now assume that ytk − ytj > φ(xt;Pjk) for all replaceable arcs (j, k, Pjk) ∈ Et.

In this case, assertion (a) guarantees that (xt, yt) remains optimal for Gt+1 if Gt+1 results from

applying one replacement to Gt. Assume that Gt+1 results from a predecessor replacement of

(j, k, Pjk) ∈ Et (the proof for successor replacements is analogous). We then have

(ytk − yti) = (ytk − ytj) + (ytj − yti)
(i)
> φ(xt;Pij) + φ(xt;Pjk)

(ii)

≥ φ(xt;Pij ∪ Pjk) ∀ (i, j, Pij) ∈ Et,

where (i) follows from the assumption and (ii) is due to (A2). Hence, the condition described in

assertion (b) is satisfied for all new arcs (i, k, Pij ∪Pjk) ∈ Et+1 as well. An iterated application

of this argument shows that assertion (b) remains valid for UART N s with Gs obtained from

applying any sequence of predecessor and/or successor replacements to Gt. This implies that

UART N s has an optimal value of ytn, and thus the claim follows.

UART N t may have several optimal solutions, and the conditions in Proposition 5.5.2 may

only be satisfied for some of them. If an optimal solution (xt, yt) to UART N t does not satisfy

the condition in Proposition 5.5.2 (a) for (j, k, Pjk) ∈ Et, then we can use ytn to check whether
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other optimal solutions (x′, y′) satisfy the condition. Indeed, this is the case if

max
x∈X,
y∈Rn

+

{
(yk − yj)− φ(x;Pjk) : yn = ytn, yq − yp ≥ φ(x;Ppq) ∀ (p, q, Ppq) ∈ Et

}
> 0. (5.9)

Similarly, Proposition 5.5.2 (b) implies that xt is an optimal allocation for ART N if all re-

placement candidates (j, k, Pjk) ∈ Et satisfy (5.9). Unfortunately, evaluating the left-hand

side of (5.9) is as difficult as solving UART N t, and it is prohibitive to compute it for all

(j, k, Pjk) ∈ Et. If we fix x to xt and optimise (5.9) only over y, however, the maximisation can

be computed in time O(|Et|) by a combined forward and backward calculation, see [DH02]. In

this case, however, we might not identify all replacement candidates that satisfy the conditions

of Proposition 5.5.2.

Although Proposition 5.5.2 reduces the set of potential replacement candidates, it provides no

criterion for selecting specific arcs to be replaced. Ideally, one would choose a replacement

that leads to the largest reduction of the upper bound. This approach is computationally

prohibitive, however, since it requires the solution of bounding problems for all replacement

candidates. Likewise, ‘first fit’ approaches are unsuited due to similar reasons as in Section 5.4.

We propose to choose a replacement for Gt that leads to the largest reduction of the upper

bound when x is fixed to the optimal allocation of UART N t. Like the optimisation of (5.9)

for fixed x, this evaluation requires time O(|Et|) and can hence be implemented efficiently. At

the same time, however, this selection scheme is likely to lead to better results than naive ‘first

fit’ approaches.

We close this section with an investigation of redundant nodes and arcs in the bounding graphs

Gt. We call an arc (j, k, Pjk) ∈ Et redundant if it can be removed from Et without changing the

set of induced paths P(Gt). The following proposition lists sufficient conditions for redundancy.

Proposition 5.5.3 An arc (j, k, Pjk) ∈ Et is redundant if one of the following conditions is

met:

1. There is another arc (j, k, P ′
jk) with Pjk ⊆ P ′

jk, Pjk 6= P ′
jk.
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Figure 5.8: Bounding graphs generated by Algorithm 5.3. The upper left, upper right and
bottom chart visualises the bounding graph in iteration t = 1, t = 2 and t = 3, respectively.
Attached to each arc (i, j, Pij) ∈ Et is its label Pij and its worst-case duration φ(xt;Pij).

2. Node j has no incoming arcs in Gt and j 6= 1.

3. Node k has no outgoing arcs in Gt and k 6= n.

The proof of this proposition is straightforward, and we omit it for the sake of brevity. Propo-

sition 5.5.3 allows us to identify redundant nodes as well: node i ∈ V is redundant in Gt if all

of its incoming and outgoing arcs are redundant.

We close this section with an example that illustrates Algorithm 5.3.

Example 5.5.2 Consider again the problem instance from Examples 5.3.2 and 5.4.1. We

generate upper bounds on the optimal objective value of this problem with Algorithm 5.3.

We start with Step 1, where we construct the bounding graph G1 shown in Figure 5.8 (upper

left). Note that we added a dummy sink node 7 and an artificial precedence between nodes 6 and

7 so that the last task (i.e., task 7) has duration zero. Since none of the arcs in the bounding

graph G1 satisfies the conditions of Proposition 5.5.3, we cannot identify any arc or node in G1

as redundant. We set t = 1.
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In Step 2 we solve the upper bound problem UART N 1:

minimise
x,y,λ,γ

y7

subject to x ∈ R
6
+, y ∈ R

7
+, λ ∈ R

8
+, γ ∈ R

8
+

y2 ≥ y1 + 2(1− x1) + λ11/2 + γ1, λ11 + γ1 ≥ 2(1− x1),

y3 ≥ y1 + 2(1− x1) + λ21/2 + γ2, λ21 + γ2 ≥ 2(1− x1),

y4 ≥ y2 + 5(1− x2) + λ32/2 + γ3, λ32 + γ3 ≥ 5(1− x2),

y5 ≥ y2 + 5(1− x2) + λ42/2 + γ4, λ42 + γ4 ≥ 5(1− x2),

y5 ≥ y3 + 1(1− x3) + λ53/2 + γ5, λ53 + γ5 ≥ 1(1− x3),

y6 ≥ y4 + 4(1− x4) + λ64/2 + γ6, λ64 + γ6 ≥ 4(1− x4),

y6 ≥ y5 + 3(1− x5) + λ75/2 + γ7, λ75 + γ7 ≥ 3(1− x5),

y7 ≥ y6 + 1(1− x6) + λ86/2 + γ8, λ86 + γ8 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation and task start schedule are given by x1 = (0.25, 0.5, 0, 0.25, 0, 0)⊤ and

y1 = (0, 2.25, 4.5, 6, 6, 10.5, 12)⊤, respectively. The estimated worst-case makespan is 12.

According to Proposition 5.5.2, we should not replace (1, 3, {1}) ∈ E1 because φ(x1; {1}) = 2.25

but y13 − y11 = 4.5. If we apply the extended check described in (5.9), we see that we should not

replace (3, 5, {3}) ∈ E1 either. For ease of exposition, we use a ‘first-fit’ approach here and

apply a forward replacement to the arc (1, 2, {1}) ∈ E1 in Step 3. The new bounding graph G2

is visualised in Figure 5.8 (upper right). Note that the arcs (2, 4, {2}), (2, 5, {2}) ∈ E2 satisfy

the second condition of Proposition 5.5.3 and are therefore redundant. As a result, node 2 is

redundant as well. We set t = 2.
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Back in Step 2, we solve the upper bound problem UART N 2:

minimise
x,y,λ,γ

y7

subject to x ∈ R
6
+, y ∈ R

6
+, λ ∈ R

9
+, γ ∈ R

7
+

y4 ≥ y1 + 2(1− x1) + λ11/2 + 5(1− x2) + λ12/2 + γ1,

λ11 + γ1 ≥ 2(1− x1), λ12 + γ1 ≥ 5(1− x2),

y5 ≥ y1 + 2(1− x1) + λ21/2 + 5(1− x2) + λ22/2 + γ2,

λ21 + γ2 ≥ 2(1− x1), λ22 + γ2 ≥ 5(1− x2),

y3 ≥ y1 + 2(1− x1) + λ31/2 + γ3, λ31 + γ3 ≥ 2(1− x1),

y5 ≥ y3 + 1(1− x3) + λ43/2 + γ4, λ43 + γ4 ≥ 1(1− x3),

y6 ≥ y4 + 4(1− x4) + λ54/2 + γ5, λ54 + γ5 ≥ 4(1− x4),

y6 ≥ y5 + 3(1− x5) + λ65/2 + γ6, λ65 + γ6 ≥ 3(1− x5),

y7 ≥ y6 + 1(1− x6) + λ76/2 + γ7, λ76 + γ7 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation is x2 = (0.25, 0.5, 0, 0.25, 0, 0)⊤, and the optimal vector y2 is given by

y21 = 0, y23 = 4.5, y24 = y25 = 6, y26 = 10.5 and y27 = 12. The estimated worst-case makespan is

12. Note that neither the optimal allocation nor the upper bound changed. This is due to the fact

that our uncertainty set allows two tasks to attain their worst-case durations simultaneously.

As before, Proposition 5.5.2 indicates that we should not replace the arcs (1, 3, {1}), (3, 5, {3}) ∈

E2. We apply a forward replacement to the arc (1, 4, {1, 2}) ∈ E2 in Step 3. The new bounding

graph G3 is visualised in Figure 5.8 (bottom). Due to the replacement, the arc (4, 6, {4}) ∈ E3

and node 4 have become redundant. We set t = 3.
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Back in Step 2, we solve the upper bound problem UART N 3:

minimise
x,y,λ,γ

y7

subject to x ∈ R
6
+, y ∈ R

5
+, λ ∈ R

9
+, γ ∈ R

6
+

y6 ≥ y1 + 2(1− x1) + λ11/2 + 5(1− x2) + λ12/2 + 4(1− x4) + λ14 + γ1,

λ11 + γ1 ≥ 2(1− x1), λ12 + γ1 ≥ 5(1− x2), λ14 + γ1 ≥ 4(1− x4),

y5 ≥ y1 + 2(1− x1) + λ21/2 + 5(1− x2) + λ22/2 + γ2,

λ21 + γ2 ≥ 2(1− x1), λ22 + γ2 ≥ 5(1− x2),

y3 ≥ y1 + 2(1− x1) + λ31/2 + γ3, λ31 + γ3 ≥ 2(1− x1),

y5 ≥ y3 + 1(1− x3) + λ43/2 + γ4, λ43 + γ4 ≥ 1(1− x3),

y6 ≥ y5 + 3(1− x5) + λ55/2 + γ5, λ55 + γ5 ≥ 3(1− x5),

y7 ≥ y6 + 1(1− x6) + λ66/2 + γ6, λ66 + γ6 ≥ 1(1− x6),

xi ≤ 1/2 ∀ i ∈ {1, . . . , 6} ,
6∑

i=1

xi ≤ 1.

The optimal allocation is x3 ≈ (0.36, 0.5, 0, 0.14, 0, 0)⊤, and the optimal vector y3 is given by

y31 = 0, y33 ≈ 1.94, y35 ≈ 5.68, y36 ≈ 10.18 and y37 ≈ 11.68. The estimated worst-case makespan

is approximately 11.68.

Proposition 5.5.2 indicates that we should not replace the arcs (1, 3, {1}), (3, 5, {3}) ∈ E3. We

proceed by applying a forward replacement to the arc (1, 6, {1, 2, 4}). For the sake of brevity,

however, we omit the remaining steps of our bounding approach.

5.6 Numerical Results for Random Test Instances

We investigate the performance of our bounding technique and compare it with the decision rule

approximations reviewed in Section 5.2.2. To this end, we use the RanGen algorithm described
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in [DVH03] to generate 100 random instances of problem RT N of size n ∈ {100, 200, 300} and

order strength 0.25, 0.5 and 0.75. The order strength of a network G = (V,E) denotes the

fraction of all n(n − 1)/2 theoretically possible precedences between the nodes in V that are

enforced through the arcs in E (either directly or via transitivity), see [DH02]. Table 5.1

summarises the numbers of inclusion-maximal paths for each instance class. Note that this

number increases with the instance size and the order strength. We expect instances with a

larger number of paths to be more challenging to solve with our bounding approach.

n 0.25 0.50 0.75

100 1,158 14,940 1,929,456
200 7,275 390,715 3,134,873,127
300 22,893 3,477,994 608,740,179,463

Table 5.1: Numbers of inclusion-maximal paths for the generated instance classes. Each class
is described by its network size (row) and its order strength (column). Shown are the median
values over 100 test instances.

We solve the resource allocation problem outlined in Example 5.3.2, that is, we assume a single

resource and task durations

di(x; ξ) := d0i (1− xi) (1 + ξi) for i ∈ V,

where d0i denotes the nominal task duration, xi the amount of the resource that is assigned to

task i, and ξi the uncertainty inherent to the task duration. We sample d0i uniformly from the

interval [1, 10] and set

X :=
{
x ∈ R

n
+ : x ≤ (1/2)e, e⊤x ≤ β

}

and Ξ :=
{
ξ ∈ R

n
+ : ξ ≤ (1/2)e, e⊤ξ ≤ γ

}
.

Thus, the duration of task i can fall below or exceed its nominal duration d0i by 50%, depending

on the resource allocation and the realisation of the uncertain parameter vector ξ. We choose

the resource budget β such that 10% of all tasks can be sped up to their minimal durations.

Likewise, we select the uncertainty budget γ such that on average 10% of the tasks on each

inclusion-maximal path can attain their worst-case durations.
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Even though they constitute linear programs, the resulting instances of ART N are difficult to

solve with a standard optimiser. Indeed, for instances with 100 tasks and an order strength of

0.5, ART N already contains more than 345,000 variables and 235,000 constraints on average.

To bound the optimal value of ART N , we run the algorithms from Sections 5.4 and 5.5

in parallel for one hour. We solve all intermediate optimisation problems with IBM ILOG

CPLEX 12.1 on a 2.53 GHz Intel Core 2 Duo computer. Figure 5.9 visualises the resulting

optimality gaps as functions of the computation time. As expected, instances with a large

number of tasks and a high order strength are more difficult to solve. Apart from instances

with 300 tasks and an order strength of 0.75, however, the optimality gaps after one hour are

all below 10%. Moreover, more than 90% of the instances of three classes (100 tasks with an

order strength of 0.25; 100 tasks with an order strength of 0.5; 200 tasks with an order strength

of 0.25) are solved within the time limit.
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Figure 5.9: Median optimality gaps of our bounding approach as functions of the runtime.
From left to right, the graphs show the results for instances of size 100, 200 and 300. For each
instance class, we display the optimality gaps for three different order strengths (OS). In the
first graph, the optimality gap for OS = 0.25 vanishes so quickly that the curve cannot be seen.

We now investigate the individual contributions of the upper and lower bounds to the optimality

gaps in Figure 5.9. To this end, Figure 5.10 presents the upper and lower bounds as functions

of the runtime for instances with an order strength of 0.5. For instances with 200 and 300

tasks, the lower bound improves rapidly in the beginning but fails to prove optimality within

the time limit. Indeed, the graphs reveal that the upper and lower bounds improve throughout

the computation, although the progress slows down after some time.

We now compare the results of our bounding approach with the decision rule approximations

outlined in Section 5.2.2. We were unable to solve the affine decision rule approximations for
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Figure 5.10: Median lower and upper bounds of our bounding approach as functions of the
runtime. From left to right, the graphs visualise the results for instances of size 100, 200 and
300 and an order strength of 0.5. The objective values are normalised so that the lower bound
after one hour evaluates to 100.

any of the test instances within the time limit of one hour. Indeed, the optimisation models

for instances with 100 tasks and an order strength of 0.25 already contain more than 140,000

variables and 130,000 constraints on average. We therefore restrict each affine decision rule

yj(ξ), j ∈ V , to depend on a small number of random variables ξi associated with the task

durations di of predecessor tasks i of j. The results are presented in Table 5.2. As expected,

affine decision rules perform better than constant decision rules, and the approximation quality

of the affine decision rules improves with the number of considered random variables. However,

the results are consistently dominated by our bounding approach. The results in Table 5.2 could

be improved by using piecewise affine decision rules, but in this case the allowed computation

time would have to be increased considerably.

CDR ADR-5 ADR-10
n 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

100 32.16% 36.91% 36.77% 19.57% 26.47% 28.00% 15.85% 22.11% 23.17%
0.62 0.98 1.28 1.92 8.14 11.32 6.98 39.11 42.82

200 30.10% 31.09% 33.30% 22.14% 22.35% 25.47% 18.74% 19.16% 22.10%
4.36 7.16 9.47 18.63 270.45 443.74 91.8 1,100.53 1,562.63

300 26.65% 27.40% 30.95% 19.64% 21.65% 22.60% 17.56% n/a n/a
12.53 23.69 37.75 181.71 2,062.24 2,612.82 717.77 n/a n/a

Table 5.2: Computational results for constant decision rules (CDR) and affine decision rules
over 5 (ADR-5) and 10 (ADR-10) random variables. For each approximation scheme, the
results are grouped as in Table 5.1. The first value of each entry shows the median percentage
by which the decision rule approximation exceeds the final upper bound of our approach, while
the second value presents the median runtime of the decision rule approximation in seconds.
Experiments in which less than 50% of the instances could be solved within one hour do not
allow the calculation of median values and are therefore labelled ‘n/a’.



156 Chapter 5. Minimisation of the Worst-Case Makespan

We close with an analysis of the impact of the resource budget β and the uncertainty budget γ

on our bounding approach. As Table 5.3 shows, our bounding scheme works best if β is large

and γ is small. An empirical inspection revealed that in this case, the intermediate resource

allocations change less between consecutive iterations of the lower and upper bounds. We

suspect that this ‘allocation stability’ allows our bounding algorithm to progress faster.

budget β budget γ
nominal 20% 30% 20% 30%

5.85% 0.54% 0.00% 8.04% 10.21%
3600.0 3600.0 74.22 3600.0 3600.0

Table 5.3: Median optimality gaps and median runtimes of our bounding approach for different
values of the resource budget β and the uncertainty budget γ. The nominal test set comprises
instances of size 200 and an order strength of 0.5 in which β and γ are chosen as described in
the beginning of the section. The remaining test sets increase one of the budgets by a factor of
2 (20%) or 3 (30%).

5.7 Case Study: VLSI Design

We now apply our bounding technique to a circuit sizing problem with process variations. For

a survey of optimisation problems in circuit design, see [BKPH05].

An important problem in circuit design is to select the gate sizes in a circuit with the goal

to optimally balance three conflicting objectives: operating speed, circuit size and power con-

sumption. Loosely speaking, larger gate sizes increase the circuit size and power consumption,

but they reduce the gate delays. We can model a circuit as a temporal network with gates as

tasks and interconnections between gates as precedences. The duration of task i ∈ V refers to

the delay of gate i. The makespan of the network corresponds to the delay of the overall circuit,

which in turn is inversely proportional to the circuit’s operating speed. A resource allocation

assigns sizes to all gates in the circuit.

The maximisation of circuit speed, subject to constraints on power consumption and circuit

size, can be cast as a deterministic resource allocation problem that is defined on a temporal

network. In practise, however, a circuit represents only one component of a larger system,
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and its eventual operating speed depends on adjacent circuits (that are outside the model).

Hence, one commonly imposes a lower bound on the circuit speed and minimises the circuit

size instead. For the sake of simplicity, we ignore power consumption here. The deterministic

problem then becomes

inf
x∈[x,x],
y∈Y (x)

{∑

i∈V

Aixi : yn + dn(x) ≤ T
}
, (5.10a)

where

Y (x) =
{
y ∈ R

n
+ : yj ≥ yi + di(x) ∀ (i, j) ∈ E

}
. (5.10b)

Here, xi represents the size of gate i (with positive lower and upper bounds xi and xi, respec-

tively) and Aixi the area occupied by gate i. Assuming that the circuit has a unique sink n (see

Section 1.1), yn + dn(x) denotes the delay of the overall circuit. We require that this quantity

must not exceed some target value T . Note that for some values of T , the problem may be

infeasible, which necessitates the use of the infimum operator instead of a minimum.

In the following, we employ a resistor-capacitor model for the gate delays:

di(x) = 0.69
Ri

xi

(
C int
i xi +

∑

j:(i,j)∈E

C in
j xj

)
for i ∈ V, x ∈ X, (5.11)

where Ri, C int
i and C in

i denote the driving resistance, intrinsic capacitance and input capacitance

of gate i, respectively [BKPH05].

Variations in the manufacturing process entail that the factual gate sizes deviate from the

selected target sizes x by some random, zero-mean noise ξ ∈ R
n. If this noise is small compared

to x, then we can express the resulting gate delays di(x + ξ), i ∈ V , by a first-order Taylor

approximation:

di(x; ξ) = di(x) +
[
∇di(x)

]⊤
ξ for i ∈ V

Process variations exhibit non-negative correlations [SNLS05]. We can account for such corre-

lations by using an ellipsoidal uncertainty set:

Ξ =
{
ξ ∈ R

n : ∃ u ∈ R
l . ξ = Σu, ‖u‖2 ≤ 1

}
with Σ ∈ R

n×l
+ (5.12)
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We thus seek to optimise the following variant of RT N :

inf
x∈[x,x]

sup
ξ∈Ξ

inf
y∈Y (x,ξ)

{∑

i∈V

Aixi : yn + dn(x; ξ) ≤ T
}

(5.13)

For a suitable φ (see Section 5.3), this results in the following variant of ART N :

inf
x∈[x,x]

{∑

i∈V

Aixi : φ(x;P ) ≤ T ∀P ∈ P
}

(5.14)

Again, problem (5.14) may be infeasible if T is chosen too small. An inspection of Sections 5.4

and 5.5 reveals that we can apply our bounding approach to problem (5.14) if we allow the

bounds to attain values on the extended real line R ∪ {∞}. A lower bound of ∞ signalises

that problem (5.14) is infeasible, while an upper bound of ∞ indicates that the determined

gate sizes x may violate the target value T for the overall circuit delay. The following result

provides us with a conservative reformulation of (5.13):

Proposition 5.7.1 For d and Ξ defined in (5.11)–(5.12), let

φ(x;P ) = I
⊤
P d(x) +

∥∥∥Σ⊤
(∑

i∈P

[
∇di(x)

]+)∥∥∥
2
+
∥∥∥Σ⊤

(∑

i∈P

[
∇di(x)

]−)∥∥∥
2
, (5.15)

where
[
f(x)

]+
=
∑

i:αi>0

αi
∏

j

(xj)
βij for f(x) =

∑

i

αi
∏

j

(xj)
βij

and
[
f(x)

]−
defined analogously for i with αi < 0. If X has a tractable representation, then

(5.14)–(5.15) constitutes a conservative reformulation of (5.13) that satisfies (A1)–(A3).

