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Abstract 

Three aspects of Chlamydia trachomatis translational research were explored in this thesis. 

Firstly, as over 75% of patients with LGV are also HIV-1 sero-positive, a cell-culture model 

was established to investigate whether HIV-1 altered the replication of C. trachomatis 

serovar L2 in vitro. Inclusion size was significantly increased in the presence of HIV-1, but 

there was no significant alteration in chlamydial growth kinetics, infectivity, morphology, or 

transcription of 16sRNA, ompA or euo, suggesting that viral co-infection did not induce 

chlamydial persistence. It is, therefore, unlikely that the association of HIV-1 and LGV in 

vivo is due to an impact of HIV-1 on chlamydial replication in co-infected cells. 

 

Secondly, as there is no information on the chlamydial load shed by individuals with a rectal 

C. trachomatis infection, a qPCR assay was developed and used to determine the number of 

C. trachomatis organisms per rectal swab in NAAT-positive patients. The geometric mean 

chlamydial load was 5.0 x 10
5
 organisms per swab (Standard Deviation, 152) and load was 

associated with proctitis, but not symptoms or HIV-1 infection. Asymptomatic individuals 

shed as much C. trachomatis as patients with rectal symptoms and might maintain 

transmission in the community. 

 

Finally, an ex vivo IFN-γ ELISpot assay was developed to characterise human cellular 

immune responses to the C. trachomatis-specific protein, Pgp3. T-cell epitopes were found 

along the length of the protein, but the magnitude of the immune responses was low. The 

Pgp3- induced IFN-γ response correlated with C. trachomatis exposure and was dynamic, 

decreasing after effective treatment. These observations suggest that Pgp3- induced IFN-γ 

may be useful as a biomarker for current infection, although the sensitivity and specificity of 

the ELISpot assay need improvement. 
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1.1. Chlamydia Taxonomy 

The Chlamydia genus is comprised of Gram-negative, obligate intracellular bacteria that are 

remarkably ubiquitous in nature and are responsible for a great diversity of disease in both 

animals and humans. The genus belongs to the family Chlamydiaceae, which, until recently, 

was divided into the Chlamydia and Chlamydophila genera, but is now in the process of 

reunification into a single genus, Chlamydia (Stephens et al., 2009). Over the years the genus 

has been divided into variable numbers of species. At present, there are nine: Chlamydia 

abortus, C. pecorum, C. felis, C. caviae, C. suis, C. muridarum, C. psitacci, C. pneumoniae 

and C. trachomatis (Pantchev et al., 2009). A recently constructed phylogenetic tree is shown 

in Figure 1.1 (Stephens et al., 2009). 

 

Three Chlamydia species infect humans and are of significant public health importance: C. 

trachomatis, C. pneumoniae and C. psittaci. This thesis is restricted to the study of C. 

trachomatis which is further sub-divided into serovars, based on differences in the major 

outer membrane protein (MOMP). Serovars A, B, Ba and C cause ocular trachoma, serovars 

D-K  are responsible for genital infection, neonatal conjunctivitis and sexually acquired 

reactive arthritis (SARA), whereas serovars L1, L2 and L3 are responsible for the sexually 

transmitted disease, lymphogranuloma venereum (LGV) (Reviewed by Mårdh, 2005).  
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Figure 1.1 Phylogenetic Tree of the Chlamydia genus 

 

 

 

 

 

Figure 1.1 The peptide sequences of one hundred and ten conserved proteins from the 

genomes of Chlamydia trachomatis, C. pneumoniae, C. muridarum, C. pecorum, C. felis, C. 

psittaci, C. abortus and C. caviae were identified and aligned. They were then back-

translated into nucleotide alignments that were further analysed and used to generate a 

phylogenetic tree, (Stephens et al., 2009). C. suis is absent from the diagram, but is more 

closely related to C. trachomatis and C. muridarum than the other species (Bush et al., 2001). 
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1.2. History 

The first documented report of chlamydial disease was in connection with the ocular 

infection, trachoma. The disease was recognised by the ancient civilisations of China and 

Egypt thousands of years BC, who describe the application of copper salts around the eyes as 

a management strategy for the disease.  However, the term “trachoma” (rough eye) was not 

coined until around 60AD, by the Sicilian physician Pedanius Dioscarides (reviewed by 

Mårdh et al., 1989a). The disease is described in Roman, Greek and Arabic texts and was 

disseminated by crusaders returning from Palestine and the Napoleonic Egyptian Campaign. 

Despite this long history, the aetiology of trachoma was not identified until after the Germ 

Theory of disease in the late 19
th

 Century.  Similarly, sexually transmitted diseases have been 

recorded since the Old Testament, however, gonorrhoea was not distinguished from syphilis 

and chancroid until 1838 and it was not until the advent of Gram‟s staining technique in 1884 

that urethral discharges and neonatal opthalmia could be segregated into gonococcal and non-

gonococcal forms (reviewed by Ridgway, 2008). 

 

The first aetiological investigations into trachoma were conducted by Robert Koch in 1883, 

however, it was not until 1907 that the intracytoplasmic inclusions responsible for the disease 

were identified in experimentally infected orang-utans by Halberstaedter & von Prowazek 

(Halberstaedter & Prowazek, 1907; reviewed by Ridgway, 2008). Similar inclusions were 

subsequently noticed in the conjunctival cells of babies with neonatal conjunctivitis, in 

urethral epithelial cells and secretions of men with urethritis and in the cervical secretions 

from mothers of infected new-borns. These observations were consolidated in 1910, when the 

link between ocular and genital disease was established by Fritsch, Hofstatter and Linder who 

inoculated monkeys with material from babies with neonatal conjunctivitis, the urethra of 

their fathers and cervix of their mothers (Fritsch et al., 1910; reviewed by Ridgway, 2008). 
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Halberstaedter and von Prowazek first named the organisms “Chlamydozoa” (mantle 

animals) after the Greek chlamys (cloak), in reference to their cloak-like appearance on 

staining, however, initially the organisms were thought to be protozoan parasites. When it 

was discovered that the infection could pass through bacterial filters, the organisms were then 

considered to be viruses (reviewed by Ridgway, 2008). 

In 1930, Bedson and others characterised the aetiology and life-cycle of the infectious agent 

responsible for psittacosis, a respiratory disease in people acquired from exposure to 

psittacine birds.  The organism was termed “Bedsonia” (later re-named C. psittaci) and 

similarities were noticed between its life cycle and those of the agents responsible for 

trachoma and the newly discovered disease, lymphogranuloma venereum (Bedson & Bland, 

1934). However, as both chlamydial and rickettsial organisms are obligate intracellular 

pathogens that share similarities in their life-cycles, Chlamydia were miss-classified as a 

member of the Rickettsiae in the 1930s (reviewed by Ridgway, 2008). 

 

Despite these advances, it was not possible to isolate and cultivate chlamydial organisms 

from infected patients until, in 1957, T‟ang et al. successfully recovered C. trachomatis from 

an embryonated hen‟s egg (T‟ang et al., 1957). This paved the way for yolk-sac culture 

studies that enabled Chlamydia to be isolated from genital material of infected patients and 

the eyes of an infant with inclusion conjunctivitis (Jones et al., 1959) and confirm the 

aetiology of non-gonococcal urethritis, associated cervicitis and inclusion conjunctivitis 

(Dunlop et al., 1964; Dunlop et al.,1966). Yolk-sac culture studies also made it possible 

Chlamydia to be eventually classed as a bacterial infection (Moulder et al., 1966). 
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In 1965, Gordon & Quan discovered that McCoy cells (mouse fibroblast cells) could be used 

to isolate C. trachomatis if they were irradiated before infection (Gordon & Quan, 1965). 

Cell culture systems were further simplified in 1977 by the application of cycloheximide to 

permit chlamydial growth without the need for irradiating the cultures. Cycloheximide 

inhibits eukaryotic DNA and protein synthesis and enhances the growth of C. trachomatis in 

culture by reducing the cellular metabolism of nutrients in the growth medium (Ripa & 

Mårdh, 1977). This technique finally permitted, for the first time, routine, large-scale 

diagnosis of C. trachomatis by cell culture methods that superseded yolk-sac culture and 

enabled a new era of chlamydial molecular and cellular biological research to flourish. 

 

In the 1970s and 1980s, there was an explosion of studies into the molecular biology, protein 

chemistry, pathogenesis, immunology and epidemiology of chlamydial organisms. However, 

it was the advent of nucleic acid amplification techniques (NAAT) in the mid 1990s that 

revolutionised Chlamydia detection and paved the way for chlamydial screening (discussed 

in Section 1.9). 

 

Presently, a hundred years after the first demonstrable link between ocular and genital 

chlamydial disease, there are still many hurdles to overcome. Clinically, there is no non-

invasive way of identifying infected individuals who are not shedding organisms, nor is there 

a licensed vaccine against chlamydial diseases. In addition, as discussed below, the natural 

history of C. trachomatis in vivo is not fully understood and, as the organism cannot be 

genetically modified, scientists are forced to use surrogate expression systems to investigate 

pathogen-host-cell interactions. Given that technological advances in the early 21
st
 Century 

are occurring at an ever-increasing rate, there may well be breakthroughs in these areas in the 

decades to come. 
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1.3. Chlamydia trachomatis organisms 

C. trachomatis exists in two main forms: An Elementary Body (EB) and a Reticulate Body 

(RB). The EB is typically round and 200-300nm in diameter with an irregular core of DNA, a 

plasma membrane, periplasmic space and an outer membrane (reviewed by Ward & 

Ridgway, 1998).  It is the only infectious form and the only one capable of surviving for any 

period outside the host. In contrast, the RB is larger (approximately 1µm in diameter) and has 

a much less rigid outer membrane. It is metabolically active and the only form of the 

organism that replicates, by binary fission (reviewed by Ward & Ridgway, 1998).  

 

Each organism possesses a circular double stranded DNA chromosome, approximately one 

million base-pairs in length, encoding approximately one thousand proteins (reviewed by 

Dean et al., 2006) and a plasmid, termed the “cryptic plasmid” (Thomas et al., 1997) that is 

approximately 7,500 base pairs in length and encodes 8 open reading frames (Black et al., 

1989; Comanducci et al., 1988; Comanducci et al., 1990; Hatt et al., 1988; Sriprakash & 

MacAvoy 1987; Thomas & Clarke 1997). The estimated number of plasmid copies per 

organism varies between studies and strains.  Recently, one study calculated there to be 4 

plasmids per EB (+/- 0.8), increasing to 7.6 per organism during the replication cycle (Pickett 

et al., 2005). Another study found there to be 7.72 (+/- 0.68) copies per bacterium (Michel et 

al., 2007) and another found between approximately 2 and 6 plasmids per organism in genital 

tract isolates and L2 (Seth-Smith et al., 2009).  

 

1.4. Chlamydia trachomatis life cycle 

C. trachomatis replicate in a biphasic life cycle (Figure 1.2). Initially, the EB binds to host 

cells and is taken up by receptor-mediated endocytosis into an endocytic vesicle. Shortly after 

gaining entry into the host cell, the vesicle containing the EB becomes dissociated from the 
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endocytic pathway and the EB differentiates into a larger, metabolically active RB that 

replicates by binary fission within the vesicle, termed an “inclusion” which expands to 

accommodate the growing number of organisms (reviewed by Mårdh, 2005). Chlamydial 

transmembrane proteins become embedded in the inclusion membrane and are known to 

interact with host cellular proteins in the cytoplasm. In addition, RBs are attached to the 

inclusion by means of Type 3 Secretion (T3S) systems that facilitate the translocation of 

chlamydial proteins directly into the host cell-cytosol (Peters et al., 2007). The Chlamydia 

organisms are, therefore, maintained in an intracellular micro-environment provided by the 

inclusion, yet are able to communicate with the host-cell cytosol and interact with cellular 

pathways in a co-ordinated fashion that can be remarkably complex. The bacteria can inhibit 

apoptosis, down-regulate major histocompatability complex (MHC) presentation, interact 

with the NF-kB pathway, intercept vesicles budding from both the Golgi network and 

multivesicular bodies, and exclude the fusion of vesicles from the lysosomal pathway 

(reviewed by Cocchiaro & Valdivia, 2009). 

 

Most RBs differentiate back to EBs following replication, so inclusions eventually contain a 

heterogeneous population of RBs and EBs (Figure 1.3 A), as well as forms that are mid-way 

through differentiation (sometimes referred to as Intermediate Bodies, or IBs). Organisms are 

typically released during host-cell lysis and released EBs go on to infect additional cells, 

propagating the infection (reviewed by Mårdh, 2005), although there have been reports of 

extrusion of intact inclusions from infected host-cells (Hybiske et al., 2007). The in vitro 

replication of C. trachomatis in permissive HeLa cells is typically complete by 48-50 hours 

post-infection in favourable culture conditions (Villareal et al., 2002; Brunham & Rey-

Ladino, 2005), however, in unfavourable in vitro growth conditions, the bacteria undergo a 

reduction in metabolic activity and enter into a state of “persistence”.  Chlamydial persistence 
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has parallels with viral latency (Beatty et al., 1994b) and is characterised by the prolonged 

intracellular presence of viable organisms that are non-cultivatable (reviewed by Beatty et al., 

1994b) and display an altered gene transcription profile (Belland et al., 2003; Hogan et al., 

2004; Ouellette et al., 2006; Goellner et al., 2006). 