Proof It follows from [SNLS05] that φ as defined in (5.15) satisfies condition (5.5) on page 123

and (A3). It remains to be shown that φ satisfies (A1) and (A2). For x ∈ X and P ⊆ V , we

introduce the following notation:

ϕ+(x, P ) =
∥∥∥Σ⊤

(∑

i∈P

[
∇di(x)

]+)∥∥∥
2

and ϕ−(x, P ) =
∥∥∥Σ⊤

(∑

i∈P

[
∇di(x)

]−)∥∥∥
2
.
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As for (A1), we need to show that

φ(x;P ′) = I
⊤
P ′ d(x) + ϕ+(x, P ′) + ϕ−(x;P ′)

≥ I
⊤
P d(x) + ϕ+(x;P ) + ϕ−(x;P ) = φ(x;P )

for all x ∈ X and P ⊂ P ′ ⊆ V . Note that I⊤P ′ d(x) ≥ I⊤P d(x) since IP ′ ≥ IP and d(x) ≥ 0

for all x ∈ X. We show that ϕ+(x;P ′) ≥ ϕ+(x;P ) and ϕ−(x;P ′) ≥ ϕ−(x;P ). The first

inequality follows from the fact that Σ is element-wise non-negative and
[
∇di(x)

]+ ≥ 0 for all

i ∈ V . The second inequality follows from the positive homogeneity of norms and the fact that
[
∇di(x)

]− ≤ 0 for all i ∈ V .

(A2) is satisfied if

φ(x;P ) + φ(x;P ′ \ P ) = I
⊤
P d(x) + ϕ+(x;P ) + ϕ−(x;P )+

I
⊤
[P ′\P ] d(x) + ϕ+(x;P ′ \ P ) + ϕ−(x;P ′ \ P )

≥ I
⊤
P ′ d(x) + ϕ+(x, P ′) + ϕ−(x;P ′) = φ(x;P ′)

for all x ∈ X and P ⊂ P ′ ⊆ V . Note that I⊤P d(x) + I⊤[P ′\P ] d(x) = I⊤P ′ d(x). Also, we have

ϕ+(x;P ) + ϕ−(x;P ) + ϕ+(x;P ′ \ P ) + ϕ−(x;P ′ \ P ) ≥ ϕ+(x, P ′) + ϕ−(x;P ′)

by the triangle inequality.

We use Proposition 5.7.1 to determine robust gate sizes for the ISCAS 85 benchmark circuits.2

To this end, we set (xi, xi) = (1, 16) and select the circuit parameters Ai, Ri, C int
i and C in

i

according to the Logical Effort model [BKPH05, SSH99]. We set the target delay T to 130%

of the minimal circuit delay in absence of process variations. For ease of exposition, we assume

independent process variations, that is, Σ is a diagonal matrix. We set the diagonal elements

of Σ to 25% of the gate sizes determined by the deterministic model (5.10).

The data in Table 5.4 specifies the temporal networks corresponding to the ISCAS 85 benchmark

2ISCAS 85 benchmark circuits: http://www.cbl.ncsu.edu/benchmarks.
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circuit # tasks # precedences # task paths
C432 196 336 83,926
C499 243 408 9,440
C880 443 729 8,642

C1355 587 1,064 4,173,216
C1908 913 1,498 729,056
C2670 1,426 2,076 679,954
C3540 1,719 2,939 28,265,874
C5315 2,485 4,386 1,341,305
C6288 2,448 4,800 1,101,055,638
C7552 3,719 6,144 726,494

Table 5.4: ISCAS 85 benchmark circuits.

circuits. For a circuit with |V | tasks and
∣∣P
∣∣ inclusion-maximal task paths, the path-wise

model (5.14) can be reformulated as a geometric program with 1 + |V | + 2
∣∣P
∣∣ variables and

3
∣∣P
∣∣ constraints, see [BKPH05, SNLS05]. Due to the choice of φ in (5.15), the Jacobian of the

constraints is dense. In view of the cardinality of P in the benchmark circuits (see Table 5.4),

a direct solution of (5.14) is prohibitive.

We now use our bounding approach to solve problem (5.14) for the benchmark circuits. We

terminate our algorithm after 50 iterations of the lower and upper bound procedures. Since

the lower bound requires the investigation of a potentially large number of task paths (see

Step 3(b) of Algorithm 5.2), we limit its computation time per iteration to the time required

by the upper bound. All results are generated with CONOPT 3 on an Intel Xeon architecture

with 2.83GHz.3 We employ warm starts for the calculation of both lower and upper bounds,

which significantly reduces the computational effort.

Table 5.5 presents the optimality gaps after 1, 25 and 50 iterations. It also documents the

reduction in overall circuit size when we use our bounding approach (for 50 iterations) instead

of a model with constant decision rules (see Section 5.2.2). We remark that the choice of Ξ

and φ in (5.12) and (5.15) implies that constant and affine decision rules result in the same

solutions. Although the initial optimality gaps can be large, our bounding approach reduces

them to reasonable values after a few iterations. Moreover, the computational effort remains

modest for all considered problem instances. Finally, we see that our bounding approach can

3CONOPT homepage: http://www.conopt.com.
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lead to drastic reductions in overall circuit size.

circuit first it. after 25 its. after 50 its. reduction
C432 34.13% solved after 11 its. 24.48%

0:03 1:03

C499 148.82% 12.31% 8.96% 42.89%
0:12 27:35 128:30

C880 16.78% 2.31% 0.70% 11.16%
0:11 2:44 8:39

C1355 113.16% solved after 24 its. 52.95%
0:17 17:31

C1908 37.05% 11.37% 6.90% 18.13%
1:17 6:58 21:06

C2670 14.62% 1.61% 1.02% 11.09%
0:51 24:03 99:35

C3540 37.66% 9.19% 7.40% 20.50%
4:22 16:31 56:06

C5315 15.23% 4.30% 2.29% 10.33%
6:56 30:39 52:37

C6288 68.24% 3.40% 2.52% 39.07%
6:33 45:09 69:08

C7552 11.03% solved after 12 its. 5.01%
5:54 15:08

Table 5.5: Results for the circuits from Table 5.4. Columns 2, 3 and 4 present the optimality
gaps and computation times (mins:secs) after 1, 25 and 50 iterations of our bounding approach,
respectively. The last column quantifies the reduction in overall circuit size if we employ our
bounding approach instead of a model with constant decision rules (see Section 5.2.2).

5.8 Conclusion

This chapter studied robust resource allocations in temporal networks. Our problem formula-

tion assumes that the task durations are uncertain and that resource allocations are evaluated

in view of their worst-case makespan. We showed that the resulting optimisation problem is

NP-hard. We developed convergent bounds on its optimal objective value, as well as feasible

resource allocations whose objective values are bracketed by these bounds.

It would be interesting to extend our solution procedure to renewable and doubly-constrained

resources. Indeed, Section 2.1 lists some application domains (e.g., scheduling of production
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processes and microprocessors) that impose additional restrictions on the consumption rate of

resources. Such constraints result in nonconvex problems that render our bounding approach

computationally prohibitive. Instead, one could design a branch-and-bound algorithm that

branches upon violations of the additional constraints. For every node in the resulting branch-

and-bound tree, the incurred worst-case makespan can be bounded with our method.



Chapter 6

Multi-Stage Net Present Value

Maximisation

In addition to the notation introduced in Section 1.3, this chapter uses the following notation.

For a finite set X = {1, . . . , X}, M(X ) denotes the probability simplex in RX . An X -valued

random variable χ has distribution m ∈ M(X ), denoted by χ ∼ m, if P(χ = x) = mx for all

x ∈ X . For square matrices A and B, the relation A � B indicates that the matrix A − B is

positive semidefinite. We denote the space of symmetric n×n matrices by S
n. The declaration

f : X
c7→ Y (f : X

a7→ Y ) implies that f is a continuous (affine) function from X to Y . For a

matrix A, we denote its ith row by A⊤
i· (a row vector) and its jth column by A·j.

6.1 Introduction

Markov decision processes (MDPs) provide a versatile model for sequential decision-making

under uncertainty, which accounts for both the immediate effects and future ramifications

of decisions. In the past sixty years, MDPs have been successfully applied to numerous areas,

ranging from inventory control and investment planning to studies in economics and behavioural

ecology [Ber07, Put94]. Our interest in MDPs arises from the fact that multi-stage NPV

maximisation problems in temporal networks can be modelled as MDPs. We will discuss this

163
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link between MDPs and temporal networks in Section 6.7.

In this chapter, we study MDPs with a finite state space S = {1, . . . , S}, a finite action

space A = {1, . . . , A}, and a discrete but infinite planning horizon T = {0, 1, 2, . . .}. We

briefly review the definitions introduced in Section 2.2.3. We assume that every action is

admissible in every state. The initial state is random and follows the probability distribution

p0 ∈ M(S). If action a ∈ A is chosen in state s ∈ S, the subsequent state is determined

by the conditional probability distribution p(·|s, a) ∈ M(S). We condense these conditional

distributions to the transition kernel P ∈ [M(S)]S×A, where Psa := p(·|s, a) for (s, a) ∈ S ×A.

The decision maker receives an expected reward of r(s, a, s′) ∈ R+ if action a ∈ A is chosen

in state s ∈ S and the subsequent state is s′ ∈ S. Without loss of generality, we assume

that all rewards are non-negative. The MDP is controlled through a policy π = (πt)t∈T , where

πt : (S×A)t−1×S 7→ M(A). πt(·|s0, a0, . . . , st−1, at−1; st) represents the probability distribution

over A according to which the next action is chosen if the current state is st and the state-action

history is given by (s0, a0, . . . , st−1, at−1). Together with the transition kernel P , π induces a

stochastic process (st, at)t∈T on the space (S × A)∞ of sample paths. We use the notation

EP,π to denote expectations with respect to this process. Throughout this chapter, we evaluate

policies in view of their expected total reward under the discount factor λ ∈ (0, 1):

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
(6.1)

For a fixed policy π, the policy evaluation problem asks for the value of expression (6.1). The

policy improvement problem, on the other hand, asks for a policy π that maximises (6.1).

Most of the literature on MDPs assumes that the expected rewards r and the transition kernel

P are known, with a tacit understanding that they have to be estimated in practise. However,

it is well-known that the expected total reward (6.1) can be very sensitive to small changes

in r and P [MSST07]. Thus, decision makers are confronted with two different sources of

uncertainty. On one hand, they face internal variation due to the stochastic nature of MDPs.

On the other hand, they need to cope with external variation because the estimates for r and

P deviate from their true values. We assume that the decision maker is risk-neutral to internal
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variation but risk-averse to external variation. This is justified if the MDP runs for a long

time, or if many instances of the same MDP run in parallel [MSST07]. We focus on external

variation in P and assume r to be known. Indeed, the expected total reward (6.1) is typically

more sensitive to P , and the inclusion of reward variation is straightforward [DM10, MSST07].

Let P 0 be the unknown true transition kernel of the MDP. Since the expected total reward

of a policy depends on P 0, we cannot evaluate expression (6.1) under external variation. It is

suggested in [Iye05, NG05] to find a policy that guarantees the highest expected total reward

at a given confidence level. To this end, a policy π is determined that maximises the worst-case

expected total reward

z∗ = inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
, (6.2)

where the uncertainty set P is the Cartesian product of independent marginal sets Psa ⊆

M(S) for each (s, a) ∈ S × A. In the following, we call such uncertainty sets rectangular.

Problem (6.2) determines the worst-case expected total reward of π if the transition kernel

can vary freely within P. In analogy to our earlier definitions, the robust policy evaluation

problem evaluates expression (6.2) for a fixed policy π, while the robust policy improvement

problem asks for a policy that maximises (6.2). The optimal value z∗ in (6.2) provides a

lower bound on the expected total reward of π if the true transition kernel P 0 is contained in

the uncertainty set P. Hence, if P is a confidence region that contains P 0 with probability

1 − β, then the policy π guarantees an expected total reward of at least z∗ at a confidence

level 1 − β. To construct an uncertainty set P with this property, [Iye05] and [NG05] assume

that independent transition samples are available for each state-action pair (s, a) ∈ S × A.

Under this assumption, the samples for each state-action pair follow independent multinomial

distributions whose (unknown) parameters coincide with the entries of P 0. One can then

employ standard statistical techniques to derive a confidence region for P 0. If we project this

confidence region onto the marginal sets Psa, then z∗ provides the desired probabilistic lower

bound on the expected total reward of π.

In this chapter, we alter two key assumptions of the outlined procedure. Firstly, we assume
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that the decision maker cannot obtain independent transition samples for the state-action pairs.

Instead, she has merely access to an observation history (s1, a1, . . . , sn, an) ∈ (S×A)n generated

by the MDP under some known policy. Secondly, we relax the assumption of rectangular

uncertainty sets. In the following, we briefly motivate these changes and give an outlook on

their consequences.

Although transition sampling has theoretical appeal, it is often prohibitively costly or even

infeasible in practise. To obtain independent samples for each state-action pair, one needs to

repeatedly direct the MDP into any of its states and record the transitions resulting from dif-

ferent actions. In particular, one cannot use the transition frequencies of an observation history

because those frequencies violate the independence assumption stated above. The availability

of an observation history, on the other hand, seems much more realistic in practise. Observa-

tion histories introduce a number of theoretical challenges, such as the lack of observations for

some transitions and stochastic dependencies between the transition frequencies. We will apply

results from statistical inference on Markov chains to address these issues.

The restriction to rectangular uncertainty sets has been introduced in [Iye05] and [NG05] to

facilitate computational tractability. Under the assumption of rectangularity, the robust policy

evaluation and improvement problems can be solved efficiently with a modified value or policy

iteration. This implies, however, that non-rectangular uncertainty sets have to be projected

onto the marginal sets Psa. Not only does this ‘rectangularisation’ unduly increase the level of

conservatism, but it also creates a number of undesirable side-effects that we discuss in Sec-

tion 6.2. In this chapter, we show that the robust policy evaluation and improvement problems

remain tractable for uncertainty sets that exhibit a milder form of rectangularity, and we de-

velop a polynomial time solution method. On the other hand, we prove that the robust policy

evaluation and improvement problems are intractable for non-rectangular uncertainty sets. For

this setting, we formulate conservative approximations of the policy evaluation and improve-

ment problems. We bound the optimality gap incurred from solving those approximations,

and we outline how our approach can be generalised to a hierarchy of increasingly accurate

approximations.
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The contributions of this chapter can be summarised as follows.

1. We analyse a new class of uncertainty sets, which contains the above defined rectangular

uncertainty sets as a special case. We show that the optimal policies for this class are ran-

domised but memoryless. We develop algorithms that solve the robust policy evaluation

and improvement problems over these uncertainty sets in polynomial time.

2. It is stated in [NG05] that the robust policy evaluation and improvement problems “seem

to be hard to solve” for non-rectangular uncertainty sets. We prove that both problems are

indeed strongly NP-hard. We develop a hierarchy of increasingly accurate conservative

approximations, together with bounds on the incurred optimality gap.

3. We present a method to construct uncertainty sets from observation histories. In contrast,

existing approaches rely on transition sampling, which is often too costly or infeasible

in practise. Our approach allows to account for different types of a priori information

about the transition kernel, which helps to reduce the size of the uncertainty set. We

also investigate the convergence behaviour of our uncertainty set when the length of the

observation history increases.

The study of robust MDPs with rectangular uncertainty sets dates back to the seventies, see

[BNS01, GLD00, SL73, WE94] and the surveys in [Iye05, NG05]. However, most of the early

contributions do not address the construction of suitable uncertainty sets. In [MSST07], the

authors approximate the bias and variance of the expected total reward (6.1) if the unknown

model parameters are replaced with estimates. These approximations are used in [DM10]

to solve a chance-constrained policy improvement problem in a Bayesian setting. Recently,

alternative performance criteria have been suggested to address external variation, such as the

worst-case expected utility and regret measures. We refer to [PK08, XM06] and the references

cited therein. Note that we could address external variation by encoding the unknown model

parameters into the states of a partially observable MDP (POMDP) [Mon82]. However, the

optimisation of POMDPs becomes challenging even for small state spaces. In our case, the

augmented state space would become very large, which renders optimisation of the resulting

POMDPs prohibitively expensive.
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The remainder of this chapter is organised as follows. Section 6.2 defines and analyses the classes

of robust MDPs that we consider. Sections 6.3 and 6.4 study the robust policy evaluation and

improvement problems, respectively. Section 6.5 constructs uncertainty sets from observation

histories. We illustrate our method in Section 6.6, where we apply it to the machine replacement

problem. Section 6.7 establishes the link between MDPs and temporal networks. We conclude

in Section 6.8.

Remark 6.1.1 (Finite Horizon MDPs) Throughout the chapter, we outline how our results

extend to finite horizon MDPs. In this case, we assume that T = {0, 1, 2, . . . , T} with T < ∞

and that S can be partitioned into nonempty disjoint sets {St}t∈T such that at period t the

system is in one of the states in St. We do not discount rewards in finite horizon MDPs. If the

MDP reaches a terminal state s ∈ ST , an expected reward of rs ∈ R+ is received. We assume

that p0(s) = 0 for s /∈ S1.

6.2 Robust Markov Decision Processes

This section studies properties of the robust policy evaluation and improvement problems. Both

problems are concerned with robust MDPs, for which the transition kernel is only known to be

an element of an uncertainty set P ⊆ [M(S)]S×A. Without loss of generality, we assume that

the initial state distribution p0 is known.

We start with the robust policy evaluation problem. We define the structure of the uncertainty

sets that we consider, as well as different types of rectangularity that can be imposed to facilitate

computational tractability. Afterwards, we discuss the robust policy improvement problem. We

define several policy classes that are commonly used in MDPs, and we investigate the structure

of optimal policies for different types of rectangularity. We close with a complexity result for

the robust policy evaluation problem. Since the remainder of this chapter almost exclusively

deals with the robust versions of the policy evaluation and improvement problems, we may

suppress the attribute ‘robust’ in the following.
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6.2.1 The Robust Policy Evaluation Problem

Consider the policy evaluation problem (6.2), where we replace the uncertainty set P with

P :=
{
P ∈ [M(S)]S×A : ∃ ξ ∈ Ξ such that Psa = pξ(·|s, a) ∀ (s, a) ∈ S × A

}
. (6.3a)

Here, we assume that Ξ is a subset of Rq and that pξ(·|s, a), (s, a) ∈ S×A, is an affine function

from Ξ to M(S) that satisfies pξ(·|s, a) := ksa +Ksaξ for some ksa ∈ RS and Ksa ∈ RS×q. We

also stipulate that

Ξ :=
{
ξ ∈ R

q : ξ⊤Ol ξ + o⊤l ξ + ω ≥ 0 ∀ l = 1, . . . , L
}
, (6.3b)

where Ol ∈ Sq satisfies Ol � 0. We assume that Ξ is bounded and that it contains a Slater

point ξ ∈ R
q which satisfies ξ

⊤
Ol ξ + o⊤l ξ + ω > 0 for all l. Our definition of Ξ encompasses all

compact subsets of Rq that have a nonempty interior and that result from finite intersections

of closed halfspaces and ellipsoids.

Example 6.2.1 Consider a robust infinite horizon MDP with three states and one action. The

transition probabilities are defined through

pξ(1|s, 1) = 1

3
+
ξ1
3
, pξ(2|s, 1) = 1

3
+
ξ2
3

and pξ(3|s, 1) = 1

3
− ξ1

3
− ξ2

3
for s ∈ {1, 2, 3} ,

where ξ = (ξ1, ξ2) is only known to satisfy ξ21 + ξ22 ≤ 1 and ξ1 ≤ ξ2. We can model this MDP

through

Ξ =
{
ξ ∈ R

2 : ξ21 + ξ22 ≤ 1, ξ1 ≤ ξ2
}
, ks1 =

1

3
e and Ks1 =

1

3




1 0

0 1

−1 −1




for s ∈ {1, 2, 3} .

Note that the mapping K cannot be absorbed in the definition of Ξ without violating the Slater

condition.
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1 2
ξ

1− ξ

1− ξ ξ

1 2
1− ξ

ξ

ξ 1− ξ

Figure 6.1: MDP with two states and two actions. The left and right charts present the
transition probabilities for actions 1 and 2, respectively. In both diagrams, nodes correspond
to states and arcs to transitions. We label each arc with the probability of the associated
transition. We suppress p0 and the expected rewards.

We say that an uncertainty set P is (s, a)-rectangular if

P = ×
(s,a)∈S×A

Psa, where Psa := {Psa : P ∈ P} for (s, a) ∈ S × A.

Likewise, we say that an uncertainty set P is s-rectangular if

P = ×
s∈S

Ps, where Ps := {(Ps1, . . . , PsA) : P ∈ P} for s ∈ S.

For any uncertainty set P, we call Psa and Ps the marginal uncertainty sets (or simply

marginals). For our definition (6.3) of P, we have Psa =
{
pξ(·|s, a) : ξ ∈ Ξ

}
and Ps =

{(
pξ(·|s, 1), . . . , pξ(·|s, A)

)
: ξ ∈ Ξ

}
, respectively. Note that all transition probabilities pξ(·|s, a)

can vary freely within their marginals Psa if the uncertainty set is (s, a)-rectangular. In con-

trast, the transition probabilities
{
pξ(·|s, a) : a ∈ A

}
for different actions in the same state may

be dependent in an s-rectangular uncertainty set. By definition, (s, a)-rectangularity implies

s-rectangularity. (s, a)-rectangular uncertainty sets have been introduced in [Iye05, NG05],

whereas the notion of s-rectangularity seems to be new. Note that our definition (6.3) of P

does not impose any kind of rectangularity. Indeed, the uncertainty set in Example 6.2.1 is

not s-rectangular. The following example shows that rectangular uncertainty sets can result in

crude approximations of the decision maker’s knowledge about the true transition kernel P 0.