 

Factors that favour chlamydial persistence include the addition of interferon-gamma (IFN-γ) 

(Beatty et al., 1993; Beatty et al., 1995; Pantoja et al., 2001; Jones et al., 2001) and 

antibiotics such as penicillin (Matsumoto & Manire, 1970; Lambden et al., 2006) to cell 

cultures, the depletion of essential amino acids (Coles et al., 1993; Jones et al., 2001) and 

iron (Raulston, 1997) from infected cells, growth in continuous culture (Hogan et al., 2003; 

Kutlin et al., 2001), heat-shocking (Kahane et al., 1992), bacteriophage infection (Hsia et al., 

2000), growth in monocytes (Koehler et al., 1997) and viral co-infection of C. trachomatis-

infected cell cultures with herpes simplex virus type 2 (HSV-2) (Deka et al 2006, Deka et al 

2007; Vanover et al., 2008). Reactivation of the lytic cycle occurs upon removal of the 

persistence-inducing factor (reviewed by Beatty et al., 1994b; Hogan et al., 2004). 
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Figure 1.2 The Life cycle of Chlamydia 

 

 

 

 

 

 

Figure 1.2 (adapted from Brunham & Rey-Ladino, 2005) shows the life-cycle of C. 

trachomatis in an infected epithelial cell. See text for details. EBs develop into RBs and 

replicate within the inclusion. The RBs differentiate to EBs and are released during host-cell 

lysis at approximately 40-48hours post-infection in favourable culture conditions. In 

unfavourable growth conditions, intracellular RBs persist, and fail to differentiate back to 

EBs until the persistence-inducing factor has been removed. 
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Figure 1.3  Chlamydia morphology 

 

 

 

Figure 1.3 A. Transmission electron micrograph of a C. trachomatis serovar L2 inclusion in 

a HeLa epithelial cell 36 hours post-infection showing RBs (white arrow) and EBs (black 

arrow). B. A scanning electron micrograph of a C. psittaci inclusion showing intracellular 

organisms (Picture by Michael Ward and available from www.chlamydiae.com). 
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1.5. C. trachomatis persistence in vivo 

The phenomenon of chlamydial persistence may have significant clinical consequences. 

Antibiotic sensitivity testing in vitro has shown that doxycycline is more effective against 

lytic organisms than persistent ones whereas azithromycin is more efficacious against 

persistent organisms than lytic (Reveneau et al., 2005). As both drugs are used in clinical 

practice (discussed in Section 1.9), it would be of benefit to know the phenotype of the 

bacteria in vivo. Yet, despite this importance, studying Chlamydia persistence in vivo has 

proved to be difficult, as invasive techniques are required in order to obtain tissue biopsies. 

Such techniques may be damaging and could lead to fibrosis with adverse sequelae such as 

urethral stricture and impaired fertility. Moreover, as the majority of patients can be managed 

without invasive procedures, ethical questions are raised regarding the benefit of risking 

complications in order to obtain samples.  

 

Typically, investigators either look for the presence of aberrant bodies in electron 

micrographs of biopsy samples, or for evidence of a prolonged or continual chlamydial 

infection in animal models. Morphologically aberrant chlamydial organisms have been 

detected in both murine models of C. trachomatis cervical infection (Phillips et al., 1998) and 

pigs infected with C. suis (Pospischil et al., 2008), while the prolonged presence of 

chlamydial DNA and antigen have been identified in the genital tracts of both sheep and 

macaques experimentally infected with C. psitacci (now C. abortus) and C. trachomatis, 

respectively (Papp et al., 1996; Patton et al., 1997). In addition, high levels of chlamydial 

RNA were identified 7-16 weeks post infection in a primate model of ocular trachoma when 

culture and direct fluorescent antibody assays were negative (Cheema et al., 1991).  These 

data suggest that chlamydial persistence can occur in vivo animal models of infection. 

 



25 

 

Human studies have yielded conflicting results. Some studies identified the prolonged 

presence of Chlamydia DNA in untreated patients (Joyner et al., 2002; Carter et al., 2009), as 

well as chlamydial DNA and antigen in women who were treated with antibiotics for a prior 

tubal factor infertility (Kiviat et al., 1986; Campbell et al., 1993; Patton et al., 1994). In 

addition, out of 7 women who became infected with C. trachomatis of the same serovar on 

more than 3 separate occasions over the course of  2-5 years, 4 were found to have identical 

MOMP genotypes, with another 2 found to have only 1 or 2 amino-acid changes (Dean et al., 

2000). These data suggest that a prolonged chlamydial infection can occur in humans, 

however, the genetic and immunogenic material detected may be remnants of a previous 

infection and may not reflect a current infection.  One means of addressing this problem is to 

identify unprocessed chlamydial ribosomal (r) RNA transcripts in patient samples. The 

presence of such transcripts signifies that de novo RNA transcription must be taking place, 

indicating that organisms are viable. Unprocessed chlamydial rRNA transcripts have been 

detected in the synovial tissue from the joints of people with sexually acquired reactive 

arthritis (SARA) (Beutler et al., 1994; Gérard et al., 1998).  These continued to be detected, 

even when culture assays were negative (Beutler et al., 1997), indicating that organisms were 

viable but non-cultivable, two hallmarks of persistence. 

 

These studies strongly suggest that chlamydial persistence occurs in vivo, however, while 

these observations are consistent with the results of in vitro investigations, there has been no 

study in vivo that identifies intracellular aberrant bodies that are viable, non-infectious and 

have an altered gene transcriptional profile. Moreover, establishing definitively that a patient 

has a prolonged or continued infection in spite of treatment is also problematic, as it is 

difficult to control for re-exposure to untreated partners.  Additional studies have found no 

evidence that C. trachomatis persists in the fallopian tubes of infected patients.  Bjartling et 
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al., 2007 failed to find C. trachomatis DNA in 55 tubal samples from women with ectopic 

pregnancies, and Dietrich et al., 2008 found C. trachomatis DNA in only 2 out of 202 

infertile women with swabs taken at multiple anatomic sites in the reproductive tract.  

 

1.6. Host responses to Chlamydia 

 

Innate immune responses 

In contrast to the prolonged chlamydial infections described above, patients infected with C. 

trachomatis can spontaneously clear their infection in the absence of antibiotic therapy (Parks 

et al., 1997; Joyner et al., 2002; Molano et al., 2005). These observations suggest people can 

develop a protective immunity against C. trachomatis, however, re-infection is common. 

 

The first line of protection against mucosal pathogens is the epithelium. Infection of epithelial 

cells with C. trachomatis in vitro induces the secretion of an array of pro-inflammatory 

cytokines (Rasmussen et al., 1997) which have also been documented in murine and guinea-

pig models of genital tract infection (Belay et al., 2002; Darville et al., 1995; Darville et al., 

1997), coinciding with the infiltration of inflammatory cells into the infected area. The initial 

inflammatory infiltrate is largely comprised of neutrophils and macrophages, which play 

central roles in the host innate immune response to infection (reviewed by Darville, 2006). 

Dendritic cells are also recruited to the site of chlamydial infection (Zhang et al., 1999) and 

carry antigens to peripheral lymph nodes, where antigen is presented to naive T-cells (Neutra 

et al., 1996) to activate acquired immune responses.  
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 Acquired immune responses 

Murine models have clearly demonstrated that T cells are critical to the resolution of 

infection and resistance to re-infection (reviewed by Brunham & Rey-Ladino 2005;  Rank, 

2006). Nude mice cannot control chlamydial infection (Rank et al., 1985), whereas adoptive 

transfer of Chlamydia-specific T-cell lines restores this ability (Ramsey et al., 1991).  There 

are broadly two main types of T cell, CD4
+
 and CD8

+
. Protection is thought to be mediated 

by CD4
+
cells, as mice deficient in either Chlamydia-specific CD4

+ 
cells, or components of 

the  MHC II- CD4 antigen presentation and effector pathways show a marked inability to 

control chlamydial infection  (Morrison et al., 1995; Morrison et al., 2000; Perry et al., 1997; 

Wang et al., 1999; Johansson et al., 1997a). There are two main subsets of  CD4
+
 T-cells, T-

helper (Th)1 and Th2. The Th1 subset secrete IFN-γ and adoptive transfer of these cells 

protects nude mice against infection with C. muridarum, whereas adoptive transfer of the Th2 

subset does not (Hawkins et al., 2002), indicating that Th1 cells are protective. 

 

The role of CD8
+ 

 T-cells in infection is less clear. Mice deficient in components of the MHC 

class I-CD8 presentation pathways, or certain CD8
+ 

T-cell effector responses continue to 

clear chlamydial infection (Morrison et al., 1995; Morrison et al., 2000; Perry et al., 1999), 

indicating they are not necessary for clearance of the organism. However, there is a growing 

amount of evidence that CD8
+ 

T cells do play some role in controlling infection. Firstly, it is 

known that CD8 
+ 

T cells are elicited during a chlamydial infection (Magee et al., 1995; 

Igietseme et al., 1994). Secondly, splenic CD8
+ 

T cells extracted from infected mice lyse 

Chlamydia-infected cells (Beatty et al., 1994a). Thirdly, adoptive transfer of Chlamydia-

specific CD8
+ 

T cells provide some protection to infected mice (Igietseme et al., 1994; 

Starnbach et al., 1994) and, lastly, depletion of CD8
+
 T cells in immune mice abrogates 

protection upon challenge with C. psittaci (Buzoni-Gatel et al., 1992).  
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The role of B cells in protective anti-chlamydial immunity is also uncertain as, although mice 

lacking B cells do not show a markedly altered course of C. muridarum genital infection 

(Ramsey et al., 1988), mice lacking T-cells still successfully resolve infection, indicating they 

may play some role in protection  (Morrison et al., 2000; Morrison et al., 2001). It should 

also be noted that studies using the guinea pig model of infection have shown that both cell-

mediated and antibody-mediated responses are necessary for resolution of infection and 

immunity to re-infection (reviewed by Rank, 2006). Currently, it remains unknown which 

animal model most closely approximates human infection with regard to the relative 

contribution of humoral and cellular immunity, which highlights the limitation of animal 

models. In fact, data from mouse models using C. muridarum cannot be directly extrapolated 

to C. trachomatis infection because of fundamental differences in the biology of the 

organisms: Firstly, a C. trachomatis infection can last months in humans, whereas a C. 

muridarum infection is typically resolved after around 4 weeks (Golden et al., 2000; Joyner 

et al., 2002; Parks et al., 1997). C. trachomatis is also capable of evading the IFN-γ response 

mounted by the host (discussed below), whereas C. muridarum does not (Caldwell et al., 

2003). Finally, C. trachomatis shows substantial allelic variation of the major outer 

membrane protein, MOMP, whereas C. muridarum has a single allele (Read et al., 2000). 

 

Research has, therefore been conducted using serum, peripheral blood mononuclear cells 

(PBMCs) and synovial fluid mononuclear cells (SFMCs) from human patients infected with 

C. trachomatis, or from patients with SARA (discussed in section 1.7).  

 

Central to the success of the immune response in clearing chlamydial infection is the action 

of IFN-γ.  This cytokine not only induces nitric oxide synthase (iNOS) to enhance the 
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production of nitric oxide (NO) that inhibits chlamydial growth (Ramsey et al., 2001a and b), 

but also upregulates the expression of the enzyme indoleamine-2,3-dioxygenase (IDO) in 

vitro (Byrne et al., 1986a), which catalyses the initial step in tryptophan degradation 

(Shimizu et al., 1978). This IFN-γ-induced tryptophan degradation inhibits chlamydial 

replication (Byrne et al., 1986b) as tryptophan is an essential amino-acid for the bacteria. 

Genital serovars have evolved, however, to synthesise tryptophan in the presence of IFN-γ 

from indole, a substrate provided by other flora of the female lower genital tract (Caldwell et 

al., 2003; Fehlner-Gardiner et al., 2002). This phenomenon probably allows certain genital 

strains to escape IFN-γ induced tryptophan starvation.  

 

1.7 Chlamydia antigens  

Fuelled by the search for a sub-unit Chlamydia vaccine, much work has aimed at identifying 

chlamydial antigens that are recognised by the immune responses described above.  Murine 

studies have identified Cap-1 (Fling et al., 2001), CrpA (Starnbach et al., 2003), and NrdB 

(Barker et al., 2008) as targets of the cellular immune response during a Chlamydia infection, 

however, the immunodominance of these proteins has not been validated in human subjects.  

 

In contrast, the following Chlamydia antigens have been identified as targets of the cellular 

response in humans: MOMP (Ortiz et al., 1996; Ortiz et al., 2000; Kim et al., 1999; Kim et 

al., 2000), the outer membrane protein 2 (OMP2) (Goodall et al., 2001a; Gervassi et al., 

2004), heat-shock protein 60 (HSP60) (Deane at al., 1997; Kinnunen et al., 2003), 

polymorphic membrane protein D (PMPD), Enolase, CT579 (Goodall et al., 2001b), CT043 

(Meoni et al., 2009), CT511, CT521 (Olsen et al., 2006), CT583, CT603, and CT610 (Olsen 

et al., 2007).  However, following sequence homology searches of the SwissProt and 

translated GenBank databases of all known protein sequences, these proteins were found to 
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possess homologues in the common respiratory pathogen, C. pneumoniae. This is consistent 

with the fact that 80% of the C. pneumoniae coding sequences contain orthologues in C. 

trachomatis (Kalman et al., 1999). Conversely, out of the C. trachomatis proteins known to 

be absent from C. pneumoniae, T-cell antigenicity has been characterised in none.  

 

The majority of studies that identify chlamydial antigens in human subjects have relied on the 

in vitro expansion of T-cell clones from PBMCs from patients with genital tract C. 

trachomatis infection (Ortiz et al., 1996; Ortiz et al., 2000; Kim et al., 1999; Kim et al., 

2000; Goodall et al., 2001a; Gervassi et al., 2004; Olsen et al., 2006; Olsen et al., 2007), 

synovial fluid monocytic cells (SFMCs) from patients with reactive arthritis (Goodall et al., 

2001a & b; Deane et al, 1997) or T-cell lines generated from fallopian tube and endometrial 

biopsies (Kinnunen et al., 2003). Only one study has investigated human cellular immune 

responses to a chlamydial protein in the absence of in vitro clonal expansion (Meoni et al., 

2009), however, the protein identified as containing T-cell epitopes (CT043) shares 95% 

identity with a C. pneumoniae protein (Cpn0387). There have been, therefore, no studies that 

investigate human ex vivo cellular immune responses to a C. trachomatis-specific antigen. 

 

Several C. trachomatis-specific antigens contain B-cell epitopes: CT089, CT147, CT226, 

CT681, CT694, CT795, CPAF (Sharma et al., 2006), Pgp3 (Comanducci et al., 1994; Ratti et 

al., 1995; Bas et al., 2001; Bas et al., 2002; Ghaem-Maghami et al., 2003; Donati et al., 

2003) and IncA (Hackstadt et al., 1999; Suchland et al., 2000). The Pgp3 protein, (PubMed 

Accession number: YP_001569038) is encoded by open reading frame 5 (orf 5) of the 

Chlamydia plasmid (Hatt et al., 1988) (PubMed Accession number: NC_010029). While the 

function of the protein remains unknown, it is located either within the inclusion membrane 

(Comanducci et al., 1994), or secreted into the host cell cytosol (Li et al., 2008b). It is found 
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in animal Chlamydia infections and C. psittaci, but is absent from human C. pneumoniae 

strains, as they do not contain the plasmid (Campbell et al., 1987; Lusher et al., 1989). In 

human C. trachomatis isolates, it is highly conserved (<1% divergence) between strains 

(Black et al., 1989; Comanducci et al., 1990; Hatt et al., 1988; Seth-Smith et al., 2009) and is 

not only a target of the humoral response (Comanducci et al., 1994; Ratti et al., 1995; Bas et 

al., 2001; Bas et al., 2002; Ghaem-Maghami et al., 2003; Donati et al., 2008; Li et al., 

2008a), but mice immunised with DNA encoding Pgp3 showed a robust IFN-γ response (Li 

et al., 2008c) and a reduction in the spread of infection (Donati et al., 2003). Moreover, work 

in this laboratory has developed an “in-house” ELISA based on the Pgp3 protein for the 

detection of C. trachomatis antibodies in patient serum (Wills et al., 2009). 

 

1.8 Chlamydia pathogenesis 

It is important to note that as well as being protective, host cell responses may contribute to 

the pathology caused during a chlamydial infection. Chlamydia organisms are known to 

survive within neutrophils (van Zandbergen et al., 2004), dendritic cells (Matyszak et al., 

2002) and macrophages (Numazaki et al., 1995; Bianchi et al., 1997), the latter being 

responsible for disseminating the infection to more distant sites, such as the joints of those 

infected with SARA (Moazed et al., 1998). In addition, serovars responsible for LGV are 

capable of breaching the epithelial basolateral surface (Dessus-Babus et al., 2008) to infect 

the submucosa and facilitate invasion of the lymphatic system where further pathology 

occurs. In turn, lymphatic pathology reduces or abolishes lymph drainage from the mucosa, 

leading to congestion and additional mucosal pathology (Richardson & Goldmeier 2007). 

 

It is known from in vitro studies that chlamydial persistence is induced by the addition of 

IFN-γ to infected cell-cultures, and by the infection of macrophages (Koehler et al., 1997). 
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As macrophage infiltration and IFN-γ are central to the anti- chlamydial immune response in 

vivo, it is plausible to consider that chlamydial organisms may undergo persistence as a result 

of the host response to infection.  

 

The ramifications of in vivo chlamydial persistence are controversial. The so-called “cellular 

hypothesis” suggests that the continued intracellular presence of chlamydial organisms in 

epithelial cells causes the continued secretion of pro-inflammatory cytokines that directly 

lead to chronic inflammatory cellular responses and tissue damage (Stephens, 2003). This is 

supported by observations that infected epithelial cells in vitro secrete large amounts of 

proinflammatory chemokines (such as IL-8, granulocyte–macrophage colony-stimulating 

factor (GM-CSF), IL-1a and IL-6) (Rasmussen et al., 1997). Proinflammatory chemokines 

have also been detected in murine models of chlamydial infection (Darville et al., 2001), the 

tears from children with trachoma, and endocervical secretions obtained from women 

infected with Chlamydia (Stephens, 2003). Moreover, the proinflammatory chemokine 

response is sustained even during an in vitro model of chlamydial persistence (Rasmussen et 

al., 1997).  

 

However, an alternative model of pathogenesis, “immunological hypothesis” suggests that 

infiltrating immune cells may be the cause of tissue damage by means of effector functions 

(Brunham et al., 1994). The immunological hypothesis is supported by the following 

evidence: firstly, protective CD4
+
 Th1 cells preferentially home to the infected tissue, where 

they can cause tissue damage as well as play an anti-chlamydial role (Johnson et al., 2004; 

Rank et al., 2000; Van Voorhis et al., 1997). Secondly, Th2 cells that are generated in 

response to infection with Chlamydia may downregulate the protective Th1 immune 

responses, promoting pathology (Wang et al., 1999; Holland et al., 1996). Thirdly, 
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Chlamydia-derived antigens (such as HSP60) may be recognised by autoreactive T and B 

cells through molecular mimicry (Yi et al., 1997; Peeling et al., 1997; Lichtenwalner et al., 

2004) and, finally, C. trachomatis-specific CD4
+
 and CD8

+
 T-cell epitopes are often 

identified in C. trachomatis-associated chronic infections, such as reactive arthritis (Hassell 

et al., 1993; Goodall et al., 2001b). In addition, IL-10-deficient mice are more resistant to C. 

muridarum infection and have a shorter duration of infection than wild-type mice (Yang et 

al., 1999; Igiestseme et al., 2000) and T cells that are reactive to chlamydial HSP60 and 

produce IL-10 have been found in infertile women
 
(Kinnunen et al., 2003). These cells may 

be involved in the suppression of C. trachomatis-specific responses, which could contribute 

to the ability of the organism to persist. This, however, warrants further investigation. 

 

 

1.9 Chlamydia Disease, Detection, Treatment and Control 

 

The disease burden, clinical features, detection, treatment, case management and control of 

genital and rectal infection with C. trachomatis serovars D-K and LGV will be discussed.  

 

C. trachomatis Serovar D-K Infection 

 

Disease Burden 

C. trachomatis is the most frequently reported sexually transmitted infection and reportable 

disease in Europe. Between 5 and 10% of sexually active young people are estimated to be 

infected, with the number of cases diagnosed continuing to increase and the true incidence of 

infection likely under-estimated (reviewed by ECDC, 2009). In fact, one in 14 people under 

the age of 25 years screened as part of the National Chlamydia Screening Programme 
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(NCSP) in the UK tested positive for Chlamydia (NCSP website). Rectal infection is detected 

in both men and women who practice receptive anal intercourse, with a prevalence of 

between 6.5% and 7.9% in MSM (Benn et al., 2007; Manavi et al., 2004; Kent et al., 2005; 

Annan et al., 2009; Ota et al., 2009).  

 

Although the majority of cases are asymptomatic, C. trachomatis is a major public health 

concern due to complications caused by untreated infection, which can facilitate HIV 

transmission and can cause poor reproductive outcome in women that can be expensive to 

manage (ECDC, 2009).  

 

Clinical features 

Approximately 70% of genital serovar D-K infections in women and 50% of infections in 

men are asymptomatic (Horner & Boag 2006). The remaining symptomatic infections may 

manifest in post-coital or inter-menstrual bleeding, lower abdominal pain, purulent vaginal 

discharge, mucopurulent cervicitis and dysuria in women and urethral discharge and dysuria 

in men (Horner & Boag 2006). The severity of these symptoms is variable and may go 

unnoticed by the patient. Rectally acquired C. trachomatis serovar D-K infection may result 

in proctitis causing rectal discomfort, bleeding or a mucopurulent discharge, however, 

infection is usually asymptomatic, with over 80% of men who have sex with men (MSM) 

with a rectal D-K infection presenting with no symptoms or clinical signs (Anan et al., 2009; 

Kent et al., 2003; Ward et al., 2009). 

 

In the absence of treatment, an estimated 10-40% of infected women will develop pelvic 

inflammatory disease (PID) which, although usually asymptomatic or associated with mild 

symptoms, can result in complications such as tubal factor infertility (TFI), ectopic pregnancy 
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(EP) or chronic pelvic pain (Paavonen et al., 1999; Simms et al., 2000; Hu et al., 2004; 

Horner & Boag, 2006; Risser et al., 2007; Simms & Horner, 2008). Genital C. trachomatis 

infection may also lead to epididymo-orchitis in men, conjunctivitis and sexually acquired 

reactive arthritis (SARA) in both sexes, or conjunctivitis and pneumonia in neonates (Horner 

& Boag, 2006). 

 

Detection of active C. trachomatis 

As previously mentioned (Section 1.2), the isolation of C. trachomatis from infected patients 

was initially conducted using embryonated hens eggs (T‟ang et al., 1957).  This was 

eventually replaced by cell culture systems using irradiated McCoy cells (Gordon & Quan 

1965) or cycloheximide treated cells (Ripa and Mårdh 1977). Cell culture, although highly 

specific and applicable to all specimen types, has a low sensitivity (60-80%), requires 

technical expertise, is expensive and is not suitable for high-throughput systems (ECDC, 

2009).  

 

Enzyme Immunoassays (EIAs) and direct fluorescent antibody (DFA) assays that detect 

chamydial antigen in patient samples were subsequently developed. These were cheaper and 

easier to perform than cell-culture, however, EIAs have a poor specificity for C. trachomatis 

detection, and DFA requires laboratory staff to be trained in fluorescence microscopy (CDC, 

2002). These techniques have been replaced by nucleic acid amplification techniques 

(NAATs), which are now the accepted “gold standard” of care.  

 

The NAATs amplify chlamydial DNA and are highly sensitive and specific (Horner & Boag 

2006). Commercially available NAATs rely either on polymerase chain reaction (PCR), 

strand displacement amplification (SDA) or transcription- mediated amplification (TMA).  
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The Cobas Amplicor CT/NG test (Roche, CH), the Abbott  RealTime Chlamydia 

trachomatis (CT) assay (Abbot Laboratories, USA) and the artus C. trachomatis PCR Kit 

(Qiagen, DE) rely on PCR, whereas the BD Probetec ET assay (Becton Dickenson, USA) 

relies on SDA and the Aptima Combo 2 (Genprobe, USA) relies on TMA. 

 

In 2006, a new variant (nv) of C. trachomatis serovar E was discovered in Sweden (Ripa & 

Nilsson 2006; Ripa & Nilsson 2007). This variant spread across the country and now has a 

reported prevalence of 17% in Sweden (Lagergård et al., 2010), but as of 2007 had not been 

detected in the UK (Alexander & Ison 2008).  This nv C. trachomatis contains a 377 base-

pair deletion in open reading frame 1 (orf1) of the cryptic plasmid (Seth-Smith et al., 2009) 

that was the target of two NAATs in use at the time it was first identified, the Abbot m2000 

(Abbot Laboratories, USA) and the Cobas Amplicor (Roche, CH). Consequently, they gave 

false-negative results. These two systems have since been updated to target alternative 

regions of the cryptic plasmid and/or chromosome in order to detect all variants of C. 

trachomatis.  

 

Currently, the Cobas Amplicor (Roche, CH) and the artus C. trachomatis PCR Kit (Qiagen, 

DE) target both a region of the cryptic plasmid and a region of ompA, whereas the new 

formulation Abbott RealTime Chlamydia trachomatis (CT) assay targets multiple regions of 

the cryptic plasmid, the Aptima Combo 2 (Genprobe, USA) targets chlamydial 23S rRNA 

and the BD Probetec ET assay targets another region of the cryptic plasmid that is present in 

both the nv C. trachomatis and classical strains. 

The cryptic plasmid is a common target for the amplification of chlamydial DNA by the 

NAATs. By targeting this region instead of the chromosome, the sensitivity can be improved 

as the plasmid is present in multiple copies per organism (Mahony et al., 1993). It is worth 
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noting that there have been reports of plasmid-less C. trachomatis isolates (Magbanua et al., 

2007; Farencena et al., 1997; An et al., 1994), however, these strains are not thought to be 

widely circulating in the community (Alexander & Ison 2007). 

 

For the detection of female lower genital tract infection, cervical or vulvovaginal swabs are 

the specimens of choice. Studies indicate that the sensitivity is similar when either swab is 

used (Horner & Boag, 2006), however, variable sensitivities have been reported when „first-

catch‟ urine samples are utilised (Horner & Boag, 2006; Schachter et al., 2003; Jensen et al., 

1997, Wiggins et al., 2009). This probably reflects differences in the chlamydial load, which 

is lower in first-void urine specimens than the swabs (Michel et al., 2007; Wiggins et al., 

2009). 

 

At present, none of the NAAT tests developed have been approved by the Federal Drug 

Administration (FDA) for use in the detection of rectal and pharyngeal C. trachomatis 

infection, despite a large amount of evidence demonstrating a high sensitivity and specificity 

of NAAT tests in the detection of rectal C. trachomatis (Alexander, 2009). 

 

Anti-chlamydial antibodies in patient serum can also be detected using serological assays 

such as the Microimmunofluoresence (MIF) and enzyme-linked immunoadsorbant (ELISA) 

assays. A number of serological tests are available, but they suffer from variable sensitivity 

and cross-reactivity with C. pneumoniae (Johnson & Horner, 2008) and are not recommended 

for chlamydial diagnosis in the UK (Horner & Boag 2006).  Moreover, serological testing 

cannot distinguish between current and past infection. 
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Many serological assays have not been rigorously evaluated for sensitivity and specificity 

against well characterised sera from exposed patients compared to those who have not been 

exposed.  In order to address this, the sensitivity and specificity of three commercial 

serological assays derived from MOMP were recently compared against an in-house ELISA 

based on the Pgp3 protein (Wills et al., 2009).  The pELISA plus (Medac), the SeroCT-IgG 

ELISA (Savyon), and the IgG enzyme immunoassay (Ani Labsystems) were found to be less 

sensitive than the Pgp3-ELISA (Pgp3, 59%; Ani Labsystems, 49.2%; Savyon, 47.2%; Medac, 

44.4%), though the specificities were comparable (>95%) (Wills et al., 2009).  

 

Treatment regimens for C. trachomatis infection 

The recommended regimens for genital and rectal infections with C. trachomatis serovars D-

K are either doxycycline (100mg, twice daily, for 7 days) or azithromycin (1g, orally, in a 

single dose). Other antibiotic regimens are also possible, such as ofloxacin (200mg, twice 

daily, or 400mg, once daily, for 7 days), and erythromycin (500mg, twice daily, for 10-14 

days) (Horner & Boag 2006), but the efficacy of azithromycin and doxycycline have been 

most rigorously investigated. Azithromycin, erythromycin and doxycycline inhibit bacterial 

protein synthesis, either by binding to the large ribosomal subunit of the bacteria 

(azithromycin and erythromycin) (Chopra et al., 2001), or by preventing the aminoacyl-tRNA 

from adhering to the ribosome (doxycycline). In contrast, ofloxacin is a second-generation 

fluroquinolone that inhibits DNA gyrase and Topoisomerase IV required for DNA replication 

and transcription (Blondeau, 2004). 