Example 6.2.2 (Rectangularity) Consider the robust infinite horizon MDP that is shown

in Figure 6.1. The uncertainty set P encompasses all transition kernels that correspond to

parameter realisations ξ ∈ [0, 1]. This MDP can be assigned an uncertainty set of the form (6.3).

Figure 6.2 visualises P and the smallest s-rectangular and (s, a)-rectangular uncertainty sets
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pξ(2|1, 1)pξ(2|1, 1)pξ(2|1, 1)

pξ(2|1, 2)pξ(2|1, 2)pξ(2|1, 2)
pξ(2|2, 1)pξ(2|2, 1)pξ(2|2, 1)

Figure 6.2: Illustration of P (left chart) and the smallest s-rectangular (middle chart) and (s, a)-
rectangular (right chart) uncertainty sets that contain P. The charts show three-dimensional
projections of P ⊂ R8. The thick line represents P, while the shaded areas visualise the
corresponding rectangular uncertainty sets. Figure 6.1 implies that pξ(2|1, 1) = ξ, pξ(2|1, 2) =
1− ξ and pξ(2|2, 1) = ξ. The dashed lines correspond to the unit cube in R3.

that contain P.

From now on, we always consider uncertainty sets of the form (6.3). We may sometimes call a

generic uncertainty set non-rectangular to emphasise that it is neither s- nor (s, a)-rectangular.

6.2.2 The Robust Policy Improvement Problem

We now consider the policy improvement problem, which asks for a policy that maximises the

worst-case expected total reward (6.2) over an uncertainty set of the form (6.3). Remember

that a policy π represents a sequence of functions (πt)t∈T that map state-action histories to

probability distributions over A. In its most general form, such a policy is history dependent,

that is, at any time period t the policy may assign a different probability distribution to each

state-action history (s1, a1, . . . , st−1, at−1; st).

Due to the storage requirements of history dependent policies, one typically prefers more ‘eco-

nomical’ policy classes. A policy π is called Markovian if πt is determined by st and t for all

t ∈ T . A Markovian policy π is called stationary if πt is solely determined by st for all t ∈ T .

In finite horizon MDPs, Markovian and stationary policies are equally expressive since the sets

St are disjoint. In infinite horizon MDPs, however, stationary policies form a strict subset of

the class of Markovian policies. A policy π is called deterministic if πt places all probability

mass on one action for each t ∈ T ; otherwise, π is called randomised. In the following, we will
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focus on stationary policies due to their favourable storage requirements. We denote by Π the

set of all randomised stationary policies for a given MDP instance.

It is well-known that non-robust finite and infinite horizon MDPs always allow for a determin-

istic stationary policy that maximises the expected total reward (6.1). Optimal policies can be

determined via value or policy iteration, or via linear programming. Finding an optimal policy,

as well as evaluating (6.1) for a given stationary policy, can be done in polynomial time. For a

detailed discussion, see [Ber07, Put94, Tsi07].

To date, the literature on robust MDPs has focused on (s, a)-rectangular uncertainty sets.

For this class of uncertainty sets, it is shown in [Iye05, NG05] that the worst-case expected

total reward (6.2) is maximised by a deterministic stationary policy π for finite and infinite

horizon MDPs. Optimal policies can be determined via extensions of the value and policy

iteration. For some uncertainty sets, finding an optimal policy, as well as evaluating (6.2) for a

given stationary policy, can be achieved in polynomial time. Moreover, the policy improvement

problem satisfies the following saddle point condition:

sup
π∈Π

inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

P∈P
sup
π∈Π

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]

(6.4)

A similar result for robust finite horizon MDPs is discussed in [NG05].

We now show that the benign structure of optimal policies over (s, a)-rectangular uncertainty

sets partially extends to the broader class of s-rectangular uncertainty sets.

Proposition 6.2.1 (s-Rectangular Uncertainty Sets) Consider the robust policy improve-

ment problem for a finite or infinite horizon MDP over an s-rectangular uncertainty set of the

form (6.3).

(a) There is always an optimal policy that is stationary.

(b) It is possible that all optimal stationary policies are randomised.
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Proof As for claim (a), consider a finite horizon MDP with an s-rectangular uncertainty set.

By construction, the probabilities associated with transitions emanating from state s ∈ S are

independent from those emanating from any other state s′ ∈ S, s′ 6= s. Moreover, each state s is

visited at most once since the sets St are disjoint. Hence, any knowledge about past transition

probabilities cannot contribute to better decisions in future time periods, which implies that

stationary policies are optimal.

Consider now an infinite horizon MDP with an s-rectangular uncertainty set. Appendix B

shows that the saddle point condition (6.4) extends to s-rectangular uncertainty sets. For any

fixed transition kernel P ∈ P, the supremum over all stationary policies on the right-hand side

of (6.4) is equivalent to the supremum over all history dependent policies. By weak duality,

the right-hand side of (6.4) thus represents an upper bound on the worst-case expected total

reward of any history dependent policy. Since there is a stationary policy whose worst-case

expected total reward on the left-hand side of (6.4) attains this upper bound, claim (a) follows.

As for claim (b), consider the robust infinite horizon MDP that is visualised in Figure 6.3. The

uncertainty set P encompasses all transition kernels that correspond to parameter realisations

ξ ∈ [0, 1]. This MDP can be assigned an s-rectangular uncertainty set of the form (6.3). Since

the transitions are independent of the chosen actions from time 1 onwards, a policy is completely

determined by the decision β = π0(1|1) at time 0. The worst-case expected total reward is

min
ξ∈[0,1]

[
βξ + (1− β)(1− ξ)

] λ

1− λ
= min {β, 1− β} λ

1− λ
.

Over β ∈ [0, 1], this expression has its unique maximum at β∗ = 1/2, that is, the optimal

policy is randomised. If we replace the self-loops with expected terminal rewards of r2 := 1

and r3 := 0, then we obtain an example of a robust finite horizon MDP whose optimal policy

is randomised.

Figure 6.3 illustrates the counterintuitive result that randomisation is superfluous for (s, a)-

rectangular uncertainty sets. If we project the uncertainty set P associated with Figure 6.3

onto its marginals Psa, then the transition probabilities in the left chart become independent
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ξ; 0

1− ξ; 0

1; 1

1; 0

1

2

3

1− ξ; 0

ξ; 0

1; 1

1; 0

1

2

3

Figure 6.3: MDP with three states and two actions. The left and right figures present the
transition probabilities and expected rewards for actions 1 and 2, respectively. The first and
second expressions in the arc labels correspond to the probabilities and expected rewards of
the associated transitions, respectively. Apart from that, the same drawing conventions as in
Figure 6.1 are used. The initial state distribution p0 places unit mass on state 1.

of those in the right chart. In this case, any policy results in an expected total reward of zero,

and randomisation becomes ineffective.

We now show that in addition to randomisation, the optimal policy may require history depen-

dence if the uncertainty set lacks s-rectangularity.

Proposition 6.2.2 (General Uncertainty Sets) For finite and infinite horizon MDPs, the

policy improvement problem over non-rectangular uncertainty sets is in general solved by non-

Markovian policies.

Proof Consider the robust infinite horizon MDP with six states and two actions that is visu-

alised in Figure 6.4. The uncertainty set P encompasses all transition kernels that correspond

to parameter realisations ξ ∈ [0, 1]. This MDP can be assigned an uncertainty set of the

form (6.3). Since the transitions do not depend on the chosen actions except for π2, a pol-

icy is completely determined by the decision β = (β1, β2), where β1 = π2(1|1, a0, 2, a1; 4) and

β2 = π2(1|1, a0, 3, a1; 4).

The conditional probability to reach state 5 is ϕ1(ξ) := β1ξ+(1−β1)(1− ξ) if state 2 is visited

and ϕ2(ξ) := β2ξ + (1 − β2)(1 − ξ) if state 3 is visited, respectively. Thus, the expected total

reward amounts to

2λξ(1− ξ)M +
λ3

1− λ
[ξ ϕ1(ξ) + (1− ξ)ϕ2(ξ)] ,

which is concave in ξ for all β ∈ [0, 1]2 if M ≥ λ2/(1− λ). Thus, the worst (minimal) expected

total reward is incurred for ξ∗ ∈ {0, 1}, independently of β ∈ [0, 1]2. Hence, the worst-case
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Figure 6.4: MDP with six states and two actions. The initial state distribution p0 places unit
mass on state 1. The same drawing conventions as in Figure 6.3 are used.

expected total reward is

min
ξ∈{0,1}

λ3

1− λ
[ξ ϕ1(ξ) + (1− ξ)ϕ2(ξ)] =

λ3

1− λ
min {β1, 1− β2} ,

and the unique maximiser of this expression is β = (1, 0). We conclude that in state 4, the

optimal policy chooses action 1 if state 2 has been visited and action 2 otherwise. Hence, the

optimal policy is history dependent. If we replace the self-loops with expected terminal rewards

of r5 := λ3/(1 − λ) and r6 := 0, then we can extend the result to robust finite horizon MDPs.

Although the policy improvement problem over non-rectangular uncertainty sets is in general

solved by non-Markovian policies, we will restrict ourselves to stationary policies in the remain-

der. Thus, we will be interested in the best deterministic or randomised stationary policies for

robust MDPs.

6.2.3 Complexity of the Robust Policy Evaluation Problem

We show that the policy evaluation problem over non-rectangular uncertainty sets is strongly

NP-hard. To this end, we will reduce the evaluation of (6.2) to the 0/1 Integer Programming

(IP) problem [GJ79]:

0/1 Integer Programming.

Instance. Given are F ∈ Zm×n, g ∈ Zm, c ∈ Zn, ζ ∈ Z.

Question. Is there a vector x ∈ {0, 1}n such that Fx ≤ g and c⊤x ≤ ζ?
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Assume that x ∈ [0, 1]n constitutes a fractional vector that satisfies Fx ≤ g and c⊤x ≤ ζ . The

following lemma shows that we can obtain an integral vector y ∈ {0, 1}n that satisfies Fy ≤ g

and c⊤y ≤ ζ by rounding x if its components are ‘close enough’ to zero or one.

Lemma 6.2.1 Let 0 < ǫ ≤ min {ǫF , ǫc}, where 0 < ǫF < mini

{(∑
j |Fij |

)−1
}

and 0 < ǫc <
(∑

j |cj|
)−1

. Assume that x ∈ ([0, ǫ] ∪ [1− ǫ, 1])n satisfies Fx ≤ g and c⊤x ≤ ζ. Then Fy ≤ g

and c⊤y ≤ ζ for y ∈ {0, 1}n, where yj := 1 if xj ≥ 1− ǫ and yj := 0 otherwise.

Proof By construction, F⊤
i· y ≤ F⊤

i· x +
∑

j |Fij | ǫF < F⊤
i· x + 1 ≤ gi + 1 for all i ∈ {1, . . . , m}.

Similarly, we have that c⊤y ≤ c⊤x+
∑

j |cj| ǫc < c⊤x+ 1 ≤ ζ + 1. Due to the integrality of F ,

g, c, ζ and y, we therefore conclude that Fy ≤ g and c⊤y ≤ ζ .

We can now prove strong NP-hardness of the policy evaluation problem.

Theorem 6.2.1 Deciding whether the worst-case expected total reward (6.2) over an uncer-

tainty set of the form (6.3) exceeds a given value γ is strongly NP-hard for deterministic as

well as randomised stationary policies and for finite as well as infinite horizon MDPs.

Proof Let us fix an IP instance specified through F , g, c and ζ . Without loss of gener-

ality, we can assume that ζ ≤ ∑
j [cj ]

+ because all feasible IP solutions are binary. We

construct a reduction to a robust infinite horizon MDP as follows. The states are S =
{
bj , b

1
j , b

0
j : j = 1, . . . , n

}
∪ {c0, τ}, there is only one action, and the discount factor λ ∈ (0, 1)

can be chosen freely. The state transitions and expected rewards are illustrated in Figure 6.5.

The uncertainty set P contains all transition kernels associated with ξ ∈ [0, 1]n that satisfy

Fξ ≤ g. We choose M >
(
λn
∑

j |cj|
)
/
(
2ǫ2
)
, where ǫ is chosen as in Lemma 6.2.1, and set

γ := λ2ζ . Following our discussion in Section 6.2.1, the described MDP instance can be con-

structed in polynomial time with respect to the size of the IP instance (which we abbreviate

as ‘in polynomial time’ in the remainder of this proof).1

1Note that the set Ξ associated with the MDP instance might not contain a Slater point. However, one can
decide in polynomial time whether the system of linear equations Fx ≤ g, x ∈ [0, 1]n is strictly feasible. If this
is not the case, one can furthermore reduce the system to a strictly feasible one in polynomial time.
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Figure 6.5: MDP with 3n + 2 states and one action. The distribution p0 places a probability
mass of 1/n on each state bj , j = 1, . . . , n. The drawing conventions from Figure 6.3 are used.

We show that the answer to the IP instance is affirmative if and only if the worst-case expected

total reward (6.2) does not exceed γ. Indeed, assume that the answer to the IP instance is

affirmative, that is, there is a vector x ∈ {0, 1}n that satisfies Fx ≤ g and c⊤x ≤ ζ . The

transition kernel associated with ξ = x is contained in P and leads to an expected total reward

of λ2c⊤ξ ≤ λ2ζ = γ. This implies that the worst-case expected total reward (6.2) does not

exceed γ either. Conversely, assume that (6.2) does not exceed γ. For the constructed MDP,

the expected total reward (6.1) is continuous in ξ. Since P is compact, we can therefore assume

that the value of (6.2) is attained by a transition kernel associated with some ξ∗ ∈ Ξ. By

construction of Ξ, ξ∗ satisfies ξ∗ ∈ [0, 1]n and Fξ∗ ≤ g. Assume that ξ∗q /∈ ([0, ǫ] ∪ [1− ǫ, 1]) for

some q ∈ {1, . . . , n}. In this case, the expected total reward under ξ∗ is greater than or equal

to 2λξ∗q (1 − ξ∗q )M/n− λ2
∑

j [−cj ]
+ > λ2

∑
j [cj ]

+ ≥ γ, which contradicts our assumption. We

have thus established that ξ∗ ∈ ([0, ǫ]∪ [1− ǫ, 1])n. Under the transition kernel associated with

ξ∗, the expected reward in periods 0 and 1 is guaranteed to be non-negative, while the expected

reward from period 2 onward amounts to λ2c⊤ξ∗. Since the expected total reward under ξ∗

does not exceed γ, we therefore have that λ2c⊤ξ∗ ≤ γ = λ2ζ , which implies that c⊤ξ∗ ≤ ζ .

Hence, we can apply Lemma 6.2.1 to obtain a vector ξ′ ∈ {0, 1}n that also satisfies Fξ′ ≤ g

and c⊤ξ′ ≤ ζ . We have thus shown that the answer to the IP instance is affirmative if and only

if the worst-case expected total reward (6.2) does not exceed γ.
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uncertainty set P optimal policy complexity

(s, a)-rectangular, convex deterministic, stationary polynomial
(s, a)-rectangular, nonconvex deterministic, stationary strongly NP-hard
s-rectangular, convex randomised, stationary polynomial
s-rectangular, nonconvex randomised, history dependent strongly NP-hard
non-rectangular, convex randomised, history dependent strongly NP-hard

Table 6.1: Properties of infinite horizon MDPs with different uncertainty sets. From left to
right, the columns describe the structure of the uncertainty set, the structure of the optimal
policy, and the complexity of the policy evaluation and improvement problems over randomised
stationary policies. Each uncertainty set is of the form (6.3). For nonconvex uncertainty sets,
we do not require the matrices Ol in (6.3b) to be negative semidefinite. The properties of finite
horizon MDPs are similar, the only difference being that MDPs with s-rectangular nonconvex
uncertainty sets are optimised by randomised stationary policies.

If we could decide in polynomial time whether the worst-case expected total reward of the

constructed MDP exceeds γ, we could also decide IP in polynomial time. Since IP is strongly

NP-hard [GJ79], we conclude that the policy evaluation problem (6.2) is strongly NP-hard for

MDPs with a single action and uncertainty sets of the form (6.3). Since the policy space of the

constructed MDP reduces to a singleton, our proof applies to robust MDPs with deterministic

and randomised stationary policies. If we remove the self-loop emanating from state τ , introduce

a terminal reward rτ := 0 and multiply the rewards in period t with λ−t, our proof furthermore

applies to robust finite horizon MDPs.

Remark 6.2.1 Theorem 6.2.1 remains valid if definition (6.3) is altered to require that Ol = 0

and ol ∈ {0, 1}q. This follows from the fact that IP remains strongly NP-hard if F and g are

binary, see [GJ79].

Remark 6.2.2 Throughout this section we assumed that P is a convex set of the form (6.3).

If we extend our analysis to nonconvex uncertainty sets, then we obtain the results in Table 6.1.

Note that the complexity of some of the policy evaluation and improvement problems will be

discussed in Sections 6.3 and 6.4.
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6.3 Robust Policy Evaluation

It is shown in [Iye05, NG05] that the worst-case expected total reward (6.2) can be calculated in

polynomial time for certain types of (s, a)-rectangular uncertainty sets. We extend this result

to the broader class of s-rectangular uncertainty sets in Section 6.3.1. On the other hand,

Theorem 6.2.1 shows that the evaluation of (6.2) is strongly NP-hard for non-rectangular

uncertainty sets. We therefore develop conservative approximations for the policy evaluation

problem over general uncertainty sets in Section 6.3.2. We bound the optimality gap that is

incurred by solving these approximations, and we outline how these approximations can be

refined. Although this section primarily sets the stage for the policy improvement problem, we

stress that policy evaluation is an important problem in its own right. For example, it finds

frequent use in labour economics, industrial organisation and marketing [MSST07].

Our solution approaches for s-rectangular and non-rectangular uncertainty sets rely on the

reward to-go function. For a stationary policy π, we define the reward to-go function v :

Π× Ξ 7→ R
S through

vs(π; ξ) = E
pξ,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 = s

]
for s ∈ S. (6.5)

vs(π; ξ) represents the expected total reward under the transition kernel pξ and the policy π

if the initial state is s ∈ S. The reward to-go function allows us to express the worst-case

expected total reward as

inf
ξ∈Ξ

E
pξ,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

ξ∈Ξ

{
p⊤0 v(π; ξ)

}
. (6.6)

We simplify our notation by defining the Markov reward process (MRP) induced by pξ and π.

MRPs are Markov chains which pay a state-dependent reward at each time period. In our case,

the MRP is given by the transition kernel P̂ : Π× Ξ
a7→ RS×S and the expected state rewards
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r̂ : Π× Ξ
a7→ RS defined through

P̂ss′(π; ξ) :=
∑

a∈A

π(a|s) pξ(s′|s, a) (6.7a)

and r̂s(π; ξ) :=
∑

a∈A

π(a|s)
∑

s′∈S

pξ(s′|s, a) r(s, a, s′). (6.7b)

Note that r̂(π; ξ) ≥ 0 for each π ∈ Π and ξ ∈ Ξ since all expected rewards r(s, a, s′) were

assumed to be non-negative. For s, s′ ∈ S, P̂ss′(π; ξ) denotes the probability that the next

state of the MRP is s′, given that the MRP is currently in state s. Likewise, r̂s(π; ξ) denotes

the expected reward that is received in state s. By taking the expectation with respect to the

sample paths of the MRP and reordering terms, we can reformulate (6.5) as

v(π; ξ) =

∞∑

t=0

[
λ P̂ (π; ξ)

]t
r̂(π; ξ), (6.8)

see [Put94]. The following proposition brings together results about v that we will use later on.

Proposition 6.3.1 The reward to-go function v has the following properties.

(a) v is Lipschitz continuous on Π× Ξ.

(b) For given π ∈ Π and ξ ∈ Ξ, w ∈ RS satisfies w = r̂(π; ξ) + λ P̂ (π; ξ)w if and only if

w = v(π; ξ).

(c) For given π ∈ Π and ξ ∈ Ξ, if w ∈ RS satisfies w ≤ r̂(π; ξ)+λ P̂(π; ξ)w, then w ≤ v(π; ξ).

Proof For a square matrix A ∈ Rn×n, let Adj(A) and det(A) denote the adjugate matrix and

the determinant of A, respectively. From equation (6.8), we see that

v(π; ξ) =
[
I − λ P̂ (π; ξ)

]−1
r̂(π; ξ) =

Adj
(
I − λ P̂ (π; ξ)

)
r̂(π; ξ)

det
(
I − λ P̂ (π; ξ)

) ∀ ξ ∈ Ξ. (6.9)

Here, the first identity follows from the matrix inversion lemma, see Theorem C.2 in [Put94],

while the second equality is due to Cramer’s rule. The adjugate matrix and the determinant
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in (6.9) constitute polynomials in π and ξ, and the matrix inversion lemma guarantees that the

determinant is nonzero throughout Ξ. Hence, the fraction on the right hand-side of (6.9) has

bounded first derivative on Π× Ξ, which implies that it is Lipschitz continuous on Π× Ξ. We

have thus proven assertion (a).

Assertions (b) and (c) follow directly from Theorems 6.1.1 and 6.2.2 in [Put94], respectively.

Proposition 6.3.1 allows us to reformulate the worst-case expected total reward (6.6) as follows.

inf
ξ∈Ξ

{
p⊤0 v(π; ξ)

}
= inf

ξ∈Ξ
sup
w∈RS

{
p⊤0 w : w ≤ r̂(π; ξ) + λ P̂ (π; ξ)w

}

= sup
ϑ:Ξ7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}

= sup
ϑ:Ξ

c
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
(6.10)

Here, the first equality follows from Proposition 6.3.1 (b)–(c) and non-negativity of p0, while

the last equality follows from Proposition 6.3.1 (a). The second equality follows from the

identity (2.5a) in Section 2.2.2. Theorem 6.2.1 implies that (6.10) is intractable for general

uncertainty sets. In the following, we approximate (6.10) by replacing the space of continuous

functions in the outer supremum with the subspaces of constant, affine and piecewise affine

functions. Since the policy π is fixed in this section, we may omit the dependence of v, P̂ and

r̂ on π in the following.

6.3.1 Robust Policy Evaluation over s-Rectangular Uncertainty Sets

We show that the policy evaluation problem (6.10) is optimised by a constant reward to-go

function if the uncertainty set P is s-rectangular. The result also points out an efficient method

to solve problem (6.10).

Theorem 6.3.1 For an s-rectangular uncertainty set P, the policy evaluation problem (6.10)

is optimised by the constant reward to-go function ϑ∗(ξ) := w∗, ξ ∈ Ξ, where w∗ ∈ RS is the
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unique fixed point of the contraction mapping φ(π; ·) : RS 7→ RS defined through

φs(π;w) := min
ξs∈Ξ

{
r̂s(π; ξ

s) + λP̂⊤
s· (π; ξ

s)w
}

∀ s ∈ S. (6.11)

Remark 6.3.1 A function ϕ : RS 7→ RS is called contraction mapping if there is some γ ∈

[0, 1) such that ‖ϕ(w)− ϕ(w′)‖ ≤ γ ‖w − w′‖ for all w,w′ ∈ RS. The iterated application of ϕ

to any w ∈ R
S converges to the unique fixed point w∗ that satisfies w∗ = ϕ(w∗), see [Put94].

Proof of Theorem 6.3.1 We prove the assertion in two steps. We first show that w∗ solves

the restriction of the policy evaluation problem (6.10) to constant reward to-go functions:

sup
w∈RS

{
p⊤0 w : w ≤ r̂(ξ) + λP̂ (ξ)w ∀ ξ ∈ Ξ

}
(6.12)

Afterwards, we prove that the optimal values of (6.10) and (6.12) coincide for s-rectangular

uncertainty sets.

In view of the first step, we note that the objective function of (6.12) is linear in w. Moreover,

the feasible region of (6.12) is closed because it results from the intersection of closed halfspaces

parametrised by ξ ∈ Ξ. Since w = 0 is feasible in (6.12), we can append the constraint w ≥ 0

without changing the optimal value of (6.12). Hence, the feasible region is also bounded, and

we can apply Weierstrass’ extreme value theorem to replace the supremum in (6.12) with a

maximum. Since each of the S one-dimensional inequality constraints in (6.12) has to be

satisfied for all ξ ∈ Ξ, (6.12) is equivalent to

max
w∈RS

{
p⊤0 w : ws ≤ r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w ∀ s ∈ S, ξ1, . . . , ξS ∈ Ξ
}
.

We can reformulate the semi-infinite constraints in this problem to obtain

max
w∈RS

{
p⊤0 w : ws ≤ min

ξs∈Ξ

{
r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w
}

∀ s ∈ S
}
. (6.13)

Note that the constraints in (6.13) are equivalent to w ≤ φ(π;w), where φ is defined in (6.11).

One can adapt the results in [Iye05, NG05] to show that φ(π; ·) is a contraction mapping.
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Hence, the Banach fixed point theorem guarantees existence and uniqueness of w∗ ∈ RS. This

vector w∗ is feasible in (6.13), and any feasible solution w ∈ RS to (6.13) satisfies w ≤ φ(π;w).

According to Theorem 6.2.2 in [Put94], this implies that w∗ ≥ w for every feasible solution w

to (6.13). By non-negativity of p0, w∗ must therefore maximise (6.13). Since (6.12) and (6.13)

are equivalent, we have thus shown that w∗ maximises (6.12).

We now prove that the optimal values of (6.10) and (6.13) coincide if P is s-rectangular.

Since (6.13) is maximised by the unique fixed point w∗ of φ(π; ·), we can reexpress (6.13) as

min
w∈RS

{
p⊤0 w : ws = min

ξs∈Ξ

{
r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w
}

∀ s ∈ S
}
.

Since p0 is non-negative, this problem is equivalent to

min
w∈RS

min
ξs∈Ξ:
s∈S

{
p⊤0 w : ws = r̂s(ξ

s) + λP̂⊤
s· (ξ

s)w ∀ s ∈ S
}
. (6.14)

The s-rectangularity of the uncertainty set P implies that (6.14) can be reformulated as

min
w∈RS

min
ξ∈Ξ

{
p⊤0 w : ws = r̂s(ξ) + λP̂⊤

s· (ξ)w ∀ s ∈ S
}
. (6.15)

For a fixed ξ ∈ Ξ, w = v(ξ) is the unique feasible solution to (6.15), see Proposition 6.3.1 (b).

By Weierstrass’ extreme value theorem, (6.15) is therefore equivalent to the policy evaluation

problem (6.10).

The fixed point w∗ of the contraction mapping φ(π; ·) defined in (6.11) can be found by applying

the following robust value iteration. We start with an initial estimate w1 := 0. In the ith

iteration, i = 1, 2, . . ., we determine the updated estimate wi+1 via wi+1 := φ(π;wi). Since

φ(π; ·) is a contraction mapping, the Banach fixed point theorem guarantees that the sequence

wi converges to w∗ at a geometric rate. The following corollary investigates the computational

complexity of this approach.

Corollary 6.3.1 If the uncertainty set P is s-rectangular, then problem (6.10) can be solved

to any accuracy ǫ in polynomial time O
(
q3L3/2S log2 ǫ−1 + qAS2 log ǫ−1

)
.
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Proof Assume that at each iteration i of the robust value iteration, we evaluate φ(π;wi) to

the accuracy δ := ǫ(1 − λ)2/(4 + 4λ). We stop the algorithm as soon as
∥∥wN+1 − wN

∥∥
∞

≤

ǫ(1 − λ)/(1 + λ) at some iteration N . This is guaranteed to happen within O (log ǫ−1) it-

erations [Put94]. By construction, wN+1 is feasible for the policy evaluation problem (6.10),

see [Put94]. We can adapt Theorem 5 from [NG05] to show that wN+1 satisfies
∥∥wN+1 − w∗

∥∥
∞

≤

ǫ. Hence, wN+1 is also an ǫ-optimal solution to (6.10).

We now investigate the complexity of evaluating φ to the accuracy δ. Under mild assumptions,

interior point methods can solve second-order cone programs of the form

min
x∈Rn

{
f⊤x : ‖Ajx+ bj‖2 ≤ c⊤j x+ dj ∀ j = 1, . . . , m

}
,

where Aj ∈ Rnj×n, bj ∈ Rnj , cj ∈ Rn and dj ∈ R, j = 1, . . . , m, to any accuracy δ in polynomial

time O
(√

m
[
n3 + n2

∑
j nj

]
log δ−1

)
, see [LVBL98]. For w ∈ R

S, we can evaluate φ(π;w) by

solving the following second-order cone program:

minimise
ξ

∑

a∈A

π(a|s) (ksa +Ksaξ)
⊤ (rsa + λw) (6.16a)

subject to ξ ∈ R
q

∥∥∥∥∥∥∥




Ωl

−o⊤l


 ξ +




0

1−ωl

2




∥∥∥∥∥∥∥
2

≤ o⊤l ξ +
ωl + 1

2
∀ l = 1, . . . , L, (6.16b)

where (rsa)s′ := r(s, a, s′) for (s, a, s′) ∈ S × A × S and Ωl satisfies Ω⊤
l Ωl = −Ol. We can

determine each matrix Ωl in time O (q3) by a Cholesky decomposition, we can construct (6.16)

in time O (qAS + q2L), and we can solve (6.16) to accuracy δ in time O
(
q3L3/2 log δ−1

)
. Each

step of the robust value iteration requires the construction and solution of S such problems.

Since the constraints of (6.16) only need to be generated once, this results in an iteration

complexity of O
(
q3L3/2S log δ−1 + qAS2

)
. The assertion now follows from the fact that the

robust value iteration terminates within O (log ǫ−1) iterations.
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Depending on the properties of Ξ defined in (6.3b), we can evaluate the mapping φ more

efficiently. We refer to [Iye05, NG05] for a discussion of different numerical schemes.

Remark 6.3.2 (Finite Horizon MDPs) For a finite horizon MDP, we can solve the policy

evaluation problem (6.10) over an s-rectangular uncertainty set P via robust backward induc-

tion as follows. We start with wT ∈ R
S defined through wTs := rs if s ∈ ST ; := 0 otherwise. At

iteration i = T − 1, T − 2, . . . , 1, we determine wi through wis := φ̂s(π;w
i+1) if s ∈ Si; := wi+1

s

otherwise. The operator φ̂ is defined as

φ̂s(π;w) := min
ξs∈Ξ

{
r̂s(π; ξ

s) + P̂⊤
s· (π; ξ

s)w
}

∀ s ∈ S.

An adaptation of Corollary 6.3.1 shows that we obtain an ǫ-optimal solution to the policy

evaluation problem (6.10) in polynomial time O
(
q3L3/2S log ǫ−1 + qAS2

)
if we evaluate φ̂ to

the accuracy ǫ/(T − 1).

We close with an example that illustrates the solution of the policy evaluation problem (6.10)

for s-rectangular uncertainty sets.

Example 6.3.1 Consider again the robust infinite horizon MDP defined in Proposition 6.2.1

and visualised in Figure 6.3. The state set of the MDP is S = {1, 2, 3}, the set of admissible

actions is A = {1, 2}, and the initial state distribution is given by p0 = e1. The uncertainty set

Ξ is specified by

Ξ = {ξ ∈ R : 0 ≤ ξ ≤ 1} =
{
ξ ∈ R : (ξ − 1/2)2 ≤ (1/2)2

}
=

{
ξ ∈ R : −ξ2 + ξ ≥ 0

}
,

that is, we have L = 1, O1 = −1, o1 = 1 and ω1 = 0. The transition probabilities are described

by p(·|1, 1) = (0, ξ, 1 − ξ)⊤, p(·|1, 2) = (0, 1 − ξ, ξ)⊤ and p(·|s, a) = es for s ∈ {2, 3}, a ∈ A.

In the notation of Section 6.2.1, we therefore have

(k11, K11) = (e3, e2 − e3) , (k12, K12) = (e2, e3 − e2)

and (ksa, Ksa) = (es, 0) for s ∈ {2, 3} , a ∈ A.
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The reward is given by r1,a = r3,a = 0 and r2,a = e2, a ∈ A. For the discount factor λ = 0.9

and the policy π(a|s) = 1/2, (s, a) ∈ S × A, the first component of φ(π;w) is identical to the

optimal value of the following optimisation problem, see (6.16).

minimise
ξ

1

2
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Likewise, φ2(π;w) is equal to the optimal value of the following problem.

minimise
ξ
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The third component of φ(π;w), finally, is identical to the optimal value of the following problem.

minimise
ξ
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If we start with the initial estimate w1 := 0, we obtain w2 := φ(π;w1) = (0, 1, 0)⊤, w3 :=

φ(π;w2) = (0.45, 1.9, 0)⊤, w4 := φ(π;w3) ≈ (0.86, 2.71, 0)⊤ and so on. If we want to solve the

policy evaluation problem (6.10) to the accuracy ǫ := 10−3, then we have to execute the robust

value iteration until
∥∥wN+1 − wN

∥∥
∞

≤ 10−3 · 0.1/1.1 ≈ 9.1 · 10−5 at some iteration N . For

our example, the robust value iteration takes N = 90 iterations to determine the fixed point

w∗ = (4.5, 10, 0)⊤. Since the initial state distribution is p0 = e1, the optimal value of the robust

policy evaluation problem (6.10) is 4.5.

6.3.2 Robust Policy Evaluation over Non-Rectangular Uncertainty

Sets

If the uncertainty set P is non-rectangular, then Theorem 6.2.1 implies that constant reward

to-go functions are no longer guaranteed to optimise the policy evaluation problem (6.10).

Nevertheless, we can still use the robust value iteration to obtain a lower bound on the optimal

value of (6.10).

Proposition 6.3.2 Let P be a non-rectangular uncertainty set, and define P := ×s∈S Ps as

the smallest s-rectangular uncertainty set that contains P. The function ϑ∗(ξ) = w∗ defined in

Theorem 6.3.1 has the following properties.

1. The vector w∗ solves the restriction (6.12) of the policy evaluation problem (6.10) that

approximates the reward to-go function by a constant.

2. The function ϑ∗ solves the exact policy evaluation problem (6.10) over P.

Proof The first property follows from the fact that the first part of the proof of Theorem 6.3.1

does not depend on the structure of the uncertainty set P. As for the second property, the

proof of Theorem 6.3.1 shows that w∗ minimises (6.14), irrespective of the structure of P. The

proof also shows that (6.14) is equivalent to the policy evaluation problem (6.10) if we replace

P with P.
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Proposition 6.3.2 provides a dual characterisation of the robust value iteration. On one hand,

the robust value iteration determines the exact worst-case expected total reward over the rect-

angularised uncertainty set P . On the other hand, the robust value iteration calculates a lower

bound on the worst-case expected total reward over the original uncertainty set P. Hence,

rectangularising the uncertainty set is equivalent to replacing the space of continuous reward

to-go functions in the policy evaluation problem (6.10) with the subspace of constant functions.

We obtain a tighter lower bound on the worst-case expected total reward (6.10) if we replace the

space of continuous reward to-go functions with the subspaces of affine or piecewise affine func-

tions. We use the following result to formulate these approximations as tractable semidefinite

optimisation problems.

Proposition 6.3.3 For Ξ defined in (6.3b) and any fixed S ∈ Sq, s ∈ Rq and σ ∈ R, we have

∃ γ ∈ R
L
+ :



σ 1

2
s⊤

1
2
s S


−

L∑

l=1

γl



ωl

1
2
o⊤l

1
2
ol Ol


 � 0 =⇒ ξ⊤S ξ + s⊤ξ + σ ≥ 0 ∀ ξ ∈ Ξ.

(6.17)

Furthermore, the reversed implication holds if (C1) L = 1 or (C2) S � 0.

Proof Implication (6.17) and the reversed implication under condition (C1) follow from the

approximate and exact versions of the S-Lemma, respectively (see for example Proposition 3.4

in [KWG09]).

Assume now that (C2) holds. We define f(ξ) := ξ⊤S ξ+s⊤ξ+σ and gl(ξ) := −ξ⊤Ol ξ−o⊤l ξ−ωl,

l = 1, . . . , L. Since f and g := (g1, . . . , gL) are convex, Farkas’ Theorem [Roc70] ensures that

the system of inequalities

f(ξ) < 0, g(ξ) < 0, ξ ∈ R
q (6.18a)

has no solution if and only if there is a nonzero vector (κ, γ) ∈ R+ × RL
+ such that

κf(ξ) + γ⊤g(ξ) ≥ 0 ∀ ξ ∈ R
q. (6.18b)

Since Ξ contains a Slater point ξ that satisfies ξ
⊤
Ol ξ + o⊤l ξ + ω = −gl(ξ) > 0, l = 1, . . . , L,
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convexity of g and continuity of f allows us to replace the second strict inequality in (6.18a)

with a less or equal constraint. Hence, (6.18a) has no solution if and only if f is non-negative

on Ξ = {ξ ∈ R
q : g(ξ) ≤ 0}, that is, if the right-hand side of (6.17) is satisfied. We now show

that (6.18b) is equivalent to the left-hand side of (6.17). Assume that there is a nonzero vector

(κ, γ) ≥ 0 that satisfies (6.18b). Note that κ 6= 0 since otherwise, (6.18b) would not be satisfied

by the Slater point ξ. Hence, a suitable scaling of γ allows us to set κ := 1. For our choice of

f and g, this implies that (6.18b) is equivalent to



1

ξ




⊤




σ 1

2
s⊤

1
2
s S


−

L∑

l=1

γl



ωl

1
2
o⊤l

1
2
ol Ol









1

ξ


 ≥ 0 ∀ ξ ∈ R

q. (6.18b’)

Since the above inequality is homogeneous of degree 2 in
[
1, ξ⊤

]⊤
, it extends to the whole of

R
q+1. Hence, (6.18b’) is equivalent to the left-hand side of (6.17).

Proposition 6.3.3 allows us to bound the worst-case expected total reward (6.10) from below

by the solution of a tractable semidefinite program.

Theorem 6.3.2 Consider the following variant of the policy evaluation problem (6.10), which

approximates the reward to-go function by an affine function,

sup
ϑ:Ξ

a
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(ξ) + λP̂ (ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
, (6.19)

as well as the semidefinite program
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maximise
τ,w,W,γ,Γ

τ (6.20a)

subject to τ ∈ R, w ∈ R
S, W ∈ R

S×q, γ ∈ R
L
+, Γ ∈ R

S×L
+


p⊤0 w − τ 1

2
p⊤0W

1
2
W⊤p0 0


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
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ωl

1
2
o⊤l

1
2
ol Ol


 � 0, (6.20b)

∑

a∈A

π(a|s)




k⊤sa (rsa + λw) 1
2

(
r⊤saKsa + λ

[
k⊤saW + w⊤Ksa

])

1
2

(
K⊤
sarsa + λ

[
W⊤ksa +K⊤

saw
])

λK⊤
saW




−




ws
1
2
W⊤
s·

1
2

(
W⊤
s·

)⊤
0


−

L∑

l=1

Γsl



ωl

1
2
o⊤l

1
2
ol Ol


 � 0 ∀ s ∈ S,

(6.20c)

where (rsa)s′ := r(s, a, s′) for (s, a, s′) ∈ S × A × S. Let (τ ∗, w∗,W ∗, γ∗,Γ∗) denote an optimal

solution to (6.20), and define ϑ∗ : Ξ
a7→ RS through ϑ∗(ξ) := w∗ +W ∗ξ. We have that:

(a) If L = 1, then (6.19) and (6.20) are equivalent in the following sense: τ ∗ coincides with

the supremum of (6.19), and ϑ∗ is feasible and optimal in (6.19).

(b) If L > 1, then (6.20) constitutes a conservative approximation for (6.19): τ ∗ provides

a lower bound on the supremum of (6.19), and ϑ∗ is feasible in (6.19) and satisfies

infξ∈Ξ
{
p⊤0 ϑ

∗(ξ)
}
= τ ∗.

Proof The approximate policy evaluation problem (6.19) can be written as

sup
w∈RS ,
W∈RS×q

{
inf
ξ∈Ξ

{
p⊤0 (w +Wξ)

}
: w +Wξ ≤ r̂(ξ) + λP̂ (ξ) (w +Wξ) ∀ ξ ∈ Ξ

}
. (6.21)

We first show that (6.21) is solvable. Since p⊤0 (w +Wξ) is linear in (w,W ) and continuous in

ξ while Ξ is compact, infξ∈Ξ
{
p⊤0 (w +Wξ)

}
is a concave and therefore continuous function of

(w,W ). Likewise, the feasible region of (6.21) is closed because it results from the intersection

of closed halfspaces parametrised by ξ ∈ Ξ. However, the feasible region of (6.21) is not
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bounded because any reward to-go function of the form (we,W ) with w ∈ R− and W = 0,

constitutes a feasible solution. However, since (w,W ) = (0, 0) is feasible, we can append the

constraint w +Wξ ≥ 0 for all ξ ∈ Ξ without changing the optimal value of (6.21). Moreover,

all expected rewards r(s, a, s′) are bounded from above by r := maxs,a,s′ {r(s, a, s′)}. Therefore,

Proposition 6.3.1 (c) implies that any feasible solution (w,W ) for (6.21) satisfies w +Wξ ≤

re/(1− λ) for all ξ ∈ Ξ.

Our results so far imply that any feasible solution (w,W ) for (6.21) satisfies 0 ≤ w +Wξ ≤

re/(1 − λ) for all ξ ∈ Ξ. We now show that this implies boundedness of the feasible region

for (w,W ). The existence of a Slater point ξ with ξ
⊤
Ol ξ + o⊤l ξ + ωl > 0 for all l = 1, . . . , L

guarantees that there is an ǫ-neighbourhood of ξ that is contained in Ξ. Hence, W must be

bounded because all points ξ in this neighbourhood satisfy 0 ≤ w +Wξ ≤ re/(1 − λ). As a

consequence, w is bounded as well since 0 ≤ w +Wξ ≤ re/(1 − λ). Thus, the feasible region

of (6.21) is bounded, and Weierstrass’ extreme value theorem is applicable. Therefore, (6.21)

is solvable. If we furthermore replace P̂ and r̂ with their definitions from (6.7) and go over to

an epigraph formulation, then we obtain

maximise
τ,w,W

τ (6.22a)

subject to τ ∈ R, w ∈ R
S, W ∈ R

S×q

τ ≤ p⊤0 (w +Wξ) ∀ ξ ∈ Ξ (6.22b)

ws +W⊤
s· ξ ≤

∑

a∈A

π(a|s) (ksa +Ksaξ)
⊤ (rsa + λ [w +Wξ]) ∀ ξ ∈ Ξ, s ∈ S.

(6.22c)

Constraint (6.22b) is equivalent to constraint (6.20b) by Proposition 6.3.3 under condition (C2).

Likewise, Proposition 6.3.3 guarantees that constraint (6.22c) is implied by constraint (6.20c).

Moreover, if L = 1, condition (C1) of Proposition 6.3.3 is satisfied, and both constraints are

equivalent.

We can employ conic duality [AG03, LVBL98] to equivalently replace constraint (6.20b) with

conic quadratic constraints. There does not seem to be a conic quadratic reformulation of
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constraint (6.20c), however.

Theorem 6.3.2 provides an exact (for L = 1) or conservative (for L > 1) reformulation for

the approximate policy evaluation problem (6.19). Since (6.19) optimises only over affine ap-

proximations of the reward to-go function, Proposition 6.3.1 (c) implies that (6.19) provides

a conservative approximation for the worst-case expected total reward (6.10). We will see be-

low that both approximations are tight for s-rectangular uncertainty sets. First, however, we

investigate the computational complexity of problem (6.20).