 

The in vitro efficacy of an antibiotic is assessed by calculating the Minimum Inhibitory 

Concentration (MIC) and the Minimum Chlamydicidal Concentration (MCC). The MIC is 

the concentration of drug required to inhibit the development of detectable inclusions in cell-
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cultures (Andrews et al., 2001), whereas the MCC is the lowest concentration of an 

antimicrobial required to ensure that Chlamydia cannot be recovered from a culture
 

(Misyurina et al., 2004). In practice, detecting inclusions in the presence of antibiotics tends 

to be variably interpreted (Suchland et al., 2003; Misyurina et al., 2004).  

 

Clinically, over 95% of infected individuals treated with azithromycin or doxycycline test 

negative by NAAT or C. trachomatis culture methods 2-5 weeks post-treatment and 

comparative studies have demonstrated that azithromycin and doxycycline have a similar 

efficacy (Lau et al., 2002). Ofloxacin has a similar efficacy to doxycycline, but only one 

randomised control trial has been conducted  (Boslego et al., 1988) and it is not currently 

recommended as first-line treatment (Horner & Boag 2006; Horner, 2008). Erythromycin is 

less efficacious than either azithromycin or doxycycline clinically (efficacy between 73-95%) 

(Tobin et al., 2004).  However, as Chlamydia has the ability to enter into a persistent state 

under stressful conditions, it has been suggested that a negative test soon after treatment may 

not indicate eradication (Horner, 2006; Horner, 2008). Consistent with this hypothesis, Dean 

et al observed from retrospective case-examination of 11,212 patients that 1% of women 

treated for C. trachomatis had had three or more infections with the same serovar
, 
which they 

suggest is the result of reactivation following treatment failure (Dean et al., 2000). 

 

Two types of antimicrobial resistance have been identified in Chlamydia: heterotypic and 

homotypic. Heterotypic resistance was defined by Wang et al as “the replication of a 

heterogeneous population of resistant and susceptible bacteria derived from a subculture of a 

single resistant organism propagated on an antimicrobial-containing medium”
 
(Wang et al., 

2005). Heterotypic resistance occurs when there is a large infecting organism load and 

typically involves the survival of around 1% of microbes in high antimicrobial concentrations
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(Suchland et al., 2003). The mechanism behind this is unknown as it is not genetically 

inherited. In contrast, “homotypic resistance” refers to replication of a homogeneous, clonal 

population of resistant organisms from a subculture of a single resistant organism and is 

genetically inherited
 
(Wang et al., 2005).  

 

Suchland et al., 2003, found that at high loads, C. trachomatis, C. pneumoniae and C. psittaci 

demonstrated resistance to doxycycline, azithromycin, erythromycin and ofloxacin, but at 

low loads , recovered isolates showed no increase in MIC  (i.e. they were still sensitive).  

Horner has argued there is evidence of heterotypic resistance in vivo if the infectious load is 

high and noted that mass treatment trials of trachoma found high chlamydial loads to be 

associated with treatment failure (Horner, 2006). 

 

Case Management in the UK 

As no diagnostic test is 100% sensitive and specific, positive NAAT tests should ideally be 

confirmed in the laboratory using a different NAAT platform (Skidmore et al., 2006), 

however, antibiotics should be offered to all patients with unconfirmed positive NAAT 

results immediately following diagnosis (Johnson et al., 2002). Patients should be advised to 

avoid sexual intercourse (including oral sex) until they and their partners have received 

treatment and patients diagnosed with C. trachomatis should be encouraged to be screened 

for other sexually transmitted infections (Horner & Boag 2006). Partner notification is also an 

essential component of case management (ECDC, 2009) as it reduces rates of re-infection 

and provide  one mechanism for targeting people who are at high risk of infection (Trelle et 

al., 2007).  
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Control of C. trachomatis Infection 

Four levels of Chlamydia control have been identified by the European Centre for Disease 

Prevention and Control (ECDC) (ECDC, 2009). The first level, Level A, is entitled „primary 

prevention‟, which includes health promotion and education, school programmes and condom 

distribution. Level B is described as „case management‟ where, in addition to level A, routine 

case surveillance is conducted and cases are managed according to evidence-based practices.  

Level C is classed as „opportunistic testing‟ which builds on level B but, in addition to case 

management and surveillance, aims to identify asymptomatically infected individuals by 

offering testing to individuals attending other clinical services. Level D is a „screening 

programme‟ which, in addition to opportunistic screening, aims to provide regular Chlamydia 

testing to a substantial proportion of a defined population with the aim of reducing the 

prevalence in the population.  

 

The organisation of Chlamydia control throughout Europe varies widely. Thirteen countries  

(45%) do not have national guidelines for diagnosis or management, 5 (17%) have some 

guidelines on diagnosis and treatment, 3 (10%) have some guidelines on case management 

and 6 (21%) have opportunistic screening programmes that aim to identify asymptomatically 

infected people. Only 2 (7%) have introduced national screening programmes: England and 

the Netherlands (ECDC, 2009). 

 

As C. trachomatis is common, treatable and there are means of detecting it, yet left untreated 

it can lead to devastating complications, it is an infection that constitutes an ideal candidate 

for screening programmes (Low, 2007). Not only do mathematical models predict that 

screening should reduce transmission (Turner et al., 2006), systematic screening for 

Chlamydia has been shown to halve the incidence of PID one year later (Low et al., 2004; 
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Ostergaard et al., 2000; Scholes et al., 1996). Due to high and increasing rates of C. 

trachomatis in the UK, a National Chlamydia Screening Programme (NCSP) was established 

in 2003 with the objective of  “controlling Chlamydia through the early detection and 

treatment of asymptomatic infection, thus preventing the development of sequeleae and 

reducing onward disease transmission.” (NCSP website).  

 

To achieve these aims, a screening programme must cover enough of the target population 

and be regular enough to detect and treat re-infections to prevent transmission. There is, 

however, no firm empirical data on the impact of screening on transmission and it is unclear 

how many people would need to be tested in order to reduce transmission effectively (ECDC, 

2009). It is also difficult to monitor the prevalence of Chlamydia as it requires repeated 

population surveys, which are expensive and technically challenging (Low et al., 2007). It is, 

therefore, difficult to evaluate the success of the NCSP. Moreover, mathematical models that 

guide screening decisions rely on assumptions of pathogenesis, disease burden, transmission 

etc. As discussed in the pages above, our knowledge of in vivo persistence, pathogenesis, and 

the human immune response to C. trachomatis-specific antigens is incomplete and our 

current non-invasive means of detecting infection fail to distinguish between a current and 

previous infection of the fallopian tubes meaning the true contribution of Chlamydia to PID 

and TFI remains unknown.  
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Lymphogranuloma Venereum 

 

Burden of Disease 

Lymphogranuloma venereum is endemic in East, West and Southern Africa (Mabey et al., 

1987; Ndinya-Achola et al., 1996; Dangor et al., 1990; O‟Farrell et al., 1994), Madagascar 

(Behets et al., 1999), India (Ray et al., 1993) and South-East Asia (Viravan et al., 1996). 

 Most cases in industrialised settings were traditionally imported via travellers, sailors or 

soldiers (as in the case of the USA during the wars in Korea or Vietnam (reviewed by 

Mayaud, 2006)) however, this situation changed in 2003, with an outbreak of LGV in The 

Netherlands (Nieuwenhuis et al., 2004). Since 2003, there have been a series of outbreaks in 

several European cities, including the UK (Ward et al., 2007), mostly among human 

immunodeficiency virus (HIV)-1 sero-positive MSM (Gotz et al., 2004). An international 

surveillance alert was launched in October 2004 as a result and more than 290 cases had been 

confirmed in the UK by December 2005 (French et al., 2005). The majority of these cases were 

diagnosed in GUM clinics in London (72%), and Brighton (14%) and all the cases identified 

occurred among white MSM belonging to large sexual networks, and were not obviously 

linked with known endemic countries. The majority of cases (>75%) were already known to 

be HIV positive, and many patients were co-infected with other sexual transmitted infections, 

for example gonorrhoea or  hepatitis C virus (HCV) (Mayaud, 2006). 

 

When the strain responsible was further analysed, it was found to be a variant of the classical 

C. trachomatis L2 serovar and termed serovar L2b ( Spaargaren et al., 2005a). Moreover, 

this strain appeared to have been circulating in Amsterdam in 2000 and had previously been 

identified in 1980s in San Fransisco (Spaargaren et al., 2005b) indicating that rather than a 
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sudden outbreak in 2003, this disease represented a slowly evolving epidemic that had 

largely gone unnoticed in the population.  

 

Clinical features of LGV 

 

Classical LGV has an extremely variable incubation period of 3 to 30 days from the time of 

contact with an infected individual. The primary lesion is a painless papule, pustule or ulcer 

that may go unnoticed by the patient, however, the infection may disseminate to the draining 

lymph nodes, leading to inflammation and swelling. The most common clinical manifestation 

of classical LGV is inguinal or femoral lymphadenopathy that is typically unilateral. When 

both the inguinal and femoral lymph nodes are enlarged, the inguinal ligament that separates 

them may give rise to a “groove sign”. Systemic spread of C. trachomatis L2 may be 

associated with fever, arthritis, and pneumonitis and, in a few patients, the persistence of C. 

trachomatis infection leads to a chronic inflammatory response giving rise to proctitis, 

proctocolitis, fistulae, and strictures (Mayaud, 2006). 

 

In the recent outbreaks occurring among MSM in Western Europe and the USA, almost all 

cases have presented with proctitis. Symptoms include severe rectal pain, mucoid and/or 

haemorrhagic rectal discharge, tenesmus, constipation and other signs of lower gastro-

intestinal inflammation. Genital ulcers and inguinal symptoms are, however, rare, for reasons 

that remain unknown (Mayaud, 2006). 

 

Detection of LGV  

Typically, patients are initially identified as infected with C. trachomatis by a positive 

NAAT result using a rectal swab. Subsequently, a nested PCR and restriction fragment 

length polymorphism (RFLP) analysis is performed, or the ompA gene is sequenced in order 
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to ascertain the genotype of the infecting strain. Alternatively, a qPCR using LGV-specific 

primers and probes may be conducted.  The first qPCR assay to be developed was limited to 

detecting LGV in samples that were previously found to be C. trachomatis- positive by 

NAAT (Morré et al., 2005), however, subsequent assays were multiplex qPCRs that could 

determine both LGV and non-LGV C. trachomatis serovars (Halse et al., 2006; Chen et al., 

2007; Jalal et al., 2007; Chen et al., 2008). The latter of these assays is also capable of 

detecting mixed infections.  

 

Treatment Regimens for LGV 

 The current recommended treatment regimen for LGV is a 3 week course of doxycycline 

(100mg, twice daily) (Mayaud, 2006) which is in contrast to rectal infection with serovars D-

K, where a one week course is given. The shorter course fails to clear LGV infection (de 

Vries et al., 2008; Van der Bji et al., 2006), emphasising the importance of correct diagnosis 

of the disease. The activity of azithromycin against C. trachomatis also suggests that it may 

be effective in multiple doses over 2-3 weeks but clinical data on its use are lacking and more 

randomised control trials are needed (Mayaud, 2006). 

 

Patient Management 

Individuals who have had sexual contact with an LGV-infected patient within the 30 days 

prior to the onset of symptoms should be examined, tested for chlamydial infection and 

treated. Patients should be followed clinically until signs and symptoms have resolved and 

individuals should be advised to avoid unprotected sexual intercourse until they and their 

partners have completed treatment and follow-up. Patients with fibrotic lesions or fistulae 

may require surgical repair. Many cases of the recent LGV outbreaks in Europe were 
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associated with HIV, hepatitis C infection and gonorrhoea and screening for these infections 

is encouraged (Mayaud, 2006). 

 

 

1.10 Chlamydia and co-infection 

In vitro, studies have been conducted of C. trachomatis co-infection with herpes simplex 

virus-2 (HSV-2) and human immunodeficiency virus-1 (HIV-1).   

 

The HSV-2 virus belongs to the Herpesviridae family of enveloped DNA viruses. The 

replication cycle takes from 12 to 24 h and is initiated by viral attachment to one of several 

host cell receptors. The virus uncoats into the cytoplasm and the viral DNA enters the 

nucleus, whereupon viral genes are expressed in a specific temporal order. New virions are 

then assembled, enveloped and released from the cell (Roizman and Knipe, 2001). 

 

Genital HSV-2 infections usually occur on the skin or mucous membranes, leading to 

inflammation, but the virus may subsequently establish latency in the sacral ganglia. 

Typically, individuals infected with HSV-2 experience reactivation on average five times per 

year, during which lesions and virions are present (Corey et al., 1983). In addition, HSV-2 

may also cause keratitis, meningitis and disseminated herpes infection.  

 

A number of studies have established that co-infections with HSV-2 and C. trachomatis 

occur in the human population. Both organisms have been simultaneously isolated from the 

genital tract of women suffering from endometritis and salpingitis (Paavonen et al., 1985) as 

well as cystitis (Tait et al., 1985) and several serological studies indicate that HSV-2-positive 
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individuals are likely to be C. trachomatis-positive as well (Paroli et al., 1990; Vetter et al., 

1990; Silins et al., 2002).  

 

Co-infection of C. trachomatis-infected HeLa cells with HSV-2 induces chlamydial 

persistence (Deka et al., 2006) and leads to significantly larger C. trachomatis inclusions 

compared to cultures infected with C. trachomatis alone. These inclusions contain enlarged, 

swollen reticulate bodies that show a loss of infectivity, but no alteration in genomic 

replication or in the accumulation of unprocessed 16S rRNA transcripts.  

 

As Chlamydia persistence is known to be caused by amino acid and iron deficiencies, certain 

antibiotics and cytokines such as IFN-γ, the authors initially surmised that the HSV-2 virus 

could be competing with the Chlamydia for amino acids, or could be causing the production 

of cytokines that could influence the development of C. trachomatis (Deka et al., 2006). 