Corollary 6.3.2 The semidefinite program (6.20) can be solved to any accuracy ǫ in polynomial

time O
(
(qS + LS)

5

2 (q2S + LS) log ǫ−1 + q2AS2
)
.

Proof The objective function and constraints of (6.20) can be constructed in time O
(
q2AS2+

q2LS
)
. Under mild assumptions, interior point methods can solve a semidefinite program

min
x∈Rn

{
c⊤x : F0 +

n∑

i=1

xiFi � 0

}
,

where Fi ∈ Sm for i = 0, . . . , n, to accuracy ǫ in time O
(
n2m

5

2 log ǫ−1
)
, see [VB96]. Moreover,

if all matrices Fi possess a block-diagonal structure with blocks Gij ∈ Smj , j = 1, . . . , J with
∑

jmj = m, then the computational effort can be reduced to O
(
n2m

1

2

∑
jm

2
j

)
. Problem (6.20)

involves O(qS +LS) variables. By exploiting the block-diagonal structure of (6.20), constraint

(6.20b) gives rise to a single block of dimension (q + 1)× (q + 1), constraint set (6.20c) leads

to S blocks of dimension (q+ 1)× (q+1) each, and non-negativity of γ and Γ results in L and

SL one-dimensional blocks, respectively.

In Section 6.4 we discuss a method for constructing uncertainty sets from observation his-

tories. Asymptotically, this method generates an uncertainty set Ξ that is described by a

single quadratic inequality (L = 1), which means that problem (6.20) can be solved in time

O
(
q

9

2S
7

2 log ǫ−1 + q2AS2
)
. Note that q does not exceed S(S − 1)A, the affine dimension of the

space [M(S)]S×A, unless some components of ξ are perfectly correlated. If information about

the structure of the transition kernel is available, however, q can be much smaller. Section 6.6
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provides an example in which q remains constant as the problem size (measured in terms of S,

the number of states) increases.

The semidefinite program (6.20) is based on two approximations. It is a conservative approxi-

mation for problem (6.19), which itself is a restriction of the policy evaluation problem (6.10) to

affine reward to-go functions. We now show that both approximations are tight for s-rectangular

uncertainty sets.

Proposition 6.3.4 Let (τ ∗, w∗,W ∗, γ∗,Γ∗) denote an optimal solution to the semidefinite pro-

gram (6.20), and define ϑ∗ : Ξ 7→ RS through ϑ∗(ξ) := w∗ +W ∗ξ. If the uncertainty set P is

s-rectangular, then the optimal value of the policy evaluation problem (6.10) is τ ∗, and ϑ∗ is

feasible and optimal in (6.10).

Proof We show that any constant reward to-go function that is feasible in the policy evaluation

problem (6.10) can be extended to a feasible solution of the semidefinite program (6.20) with

the same objective value. The assertion then follows from the optimality of constant reward

to-go functions for s-rectangular uncertainty sets, see Theorem 6.3.1, and the fact that (6.20)

bounds (6.10) from below, see Theorem 6.3.2.

Assume that ϑ : Ξ 7→ RS with ϑ(ξ) = c for all ξ ∈ Ξ satisfies the constraints of the policy

evaluation problem (6.10). We show that there is a vector γ ∈ RL
+ and a matrix Γ ∈ R

S×L
+

such that (τ, w,W, γ,Γ) with τ := p⊤0 c, w := c and W := 0 satisfies the constraints of the

semidefinite program (6.20). Since τ = infξ∈Ξ
{
p⊤0 ϑ(ξ)

}
, ϑ in (6.10) and (τ, w,W, γ,Γ) in (6.20)

clearly attain equal objective values.

By the proof of Theorem 6.3.2, there is a vector γ ∈ RL
+ that satisfies constraint (6.20b) if and

only if τ ≤ p⊤0 (w +Wξ) for all ξ ∈ Ξ. Since w +Wξ = c for all ξ ∈ Ξ and τ = p⊤0 c, such a

vector γ indeed exists.

Let us now consider constraint set (6.20c). Since the constant reward to-go function ϑ(ξ) = c

is feasible in the policy evaluation problem (6.10), we have for state s ∈ S that

cs ≤ r̂s(ξ) + λP̂⊤
s· (ξ) c ∀ ξ ∈ Ξ.
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1 2 3
ξ; 0 ξ; 0

1− ξ; 0

1− ξ; 0

1; 1

Figure 6.6: MDP with three states and one action. p0 places unit probability mass on state 1.
The same drawing conventions as in Figure 6.3 are used.

If we replace r̂ and P̂ with their definitions from (6.7), this is equivalent to

cs ≤
∑

a∈A

π(a|s)(ksa +Ksaξ)
⊤ (rsa + λc) ∀ ξ ∈ Ξ,

which is an instance of constraint (6.22c) where w = c and W = 0. For this choice of (w,W ),

Proposition 6.3.3 under condition (C2) is applicable to constraint (6.22c). Hence, (6.22c) is

satisfied if and only if there is Γ⊤
s· ∈ R

1×L
+ that satisfies constraint (6.20c). Since (6.22c) is

satisfied, we conclude that we can indeed find γ and Γ such that (τ, w,W, γ,Γ) satisfies the

constraints of the semidefinite program (6.20).

Propositions 6.3.2 and 6.3.4 show that the lower bound provided by the robust value iteration is

dominated by the bound obtained from the semidefinite program (6.20). The following example

highlights that the quality of these bounds can differ substantially.

Example 6.3.2 Consider the robust infinite horizon MDP that is visualised in Figure 6.6. The

uncertainty set P encompasses all transition kernels that correspond to parameter realisations

ξ ∈ [0, 1]. This MDP can be assigned an uncertainty set of the form (6.3). For λ := 0.9, the

worst-case expected total reward is λ2/(1− λ) = 8.1 and is incurred under the transition kernel

corresponding to ξ = 1. The solution of the semidefinite program (6.20) yields the (affine)

approximate reward to-go function ϑ∗(ξ) = (6.5, 9ξ, 10)⊤ and therefore provides a lower bound

of 6.5. The unique solution to the fixed point equations w∗ = φ(w∗), where φ is defined in (6.11),

is w∗ = (0, 0, 1/[1 − λ]). Hence, the best constant reward to-go approximation yields a lower

bound of zero. Since all expected rewards are non-negative, this is a trivial bound. Intuitively,

the poor performance of the constant reward to-go function is due to the fact that it considers

separate worst-case parameter realisations for states 1 (ξ = 1) and 2 (ξ = 0).
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Example 6.3.2 shows that the semidefinite program (6.20) generically provides a strict lower

bound on the worst-case expected total reward if the uncertainty set is non-rectangular. In

such cases, we would like to estimate the incurred approximation error. Note that we obtain an

upper (i.e., optimistic) bound on the worst-case expected total reward if we evaluate p⊤0 v(ξ) for

any single ξ ∈ Ξ. Let ϑ∗(ξ) denote an optimal affine approximation of the reward to-go function

obtained from the semidefinite program (6.20). This ϑ∗ can be used to obtain a suboptimal

solution to argmin
{
p⊤0 v(ξ) : ξ ∈ Ξ

}
by solving argmin

{
p⊤0 ϑ

∗(ξ) : ξ ∈ Ξ
}
, which is a convex

optimisation problem. Let ξ∗ denote an optimal solution to this problem. We obtain an upper

bound on the worst-case expected total reward by evaluating

p⊤0 v(ξ
∗) = p⊤0

∞∑

t=0

[
λP̂ (ξ∗)

]t
r̂(ξ∗) = p⊤0

[
I − λP̂ (ξ∗)

]−1
r̂(ξ∗), (6.23)

where the last equality follows from the matrix inversion lemma, see Theorem C.2 in [Put94].

We can thus estimate the approximation error of the semidefinite program (6.20) by evaluating

the difference between (6.23) and the optimal value of (6.20). If this difference is large, the

affine approximation of the reward to-go function may be too crude. In this case, one could

use modern decision rule techniques [BTGN09, GS09] to reduce the approximation error via

piecewise affine approximations of the reward to-go function. Since the resulting generalisation

requires no new ideas, we omit details for the sake of brevity.

Remark 6.3.3 (Finite Horizon MDPs) Our results can be directly applied to finite horizon

MDPs if we convert them to infinite horizon MDPs. To this end, we choose any discounting

factor λ and multiply the rewards associated with transitions in period t ∈ T by λ−t. Moreover,

for every terminal state s ∈ ST , we introduce a deterministic transition to an auxiliary absorbing

state and assign an action-independent expected reward of λ−T rs. Note that in contrast to

non-robust and rectangular MDPs, the approximate policy evaluation problem (6.20) does not

decompose into separate subproblems for each time period t ∈ T .

We close with an example that illustrates the approximate policy evaluation problem (6.20).

Example 6.3.3 Consider again the robust infinite horizon MDP defined in Example 6.3.2 and
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visualised in Figure 6.6. The state set of the MDP is S = {1, 2, 3}, the set of admissible actions

is A = {1}, and the initial state distribution is given by p0 = e1. The uncertainty set Ξ is

specified by

Ξ = {ξ ∈ R : 0 ≤ ξ ≤ 1} =
{
ξ ∈ R : (ξ − 1/2)2 ≤ (1/2)2

}
=

{
ξ ∈ R : −ξ2 + ξ ≥ 0

}
,

that is, we have L = 1, O1 = −1, o1 = 1 and ω1 = 0. The transition probabilities are described

by p(·|1, 1) = (0, ξ, 1 − ξ)⊤, p(·|2, 1) = (0, 1 − ξ, ξ)⊤ and p(·|3, 1) = e3. In the notation of

Section 6.2.1, we therefore have

(k11, K11) = (e3, e2 − e3) , (k21, K21) = (e2, e3 − e2) and (k31, K31) = (e3, 0) .

The reward is given by r11 = r21 = 0 and r31 = e3. For the discount factor λ = 0.9 and the

policy π(1|s) = 1, s ∈ S, the approximate policy evaluation problem (6.20) reads as follows.

minimise
τ,w,W,γ,Γ

τ

subject to τ ∈ R, w ∈ R
3, W ∈ R

3, γ ∈ R+, Γ ∈ R
3
+


w1 − τ 1

2
W1

1
2
W1 0


− γ



0 1

2

1
2

−1


 � 0,




λw3
1
2
λ(W3 + w2 − w3)

1
2
λ(W3 + w2 − w3) λ(W2 −W3)


−



w1

1
2
W1

1
2
W1 0


− Γ1



0 1

2

1
2

−1


 � 0,




λw2
1
2
λ(W2 + w3 − w2)

1
2
λ(W2 + w3 − w2) λ(W3 −W2)


−



w2

1
2
W2

1
2
W2 0


− Γ2



0 1

2

1
2

−1


 � 0,



1 + λw3

1
2
λW3

1
2
λW3 0


−



w3

1
2
W3

1
2
W3 0


− Γ3



0 1

2

1
2

−1


 � 0.

The optimal solution to this problem satisfies τ ∗ = 6.5, w∗ = (6.5, 0, 10)⊤ and W ∗ = (0, 9, 0)⊤,

see Example 6.3.2.
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6.4 Robust Policy Improvement

In view of (6.10), we can formulate the policy improvement problem as

sup
π∈Π

sup
ϑ:Ξ

c
7→RS

{
inf
ξ∈Ξ

{
p⊤0 ϑ(ξ)

}
: ϑ(ξ) ≤ r̂(π; ξ) + λ P̂ (π; ξ)ϑ(ξ) ∀ ξ ∈ Ξ

}
. (6.24)

Since π is no longer fixed in this section, we make the dependence of v, P̂ and r̂ on π explicit.

Section 6.3 shows that the policy evaluation problem can be solved efficiently if the uncertainty

set P is s-rectangular. We now extend this result to the policy improvement problem.

Theorem 6.4.1 For an s-rectangular uncertainty set P, the policy improvement problem (6.24)

is optimised by the policy π∗ ∈ Π and the constant reward to-go function ϑ∗(ξ) := w∗, ξ ∈ Ξ,

that are defined as follows. The vector w∗ ∈ RS is the unique fixed point of the contraction

mapping ϕ defined through

ϕs(w) := max
π∈Π

{φs(π;w)} ∀ s ∈ S, (6.25)

where φ is defined in (6.11). For each s ∈ S, let πs ∈ argmaxπ∈Π {φs(π;w∗)} denote a policy

that attains the maximum on the right-hand side of (6.25) for w = w∗. Then π∗(a|s) := πs(a|s)

for all (s, a) ∈ S × A.

Proof In analogy to the proof of Theorem 6.3.1, we can rewrite the policy improvement prob-

lem (6.24) as

max
π∈Π

max
w∈RS

{
p⊤0 w : ws ≤ r̂s(π; ξ

s) + λ P̂⊤
s· (π; ξ

s)w ∀ s ∈ S, ξ1, . . . , ξS ∈ Ξ
}
.

By definition of φ, the S semi-infinite constraints in this problem are equivalent to the constraint

w ≤ φ(π;w). If we interchange the order of the maximum operators, we can reexpress the

problem as

max
w∈RS

{
p⊤0 w : ∃ π ∈ Π such that w ≤ φ(π;w)

}
. (6.26)
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Note that φs only depends on the components π(·|s) of π. Hence, we have w∗ = φ(π∗;w∗), and

π∗ and w∗ are feasible in (6.26). One can adapt the results in [Iye05, NG05] to show that ϕ

is a contraction mapping. Since w∗ = ϕ(w∗) and every feasible solution w to (6.26) satisfies

w ≤ ϕ(w), Theorem 6.2.2 in [Put94] therefore implies that w∗ ≥ w for all feasible vectors w.

By non-negativity of p0, π∗ and w∗ must then be optimal in (6.26). The assertion now follows

from the equivalence of (6.24) and (6.26).

The fixed point w∗ of the contraction mapping ϕ defined in (6.25) can be found via robust value

iteration. Since the solution approach is essentially the same as in Section 6.3.1, we can keep

ourselves brief in the following. The following result analyses the complexity of this method.

Corollary 6.4.1 The fixed point w∗ of the contraction mapping ϕ defined in (6.25) can be

determined to any accuracy ǫ in time O
(
(q + A + L)1/2(qL+ A)3S log2 ǫ−1 + qAS2 log ǫ−1

)
.

Proof We apply the robust value iteration presented in Section 6.3.1 to the contraction map-

ping ϕ. To evaluate ϕs(w), we solve the following semi-infinite optimisation problem:

maximise
τ,π

τ (6.27a)

subject to τ ∈ R, π ∈ R
A

τ ≤
∑

a∈A

πa(ksa +Ksaξ)
⊤(rsa + λw) ∀ ξ ∈ Ξ, (6.27b)

π ≥ 0, e⊤π = 1. (6.27c)

Second-order cone duality [AG03, LVBL98] allows us to replace the semi-infinite constraint (6.27b)

with the following linear and conic quadratic constraints:
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∃Y ∈ R
q×L, z ∈ R

L, t ∈ R
L : τ −

∑

a∈A

πak
⊤
sa (rsa + λw) ≤ −

L∑

l=1

(
1− ωl

2
zl +

ωl + 1

2
tl

)

(6.27b.1)

L∑

l=1

(
Ω⊤
l Y·l −

1

2
ol [tl − zl]

)
=
∑

a∈A

πaK
⊤
sa (rsa + λw)

(6.27b.2)
∥∥∥∥∥∥∥



Y·l

zl




∥∥∥∥∥∥∥
2

≤ tl ∀ l = 1, . . . , L. (6.27b.3)

Here, Ωl satisfies Ω⊤
l Ωl = −Ol. The assertion follows if we evaluate ϕ(wi) at iteration i to an

accuracy δ < ǫ(1 − λ)2/8 and stop when
∥∥wN+1 − wN

∥∥
∞

≤ ǫ(1 − λ)/4 at some iteration N .

In analogy to Remark 6.3.2, we can solve the policy improvement problem for finite horizon

MDPs via robust backward induction in time O
(
(q + A+ L)1/2(qL+ A)3S log ǫ−1 + qAS2

)
.

Since the policy improvement problem (6.24) contains the policy evaluation problem (6.10) as

a special case, Theorem 6.2.1 implies that (6.24) is intractable for non-rectangular uncertainty

sets. In analogy to Section 6.3, we can obtain a suboptimal solution to (6.24) by considering

constant approximations of the reward to-go function. The following result is an immediate

consequence of Proposition 6.3.2 and Theorem 6.4.1.

Corollary 6.4.2 For a non-rectangular uncertainty set P, consider the following variant of the

policy improvement problem (6.24), which approximates the reward to-go function by a constant

function.

sup
π∈Π

sup
w∈RS

{
p⊤0 w : w ≤ r̂(ξ) + λP̂ (ξ)w ∀ ξ ∈ Ξ

}
(6.28)

Problem (6.28) is optimised by the unique fixed point w∗ ∈ RS of the contraction mapping ϕ

defined in (6.25).



200 Chapter 6. Multi-Stage Net Present Value Maximisation

In analogy to Proposition 6.3.2, the policy improvement problem (6.24) is equivalent to its ap-

proximation (6.28) if we replace P with ×sPs. We can try to obtain better solutions to (6.24)

over non-rectangular uncertainty sets by replacing the constant reward to-go approximations

with affine or piecewise affine approximations. The associated optimisation problems are bi-

linear semidefinite programs and as such difficult to solve. Nevertheless, we can obtain a

suboptimal solution with the following heuristic.

Algorithm 6.4.1. Sequential convex optimisation procedure.

1. Initialisation. Choose π1 ∈ Π (best policy found) and i := 1 (iteration counter).

2. Policy Evaluation. Solve the semidefinite program (6.20) for π = πi and store the τ -, w-

and W -components of the solution in τ i, wi and W i, respectively. Abort if i > 1 and

τ i = τ i−1.

3. Policy Improvement. For each s ∈ S, solve the semi-infinite optimisation problem

maximise
σs,πs

σs (6.29a)

subject to σs ∈ R, πs ∈ R
A

ws +W⊤
s· ξ + σs ≤

∑

a∈A

πsa
(
ksa +Ksaξ)

⊤(rsa + λ [w +Wξ]
)

∀ ξ ∈ Ξ,

(6.29b)

πs ≥ 0, e⊤πs = 1, (6.29c)

where (w,W ) = (wi,W i). Set πi+1(a|s) := π∗
sa for all (s, a) ∈ S × A, where π∗

s denotes

the πs- component of an optimal solution to (6.29) for state s ∈ S. Set i := i+ 1 and go

back to Step 2.

Upon termination, the best policy found is stored in πi−1, and τ i is an estimate for the worst-

case expected total reward of πi−1. Depending on the number L of constraints that define Ξ,

this estimate is exact (if L = 1) or a lower bound (if L > 1). We can equivalently reformulate
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(if L = 1) or conservatively approximate (if L > 1) the semi-infinite constraint (6.29b) with a

semidefinite constraint. Since this reformulation parallels the proof of Theorem 6.3.2, we omit

the details. Step 3 of the algorithm aims to increase the slack in the constraint (6.20c) of the

policy evaluation problem solved in Step 2. One can show that if σs > 0 for some state s ∈ S

that can be visited by the MDP, then Step 2 will lead to a better objective value in the next

iteration. For L = 1, Algorithm 6.4.1 converges to a partial optimum of the policy improvement

problem (6.24). We refer to Section 4.3 for a detailed convergence analysis and a numerical

example of sequential convex optimisation.

6.5 Constructing Uncertainty Sets from Observation His-

tories

Assume that an observation history

(s1, a1, . . . , sn, an) ∈ (S ×A)n (6.30)

of the MDP under some known stationary policy π0 is available. We can use the observa-

tion (6.30) to construct an uncertainty set that contains the MDP’s unknown true transition

kernel P 0 with a probability of at least 1 − β. The worst-case expected total reward of any

policy π over this uncertainty set then provides a valid lower bound on the expected total

reward of π under P 0 with a confidence of at least 1− β.

In the following, we first define the structural uncertainty set which incorporates all available a

priori information about P 0. We then combine this structural information with the statistical

information in the form of observation (6.30) to construct a confidence region for P 0. This

confidence region will not be of the form (6.3). Section 6.5.3 therefore elaborates an approximate

uncertainty set that is in line with the methods presented in Sections 6.3 and 6.4. We close

with an asymptotic analysis of our approach.
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6.5.1 Structural Uncertainty Set

Traditionally, uncertainty sets for the transition kernels of MDPs are constructed under the

assumption that all transitions (s, a, s′) ∈ S × A × S are possible and that no a priori knowl-

edge about the associated transition probabilities is available. In reality, however, one often has

structural information about the MDP. For example, some transitions may be impossible, or

certain functional relations between the transition probabilities may be known. We condense

this kind of information into the structural uncertainty set P0, which captures all available a

priori knowledge about the MDP. The use of structural information excludes irrelevant transi-

tion kernels and therefore leads to a smaller uncertainty set (and hence a tighter lower bound

on the expected total reward). In Section 6.6, we will exemplify the benefits of this approach.

Formally, we assume that the structural uncertainty set P0 represents the affine image of a set

Ξ0, and that P0 and Ξ0 satisfy our earlier definition (6.3) of P and Ξ. In the remainder of this

chapter, we denote by ξ0 the parameter vector associated with the unknown true transition

kernel P 0 of the MDP, that is, P 0
sa = pξ

0

(·|s, a) for all (s, a) ∈ S × A. We require that

(A1) Ξ0 contains the parameter vector ξ0 in its interior: ξ0 ∈ int Ξ0.

Assumption (A1) implies that all vanishing transition probabilities are known a priori. This

requirement is standard in the literature on statistical inference for Markov chains [Bil61], and

it is naturally satisfied if structural knowledge about the MDP is available. Otherwise, one

may use the observation (6.30) to infer which transitions are possible. Indeed, it can be shown

under mild assumptions that the probability to not observe a possible transition decreases

exponentially with the length n of the observation [Bil61]. For a sufficiently long observation,

we can therefore assign zero probability to unobserved transitions.

We illustrate the construction of the structural uncertainty set P0 in an important special case.

Example 6.5.1 For every state-action pair (s, a) ∈ S ×A, let Ssa ⊆ S denote the (nonempty)

set of possible subsequent states if the MDP is in state s and action a is chosen. Assume
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that all sets Ssa are known, while no other structural information about the MDP’s transition

kernel is available. In the following, we define Ξ0 and pξ(·|s, a) for this setting. For (s, a) ∈

S × A, all but one of the probabilities corresponding to transitions (s, a, s′), s′ ∈ Ssa, can

vary freely within the (|Ssa|−1)-dimensional probability simplex, while the remaining transition

probability is uniquely determined through the others. We therefore set the dimension of Ξ0 to

q :=
∑

(s,a)∈S×A(|Ssa| − 1). For each (s, a) ∈ S ×A, we define the set Ssa of explicitly modelled

transition probabilities through Ssa := Ssa \ {ssa}, where ssa ∈ Ssa can be chosen freely. Let

µ be a bijection that maps each triple (s, a, s′), (s, a) ∈ S × A and s′ ∈ Ssa, to a component

{1, . . . , q} of Ξ0. We identify ξµ(s,a,s′) with the probability of transition (s, a, s′). We define

Ξ0 :=



ξ ∈ R

q : ξ ≥ 0,
∑

s′∈Ssa

ξµ(s,a,s′) ≤ 1 ∀ (s, a) ∈ S × A



 (6.31)

and set pξ(s′|s, a) := ξµ(s,a,s′) for (s, a) ∈ S × A and s′ ∈ Ssa, as well as pξ(ssa|s, a) :=

1 −∑s′∈Ssa
ξµ(s,a,s′) for (s, a) ∈ S × A. The constraints in (6.31) ensure that all transition

probabilities are non-negative.

6.5.2 Confidence Regions from Maximum Likelihood Estimation

In the following, we use the observation (6.30) to construct a confidence region for ξ0. This

confidence region will be centred around the maximum likelihood estimator associated with the

observation (6.30), and its shape will be determined by the statistical properties of the likelihood

difference between ξ0 and its maximum likelihood estimator. To this end, we first calculate

the log-likelihood function for the observation (6.30) and derive the corresponding maximum

likelihood estimator. We then use existing statistical results for Markov chains (hereafter MCs)

to construct a confidence region for ξ0.

We remark that maximum likelihood estimation has recently been applied to construct confi-

dence regions for the newsvendor problem [WGY09]. Our approach differs in two main aspects.

Firstly, due to the nature of the newsvendor problem, the observation history in [WGY09]

constitutes a collection of independent samples from a common distribution. Secondly, the
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newsvendor problem belongs to the class of single-stage stochastic programs, and the tech-

niques developed in [WGY09] do not readily extend to MDPs.

The probability to observe the state-action sequence (6.30) under the policy π0 and some

transition kernel associated with ξ ∈ Ξ0 is given by

p0(s1) π
0(an|sn)

n−1∏

t=1

[
π0(at|st) pξ(st+1|st, at)

]
. (6.32)

The log-likelihood function ℓn : Ξ0 7→ R ∪ {−∞} is given by the logarithm of (6.32), where we

use the convention that log(0) := −∞. Thus, we set

ℓn(ξ) :=
n−1∑

t=1

log
[
pξ(st+1|st, at)

]
+ζ, where ζ := log [p0(s1)]+

n∑

t=1

log
[
π0(at|st)

]
. (6.33)

Note that the remainder term ζ is finite and does not depend on ξ. Due to the monotonicity

of the logarithmic transformation, the expressions (6.32) and (6.33) attain their maxima over

Ξ0 at the same points. Note also that we index the log-likelihood function with the length n of

the observation (6.30). This will be useful later when we investigate its asymptotic behaviour

as n tends to infinity.

The order of the transitions (st, at, st+1) in the observation (6.30) is irrelevant for the log-

likelihood function (6.33). Hence, we can reexpress the log-likelihood function as

ℓn(ξ) =
∑

(s,a,s′)∈N

nsas′ log
[
pξ(s′|s, a)

]
+ ζ, (6.33’)

where nsas′ denotes the number of transitions from state s ∈ S to state s′ ∈ S under action

a ∈ A in (6.30), and N := {(s, a, s′) ∈ S ×A× S : nsas′ > 0} represents the set of observed

transitions.

We obtain a maximum likelihood estimator ξn by maximising the concave log-likelihood function

ℓn over Ξ0. Since the observation (6.30) has strictly positive probability under the transition

kernel associated with ξ0, we conclude that ℓn(ξn) ≥ ℓn(ξ
0) > −∞. Note that the maximum

likelihood estimator may not be unique if ℓn fails to be strictly concave.
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Remark 6.5.1 (Analytical Solution) Sometimes the maximum likelihood estimator can be

calculated analytically. Consider, for instance, the log-likelihood function associated with Ex-

ample 6.5.1.

ℓn(ξ) =
∑

(s,a,s′)∈N :

s′∈Ssa

nsas′ log
[
ξµ(s,a,s′)

]
+

∑

(s,a,ssa)∈N

nsassa log
[
1−

∑

s′∈Ssa

ξµ(s,a,s′)

]
+ ζ

The gradient of ℓn vanishes at ξn defined through ξnµ(s,a,s′) := nsas′/
∑

s′′∈S nsas′′ if
∑

s′′∈S nsas′′ >

0 and ξnµ(s,a,s′) := 0 otherwise. Since ξn ∈ Ξ0, see (6.31) in Example 6.5.1, it constitutes a

maximum likelihood estimator.

For ξ ∈ Ξ0, the log-likelihood ℓn(ξ) describes the (logarithm of the) probability to observe the

state-action sequence (6.30) under the transition kernel associated with ξ. For a sufficiently

long observation, we therefore expect the log-likelihood ℓn(ξ0) of the unknown true parameter

vector ξ0 to be ‘not much smaller’ than the log-likelihood ℓn(ξ
n) of the maximum likelihood

estimator ξn. Guided by this intuition, we intersect the set Ξ0 with a constraint that bounds

this log-likelihood difference.

Ξ0 ∩ {ξ ∈ R
q : ℓn(ξ) ≥ ℓn(ξ

n)− δ} (6.34)

Here, δ ∈ R+ determines the upper bound on the anticipated log-likelihood difference between

ξ0 and ξn. Expression (6.34) raises two issues. Firstly, it is not clear how δ should be chosen.

Secondly, the intersection does not constitute a valid uncertainty set since it is not of the

form (6.3b). In the following, we address the choice of δ. We postpone the discussion of the

second issue to the next section.

Our choice of δ relies on statistical inference and requires two further assumptions:

(A2) The MC with state set S and transition kernel P̂ (π0; ξ) is irreducible for some ξ ∈ Ξ0,

see (6.7a).

(A3) The matrix with rows [Ksa]
⊤
s′· for (s, a, s′) ∈ S ×A× S with π0(a|s) > 0 has rank κ > 0.
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Remember that a finite MC with state set S is called irreducible if for any pair of states s, s′ ∈ S,

there is a strictly positive probability that the MC visits state s′ in the future if it is currently

in state s. Assumption (A2) therefore guarantees that the MDP visits every state infinitely

often as the observation length n tends to infinity. Assumption (A3) ensures that the historical

policy π0 chooses at least one state-action pair with unknown transition probabilities pξ
0

(·|s, a).

If this was not the case, then the observation (6.30) would not allow any inference about ξ0,

and the tightest possible uncertainty set for the unknown true transition kernel P 0 would be

the structural uncertainty set P0.

We can now establish an asymptotic relation between ξn and ξ0.

Theorem 6.5.1 Under the assumptions (A1)–(A3), we have

2
[
ℓn(ξ

n)− ℓn(ξ
0)
]

−→
n→∞

χ2
κ, (6.35)

where ‘−→’ denotes convergence in distribution and χ2
κ is a χ2-distribution with κ degrees of

freedom.

Remark 6.5.2 A sequence of random variables Xi with cumulative distribution functions Fi,

i = 1, 2, . . ., is said to converge in distribution to a random variable X with cumulative distri-

bution function F if limn→∞ Fn(x) = F (x) at all points x ∈ R where F is continuous.

Proof of Theorem 6.5.1 See Appendix C.

Theorem 6.5.1 can be interpreted as follows. The observation (6.30) constitutes a random

vector whose true distribution is determined by the expression (6.32) if we set ξ = ξ0. Since ξ0 is

unknown, the distribution of the observation (6.30) is unknown as well. Similarly, the maximum

likelihood estimator ξn depends on the observation (6.30) and is therefore a random vector with

an unknown distribution. Theorem 6.5.1 shows, however, that the distribution of the random

variable 2 [ℓn(ξ
n)− ℓn(ξ

0)] is asymptotically known: it converges to a χ2
κ distribution. Thus,
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under the assumptions (A1)–(A3), we obtain a (1 − β)-confidence region for ξ0 if we set δ

in (6.34) to one half of the (1− β)-quantile of the χ2
κ distribution.

P
(
ξ0 ∈ Ξ0 ∩ {ξ ∈ R

q : ℓn(ξ) ≥ ℓn(ξ
n)− δ}

)
≥ 1− β

The support of the χ2
κ distribution is unbounded above, and thus δ grows indefinitely if β goes

to zero. For a fixed observation length n, the set (6.34) therefore reduces to Ξ0 for β −→ 0.

Theorem 6.5.1 provides an asymptotic convergence result for robust infinite horizon MDPs.

Robust finite horizon MDPs, on the other hand, are not directly amenable to an asymptotic

analysis since they reach a terminal state after finitely many transitions. The most natural

way to estimate the transition kernel of a finite horizon MDP is to assume that the MDP

is ‘restarted’, that is, the same MDP is run several times. Theorem 6.5.1 can be applied to

this situation as follows. We construct an infinite horizon MDP whose state space consists of

the states of the finite horizon MDP, together with an auxiliary ‘restarting’ state τ . Apart

from the transitions of the finite horizon MDP, the infinite horizon MDP contains deterministic

transitions from all terminal states s ∈ ST to τ , as well as transitions from τ to all initial states

s ∈ S1 with action-independent transition probabilities p0(s). We do not specify a discount

factor λ or one-step rewards r since they are irrelevant for Theorem 6.5.1. We interpret m

observation histories (si1, a
i
1, . . . , s

i
T−1, a

i
T−1, s

i
T ), where i = 1, . . . , m, of the finite horizon MDP

as one observation

(s11, a
1
1, . . . , s

1
T−1, a

1
T−1, s

1
T , a

1
T ; . . . ; sm1 , a

m
1 , . . . , s

m
T−1, a

m
T−1, s

m
T , a

m
T )

of the corresponding infinite horizon MDP. In this concatenated observation, the terminal

actions aiT ∈ A may be chosen freely. We can now apply Theorem 6.5.1 to the constructed

infinite horizon MDP if it satisfies the assumptions (A1)–(A3). This is the case if the finite

horizon MDP satisfies the assumptions (A1) and (A3) and if each of its states can be reached

from an initial state s ∈ S1 with p0(s) > 0.

We close with a variant of Theorem 6.5.1 that relaxes the assumption (A2).
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Remark 6.5.3 Even if assumption (A2) is violated, the MDP will eventually enter a set of

irreducible states S ⊆ S from which it cannot escape. If we remove from the observation (6.30)

all state-action pairs (s1, a1, . . . , sτ , aτ ) for which st /∈ S, t = 1, . . . , τ , then Theorem 6.5.1 can

be applied to the reduced MDP that only consists of the states in S.

6.5.3 Quadratic Approximation

The confidence region for the unknown parameter vector ξ0 in (6.34) is not consistent with the

definition (6.3b) that underlies our computational techniques developed in Sections 6.3 and 6.4.

We therefore approximate the left-hand side of the constraint ℓn(ξ) ≥ ℓn(ξ
n)− δ in (6.34) by a

second-order Taylor expansion around the maximum likelihood estimator ξn and set

Ξn := Ξ0 ∩ {ξ ∈ R
q : ϕn(ξ) ≥ 0} , (6.36)

where

ϕn(ξ) := [∇ξ ℓn(ξ
n)]⊤ (ξ − ξn)− 1

2
(ξ − ξn)⊤

[
∇2
ξ ℓn(ξ

n)
]
(ξ − ξn) + δ (6.37a)

with

[∇ξ ℓn(ξ
n)]⊤ =

∑

(s,a,s′)∈N

nsas′

pξn(s′|s, a) [Ksa]
⊤
s′· (6.37b)

and ∇2
ξ ℓn(ξ

n) =
∑

(s,a,s′)∈N

nsas′

[pξn(s′|s, a)]2
(
[Ksa]

⊤
s′·

)⊤ (
[Ksa]

⊤
s′·

)
. (6.37c)

Note that the expressions in (6.37b) and (6.37c) are well-defined since pξ
n

(s′|s, a) > 0 for all

(s, a, s′) ∈ N , see our discussion surrounding the log-likelihood function (6.33’). Moreover, Ξn

is of the form (6.3b) since it emerges from the intersection of Ξ0 with an ellipsoid. One can

show that Ξn contains a Slater point whenever δ is strictly positive.
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The set Ξn in (6.36) induces an uncertainty set of the form

Pn :=
{
P ∈ [M(S)]S×A : ∃ ξ ∈ Ξn such that Psa = pξ(·|s, a) ∀ (s, a) ∈ S × A

}
.

We now investigate the asymptotic properties of this uncertainty set as n tends to infinity. In

Theorem 6.5.2 below we establish that Pn converges to the unknown true transition kernel P 0 of

the MDP and analyse the speed of convergence. Afterwards, we show that the solutions of the

robust policy evaluation and improvement problems converge to the solutions of the nominal

policy evaluation and improvement problems under the unknown true transition kernel P 0. All

subsequent convergence results rely on the following stronger version of assumption (A3).

(A3’) The matrix with rows [Ksa]
⊤
s′· for (s, a, s′) ∈ S × A× S with π0(a|s) > 0 has full column

rank.

Assumption (A3’) stipulates that the mapping from ξ to the probabilities of all possible tran-

sitions under π0 is injective. Indeed, if assumption (A3’) is violated, then there are different

parameter vectors ξ, ξ′ ∈ Ξ0 such that pξ(s′|s, a) = pξ
′

(s′|s, a) for all possible transitions (s, a, s′)

under the data generating policy π0. In this case, we cannot distinguish between ξ and ξ′ based

on the information provided by any observation of the type (6.30), and the uncertainty set Pn

will not converge to a singleton as the observation length n tends to infinity.

In the following proposition, we analyse the Hausdorff distance between the two sets Ξn and

{ξ0}. Recall that the Hausdorff distance between two sets X, Y ⊆ R
q is defined as

dH(X, Y ) := max

{
sup
x∈X

inf
y∈Y

‖x− y‖∞ , sup
y∈Y

inf
x∈X

‖x− y‖∞
}
.

Theorem 6.5.2 Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nαdH

[
Ξn,
{
ξ0
}])

= 0 ∀α < 1/2, (6.38)

where ‘plim’ denotes convergence in probability.
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Remark 6.5.4 Theorem 6.5.2 is equivalent to the statement that

lim
n−→∞

P

(
max
ξ∈Ξn

∥∥ξ − ξ0
∥∥
∞

≤ ǫ

nα

)
= 1

for every α < 1/2 and ǫ > 0.

Proof of Theorem 6.5.2 See Appendix D.

We now show that under the assumptions of Theorem 6.5.2, the solution provided by the

constant reward to-go approximation from Proposition 6.3.2 converges to the expected total

reward p⊤0 v(ξ
0) of policy π as n tends to infinity. Note that Pn constitutes a non-rectangular

uncertainty set.

Proposition 6.5.1 Let ϑn(ξ) = wn be the constant reward to-go approximation described in

Proposition 6.3.2 if we set Ξ = Ξn. Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nα
∣∣p⊤0 wn − p⊤0 v(π; ξ

0)
∣∣) = 0 ∀α < 1/2, (6.39)

where p⊤0 v(π; ξ
0) denotes the expected total reward under π and the unknown true transition

kernel P 0.

Remark 6.5.5 Proposition 6.5.1 is equivalent to the statement that for every α < 1/2 and

ǫ > 0, we have

lim
n−→∞

P

(∣∣p⊤0 wn − p⊤0 v(π; ξ
0)
∣∣ ≤ ǫ

nα

)
= 1.

While Ξn is constructed from the observation (6.30) under the historical policy π0, p⊤0 w
n esti-

mates the expected total reward of policy π. Note that π0 and π can be different.

Proof of Proposition 6.5.1 Fix any α < 1/2. By Theorem 6.5.2, we have

plim
n−→∞

(
nαmax

ξ∈Ξn

∥∥ξ − ξ0
∥∥
∞

)
= 0. (6.40)
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The proof of Theorem 6.3.1 shows that for each wn, n ∈ N, there is ξn,1, . . . , ξn,S ∈ Ξn such

that

wn = r̂(π; ξn,1, . . . , ξn,S) + λP̂ (π; ξn,1, . . . , ξn,S)wn, (6.41)

where for ξ1, . . . , ξS ∈ Ξn, the rectangular rewards r̂(π; ξ1, . . . , ξS) and the rectangular transition

kernel P̂ (π; ξ1, . . . , ξS) are defined through
[
r̂(π; ξ1, . . . , ξS)

]
s
:= r̂s(π; ξ

s) and
[
P̂ (π; ξ1, . . . , ξS)

]⊤
s·
:=

P̂⊤
s· (π; ξ

s) for all s ∈ S, respectively. Note that the existence of ξn,1, . . . , ξn,S does not depend

on the structure of Ξn, see (6.14). By unrolling the recursion (6.41), we see that

wn = v(π; ξn,1, . . . , ξn,S) :=

∞∑

t=0

[
λP̂ (π; ξn,1, . . . , ξn,S)

]t
r̂(π; ξn,1, . . . , ξn,S),

where for ξ1, . . . , ξS ∈ Ξn, v(π; ξ1, . . . , ξS) represents a rectangular variant of the reward to-go

function v. One can adapt the proof of Proposition 6.3.1 (a) to show that this rectangular

reward to-go function is Lipschitz continuous on the compact set Ξ0. Equation (6.40) therefore

implies that

plim
n−→∞

(
nα
∥∥v(π; ξn,1, . . . , ξn,S)− v(π; ξ0, . . . , ξ0)

∥∥
∞

)
= 0.

Equation (6.39) now follows from wn = v(π; ξn,1, . . . , ξn,S) and v(π; ξ0) = v(π; ξ0, . . . , ξ0).

Proposition 6.5.1 immediately extends to the affine reward to-go approximations obtained from

the semidefinite program (6.20).

Corollary 6.5.1 Let τn denote the optimal value of τ in the semidefinite program (6.20) with

Ξ = Ξn. Under the assumptions (A1), (A2) and (A3’), we have

plim
n−→∞

(
nα
∣∣τn − p⊤0 v(π; ξ

0)
∣∣) = 0 ∀α < 1/2.

Proof Fix α < 1/2. Theorem 6.5.2 and the Lipschitz continuity of v, see Proposition 6.3.1 (a),

imply that

plim
n−→∞

(
nαmax

ξ∈Ξn

∣∣p⊤0 v(π; ξ)− p⊤0 v(π; ξ
0)
∣∣
)

= 0.
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Proposition 6.3.1 (c) and Theorem 6.3.2 ensure that τn ≤ p⊤0 v(π; ξ) for all ξ ∈ Ξn, n ∈ N. We

conclude that

plim
n−→∞

(
nα
[
τn − p⊤0 v(π; ξ

0)
]+)

= 0,

where [x]+ := max {x, 0} for x ∈ R. In a probabilistic sense, τn therefore underestimates

p⊤0 v(π; ξ
0). At the same time, Proposition 6.3.4 guarantees that τn ≥ p⊤0 w

n for the vector wn

defined in Proposition 6.5.1. Hence, the assertion follows from the convergence of p⊤0 w
n, see

Proposition 6.5.1.

The above convergence results extend to the policy improvement problem discussed in Sec-

tion 6.4. Since the derivation of the following result does not require any new ideas, we state

it without a proof.

Proposition 6.5.2 For Ξ = Ξn, let πn denote an optimal policy determined by Algorithm 6.4.1

or the robust value iteration described in Corollary 6.4.2. Under the assumptions (A1), (A2)

and (A3’), we have

plim
n−→∞

(
nα
∣∣∣∣ p⊤0 v(πn; ξ0)−min

π∈Π

{
p⊤0 v(π; ξ

0)
}∣∣∣∣
)

= 0 ∀α < 1/2,

where the second term in the absolute value represents the expected total reward of the optimal

policy under the MDP’s unknown true transition kernel P 0.

Note that both the constant and the affine reward to-go approximations guarantee convergence

to the nominal solutions of the policy evaluation and improvement problems as n tends to

infinity. However, the next section will show that we can expect the affine approximations to

convergence faster if the uncertainty set is non-rectangular.

We close this section with an example that illustrates the construction of uncertainty sets.

Example 6.5.2 Consider again the robust infinite horizon MDP defined in Example 6.2.1. We

interpret the uncertainty set constructed in that example as our structural uncertainty set P0,
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that is, we have

P0 =
{
P ∈ [M(S)]S×A : ∃ ξ ∈ Ξ0 such that Psa = pξ(·|s, a) ∀ (s, a) ∈ S × A

}
,

where

pξ(1|s, 1) = 1

3
+
ξ1
3
, pξ(2|s, 1) = 1

3
+
ξ2
3
, pξ(3|s, 1) = 1

3
− ξ1

3
− ξ2

3
for s ∈ {1, 2, 3}

and

Ξ0 =
{
ξ ∈ R

2 : ξ21 + ξ22 ≤ 1, ξ1 ≤ ξ2
}
.