Subsequent work, however, revealed that persistence was induced even if cultures were 

inoculated with UV-inactivated, replication incompetent HSV-2, or cells were infected in the 

presence of cycloheximide (that inhibits eukaryotic ribosomes and, hence, viral replication). 

Therefore, a productive viral infection was not necessary for the induction of persistence.  

The authors concluded that an early event in the HSV-2 life cycle was responsible for the 

induction of persistence (Deka et al., 2007) and demonstrated that viral binding to host-cell 

receptors could initiate intracellular signalling events that lead to C. trachomatis persistence 

(Vanover et al., 2010). Candidates for such persistence-inducing pathways include those 

initiated by HSV-2 binding of Nectins 1 and 2,the herpes viral entry mediator (HVEM), or 

toll-like receptors 2 and 9 (Deka et al., 2007).  
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The HIV-1 virus belongs to the Lentivirus genus within the Retroviridae family. The virus 

binds to the host-cell receptor, CD4, and co-receptors, CXCR4 or CCR5, via the envelope 

protein, gp120. The virus manipulates the host-cell cytoskeleton in order to gain entry to the 

cytoplasm, where the virion uncoats and the single-stranded RNA genome is reverse-

transcribed to pro-viral DNA. Viral proteins and nucleic acid are transported to the nucleus 

where proviral DNA integrates into the host-cell genome and viral proteins are subsequently 

transcribed and translated by host cell machinery. Progeny virions assemble in the cytoplasm 

and bud from the plasma membrane, to mature extracellularly (Freed et al., 2006).  

 

The virus, which is present in the semen of infected men (Krieger et al., 1991; Zagury et al., 

1984)  is deposited into the rectal or vaginal lumen during unprotected intercourse. It enters 

the submucosa, either by traversing the epithelial barrier (Fantini et al., 1993), or directly due 

to epithelial cell-loss resulting from intercourse-related trauma or ulcerative lesions from 

other sexually transmitted diseases (Plummer et al., 1991). Once in the sub-mucosa, HIV-1 

enters cells of the reticuloendothelial lineage and is carried to the draining lymph node where 

it infects CD4
+
 T-cells.  

 

Recent studies of MSM have found that 38% of individuals with rectal C. trachomatis are 

also co-infected with HIV-1 (Annan et al ., 2009).  This association is more pronounced for 

individuals infected with the L2 serovar, with 74-76% of infected individuals co-infected 

with HIV-1 (Jebbari et al., 2007; Ward et al., 2007).  The reason for the association is 

unknown. While it is possible that high-risk sexual behaviour in distinct sexual networks 

comprised of HIV-positive individuals contribute to the epidemiology (Pimenta 2003), it is 

possible that C. trachomatis has a different clinical course in individuals who are co-infected 

with HIV-1.  
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It is plausible that HIV-1 and C. trachomatis co-infect cells in vivo, as HIV-1 virions may 

traverse epithelial cells that are infected with C. trachomatis, or infect reticuloendothelial 

cells in the submucosa that are infected with C. trachomatis L2. The two organisms may, 

therefore, impact on the replication of one another, and in vitro models of HIV-1 and C. 

trachomatis co-infection have been established to investigate this: In 1995, C. trachomatis 

serovar L2 was shown to act synergistically with polymorphonuclear cells (PMNs) to 

increase the replication of HIV-1 in chronically infected monocytic cells (Ho et al., 1995). 

The addition of C. trachomatis to cell-cultures enhanced viral replication an additional nine-

fold at 24hours post co-infection compared to the addition of PMNs alone. The presence of 

the PMNs in the culture was required for the increase in viral replication and the authors 

concluded that, in vivo, a C. trachomatis infection of the rectum or lower genital tract could 

serve to recruit PMNs to the area and facilitate an increase in the replication of HIV-1 in 

infected semen deposited in the lower genital tract or rectal lumen. The mechanism of this 

synergy was not determined, but the authors speculated that the phagocytosis of Chlamydia 

organisms by PMNs caused the secretion of increased reactive oxygen intermediates that, in 

turn, enhanced viral replication in infected monocytes.  

 

The addition of C. trachomatis to HIV-1 chronically infected monocytes did not significantly 

alter viral replication when PMNs were omitted from the cultures, suggesting that C. 

trachomatis does not directly impact upon viral replication (Ho et al., 1995). However, 

Bianchi et al, showed that C. trachomatis infection of HIV-1 chronically infected monocytes 

lead to a decrease in viral replication, despite the absence of PMNs (Bianchi et al., 1998).  

One possible explanation for the conflicting results is that Bianchi et al used an unusually 

large C. trachomatis multiplicity of infection (MOI) (25-100) and centrifuged cultures at 
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3,500 g for 30mins to achieve infection, whereas Ho et al simply added the bacteria to the 

cultures at 5 ID50s (determined by titration on L-cells). Bianchi et al document a decrease in 

the number of viable cells per ml in cultures infected with C. trachomatis compared to cells 

that were mock-infected with sucrose phosphate buffer. This decrease in cell-viability may 

have lead to the reduction in viral replication, as opposed to a direct impact of C. trachomatis 

infection on HIV-1 replication.  

 

The effect of HIV-1 on the natural history of Chlamydia disease, surprisingly, remains 

unknown. Ho et al did not investigate this, however Bianchi et al attempted to. They claimed 

that HIV-1 infection made U-937 cells more susceptible to C. trachomatis lytic infection and 

suggested that the presence of the HIV-1 accelerated the C. trachomatis infection cycle 

(Bianchi et al., 1998). These conclusions were based on the fact that the rate of cell lysis 

increased in co-infected cell-cultures compared to single infections. There was, however, no 

quantification of Chlamydia inclusions by microscopy, or quantification of genomic 

replication by molecular techniques and, as such, it is not possible to draw conclusions 

regarding the susceptibility of cells to C. trachomatis infection, or the kinetics of Chlamydia 

replication as they propose.  

 

The impact of HIV-1 co-infection on C. trachomatis replication in vitro, therefore, remains 

unknown. 

 

1.11 Quantification of C. trachomatis load 

 

Attempts to quantify chlamydial infection in patient samples were made initially using 

quantitative cell-culture (Barnes et al., 1990; Eckert et al., 2000; Geisler et al., 2001) and 
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later qPCR (Gomes et al., 2005; Michel et al., 2007; Wiggins et al., 2009). The genital tract 

chlamydial load shed by infected patients is associated with the presence of clinical 

symptoms (Geisler et al., 2001; Michel et al., 2007), transmissibility and persistence of 

infection (Geisler et al., 2008; Rogers et al., 2008) and the risk of developing chronic 

sequeleae (Geisler et al., 2001), however, to our knowledge there have been no studies 

conducted that evaluate C. trachomatis load in rectal infections.  

 

Rectal C. trachomatis infection is not uncommon in MSM (approximately 1% for LGV 

(Anan et al., 2009; Ward et al., 2009) and 6.5 to 8.2% for serovars D-K (Anan et al., 2009; 

Benn et al., 2007; Manavi et al., 2004) . Moreover, in contrast to LGV, the majority of 

patients with serovar D-K infections are asymptomatic (Anan et al., 2009; Kent et al., 2005; 

Ward et al., 2009).   Asymptomatic individuals are likely to be unaware of their infection, 

remaining undiagnosed and untreated, thus representing a reservoir of infection in the 

community. It is not known, however, the extent to which they transmit infection and it 

would be of interest to know how the chlamydial load varies between individuals with rectal 

symptoms and asymptomatic infections, and between those with LGV and non-LGV 

infections.  

 

1.12 Novel ways of studying C. trachomatis immunobiology and detecting infection 

 

To date, there have been no studies investigating ex vivo human cellular immune responses to 

C. trachomatis-specific antigens, and gaps in our knowledge of chlamydial immunobiology 

remain. An IFN-γ ELISpot assay is one means of quantifying ex vivo antigen-specific cellular 

immune responses by enumerating T-cells in the peripheral blood of patients that recognise, 

and respond to, specific antigens by secreting IFN-γ (Lalvani et al., 1997). The approach has 
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been of use in the investigation of immune responses to several pathogens, but 

Mycobacterium tuberculosis- specific IFN-γ is also capable of discerning a current infection 

from a past infection as, once an infection has been cleared by effective treatment, the 

number of T-cells circulating in the peripheral blood that recognise M. tuberculosis-specific 

antigens decline (Pathan et al., 2001; Millington et al., 2007). 

 

Both M. tuberculosis and C. trachomatis are intracellular pathogens in which IFN-γ is 

believed to play an important role in the immune response (reviewed by Cooper, 2009 and 

Brunham  Rey-Ladino, 2005) and, therefore, quantification of peripheral blood T-cells that 

recognise C. trachomatis-specific antigens and secrete IFN-γ could potentially be useful as a 

biomarker for current C. trachomatis infection. Such a biomarker is desirable as, although 

sexually transmitted infection with C. trachomatis at the lower genital tract, rectum or 

oropharynx can be detected by NAAT, C. trachomatis is capable of migrating from the portal 

of entry to other anatomical sites such as the endometrium, salpinges and peritoneal cavity of 

women, epididymi and testicles of men, and the joints of those afflicted with SARA. The 

extent to which detection of C. trachomatis by NAATs reflects Chlamydia infection at other 

anatomical sites is unknown (Taylor-Robinson et al., 2009).  An ex vivo IFN-γ ELISpot 

assay may, therefore, be of benefit in detecting such infection. 
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1.13 Aims of the Thesis 

This thesis is comprised of 3 main aims of investigation surrounding chlamydial biology: 

1.) determine whether Chlamydia trachomatis and HIV-1 impact upon the replication of 

one another in co-infected cell cultures.  

2.)  quantify the extent to which rectally infected individuals shed Chlamydia 

trachomatis and investigate differences between patient groups. 

3.) investigate the human ex vivo cellular immune response to a Chlamydia trachomatis 

– specific antigen and investigate the possibility of using C. trachomatis-specific 

IFN-γ as a biomarker for infection as part of a non-invasive assay to detect current 

chlamydial infection. 
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Chapter 2 

 

Materials and Methods 
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Molecular Biology Materials and Methods 

 

2.1 DNA extraction 

DNA was extracted with a DNA mini-kit (Qiagen, UK). Briefly, 200µl of 10% Proteinase K 

in tissue lysis buffer (ATL) were added to a cell suspension or pellet from which DNA was to 

be extracted. The mixture was vortexed and incubated overnight at 56
°
C, after which 200µl 

lysis buffer AL were added and the mixture incubated for 10 minutes at 70
°
C. Following 

sample lysis, 200µl of 96-100% molecular grade ethanol (Sigma-Aldrich, UK) were added 

and the mixture applied to a QiAmp spin column (Qiagen, UK) for centrifugation at 6000g 

for 1 minute. The DNA bound to the column was washed in buffers AW1 and AW2 and 

eluted into 50μl buffer AE following a 5 minute incubation at room temperature. 

 

2.2 Plasmid DNA extraction  

Bacterial plasmid DNA was extracted using a QIAprep Spin Miniprep Kit (Qiagen, UK). 

Briefly, a suspension of transformed E. coli bacteria were pelleted at 17,900g for 3 minutes 

and re-suspended in 250μl buffer P1 to which 250μl of the alkaline lysis buffer P2 were 

added. This was neutralised by the addition of 350μl of buffer N3, which also precipitated 

denatured proteins, cellular debris and chromosomal DNA that were subsequently removed 

by centrifugation (at 17,900g for 10 minutes). The supernatant fluid (containing the plasmid) 

was applied to a QIAprep spin column that was washed sequentially with buffers PB and PE 

before plasmid DNA was eluted into 50μl of Buffer EB. 

 

 

 



56 

 

2.3 RNA extraction  

RNA was extracted from cell monolayers by using TRIZOL Reagent (Invitrogen, UK). 

Briefly, cells grown in 24 well-plates were either lysed in situ by the addition of 500µl of 

TRIZOL Reagent or were removed from the bottom of the wells by incubation with trypsin 

(Section 2.5), pelleted by centrifugation at 500g, 5 mins and re-suspended in 200µl TRIZOL 

Reagent. Following 5 minutes incubation at room temperature, chloroform was added (200µl 

per ml of TRIZOL Reagent) and the mixture centrifuged at 10,000g for 4 minutes in order to 

separate it into an upper aqueous phase (containing the RNA) and a lower organic phase. The 

aqueous phase was transferred to another microcentrifuge tube (VWR, USA) and the RNA 

was precipitated by the addition of isopropanol (500µl per 1 ml TRIZOL Reagent). The 

suspension was incubated for 10 minutes at room temperature and RNA pelleted at 10,000g 

for 10 minutes. The RNA pellet was washed twice in 500µl 75% ethanol, air-dried and re-

suspended into 100µl nuclease-free water (Qiagen, UK). 

 

 RNA was purified with an RNeasy Mini kit (Qiagen, UK). Briefly, buffer RLT (350µl) and 

96-100% ethanol (250µl) were added to the RNA solution and the mixture applied to an 

RNeasy spin column (Qiagen, UK) that was centrifuged at 8,000g for 15 seconds to permit 

RNA binding to the column. The column was washed with buffer RW1(350µl)  before 

genomic DNA contamination was eliminated by addition of 80µl DNase I (Qiagen, UK) and 

incubation at room temperature for 15min. The column was washed once with buffer RW1 

(350µl), twice with Buffer RPE (500µl) and the RNA eluted into 30µl of nuclease free water 

(Qiagen, UK). 
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2.4 Reverse Transcription of RNA to cDNA 

A 12µl aliquot of RNA solution was mixed with 2µl of genomic DNA wipeout buffer 

(Qiagen, UK), incubated at 42
°
C and placed on ice (as an additional genomic DNA 

elimination step). Quantiscript Reverse Transcriptase (1µl), Quantiscript RT buffer (4µl) and 

RT Primer Mix (1µl) (Qiagen, UK) were added and the mixture incubated at 42
°
C for 15 

minutes to permit reverse transcription of RNA to cDNA. The Quantiscript Reverse 

Transcriptase was inactivated by incubating at 95
°
C for 3 minutes and the cDNA was stored 

at -20
°
C. 
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Table 2.1 Oligonucleotide primers used in the this thesis 

 

 

Amplified 

Region 

Primer Sequence (5’-3’) Reference 

C. trachomatis 

pmpH 

Forward TTYGGAACAGTTTTTCGAGGTAA In house 

Reverse CCTTCATTGTCTTTGAAAAGCAC 

C. trachomatis 

plasmid orf2 

Forward CAGCTTGTAGTCCTGCTTGAGAGA Pickett et al 

2005 Reverse CAAGAGTACATCGGTCAACGAAGA 

C. trachomatis 

plasmid orf5 

Forward GGATTGACTCCGACAACGTATTC Chen et al 

2008 Reverse ATCATTGCCATTAGAAAGGGCATT 

C. trachomatis 

16S rRNA 

Forward GTCGAGAATCTTTCGCAATGG Ouellette et 

al 2006 Reverse ACAACCCTAGAGCCTTCATCACA 

C. trachomatis 

ompA 

Forward GGTTTCGGCGGAGATCCT Ouellette et 

al 2006 Reverse AGTAACCAACACGCATGCTGAT 

C. trachomatis 

omcB 

Forward GAATATGTGATCTCCGTTTCCAATC Ouellette et 

al 2006 Reverse CCGGGAGAAAGAGTGTCTTCAA 

C. trachomatis 

euo 

Forward GGCTTTTATTCCGTGGGACA Ouellette et 

al 2006 Reverse AATGCGTGTAGCATGATAGTAAATCTTCTG 

λ-phage Forward GGAACTGAAGAATGCCAGAGACTC In house 

Reverse AGCCCGTCGAGAATACTGGCAAT 

HIV-1 Forward GGTCTCTTTTAGAGATTTACAGTG Pizzato et al 

2008 Reverse CGTGGTTGACACGCAGACCTCTTAC 

 

 

Table 2.1 The oligonucleotide primers used in the study are listed.  Citations are given for 

primers that have been previously described in the literature whereas “in-house” primers have 

been identified. All primers were synthesised by Invitrogen, UK. 
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Cell Culture 

 

2.5 Cell lines used in the investigation 

The cell lines used in this study are listed in Table 2.2 Adherent cell lines were cultured in 

Dulbecco‟s Modified Eagle Medium (D-MEM) (Gibco, UK) supplemented with 0.1% 

gentamicin (Invitrogen, UK) and 10% fetal bovine serum (FBS) (Gibco, UK) that had been 

heated for at least 30 minutes at 56
°
C to inactivate components of the complement cascade 

according to the manufacturer‟s instructions (heat-inactivated (hi) FBS). Cells were cultured 

at 37
°
C in an atmosphere of 5% CO2 in tissue culture flasks (Nunc, UK) and were passaged at 

80-90% confluence. Briefly, the medium was removed and cells were washed in trypsin-

ethylenediaminetetra acetic acid (trypsin EDTA) (Gibco, UK) prior to incubation at 37
°
C in 

an atmosphere of 5% CO2 in sufficient trypsin-EDTA to cover the cells until they were 

detached from the tissue culture flask. The D-MEM supplemented with gentamicin and 

hiFBS (complete D-MEM) was added to the cell suspension to give a final volume of 10ml 

and a 1 ml aliquot was placed into a new tissue culture flask and complete D-MEM added to 

a volume of 15ml.  

 

Non-adherent cell lines were cultured in Roswell Park Memorial Institute (RPMI) medium 

(Gibco, UK) supplemented with 10% hiFBS and 0.1% gentamicin (complete RPMI). Cells 

were cultured at 37
°
C in an atmosphere of 5% CO2 in tissue culture flasks and were passaged 

at 80-90% confluence. Briefly, 1 ml of cell suspension was dispensed into a new tissue 

culture flask and diluted 1:10 in complete RPMI. 
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Table 2.2 Cell lines used in the investigation 

 

Cell 

line 
Type Description Use in this study Reference 

 
BGMK 

 
Adherent  

 
Buffalo Green Monkey 

Kidney epithelial cells.  
 

 
Growth and titration of 

Chlamydia trachomatis 

stock. 

 
Hobson et al 

1982 

C8166 Non-

adherent 
Human T cell- line. Forms 

syncytia when infected with 

HIV.  

HIV-1 stock titration Sodroski et al 

1986 

H9 Non-

adherent 
 

Human T cell -line.  Growth of HIV-1 (strain 

MN) stock. 
 

Popovic et al 

1984  

Jurkat 

E6.1 
 

Non-

adherent 
Human  leukaemic T cell 

lymphoblast 
Investigating C. 

trachomatis L2 tropism 
Alkhatib et al 

1996 

MAGI 

P4R5  
Adherent  HeLa cell- line 

(immortalized cervical 

cancer cell line) stably 

expressing the HIV-1 

receptor (CD4) and co-

receptors (CXCR4 and 

CCR5) and transformed 

with β-galactosidase under 

the control of the HIV-1 

long terminal repeat (LTR) 
 

HIV-1 and C. trachomatis 

co-infection 
Kimpton & 

Emerman 1992 

THP-1 Non-

adherent 
Human monocytic cell line Investigating C. 

trachomatis L2 tropism. 
 

Tsuchiya et al 

1980 

U937 
 

Non-

adherent 
Cell line of histiocytic 

origin with monocyte-like 

characteristics 

Investigating C. 

trachomatis L2 tropism 
Sundström 

&Nilsson 1976 

 

 

Table 2.2 The cell lines used in this study. Their provenance and original citation in the literature 

are shown. 
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2.6 Freezing and Thawing of cell lines 

Adherent cell lines were grown in 75cm
2
 tissue culture flasks until 80- 90% confluent. Cells 

were removed from the bottom of the flask by incubation with trypsin-EDTA, suspended in 

complete D-MEM, and pelleted by centrifugation at 400g for 5 minutes.  The cell pellet was 

re-suspended in 8ml of an ice-cold freezing mixture comprised of 50% hiFBS, 10% dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich) and 40% D-MEM, and 1ml aliquots of the cell 

suspension were added to cryotubes (Merck) on ice. Cryotubes were placed in a cryofreezing 

container (Jencons) lined with isopropanol (Sigma-Aldrich) that was placed at -80C  

overnight to freeze cells slowly at a rate of approximately 1C per minute. Cryotubes were 

subsequently placed in liquid nitrogen for long-term storage. 

 

 Non-adherent cell lines were grown in 75cm
2
 tissue culture flasks until 80-90% confluent, 

whereupon cells were pelleted by centrifugation at 400g for 5 minutes, re-suspended in 8ml 

of freezing mixture and aliquotted into cryotubes that were treated in the same manner as 

described above for adherent cell lines. All cells were frozen in aliquots containing 10
6
-10

7
 

cells/ml. 

 

Frozen cells were rapidly thawed at 37°C in a water bath and decanted into a 50ml Falcon 

centrifuge tube (Invitrogen) containing 45ml complete medium.  Cells were pelleted by 

centrifugation at 400g for 5 minutes and re-suspended in 5ml complete D-MEM (adherent 

cell lines) or complete RPMI (suspension cell lines) before transfer to a 25cm
2
 flask for 

culture at 37
°
C in an atmosphere of 5% CO2. 
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2.7 Mycoplasma Testing of cell lines 

Cells were tested for Mycoplasma contamination at regular intervals with the MycoAlert
®
 

Mycoplasma detection kit (Lonza). When cells were 80-90% confluent, a 1.5 ml sample of 

culture medium was centrifuged at 400g for 5 minutes and 100μl of the supernatant fluid was 

transferred to a white 96 well-plate (Nunc, UK). One hundred microlitres of MycoAlert 

Reagent were added and the plate incubated at room temperature for 5 minutes, then placed 

in a microplate luminometer (Turner Designs) for a single 1 second reading. One hundred 

microlitres of MycoAlert Substrate were added and the plate incubated for 10 minutes at 

room temperature. A second luminometer reading was taken and the cell line was considered 

negative for Mycoplasma contamination if the ratio of the second luminometer reading over 

the first was less than 1. Only Mycoplasma-negative cell cultures were used in subsequent 

experiments. 

 

2.8 Determining cell viability and density 

A10μl aliquot of non-adherent cell-suspension (or adherent cells that had previously been 

removed from tissue culture flasks by incubation with trypsin-EDTA and suspended in 

complete medium) was mixed with an equal volume of Trypan Blue (Sigma-Aldrich, UK). 

The mixture was applied to a haemocytometer and viewed under the x20 objective of a light 

microscope in order to determine the concentration of viable cells (that excluded Trypan Blue 

and appeared white). The average number of viable cells per haemocytometer square was 

determined and multiplied by 2 to account for the Trypan Blue dilution factor. This figure 

represented the number of viable cells x 10
4
 per ml. 
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2.9 Immunofluorescence Microscopy (IFM) 

For IFM, cell cultures were washed once in PBS (Sigma-Aldrich, UK) and fixed at room 

temperature for 30 minutes in 2% paraformaldehyde (Sigma-Aldrich, UK) in PBS. Following 

a PBS wash, cells were permeabilised at room temperature for 10 minutes in 0.1% Saponin 

(Sigma-Aldrich, UK) in fluorescence activated cell sorting (FACS) buffer (1% bovine serum 

albumin (BSA) (Sigma-Aldrich, UK), 0.1% sodium azide (Sigma-Aldrich, UK) and 5mM 

EDTA (Sigma-Aldrich, UK)) in PBS). Cells were stained with anti C. trachomatis 

lipopolysaccharide (LPS) antibody conjugated to fluoro-iso-thiocyanate (FITC) (anti-LPS-

FITC) (Virostat, ME) and a Phycoerythrin (PE)-conjugated antibody raised against the HIV-1 

core antigens (55, 39, 33 and 24KDa proteins) (anti-P24-PE) (Coulter clone KC57-RD1, 

Beckman Coulter, CA). Both antibodies were diluted in FACS buffer + 0.1% Saponin (anti-

LPS-FITC 1:30, anti-P24-PE 1:40) and cells were stained at room temperature for 1 hour in 

the dark. Following staining, cells were washed 3 times in FACS buffer + 0.1% Saponin, 

followed by one wash in FACS buffer alone. Cells were viewed under the x20 objective of a 

Nikon Eclipse TE2000-S fluorescence microscope at excitation/emission wavelengths of 

535/565 nm (PE, red) and 470/505 (FITC, green) and photographed with a Nikon digital 

camera (DXM1200F) using Lucia Software (Version 4.81, Nikon, DE). The anti-P24-PE red 

fluorescence localised to the cytoplasm in cells infected with HIV-1, whereas the anti-LPS-

FITC green fluorescence localised to the inclusion in cells infected with Chlamydia 

trachomatis. Images were merged using the Photoshop software (Adobe Systems Inc., USA).  
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2.10 Chlamydia trachomatis culture 

Chlamydia trachomatis, serovar L2 (strain 434/Bu, source ATCC VR-902B) (Schachter & 

Meyer, 1969) was supplied by Professor Ian Clarke (Molecular Microbiology Group, 

University of Southampton Medical School). A crude stock was generated by infecting one 

175cm
2
 tissue culture flask (Nunc, UK) containing BGMK cells at approximately 80% 

confluence with C. trachomatis L2 at an multiplicity of infection that would lead to >90% 

cell infection. Infected cells were incubated at 37
°
C in 5% CO2 for 40-48 hours, scraped into 

complete medium, decanted into a 50ml Falcon tube, and homogenised by vortexing in the 

presence of glass beads to release intracellular Chlamydia organisms. Cellular debris was 

removed from the cell-lysate by centrifugation at 500g for 5 minutes, and aliquots of the 

supernatant-containing C. trachomatis organisms were stored at -80
°
C in 10% D- sorbitol 

(Sigma-Aldrich, UK). 

 

2.11 Chlamydia trachomatis Elementary Body Purification 

A stock of purified Chlamydia trachomatis L2 Elementary bodies (EBs) was obtained by 

infecting fourteen T175 flasks containing BGMK cells at approximately 80% confluence 

with crude C. trachomatis L2 and incubating at 37
°
C in 5% CO2 for 40 hours. Infected cells 

were detached from the surface of the tissue culture flasks by incubation in  trypsin-EDTA at 

37
°
C in an atmosphere of 5% CO2, whereupon they were pooled, pelleted (at 400g, 5 

minutes), and re-suspended in a hypotonic solution (10% Dulbecco‟s sterile (s)PBS) (Sigma-

Aldrich, UK) in Milli-QPLUS Ultra pure water (Millipore, UK)). Infected cells were 

homogenised by vortexing in the presence of glass beads to release the intracellular bacteria 

that were subsequently separated from the cellular debris by centrifugation at 500g for 5 

minutes. The supernatant, containing C. trachomatis organisms, was layered onto 30ml of 

20% Urografin 370 (Shering, UK) in sPBS and subjected to ultracentrifugation at 60,000g for 
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2 hours at 4
°
C. The supernatant fluid was decanted, the pellet re-suspended in 2ml sPBS, 

layered onto a triple gradient (consisting of 35%, 45% and 55% urografin in sPBS) and 

ultracentifuged at 60,000g for 2 hours at 4
°
C. Elementary bodies formed a band at the 

interface between 45% and 55% urografin and this was removed with a Pasteur Pipette (alpha 

Laboratories, UK), washed in water (molecular biology reagent, Sigma-Aldrich, UK) and 

ultracentrifuged at 40,000g for 30 minutes, without break. The resultant pellet was re-

suspended in a freezing mixture (comprised of 0.2M sucrose, 6mM NaH2PO4, 15mM 

Na2HPO4 and 5mM L-glutamine) and stored at -80
°
C. 

 

2.12 Determination of Chlamydia trachomatis titre 

Ninety-six well plates (Nunc, UK) were seeded with BGMK cells at 1.5 x 10
4
 cells per well 

and incubated at 37
°
C in 5% CO2 overnight. Monolayers were inoculated with 100μl of 10-

fold serial dilutions of purified Chlamydia trachomatis L2 EBs that were removed 4 hours 

post -infection, after which cells were washed with complete D-MEM and incubated at 37
°
C 

in 5% CO2 for a further 26-30 hours. Cells were subsequently prepared for 

immunofluorescence microscopy (Section 2.9) and the number of infectious forming units 

(IFU) determined for a known dilution of C. trachomatis by counting the number of 

chlamydial inclusions in 3 infected wells and calculating the mean value. The titre was 

expressed IFU per millilitre of undiluted stock (IFU/ml). From this value, the multiplicity of 

infection (MOI) could be determined, which represented the ratio of IFU per cell. 