We also remind the reader that we defined the affine mapping from Ξ0 to P0 through

ks1 =




1
3

1
3

1
3




and Ks1 =




1
3

0

0 1
3

−1
3

−1
3




for s ∈ {1, 2, 3} .

The structural uncertainty set Ξ0 is visualised in Figure 6.7.

Assume that the unknown true parameter vector is ξ0 = (1/4, 1/2)⊤ ∈ Ξ0. Table 6.2 presents

three observation histories of lengths 100, 1,000 and 10,000 that were randomly generated under

this choice of ξ0. We obtain the maximum likelihood estimator ξ100 for the observation history

of length 100 from the optimal solution to the following optimisation problem.

maximise
ξ

(17 + 18 + 4) log

(
1

3
+
ξ1
3

)
+ (19 + 30 + 4) log

(
1

3
+
ξ2
3

)
+ (6.42a)

(3 + 5) log

(
1

3
− ξ1

3
− ξ2

3

)
(6.42b)

subject to ξ ∈ R
2 (6.42c)

ξ21 + ξ22 ≤ 1, (6.42d)

ξ1 ≤ ξ2. (6.42e)

Similar optimisation problems allow us to determine the maximum likelihood estimators ξ1,000
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100 obs. 1,000 obs. 10,000 obs.
1 2 3 1 2 3 1 2 3

1 17 19 3 172 197 33 1,693 2,080 345
2 18 30 5 192 288 40 2,050 2,504 456
3 4 4 0 38 35 5 374 427 71

Table 6.2: Observation histories for an example MDP. Shown are the results of 100, 1,000 and
10,000 transitions of the MDP defined in Example 6.2.1. For each observation, the entry in row
s and column s′ denotes nsas′ for the only action a = 1.

and ξ10,000. The optimal solution to (6.42) is ξ100 ≈ (0.17, 0.59)⊤. Similarly, the maxi-

mum likelihood estimators for the observation histories of length 1,000 and 10,000 are ξ1,000 ≈

(0.21, 0.56)⊤ and ξ10,000 ≈ (0.24, 0.50)⊤, respectively. From these maximum likelihood estima-

tors, we obtain the following estimates pξ
n

(·|s, 1) for the transition probabilities of the MDP:

pξ
100

(·|s, 1) ≈




0.39

0.53

0.08



, pξ

1,000

(·|s, 1) ≈




0.40

0.52

0.08




and pξ
10,000

(·|s, 1) ≈




0.41

0.50

0.09



.

We now construct the quadratic approximations (6.37) to the 99% confidence regions Ξn. To

this end, we set δ to half the value of χ2
2 ≈ 9.21 and obtain for n = 100:

ϕ100(ξ) =


17 + 18 + 4

0.39




1
3

0


+

19 + 30 + 4

0.53



0

1
3


+

3 + 5

0.08



−1

3

−1
3







⊤

(ξ − ξn)+

(ξ − ξn)⊤


17 + 18 + 4

0.392




1
9

0

0 0


+

19 + 30 + 4

0.532



0 0

0 1
9


+

3 + 5

0.082




1
9

1
9

1
9

1
9


+


 (ξ − ξn) + 9.21.

Similar quadratic approximations can be obtained for n = 1,000 and n = 10,000. Figure 6.7

visualises the sets Ξ100, Ξ1,000 and Ξ10,000 that result from these quadratic approximations.
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Figure 6.7: Confidence regions for an example MDP. Shown are Ξ0 (dotted arc) and the three
quadratic approximations used to construct Ξ100 (outer ellipsoid), Ξ1,000 (second-largest ellip-
soid) and Ξ10,000 (innermost ellipsoid) from the observation histories in Table 6.2.
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Figure 6.8: MDP for the machine replacement problem. Shown are the transition probabilities
for the two actions ‘do nothing’ (dashed arcs) and ‘repair’ (solid arcs). The states 8, R1 and
R2 pay an expected reward of -20, -2 and -10, respectively, while no reward is received in the
other states. We use the same drawing conventions as in Figure 6.1.

6.6 Numerical Example

We apply the policy evaluation and improvement methods from Sections 6.3 and 6.4 to the

machine replacement problem presented in [DM10]. The problem concerns a single machine

whose condition is described by eight ‘operative’ states 1, . . . , 8 and two ‘repair’ states R1 and

R2. At each time period, the decision maker receives an expected reward that depends on the

machine’s current state. The state in the subsequent time period is random and depends on

both the current state and the chosen action (‘do nothing’ or ‘repair’). The goal is to find

a policy that maximises the expected total reward under the discount factor λ = 0.8. If all

transition probabilities are known, we can model this problem as an MDP, see Figure 6.8. It is
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n RVI SDP (LB) SDP (UB) P 0 ∈ Pn?

500 -43.90 -30.37 -26.97 87%
1000 -32.34 -20.74 -18.81 92%
2500 -20.35 -15.36 -15.32 91%

500 -16.82 -14.95 -14.95 87%
1000 -15.20 -14.00 -13.99 88%
2500 -14.07 -13.31 -13.30 92%

Table 6.3: Policy evaluation results for 100 randomly generated observation histories of different
observation length n. From left to right, the columns report the observation length, the average
lower bound provided by the robust value iteration (RVI), the average lower and upper bounds
obtained from the semidefinite program (6.20), and the percentage of instances in which P 0 is
contained in Pn. The first three rows were obtained without a priori knowledge, whereas the
last three rows exploit the structural knowledge described in the text.

easy to transform this MDP into an equivalent one that satisfies the definitions in Section 6.1.

Consider the policy that chooses the actions ‘do nothing’ and ‘repair’ with probability 0.8

and 0.2, respectively, in each operative state 1, . . . , 7. In states 8 and R2, the policy always

chooses the action ‘repair’, while the action ‘do nothing’ is chosen in state R1. The expected

total reward of this policy is −12.34. Assume now that instead of the transition probabilities,

we only have access to an observation history. We can use the structural uncertainty set P0

described in Example 6.5.1 and intersect it with a 90% confidence region for the unknown

transition probabilities, see Section 6.5.3. The resulting uncertainty set is non-rectangular,

and we can apply the robust value iteration from Proposition 6.3.2 or solve the semidefinite

program (6.20) to obtain a lower bound on the worst-case expected total reward (6.2). The

results for randomly generated observation histories are presented in the first part of Table 6.3.

Note that the uncertainty set Pn contains the MDP’s true transition kernel P 0 in about 90%

of the observation histories. As the observation length n increases, the lower bounds obtained

from both the robust value iteration and the semidefinite program (6.20) converge to the true

expected total reward. However, the lower bounds provided by the semidefinite program are

significantly tighter. From the optimality gaps we conclude that the semidefinite programming

approximation performs well in this example.

The transition kernel in Figure 6.8 is highly structured. In particular, the probabilities as-
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RVI SCO
n LB nominal LB nominal

500 -12.35 -8.05 -10.45 -8.05
1000 -10.64 -8.00 -9.51 -8.00
2500 -9.50 -7.99 -8.99 -7.99

Table 6.4: Policy improvement results for 100 randomly generated observation histories of
different observation length n. From left to right, the columns report the observation length,
the average lower bound and nominal performance of the robust value iteration (RVI), and the
average lower bound and nominal performance of the sequential convex optimisation procedure
(SCO). In both cases, the nominal performance describes the expected total reward of the
worst-case optimal policy under the unknown true transition kernel P 0.

sociated with the transitions emanating from state s under either action are identical for

s ∈ {1, . . . , 7}. We now assume that although these probabilities are unknown, they are known

to be identical for s ∈ {1, . . . , 7}. This additional information can be incorporated into the

structural uncertainty set P0 to reduce the dimension of Ξ0. The results are presented in the

second part of Table 6.3. As the table shows, the incorporation of the additional structural

information leads to significantly tighter bounds.

We now use the random observation histories to solve the robust policy improvement problem.

The optimal policy for the unknown true transition kernel P 0 achieves an expected total reward

of -7.98. Table 6.4 reports on the performance of the policies determined by the robust value

iteration and the sequential convex optimisation algorithm from Section 6.4. Both methods

perform well in this example. Nevertheless, the sequential convex optimisation algorithm pro-

vides tighter worst-case estimates. This is not surprising since the algorithm employs affine

approximations of the reward to-go function.

We finally remark that we have considered variants of the MDP in Figure 6.8 with up to 1000

states. On average, the solution of the associated semidefinite program (6.20) required between

0.38 secs (10 states) and 228.92 secs (1000 states). Numerical results for the robust value

iteration are reported in [Iye05, NG05].
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6.7 Application to Temporal Networks

We now establish the connection between MDPs and temporal networks. Our discussion will

be brief; further details can be found in [BR97, KA86, TSS06]. We consider a temporal network

G = (V,E) with tasks V = {1, . . . , n} and finish-start precedences E ⊆ V ×V . The tasks have

random durations and give rise to uncertain cash flows at their start times. Our goal is to find

a task start schedule that maximises the network’s expected NPV. Apart from the precedence

type, we are thus confronted with the same setting as in Chapter 3. Now, however, we allow

for a much more expressive class of start time policies than in Chapter 3.

We start with the simplifying assumption that the task durations follow independent geometric

distributions, that is, the probability that the duration of task i ∈ V is t ∈ N is given by

(1 − ξi)
t−1ξi, where the parameter vector ξ ∈ (0, 1)n is known. Later we will outline how the

methods developed in this chapter can be used to maximise the network’s expected NPV under

generic task durations and unknown parameter vectors ξ.

At the beginning of each time period, the decision maker observes which network tasks have

been completed during the previous time period. The decision maker then decides which of

the yet unprocessed tasks should be started in the current time period. We can model this

situation as an infinite horizon MDP with state set

S = {not yet started, active, completed}n , (6.43)

that is, each state assigns one of the labels ‘not yet started’, ‘active’ and ‘completed’ to every

network task. For state s ∈ S, we denote the set of not yet started tasks, currently active tasks

and completed tasks by N(s), A(s) and C(s), respectively. Note that the state set S defined

in (6.43) contains precedence-infeasible states. A state s ∈ S is precedence-infeasible if the

temporal network contains a precedence (i, j) ∈ E such that j ∈ A(s)∪C(s) but i /∈ C(s), that

is, task j is processed or completed although not all of its predecessors have been completed.

For the sake of efficiency, we should remove from S all precedence-infeasible states. The initial

state σ and terminal state τ of the MDP satisfy N(σ) = V and C(τ) = V , respectively. The
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terminal state will be absorbing, that is, once the MDP enters state τ , it never leaves τ . The

discount factor of the MDP is identical to the discount factor of the NPV maximisation problem.

In state s, the decision maker may start any subset of the tasks

{j ∈ N(s) : i ∈ C(s) ∀ (i, j) ∈ E} ,

including the empty set. Each such subset corresponds to one feasible action. For action a, we

denote by T (a) the set of tasks that are started by a. Note that contrary to our definitions

earlier in this chapter, the set of admissible actions is state-dependent. This state-dependency

can be eliminated by penalising infeasible actions. Alternately, one can adapt the models in

this chapter to allow for state-dependent action sets.

We now consider the transition probabilities p(s′|s, a). We set p(s′|s, a) to zero for all acausal

transitions, that is, for all triples (s, a, s′) ∈ S ×A× S that satisfy

1. C(s) ∩ [N(s′) ∪A(s′)] 6= ∅, or

2. [A(s) ∪ T (a)] ∩N(s′) 6= ∅, or

3. [N(s) \ T (a)] ∩ [A(s′) ∪ C(s′)] 6= ∅.

In the first case, a task that is completed in state s would not be completed in state s′ anymore.

Similarly, in the second case, a task that is active would not have been started in the subsequent

time period. In the third case, finally, a task that has not been started would become active or

completed in the subsequent time period. For all causal transitions (s, a, s′) ∈ S × A× S that

satisfy A(s) ∪ T (a) = ∅, we set p(s′|s, a) = 1 if s′ = s and p(s′|s, a) = 0 otherwise. Indeed, if

no tasks are being processed in state s and if the decision maker’s action a does not start any

tasks, then no tasks can be active in the subsequent state of the MDP either. For all other

causal transitions (s, a, s′) ∈ S × A× S, we set

p(s′|s, a) =
∏

i∈A(s)∪T (a)

(
ξi I[i∈C(s′)] + (1− ξi) I[i∈A(s′)]

)
. (6.44)
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Figure 6.9: MDP generated from a temporal network. The nodes and arcs correspond to the
states and transitions of the MDP, respectively. The label of node s ∈ S lists the tasks that are
active (suffix ‘a’) or completed (suffix ‘c’) in s. The arc labels denote the actions that trigger
the associated transitions. To improve readability, we omit the transition probabilities, the
rewards, all ‘transitive’ transitions (e.g., from state σ to state 1c under action {1} or from state
1c to state 1c2c3c under action {2, 3}) and the self-loops associated with each node.

Here, the indicator function I satisfies Ix = 1 if the logical expression x is true and Ix = 0

otherwise. The probability of reaching state s′, given that the current state is s and that action

a is taken, is determined by the probabilities that each of the active tasks i ∈ A(s)∪T (a) remains

active. Since the task durations are assumed to be independent, the transition probabilities

between the states of the MDP result from the products of the individual probabilities for all

active tasks. We set the reward of transition (s, a, s′) to the sum of the expected cash flows

associated with the network tasks that are started by action a, that is, r(s, a, s′) =
∑

i∈T (a) E [ζi],

where E [ζi] denotes the expected cash flow associated with the start time of task i ∈ V . Note

that some of the rewards may be negative. Negative rewards can be avoided by adding a

sufficiently large positive constant to all rewards, see Section 2.2.3.

Example 6.7.1 Consider the temporal network G = (V,E) with tasks V = {1, 2, 3, 4} and

precedences E = {(1, 2), (1, 3), (2, 4), (3, 4)}. Figure 6.9 visualises the MDP for this network.

Our solution approaches for robust MDPs immediately apply to the MDPs generated from

temporal networks. In this case, we assume that the parameter vector ξ defining the task

durations is not known precisely. In some application areas, temporal networks are executed

multiple times. For example, in production planning the same set of goods may be manufactured

every week, and in microprocessor scheduling the same set of batch jobs may be run every night.

In such cases, observation histories of the MDP may exist, and the techniques from Section 6.5

can be applied to construct an uncertainty set for the parameter vector ξ.
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The transformation of temporal networks into MDPs is very general. We close with an outline

of possible extensions.

1. Abandonment Option. By adding an action that transfers the MDP from any state to

the terminal state τ with probability one, we can model the option to abort the processing

of the temporal network. Abandonment options can be important in project management

and are discussed in the literature on real options [DP94].

2. Renewable Resources. By restricting the admissible actions in each state, we can

allow for renewable resources. In this case, action a is allowed in state s if and only if the

joint resource consumption of the tasks in A(s) ∪ T (a) do not exceed specified quotas.

In contrast to our solution approach in Chapter 3, renewable and doubly-constrained

resources do not complicate the solution when using MDPs.

3. Generic Task Durations. So far we assumed that the task durations follow geometric

distributions. We can allow for any discrete duration distribution if we split each task

into subtasks. The kth subtask of task i corresponds to the processing required in the kth

time period of i’s execution. Contrary to our previous definition of admissible actions,

the decision maker must start the next subtask of each active task in order to ensure that

all tasks are executed in a non-preemptive manner.

6.8 Conclusion

We studied robust Markov decision processes (MDPs) in which the transition kernel is unknown.

Traditionally, the policy evaluation and improvement problems for robust MDPs are solved in

two steps. In the first step, one constructs a confidence region for the unknown parameters.

Afterwards, one solves a robust optimisation problem over this confidence region.

We proposed a variant of this approach that differs in two important aspects. Firstly, ex-

isting methods rely on transition sampling to construct the confidence region for the MDP’s

transition kernel. In contrast, we use observation histories which are much easier to obtain
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in practise. Secondly, previous approaches solve an unduly conservative approximation of the

aforementioned robust optimisation problem. As we pointed out in Section 6.2, this approxima-

tion can destroy vital characteristics of robust MDPs. We developed two novel approximations

that retain these characteristics. Moreover, our approximations provide tighter bounds than

the existing techniques. We applied our method to the machine replacement problem, and we

discussed how our approach can be used to solve multi-stage NPV maximisation problems in

temporal networks under uncertainty.



Chapter 7

Conclusion

Optimisation problems in temporal networks arise in a variety of application areas, such as

the design of digital circuits and the scheduling of projects, production processes and micro-

processors. Although it is widely accepted that these optimisation problems are affected by

uncertainty, research on adequate models and solution approaches is still in its infancy. We

believe that this is due to the network structure that is inherent to these optimisation prob-

lems. The network structure entails two crucial differences to ordinary optimisation problems

under uncertainty: the times at which uncertain parameters are observed depend on the deci-

sion maker’s actions, and the values of the uncertain parameters are not directly observable.

It is these two differences that severely complicate the development of modelling and solution

techniques for optimisation problems in temporal networks under uncertainty.

In this thesis we developed several techniques to model and solve optimisation problems in

temporal networks under uncertainty. We considered problems that minimise the network’s

makespan (i.e., the time required to complete all network tasks) and formulations that maximise

the network’s net present value (i.e., the sum of discounted cash flows generated by the network

tasks). We studied two-stage and multi-stage formulations, and we considered the optimisation

of the expected outcome, quantiles of the outcome distribution (i.e., the value-at-risk), and

the worst-case outcome. All of these problems are NP-hard, and there is little hope that one

can ever reliably solve large instances of these problems to global optimality. We developed
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a number of strategies to address this challenge. In Chapter 3 we restricted our attention

to the suboptimal class of target processing time policies. In Chapter 4 we employed central

limit theorems to approximate the task path durations via normal distributions. In Chapter 5

we generated hierarchies of lower and upper bounds on the optimal objective values of robust

resource allocation problems. In Chapter 6, finally, we used affine decision rules to approximate

the reward to-go function in stochastic dynamic programming. We believe that the development

of approximations that are theoretically sound and practically relevant will become a central

topic in research on stochastic optimisation problems in temporal networks.

During our research, we identified several interesting avenues for future work. Firstly, with the

exception of Chapter 6, all of our models assume absence of renewable and doubly-constrained

resources. The literature on stochastic optimisation problems that incorporate such resources

is very sparse. This is due to the fact that the early start policy discussed in Section 1.1

is no longer optimal for such problems, which severely complicates the scheduling problem.

Nevertheless, we believe that it is worthwhile to investigate how the bounding approach de-

veloped in Chapter 5 could be extended to accommodate such resources. A second topic for

future research is multi-stage optimisation in temporal networks. With the exception of Chap-

ter 6, we restricted our attention to two-stage optimisation problems. Similar to renewable and

doubly-constrained resources, computational difficulties have kept most researchers away from

multi-stage formulations. The existing solution approaches for multi-stage problems have in

common that they provide suboptimal solutions without bounding the incurred optimality gap.

It would be desirable to extend the bounding approach presented in Chapter 5 to multi-stage

problems. Finally, many application areas of temporal networks lag behind the recent devel-

opments in stochastic programming and robust optimisation theory. Ultimately, the value of

theoretical work can only be appreciated by its success in practise. We therefore believe that

it is imperative to further explore the applicability of our work in the various application areas

of temporal networks.



Appendix A

Expected Cardinality of P

For a fixed connectivity ρ ∈ (0, 1] and network size n ∈ N, we construct a random temporal

network G = (V,E) with V = {1, . . . , n} as follows. For each node i ∈ V \ {n}, we choose

the number of immediate successors {1, . . . , ⌈ρ(n− i)⌉} uniformly at random. Afterwards, we

choose the indices of the successor nodes from {i+ 1, . . . , n}, again uniformly at random. The

resulting network is acyclic and has the unique sink n. We show that the expected number of

paths in this network is exponential in n.

The probability that j is a successor of i, i < j, is

1

⌈ρ(n− i)⌉

⌈ρ(n−i)⌉∑

j=1

j

n− i
=

⌈ρ(n− i)⌉ (⌈ρ(n− i)⌉ + 1)

2⌈ρ(n− i)⌉(n− i)
=

⌈ρ(n− i)⌉ + 1

2(n− i)
.

Let Xi be the random variable that describes the number of paths from node i to node n. We

have E(Xn) = 1 and obtain

E(Xi) =
⌈ρ(n− i)⌉ + 1

2(n− i)

n∑

j=i+1

E(Xj) for i < n.
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In particular, E(Xn−1) = 1. For i < n, we can express E(Xi) as follows.

E(Xi) =
⌈ρ(n− i)⌉+ 1

2(n− i)

(
1 +

2(n− i− 1)

⌈ρ(n− i− 1)⌉+ 1

)
E(Xi+1)

=
⌈ρ(n− i)⌉+ 1

2(n− i)

⌈ρ(n− i− 1)⌉+ 1 + 2(n− i− 1)

⌈ρ(n− i− 1)⌉+ 1
E(Xi+1).

Partially unrolling the recursion, we obtain for E(X1) and m ∈ {2, . . . , n}:

E(X1) =

(
m−1∏

i=1

⌈ρ(n− i)⌉ + 1

2(n− i)

⌈ρ(n− i− 1)⌉+ 1 + 2(n− i− 1)

⌈ρ(n− i− 1)⌉+ 1

)
E(Xm)

=
⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉ + 1

(
m−1∏

i=1

⌈ρ(n− i− 1)⌉+ 1 + 2(n− i− 1)

2(n− i)

)
E(Xm)

=
⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉ + 1

(
m−1∏

i=1

[
1 +

⌈ρ(n− i− 1)⌉ − 1

2(n− i)

])
E(Xm).

Let us investigate the term (⌈ρ(n − i− 1)⌉ − 1)/(2[n− i]). We show that for a specific choice

of m, this term is greater than or equal to some δ > 0. Note that

⌈ρ(n− i− 1)⌉ − 1

2(n− i)
≥ ρ(n− i− 1)− 1

2(n− i)
=
ρ(n− i)− ρ− 1

2(n− i)
=
ρ

2
− ρ+ 1

2(n− i)
.