 

2.13 HIV-1 culture 

An aliquot of human immunodeficiency virus-1 (HIV-1) (laboratory adapted strain MN 

(Gallo et al., 1984)) was cultured in the T-lymphocyte cell line, H9 for 14 days.  Briefly, 

5x10
5
 H9 cells were infected with HIV-1 in a total volume of 1.5 ml complete RPMI in one 



66 

 

well of a 24 well-plate. Infected cells were cultured at 37
°
C in an atmosphere of 5%CO2 for 

2-3 days, after which uninfected H9 cells were added to the infected culture in a ratio of 4:1 

(uninfected cells: infected cells) in a total volume of 5 ml complete RPMI and the cells 

cultured in a 25cm
2
 flask. Thereafter, infected cells were supplemented with uninfected H9 

cells as described every 4-6 days and the medium subsequently changed 2-3 days later. Cell 

densities were maintained between 1-2 million cells per ml and the volume expanded 

accordingly. After 14 days in culture, cells were pelleted at 500g for 5 minutes and the 

supernatant, containing the HIV-1, was aliquotted and stored at -80
°
C. 

 

2.14 HIV-1 titration 

The tendency for HIV-1 strain MN to form clearly identifiable and quantifiable syncytia in 

the T-lymphocyte cell line C8166 was exploited in order to determine the viral stock titre in a 

modification of the bioassay described by Japour et al.,(1993). Briefly, each well of a 96 

well-plate (Nunc, UK) was seeded with 150μl of C8166 cells (at a density of 4 x 10
5
 cells per 

ml) to which 50μl of either 10-fold serially diluted HIV-1 strain MN or complete RMPI were 

added. Cells were infected with each MN dilution in replicates of six and incubated at 37
°
C in 

an atmosphere of 5% CO2 for 3 days after which the medium was changed and cultures 

incubated for a further 3 days. The number of syncytia in each well was determined and wells 

scored either positive or negative. A culture was scored as positive if 3 or more syncytia were 

observed. The tissue culture infectious dose 50 per ml (TCID50/ ml) was subsequently 

determined using the Spearman-Karber formula: 

M = xk + d [0.5 – (1/n) (r)] 

Where 

xk = lowest viral concentration 

d = spacing between dilutions (for a 10-fold serial dilution, d = 1) 

n = number of replicate wells per dilution 

r = sum of the number of negative wells 
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The TCID50 per well (10
M

) was multiplied by 4 to determine TCID
50

/ml by accounting for 

the viral dilution.  

 

2.15 Quantification of HIV-1 by SYBR Green I-based product -enhanced reverse 

transcriptase (SG-PERT) assay 

To quantify HIV-1 activity, an in-house SYBR Green I-based product-enhanced reverse 

transcriptase (SG-PERT) assay was developed
 
(Pizzato et al 2008).  Virus supernatant (5µl) 

was lysed with an equal volume of lysis buffer (100mM Tris-HCl (pH7.4), 0.25% Triton X-

100, 50mM KCl, 40% glycerol, 0.4U/μl RNAse inhibitor) and incubated at room temperature 

for 10 to 15 minutes.  The lysate was diluted 10-fold with dilution buffer (20mM Tris-HCl 

(pH8.3), 5mM (NH4)2SO4, 20mM KCl) and 10µl applied to duplicate lightcycler capillaries 

(Roche) containing 10µl of a master mix (40mM Tris-HCl (pH8.3), 10mM (NH4)2SO4, 

40mM KCl, 10mM MgCl2, 0.2mg/ml BSA, 1/10000 SYBR Green-I, 400μM dNTPs, 1μM 

sense primer (SGF1, Table 2.1) , 1μM antisense primer (SGR1, Table 2.1), 1.2μg/ml BMV 

RNA and 0.2U hotstart Taq). Samples were run on a LightCycler 2.0 (Roche Diagnostics) 

machine with the following cycling conditions: 1 cycle of RT reaction at 37°C for 30 

minutes, 1 cycle of polymerase activation at 95°C for 5 minutes and 45 cycles of 

amplification (denaturation at 95°C for 5 seconds, annealing at 55°C for 5 seconds, extension 

at 72°C for 15 seconds and acquisition at 83°C for 7 seconds).  Recombinant HIV-1 RT was 

serially diluted 10-fold with dilution buffer and subjected to the SG-PERT assay to generate a 

standard curve.  Amplification curves and melting temperatures were generated by recording 

the fluorescence intensity at 530nm and analyzed using the LightCycler software 4.  The 

units of RT in the sample were calculated from the standard curve. 
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2.16 Quantification of C. trachomatis genome copy number in vitro 

 

The C. trachomatis genome copy number was quantified in vitro by a qPCR assay, carried 

out as follows: Firstly, a fragment of the C. trachomatis pmpH gene was cloned into a 

recombinant plasmid. Briefly,  DNA was extracted from a 10µl aliquot of purified C. 

trachomatis elementary bodies by using a DNA mini-Kit (Qiagen, UK). A 189 base-pair 

fragment of the pmpH gene, Pubmed Accession AY184168, was amplified from Chlamydia 

trachomatis L2 genomic DNA by the polymerase chain reaction (PCR) using the forward 

primer: TTYGGAACAGTTTTTCGAGGTAA, and reverse primer: 

CCTTCATTGTCTTTGAAAAGCAC (Invitrogen, UK). The PCR product was applied to a 

2% agarose gel and the DNA separated by electrophoresis. A single band was detected at a 

position close to the 200bp marker. This band was excised from the gel and the DNA 

extracted and purified as per the protocol in the QIAquick Gel Extraction Kit (Qiagen, UK). 

Briefly, the excised band was incubated at 50
°
C in the presence of 3 gel-volumes of buffer 

QG until dissolved. One gel-volume of isopropanol (Sigma-Aldrich, UK) was added, 

whereupon the sample was applied to a QIAquick column and centrifuged at 17,900g for 1 

minute. The column was sequentially washed in buffers QC and PE, and DNA was eluted in 

50μl of elution buffer and stored at -20
°
C. A 10μl aliquot of the product from gel extraction 

was applied to an additional 2% agarose gel and DNA separated by electrophoresis in order 

to confirm the efficiency of the gel extraction.  

 

The gel extraction product was diluted 1 in 3 with water (Sigma-Aldrich, UK), and 2μl added 

to 0.5μl of the vector pCR
®
4-TOPO

®
 (Invitrogen, UK) and 0.5μl of a salt solution (1.2M 

NaCl, 0.06M MgCl2) for ligation. One vial of One Shot
®
 TOP10 Competent cells (Invitrogen, 

UK) were transfected with 2µl of the recombinant plasmid produced from the ligation 
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reaction (TOPO-pmpH) by incubating on ice for 5 minutes and subsequently heat-shocking at 

42
°
C for 30 seconds. Super Optimal Broth with Catabolyte suppression (SOC) medium 

(Invitrogen, UK) was added, and bacteria were shaken at 37
°
C for 1 hour before inoculation 

into a Luria Bertani (LB) – Agar (Melford, UK) plate (supplemented with 0.1% ampicillin 

(Sigma –Aldrich, UK)) and incubation at 37
°
C for approximately 16 hours. 

 

One sample from each of 5 resultant colonies was placed in 3ml LB broth (Melford, UK) 

supplemented with 0.1% ampicillin and shaken at 37
°
C for approximately 16 hours, after 

which recombinant plasmids were purified by means of a QIAprep Spin Miniprep Kit 

(Qiagen, UK) (Section 2.2). An analytical digest of the construct (with EcoR1 (New England 

Biolabs (NEB), USA)) at 37
°
C for 1 hour, followed by gel electrophoresis on a 2% agarose 

gel revealed two bands consistent with a pCR
®

4-TOPO
® 

vector (3956bp in length) containing 

a Chlamydia trachomatis L2 pmpH fragment (189 bp in length). Five of the miniprep 

samples were prepared for sequencing (by the addition of T3 and T7 primers to 

approximately 300ng of the construct) to confirm this.  

 

The concentration of the TOPO-pmpH recombinant plasmid was quantified using an 

Ultraspec 2000 UV/visible Spectrophotomer (Pharmacia Biotech) and the number of plasmid 

copies per microlitre determined by dividing the plasmid concentration (µg/µl) by the weight 

of 1 plasmid (µg). The weight of one plasmid was determined by dividing the plasmid 

molecular weight calculated in Daltons (g/mole) (gained from a knowledge of the DNA 

sequence and the molecular weight of each nucleotide) by Avagodro‟s constant (6.022 x 10
23

 

molecules/mole). 
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The recombinant plasmid TOPO-pmpH was serially diluted 10-fold in water in order to 

create a standard curve. Five microlitre aliquots of each plasmid dilution were applied to 

Lightcycler capillaries (Roche, UK) containing the forward  primer 

TTYGGAACAGTTTTTCGAGGTAA (1µl), and reverse primer  

CCTTCATTGTCTTTGAAAAGCAC (1µl) (Invitrogen, UK), as well as a ready- to-use hot 

start PCR reaction mix (4µl) (Roche, UK) consisting of Taq DNA Polymerase, a deoxyribose 

nucleotide (dNTP) mix, a reaction buffer containing MgCl2, and SYBR Green I. Samples 

were run on a LightCycler 1.5 instrument (Roche) and the crossing point (the number of 

amplification cycles taken to reach a pre-determined threshold) for each plasmid 

concentration was determined, in order to create a standard curve. The following cycling 

conditions were used during sample amplification: 1 hot-start cycle of 95°C for 10 minutes 

and 50 cycles of amplification (denaturation at 95°C for 10 seconds, annealing at 55°C for 5 

seconds and extension at 72°C for 8 seconds, after which the fluorescence signal was 

acquired. 

 

In order to determine the analytical sensitivity of the assay (the lowest concentration of 

plasmid that was amplified in every instant), the TOPO-pmpH recombinant plasmid was 

diluted to 10,000, 1,000, 100, 70, 50, 30, and 10 copies per reaction and each dilution 

amplified in quadruplicate.  As there is one copy of pmpH per C. trachomatis organism, the 

sensitivity could be expressed in terms of C. trachomatis organisms per reaction. 

 

In order to determine intra-assay variability, three dilutions of DNA extracted from purified 

C. trachomatis EBs were amplified. Two dilutions were amplified 9 times each and one was 

repeated 5 times. The mean crossing point and standard deviation was determined for each 
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dilution and the coefficient of variation (the standard deviation as a percentage of the mean) 

calculated. 

 

In order to determine inter-assay variability, three dilutions of DNA extracted from purified 

C. trachomatis EBs were amplified.  Each dilution was amplified in duplicate on four 

separate occasions. The mean crossing point and standard deviation was determined for each 

dilution and the coefficient of variation calculated. 

 

2.17 Change in C. trachomatis genome copy number over time 

BGMK cells were seeded into 24-well plates at 1 x 10
5
 cells per well, incubated at 37

°
C, 5% 

CO2 overnight to permit cells to adhere to the bottom of the wells, and infected with 1ml 

purified Chlamydia trachomatis L2 EBs suspended in complete D-MEM at an MOI of 0.1 in 

duplicate. Cells were incubated at 37
°
C in an atmosphere of 5% CO2 for 4 hours after which 

the inoculum was replaced with complete medium. Cells were further incubated at 37
°
C in 

5% CO2 and at 0, 6, 16, 24, 30, 40, 48, 64 and 72 hours post-infection, cells were detached 

from the wells by incubation with trypsin,  transferred to microcentrifuge tubes, pelleted at 

3,300g for 3 minutes, and DNA extracted with a DNA mini-Kit (Qiagen, UK) (Section 2.1). 

A total of 5µl DNA from each sample was applied to a lightcycler caplillary and amplified as 

described (Section 2.16). The number of pmpH copies was plotted against time to generate a 

growth curve for C. trachomatis. DNA was also extracted from duplicate cells that were 

mock-infected (with complete medium) as negative controls. 

 

2.18 Development of an assay to quantify infectious C. trachomatis progeny 

Twenty-four well plates were seeded with BGMK cells at 1 x 10
5
 cells per well and incubated 

at 37
°
C in 5% CO2 overnight to permit cells to adhere to the bottom of the wells. Cells were 
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infected with 1ml purified Chlamydia trachomatis L2 EBs in complete D-MEM at an MOI of 

0.1 in duplicate. The inoculum was removed 4 hours post-infection, replaced with complete 

D-MEM, and cells were further incubated at 37
°
C in 5% CO2. At 0, 6, 16, 24, 30, 40 and 48 

hours post-infection, cells were detached from the wells by incubation with trypsin, 

transferred to  microcentrifuge tubes, pelleted at 3,300g for 3 minutes and re-suspended in 

complete D-MEM. Cell suspensions were subjected to two rounds of water-bath sonications, 

each consisting of 3 x 15 seconds in duration, in order to release intracellular organisms. 

Cellular debris was pelleted by centrifugation at 500g for 3 minutes, and the supernatant, 

containing Chlamydia serially diluted in complete D-MEM and inoculated onto a second 

monolayer of BGMK cells that were subsequently incubated at 37
°
C in 5% CO2 for 30 hours. 

Cells were fixed, permeabilised and stained with anti-LPS-FITC, as described (Section 2.9). 

The number of IFUs for a particular dilution of cell lysate was determined by IFM, from 

which the number of IFU per ml of undiluted cell lysate could be extrapolated and plotted on 

a graph against time. 