Assume that n ≥ 2/ρ + 4. Then the last expression is greater than or equal to ρ/4, a strictly

positive number, for all i ≤ m := n− ⌈(2ρ+ 2)/ρ⌉. We obtain:

E(X1) =
⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉ + 1

(
m−1∏

i=1

(
1 +

⌈ρ(n− i− 1)⌉ − 1

2(n− i)

))
E(Xm)

≥ ⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉+ 1

m−1∏

i=1

(
1 +

⌈ρ(n− i− 1)⌉ − 1

2(n− i)

)

≥ ⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉+ 1

m−1∏

i=1

(
1 +

ρ

4

)

=
⌈ρ(n− 1)⌉+ 1

⌈ρ(n−m)⌉ + 1

(
1 +

ρ

4

)m−1

∈ Ω (n(1 + ρ/4)n) ,

where Ω(·) denotes the asymptotic lower bound in Bachmann-Landau notation. Since the

expected number of paths from node 1 to node n is already exponential, the expected number

of all paths in network G is exponential, too.
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Saddle Point Condition for s-Rectangular

Uncertainty Sets

Proposition B.1 For an infinite horizon MDP with an s-rectangular uncertainty set P, we

have

sup
π∈Π

inf
P∈P

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
= inf

P∈P
sup
π∈Π

E
P,π

[
∞∑

t=0

λtr(st, at, st+1)
∣∣∣ s0 ∼ p0

]
.

(B.1)

Proof It follows from the proof of Theorem 6.4.1 that the left-hand side of (B.1) is equivalent

to

max
w∈RS

{
p⊤0 w : ws ≤ max

π∈Π
min
ξs∈Ξ

{
r̂s(π; ξ

s) + λP̂⊤
s· (π; ξ

s)w
}

∀ s ∈ S
}
.

The constraints in this problem are equivalent to w ≤ ϕ(w), see (6.25). Since ϕ is a contraction

mapping, see Theorem 6.4.1, non-negativity of p0 and Theorem 6.2.2 in [Put94] allow us to

reexpress the problem as

min
w∈RS

{
p⊤0 w : ws ≥ max

π∈Π
min
ξs∈Ξ

{
r̂s(π; ξ

s) + λP̂⊤
s· (π; ξ

s)w
}

∀ s ∈ S
}
.

The max-min expressions in the constraints satisfy the conditions of Corollary 37.3.2 in [Roc70].

Hence, we can interchange the order of the operators in the constraints to obtain the following
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reformulation.

min
w∈RS

{
p⊤0 w : ws ≥ min

ξs∈Ξ
max
π∈Π

{
r̂s(π; ξ

s) + λP̂⊤
s· (π; ξ

s)w
}

∀ s ∈ S
}
.

The uncertainty set P is s-rectangular, and the sth constraint only depends on the components

π(·|s) of π. Hence, similar transformations as in Theorems 6.3.1 and 6.4.1 yield the following

reformulation.

min
w∈RS

min
ξ∈Ξ

{
p⊤0 w : ws ≥ r̂s(π; ξ) + λP̂⊤

s· (π; ξ)w ∀ s ∈ S, π ∈ Π
}
. (B.2)

Since p0 is non-negative, Theorems 6.1.1 and 6.2.2 in [Put94] imply that for a given ξ ∈ Ξ, the

optimal solution w satisfies w = maxπ∈Π {v(π; ξ)}. The equivalence of (B.2) and the right-hand

side of (B.1) now follows from the property (6.6) of the reward to-go function v.
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Proof of Theorem 6.5.1

The proof of Theorem 6.5.1 relies on the Theorems 2.1, 2.2 and 5.1 in [Bil61], which establish

asymptotic properties of maximum likelihood estimators of ordinary MCs. To keep the thesis

self-contained, we summarise these results in Theorem C.1.

Theorem C.1 Consider a finite MC with state set X = {1, . . . , X} and transition probabilities

pxy(θ), x, y ∈ X , that depend on an unknown parameter vector θ ranging over an open set

Θ ⊆ RU . Assume that the following conditions are satisfied:

(C1) Each function pxy has continuous partial derivatives of third order throughout Θ.

(C2) The set-valued mapping D(θ) := {(x, y) ∈ X × X : pxy(θ) > 0} is constant, that is, there

is a set D ⊆ X ×X such that D(θ) = D for all θ ∈ Θ.

(C3) The Jacobian matrix of the transition kernel (pxy(θ))x,y has rank U throughout Θ.

(C4) For each θ ∈ Θ, the MC is irreducible.

Let (x1, . . . , xm) denote an observation of the MC under its true transition kernel pxy(θ
0),

where θ0 ∈ Θ, and let mxy denote the number of observations of transition (x, y) ∈ X ×X . For

the sequence of functions fm(θ) :=
∑

(x,y)∈Dmxy log [pxy(θ)], Θ contains a sequence of random
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vectors θm that satisfy

2
[
fm(θ

m)− fm(θ
0)
]

−→
m→∞

χ2
U , (C.1a)

m1/2
(
θm − θ0

)
−→
m→∞

N (0,Γ). (C.1b)

Here, N (0,Γ) is a multivariate normal distribution with zero mean and finite covariance matrix

Γ ≻ 0. Moreover, θm is a strict local maximiser of fm with probability going to one as m tends

to infinity.

In order to apply Theorem C.1 to MDPs, we interpret the state-action sequence (6.30) as an

observation history of an ordinary MC. Theorem 6.5.1 then follows from (C.1a). To simplify

the exposition, we prove Theorem 6.5.1 first under assumption (A3’) on page 209. At the end

of this section, we extend our proof to hold under the weaker assumption (A3).

We interpret the state-action sequence (6.30) as an observation of n states of an MC with states

X :=
{
(s, a) ∈ S ×A : π0(a|s) > 0

}
. (C.2a)

The MC is in state (s, a) ∈ X whenever the underlying MDP is in state s and the decision

maker chooses action a. Note that we omit state-action pairs (s, a) ∈ S × A with π0(a|s) = 0

in (C.2a). As we will see, this is a necessary (but not sufficient) condition for the MC to

be irreducible, see condition (C4) of Theorem C.1. By construction, the MC starts in state

(s, a) ∈ X with probability p0(s) π0(a|s), and it moves from state (s, a) ∈ X to state (s′, a′) ∈ X

with probability pξ
0

(s′|s, a) π0(a′|s′), where ξ0 is the unknown true parameter of the underlying

MDP. Since the historical policy π0 is stationary, the MC indeed satisfies the Markov property.

We can establish the following relationship between the MC and the MDP.

Θ := int Ξ0 (C.2b)

and pxy(θ) := pθ(s′|s, a) π0(a′|s′) for θ ∈ Θ and x = (s, a), y = (s′, a′) ∈ X . (C.2c)
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By assumption (A1), we have ξ0 ∈ int Ξ0. Hence, Θ indeed contains the unknown true param-

eter vector θ0 := ξ0 of the MC as required by Theorem C.1.

We now show that the MC defined through (C.2) satisfies the conditions of Theorem C.1.

Lemma C.1 If the MDP satisfies assumptions (A2) and (A3’), then the MC defined through (C.2)

satisfies the conditions (C1)–(C4) of Theorem C.1.

Proof Condition (C1) is satisfied since pxy is affine in θ for all x, y ∈ X , see definitions (C.2c)

and (6.3).

As for condition (C2), the definitions (C.2a) and (C.2c) imply that

D(θ) =
{
(x, y) ∈ X × X : pθ(s′|s, a) > 0 for x = (s, a) and y = (s′, a′)

}
.

We recall that pθ(·|s, a) = ksa +Ksaθ. We claim that for any θ ∈ Θ, the set D(θ) equals

D :=
{
(x, y) ∈ X × X : [ksa Ksa]

⊤
s′· 6= 0 for x = (s, a) and y = (s′, a′)

}
.

By construction, D(θ) ⊆ D for all θ ∈ Θ. It remains to show that D ⊆ D(θ) for all θ ∈ Θ.

Assume to the contrary that [ksa Ksa]
⊤
s′· 6= 0 but pθ(s′|s, a) = 0 for x = (s, a), y = (s′, a′) ∈ X

and θ ∈ Θ. Since Θ is an open set, there is a neighbourhood of θ that is contained in Θ, and

all points θ′ in this neighbourhood have to satisfy pθ
′

(s′|s, a) ≥ 0. Since pθ(s′|s, a) = 0, this

implies that [Ksa]
⊤
s′· = 0, and hence [ksa]s′ = 0 as well. This contradicts our assumption that

[ksa Ksa]
⊤
s′· 6= 0. We therefore conclude that pθ(s′|s, a) > 0 for all θ ∈ Θ, that is, D ⊆ D(θ) for

all θ ∈ Θ.

We now consider condition (C3). The Jacobian J(θ) ∈ R|X |2×U of the MC’s transition kernel

is defined through Jxy,u := ∂pxy(θ)/∂θu for x, y ∈ X and u = 1, . . . , U . For x = (s, a), y =

(s′, a′) ∈ X , we have ∂pxy(θ)/∂θu = π0(a′|s′) [Ksa]s′u. Thus, assumption (A3’) ensures that

J(θ) has rank U .

In view of condition (C4), we note that the irreducibility of a finite MC only depends on the
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structure of the set of transitions with strictly positive probability; the actual probabilities are

irrelevant. However, the proof of condition (C2) implies that for all state pairs (x, y) ∈ X ×X ,

either pxy(θ) > 0 for all θ ∈ Θ or pxy(θ) = 0 for all θ ∈ Θ. Hence, the set of transitions

with strictly positive probability does not depend on θ, and the MC defined through (C.2) is

irreducible for all θ ∈ Θ if and only if it is irreducible for some θ ∈ Θ. Condition (C4) therefore

follows from assumption (A2).

We can now apply Theorem C.1 to the MC defined through (C.2). This allows us to prove

Theorem 6.5.1 under the stronger assumption (A3’).

Proof of Theorem 6.5.1 Under assumption (A3’) the assumptions of Lemma C.1 are satis-

fied, and we can apply Theorem C.1 to the MC defined through (C.2). Hence, we know that

Θ contains a sequence θn that satisfies (C.1a), and each θn constitutes a strict local maximiser

of fn with probability going to one as n tends to infinity. By definition (C.2c) of p, every

function fn is concave, which implies that θn is indeed the unique global maximiser of fn with

probability going to one as n tends to infinity.

Let mxy denote the number of observations of transition (x, y) ∈ X × X in (6.30). We addi-

tionally set mxy := 0 for (x, y) ∈ (S × A)2 \ (X ×X ). For any θ ∈ Θ, we have

ℓn(θ) =
∑

(s,a,s′)∈N

nsas′ log
[
pθ(s′|s, a)

]
+ ζ =

∑

x=(s,a)∈X ,
y=(s′,a′)∈X :
mxy>0

mxy log
[
pθ(s′|s, a)

]
+ ζ

=
∑

x,y∈X :
mxy>0

mxy log [pxy(θ)] + ψ =
∑

(x,y)∈D

mxy log [pxy(θ)] + ψ = fn(θ) + ψ, (C.3)

where ψ := log [p0(s1)] + log [π0(a1|s1)]. The first equality follows from the definition of ℓn

in (6.33’). The second equality holds because nsas′ =
∑

a′∈Am(s,a),(s′,a′) and m(s,a),(s′,a′) = 0 if

π0(a|s) = 0 or π0(a′|s′) = 0. The third equality follows from the definition (C.2c) of p and our

choice of ψ. As for the fourth equality, note that all x, y ∈ X with mxy > 0 satisfy pxy(θ0) > 0

for θ0 = ξ0. Lemma C.1 therefore ensures that (x, y) ∈ D(θ0) = D. The last equality follows

from the definition of fn in Theorem C.1.
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From (C.3) and the fact that θ0 = ξ0 we conclude that ln(ξ0) = fn(θ
0) + ψ. Moreover, (C.3)

implies that θ
n

defined in Theorem C.1 represents the unique global maximiser of ℓn with

probability going to one as n tends to infinity. The assertion of Theorem 6.5.1 now follows

from (C.1a).

Remark C.1 Throughout this section, we replaced assumption (A3) with the stronger assump-

tion (A3’) from page 209. Under assumption (A3), the Jacobian of the MC’s transition kernel

may violate condition (C3) of Theorem C.1. We circumvent this problem by decomposing the

affine mapping p in (C.2c) into the composition of a linear surjection, followed by an affine

injection. If we replace Θ with the image of int Ξ0 under the surjection and p with the injection,

all conditions of Theorem C.1 remain satisfied.
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Appendix D

Proof of Theorem 6.5.2

We first investigate the convergence behaviour of the sequence ϕn of quadratic functions defined

in (6.37a). To this end, Lemma D.1 investigates the asymptotic properties of the observation

frequencies nsas′, while Lemma D.2 investigates ξn, ∇ξℓn(ξ
n) and ∇2

ξℓn(ξ
n). These auxiliary

results will then allow us to establish the convergence of the sequence of confidence regions Ξn

defined in (6.36).

We recall that the expected return time of a state s in an MC is defined as the expected number

of transitions between two successive visits of state s. We extend this definition to MDPs by

defining the expected return time of state s under policy π as the expected return time of s in

the MC defined through the state set S and the transition kernel (6.7a) with ξ = ξ0.

Lemma D.1 Under the assumptions (A1) and (A2), we have

nsas′

n
−→
n→∞

π0(a|s) pξ0(s′|s, a)
µs

almost surely for all (s, a, s′) ∈ S × A× S, (D.1)

where µs ∈ [1,∞) denotes the expected return time of state s ∈ S under policy π0.

Proof We first show that the expected return times µs are finite. To this end, let MCS(π; ξ)

denote the MC defined through the state set S and the transition kernel (6.7a). Due to

assumption (A2), MCS(π
0; ξ) is irreducible for some ξ ∈ Ξ0. By a similar argument as in

235
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the proof of Lemma C.1, we may conclude that MCS(π
0; ξ) is indeed irreducible for all ξ ∈

int Ξ0. Assumption (A1) then guarantees that MCS(π
0; ξ0) is irreducible, which implies that

its expected return times µs are finite.

In view of equation (D.1), let ns and nsa denote the numbers of occurrences of state s ∈ S

and state-action pair (s, a) ∈ S × A in the observation (6.30), respectively. As usual, nsas′

denotes the number of occurrences of the state-action sequence (s, a, s′) ∈ S × A × S, and n

represents the observation length. Note that the random variables ns, nsa and nsas′ depend on

n. If π0(a|s) = 0, then nsas′ = 0, and (D.1) is trivially satisfied. We therefore assume that

π0(a|s) > 0. We show that

(A)
ns
n

−→
n→∞

1

µs
a.s., (B)

nsa
ns

−→
n→∞

π0(a|s) a.s., and (C)
nsas′

nsa
−→
n→∞

pξ
0

(s′|s, a) a.s.,

where ‘a.s.’ abbreviates ‘almost surely’. Statements (A) and (B) imply that ns and nsa become

nonzero a.s. as n tends to infinity, and therefore the identity nsas′/n = (nsas′/nsa)(nsa/ns)(ns/n)

holds a.s. as n tends to infinity. The assertion of this lemma then follows from the continuous

mapping theorem [Bil95].

As for claim (A), note that ns represents the number of visits of MCS(π
0; ξ0) to state s ∈ S.

Since MCS(π
0; ξ0) is irreducible, the ergodic theorem ensures that ns/n −→ 1/µs a.s. as n

tends to infinity [Bil95].

In order to prove claims (B) and (C), we introduce a new MC denoted as MCSA. By construc-

tion, MCSA is in state s ∈ S whenever the underlying MDP is in state s and the decision maker

has not yet chosen any action, while MCSA is in state (s, a) ∈ S × A whenever the MDP is

in state s and the decision maker has chosen action a (but before the MDP moves to a new

state s′). We can interpret the state-action sequence (6.30) as an observation of 2n states of

MCSA, where MCSA starts in state s1, then moves to state (s1, a1), after which it enters state

s2 and so on. Formally, we define MCSA through the state set S ∪ (S × A) and the transition
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probabilities

pxy =





π0(a|s) if x = s ∈ S and y = (s, a) ∈ S × A,

pξ
0

(s′|s, a) if x = (s, a) ∈ S ×A and y = s′ ∈ S,

0 otherwise.

To prove claim (B), fix (s, a) ∈ S × A and let Xi be a random binary variable that adopts

the value 1 if and only if MCSA moves to state (s, a) after the ith visit of state s. By

the strong Markov property, the random variables Xi are independent and identically dis-

tributed with expected value π0(a|s) [Bil95]. Thus, the strong law of large numbers implies

that
∑m

i=1Xi/m −→ π0(a|s) a.s. as m tends to infinity. According to claim (A), ns −→ ∞ a.s.

as n tends to infinity. Hence, we obtain that
∑ns

i=1Xi/ns −→ π0(a|s) a.s. as n tends to infinity.

Claim (B) then follows from the fact that nsa =
∑ns

i=1Xi.

The proof of claim (C) widely parallels the above argumentation for claim (B).

Lemma D.2 Under the assumptions (A1), (A2) and (A3’), observation (6.30) satisfies

lim
n−→∞

P
(
∇ξℓn(ξ

n) = 0
)
= 1, (D.2a)

plim
n−→∞

(
nα
∥∥ξn − ξ0

∥∥) = 0 ∀α < 1/2, (D.2b)

plim
n−→∞

(∥∥∥∥
1

n

[
∇2
ξℓn(ξ

n)
]
− Σ

∥∥∥∥
)

= 0, (D.2c)

where ∇ξℓn(ξ
n) and ∇2

ξℓn(ξ
n) are defined in (6.37b) and (6.37c), respectively, and

Σ :=
∑

(s,a,s′)∈N0

π0(a|s)
µs pξ

0(s′|s, a)
(
[Ksa]

⊤
s′·

)⊤ (
[Ksa]

⊤
s′·

)
, (D.2d)

where N0 :=
{
(s, a, s′) ∈ S ×A× S : [ksa Ksa]

⊤
s′· 6= 0

}
. Moreover, the matrix Σ is positive

definite.

Proof The proof of Theorem 6.5.1 shows that the unique global maximiser ξn of ℓn is an

element of int Ξ0 with probability going to one as n tends to infinity. This proves (D.2a).
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In view of (D.2b), consider any sequence Xn of random variables. One can show that if nαXn

converges in distribution, then nβXn converges to zero in probability for all β < α. Thus,

(D.2b) follows from (C.1b).

Let us now consider (D.2c). We can replace the set N in the summation index of ∇2
ξℓn(ξ

n)

in (6.37c) with the set N0 used in (D.2d). Indeed, N ⊆ N0 holds because nsas′ > 0 implies that

pξ
0

(s′|s, a) > 0 and therefore [ksa Ksa]
⊤
s′· 6= 0. Likewise, the numerator in (6.37c) vanishes for

each index (s, a, s′) ∈ N0 \N . Equation (D.2c) now follows from Lemma D.1, (D.2b) and the

continuous mapping theorem.

It is clear that Σ is positive semidefinite. Also, x⊤Σx = 0 if and only if [Ksa]
⊤
s′· x = 0 for all

(s, a, s′) ∈ N0 with π0(a|s) > 0. Assumption (A3’) implies that this is the case if and only if

x = 0. Thus, the matrix Σ has full rank and is therefore positive definite.

We can now prove Theorem 6.5.2.

Proof of Theorem 6.5.2 Let B denote the closed unit ball centred at the origin of Rq. For

fixed α < 1/2, (6.38) is satisfied if and only if for all ǫ, γ > 0, there is m ∈ N such that for all

n ≥ m,

P
(
nα
(
Ξn − ξ0

)
⊆ ǫB

)
≥ 1− γ, (D.3)

where operations on sets are understood in the Minkowski sense. We define φn(x) := ϕn (n
−αx+ ξ0).

According to the definition (6.36) of Ξn, we have

nα
(
Ξn − ξ0

)
⊆ {x ∈ R

q : φn(x) ≥ 0}

because the set on the right-hand side ignores the constraints from Ξ0. Hence, (D.3) holds if

P ({x ∈ R
q : φn(x) ≥ 0} ⊆ ǫB) ≥ 1− γ,

which is equivalent to

P ({x ∈ R
q : φn(x) < 0} ⊇ ǫBc) ≥ 1− γ, (D.4)
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where ǫBc := Rq \ǫB denotes the complement of ǫB. We prove (D.4) in two steps. We first show

that φn is negative on ǫBc∩2ǫB. Afterwards, we show that φn(0) > φn(x) for all x ∈ ǫBc∩2ǫB.

Since φn is concave, this implies that φn remains negative on R
q \ 2ǫB with high probability.

We can then conclude that φn is negative on the whole set ǫBc with high probability, which

proves (D.4).

Using the definition (6.37a) of ϕn and Lemma D.2, one can show that

plim
n−→∞

(
sup
x∈2ǫB

∣∣∣∣n2α−1φn(x)−
1

2
x⊤Σx

∣∣∣∣
)

= 0, (D.5)

where Σ is defined in (D.2d). In a probabilistic sense, n2α−1φn(x) therefore converges uniformly

to x⊤Σx/2 over 2ǫB. Since Σ is positive definite, see Lemma D.2, there is ν > 0 such that

Σ � νI, that is, x⊤Σx ≥ ν ‖x‖2 for all x. We thus obtain that for any η > 0, we can choose m

such that for all n ≥ m,

P

(
n2α−1φn(0) ≥ −η, n2α−1φn(x) ≤ −ν

2
ǫ2 + η ∀ x ∈ ǫBc ∩ 2ǫB

)
≥ 1− γ.

For η < νǫ2/4 this is equivalent to

P (φn(0) > φn(x), {x ∈ R
q : φn(x) < 0} ⊇ ǫBc ∩ 2ǫB) ≥ 1− γ.

According to our previous discussion, this proves equation (D.4) and the assertion of the theo-

rem.
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