 

Three methods of lysing cells were compared and the yield of infectious C. trachomatis 

organisms determined by passage onto BGMK cells. Briefly, 5 x 10
4
 cells were seeded per 

well of a 24 well-plate and cells were incubated overnight at 37
°
C in 5% CO2 to allow them 

to adhere to the bottom of the wells. Cells were infected, in duplicate for each lysis condition, 

with 1ml C. trachomatis serovar L2 in complete D-MEM at an MOI of 1 and incubated for 4 

hours at 37
°
C in 5% CO2, after which, the inoculum was replaced with complete D-MEM and 

cells incubated for an additional 36 hours. At 40 hours post-infection, the cells were removed 

from the bottom of the wells by incubation with trypsin, as described, and subject to either 

one freeze-thaw cycle (between room temperature and -80
°
C), two rounds of sonication, or 

one freeze-thaw cycle followed by two rounds of sonication. Cellular debris was pelleted at 
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500g for 5 minutes and an aliquot of the supernatant (containing the C. trachomatis) was 

serially diluted and passaged onto BGMK cell monolayers. Cells were incubated for 30 hours 

at 37
°
C in 5% CO2 after which they were fixed, permeabilised, stained with α-LPS-FITC and 

subject to immunofluorescence microscopy. The number of IFUs per ml of undiluted cell-

lysate was determined and plotted graphically. 

 

If the cells had been co-infected with HIV-1, the cell-lysate would also contain virus, so 

lysates were further processed in a way that would remove the viral contamination. Briefly, 

following the removal of cellular debris from the lysate by centrifugation at 500g for 5mins, 

the supernatant was transferred to another microcentrifuge tube and the C. trachomatis 

pelleted at 10,000g for 30 mins whereupon the supernatent was removed and the pellet re-

suspended in complete D-MEM and subject to centrifugation at 10,000g for an additional 30 

mins. The washed pellet was re-suspended in complete D-MEM once more, serially diluted 

and passaged onto BGMK cells as described above.  The yield of infectious C. trachomatis 

was then compared with the previous protocol to determine whether any loss resulted. 

 

2.19 Validating the assays using a known inducer of persistence, Penicillin 

The ability of the assays to detect chlamydial persistence was tested to ensure they were 

adequate for future experiments. Briefly, 1 x 10
5
 MAGI P4R5 cells were seeded per well of a 

24 well-plate and cells were incubated overnight at 37
°
C in 5% CO2 to allow them to adhere 

to the bottom of the wells. Cells were infected with 1ml C. trachomatis serovar L2 in 

complete D-MEM at an MOI of 2 and incubated for 1 hour at 37
°
C in 5% CO2, after which, 

the inoculum was replaced with either complete D-MEM, or a final concentration of 5µg/ml 

Penicillin (Invitrogen, UK) in complete D-MEM and cells were incubated for an additional 

24 hours at 37°C, 5% CO2.  
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Cells were removed from the bottom of the wells by incubation with trypsin and the cell-

suspensions either lysed by sonication or divided into two equal aliquots and pelleted. Cell-

lysates were passaged onto monolayers of BGMK cells as described (Section 2.18) and the 

number of infectious progeny determined.  

 

The DNA was extracted from one cell pellet (Section 2.1) and the number of genomic copies 

determined (Section 2.16). The number of gene copies of euo, ompA, omcB and 16S rRNA 

were also determined (Section 2.22). The RNA was extracted from the other cell pellet as 

described (Section 2.3), reverse transcribed to cDNA (Section 2.4) and the number of 

chlamydial transcripts of euo, ompA, omcB and 16S rRNA determined (Section 2.22). Gene 

transcription was quantified by dividing the number of transcripts by the number of genes 

(cDNA copies/DNA copies). The number of infectious chlamydial progeny, the genome copy 

number and the transcription of chlamydial genes were quantified in the presence and 

absence of penicillin, which is known to induce a persistence phenotype (Matsumoto & 

Manire, 1970; Lambden et al., 2006) and plotted graphically. 

 

2.20 Investigating C. trachomatis tropism in CD4-positive cell-lines  

In order to select a suitable cell-line to investigate co-infection, CD4
+ 

Cell lines were 

compared in how permissive they were to C. trachomatis serovar L2 infection. Twenty four 

well-plates were seeded with the epithelial cell lines BGMK and MAGI P4R5, the T-cell 

lines C8166 and Jurkat, and the monocytic cell lines U937 and THP-1 (Table 2.2)  at a 

density of 5 x 10
4 

cells per well (1ml per well) in duplicate. Cells were incubated overnight to 

allow cells to settle to the bottom of the wells and adherent cells to stick. Five hundred 

microlitres of the medium were removed and replaced with 500µl of C. trachomatis in 
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complete medium at a final concentration of 10 IFU per cell.  Cells were incubated at 37
°
C, 

in an atmosphere of 5% CO2 for 4 hours, after which 800µl of the medium + C. trachomatis 

was replaced with complete medium and the cells incubated for 30 hours, whereupon they 

were fixed, permeabilised and stained with α-LPS-FITC antibody solution as described 

(Section 2.9).  Suspension cells were transferred to microcentrifuge tubes and pelleted at 

500g for 5 minutes between wash, permeabilisation and staining steps  and, following post-

staining washes, cells were re-suspended into 100µl PBS and 10µl aliquotted into a 

haemocytometer slide in order for cells to be viewed by immunofluorescence microscopy. 

 

At least 5 fields of view were photographed and the number of cells (visible under white 

light) and the number of C. trachomatis inclusions (visible at excitation/emission 

wavelengths of 470/505) were counted. The percentage of infected cells was determined for 

each field of view and the mean value plotted on a graph (+/- standard error of the mean 

(SEM)). 

 

2.21 HIV-1 infection of MAGI P4R5 cells 

Cells of the epithelial cell line, MAGI P4R5 were infected with HIV-1 at increasing MOIs 

and the percentage of infected cells determined for a given MOI. Briefly, 5 x 10
4
 MAGI 

P4R5 cells were seeded per well of a 24 well-plate and incubated overnight at 37
°
C in an 

atmosphere of 5% CO2 to allow cells to adhere to the bottom of the wells. Cells were infected 

with 1 ml HIV-1MN in complete D-MEM at MOIs of 0, 0.5, 1, 5 and 10 in duplicate for 2 

hours at 37
°
C, 5%CO2, whereupon the inoculum was removed and replaced with 1ml 

complete D-MEM and the cells incubated for a further 20 hours at 37
°
C, 5% CO2. Cells were 

fixed, permeabilised and stained with anti-P24-PE as described in Section 2.2.6. The total 

number of cells (visible under white light) per field of view in at least 5 fields for any given 
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MOI were counted and the number of cells that were infected with HIV-1 (cells possessing a 

red cytoplasm when viewed at excitation/emission wavelengths of 535/565 nm) were 

determined. The percentage of infected cells was determined for each field and the mean 

value plotted graphically (+/- SEM) for each MOI. In addition, MAGI P4R5 cells infected 

with HIV-1 in the same manner as above were fixed in 0.5% glutaraldehyde at 37°C for 15 

minutes, washed in PBS and stained in X-gal + Buffer for 2 hours at 37°C. Cells were viewed 

by light microscopy and imaged. Infected cells stained with X-gal appeared blue, whereas 

uninfected cells remained colourless. 

 

2.22 Quantification of C. trachomatis gene expression 

Cell cultures were removed from a 24 well-plate by incubation with trypsin, divided into two 

aliquots and each aliquot pelleted by centrifugation at 500g for 5 mins. One pellet was 

subjected to DNA extraction (Section 2.1) and one pellet was lysed in TRIZOL Reagent and 

RNA extracted (Section 2.3) and reverse-transcribed to cDNA (Section 2.4).  

 

The DNA extracted from each cell-pellet was used as a template for the amplification of the 

following C. trachomatis genes by qPCR: 16S ribosomal RNA, omcB, ompA and euo. The 

Primer sequences with which to amplify these genes have been published (Ouellette et al 

2006) and are in Table 2.1. For each gene to be amplified, 1.5µl DNA from one sample was 

applied to Lightcycler capillaries containing 13.5µl of master mix comprising of 7.5µl SYBR 

Green (Qiagen, UK), 0.75µl of the relevant forward and reverse primers (Invitrogen, UK) and 

5.25µl of nuclease-free water (Qiagen, UK). Samples were amplified with a LightCycler 2.0 

instrument (Roche) and the crossing-points determined for each sample. The following 

cycling conditions were used: 1 hot-start cycle at 95°C for 15 minutes and 50 cycles of 
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amplification (denaturation at 95°C for 15 seconds, annealing at 55°C for 30 seconds, 

extension at 72°C for 15 seconds with a single acquisition at 72°C).   

 

The number of organisms in an aliquot of purified C. trachomatis elementary bodies was 

determined by extracting the DNA and quantifying the number of pmpH genes present by 

using the pmpH qPCR (Section 2.16). The DNA was 10-fold serially diluted to create a 

standard curve that was amplified by each primer pair to determine the number of 16S rRNA, 

omcB, ompA and euo genes in each DNA sample. 

 

The cDNA was used as a template for amplification of the following transcripts:  

Unprocessed 16S rRNA, omcB, ompA and euo. Primers used to amplify these transcripts were 

the same as those used to amplify the DNA (Table 2.1.). For each transcript to be amplified, 

1.5µl cDNA from one sample was applied to the Lightcycler capillaries containing 13.5µl of 

a master mix comprising 7.5µl SYBR Green (Qiagen, UK), 0.75µl of the relevant forward 

and reverse primers (Invitrogen, UK) and 5.25µl of nuclease-free water (Qiagen, UK). 

Samples were amplified by a LightCycler 1.0 instrument (Roche) with the same cycling 

conditions described above and with the same standard curve. Thus, the number of 16SrRNA, 

omcB, ompA and euo transcripts in the cDNA samples was determined. The number of 

transcripts were normalised to the number of genes and gene expression expressed in terms of 

cDNA copies per DNA copy. 

 

2.23 Transmission Electron Microscopy 

Duplicate samples were processed for transmission electron microscopy (TEM) at 5, 10 and 

15 hours post co-infection. Unless otherwise stated, reagents were purchased from TAAB 

Laboratories Equipment Ltd, UK. Cultures were grown on sterile cover-slips and fixed in 
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2.5% glutaraldehyde  and 2% paraformaldehyde (in 0.1% sodium cacodilate buffer, pH 7.4) 

for 15 minutes at 37
°
C, 45 minutes at room temperature and 4

°
C overnight, after which cells 

were washed in 0.1M sodium cacodilate buffer and incubated for 1 hour at 4
°
C in 1% 

osmium tetroxide and 1.5% potassium ferrocyanide as a secondary fixation step. Following 

additional washes, cells were incubated in 1% tannic acid  in 0.05M sodium cacodiliate 

buffer at room temperature for 45 minutes in the dark as a further fixation/staining step. Cells 

were washed in 1% sodium sulphate in 0.05M cacodilate buffer and the tannic acid quenched 

by incubation at room temperature. The sodium sulphate solution was removed and cells 

were dehydrated by incubation in a series of increasing ethanol concentrations (10%, 25%, 

50%, 70% and 90% ethanol in Milli-QPLUS Ultra pure water and 100% ethanol. Following 

ethanol dehydration, cells were infiltrated with a mixture of Epon 812 resin and propylene 

oxide (PO) at increasing ratios of resin (1:3, 1:1, 3:1 (resin:PO)). The mixture was then 

replaced with 100% resin. Cover slips were subsequently mounted on the top of solidified 

resin blocks and baked at 60
°
C for 48 hours to attach the cover slip to the block. Each 

coverslip was removed from the block by snap-freezing in liquid nitrogen. Cells were left 

embedded en face of the solidified resin block, which was mounted onto a stand and trimmed 

to size before being cut into sections approximately 80nm think with an ultramicrotome. The 

sections were collected onto copper grids and stained for 10 minutes at room temperature in 

2% aqueous (w/v) uranyl acetate, washed Milli-QPLUS Ultra pure water, and stained with 

Reynold‟s lead citrate solution for 20 minutes at room temperature and washed. Grids were 

air-dried and viewed using a Tecnai G2 Spirit Transmission Electron Microscope (FEI, 

USA), operating at a voltage of 120kV. Cells were imaged at 21,000, 27,000 and 44,000 X 

magnification with an FEI Eagle CCD camera (2k x 2k) and analysed using TEM Imaging 

and Analysis (TIA) software (Tecnai, FEI). 
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2.24 Co-infection of HIV-1 and C. trachomatis serovar L2 

Wells of a 24 well-plate were seeded with 5 x 10
4
 MAGI P4R5 cells per well and incubated 

at 37
°
C in an atmosphere of 5% CO2 overnight to allow the cells to adhere to the substratum. 

Cells were either mock-infected (with complete D-MEM alone) or infected with HIV-1 (MN) 

at an MOI of 5  and incubated at 37
°
C, 5% CO2 for 20 hours after which cells were either 

mock-infected with D-MEM alone or were infected with C. trachomatis at an MOI of 0.1. 

Four hours post-co-infection, the inoculum was replaced with complete D-MEM (Time point 

0) and the cells incubated at 37
°
C in 5% CO2. At various times (6, 12, 24, 30, 36 and 48 

hours) post-infection, cells were either fixed, permeabilised, stained and viewed by 

immunofluorescence microscopy (IFM) (Section 2.9) or they were removed from the wells 

by incubation with trypsin. Cell suspensions were either lysed and the liberated C. 

trachomatis passaged in BGMK cells (Section 2.18), to establish the quantity of infectious C. 

trachomatis present, or the cells were pelleted at 500g, 5 mins and DNA extracted to quantify 

the chlamydial genome copy number in each sample. In addition, the quantity of HIV-1 virus 

present in the cell supernatants at each time-point was quantified by titration onto C8166 cells 

(Section 2.14) and the SG-PERT assay (Section 2.15). 

 

In an alternative protocol, cells were seeded as above and either mock-infected or infected 

with C. trachomatis at an MOI of 10 for 24 hours, after which cells were either mock-

infected with D-MEM, or were infected with HIV-1 at an MOI of 10. Two hours post co-

infection, the inoculum was replaced with complete D-MEM (Time point 0) and the cells 

incubated at 37
°
C in 5% CO2. At 5, 10, 15 and 20 hours post-inoculum removal, cells were 

either fixed, permeabilised, stained and viewed by IFM, or they were removed from the 

bottom of the wells by incubation with trypsin. Cell suspensions were either lysed and the 

liberated C. trachomatis passaged in BGMK cells to establish the quantity of infectious C. 



80 

 

trachomatis present, or the cells were pelleted and DNA extracted to quantify the chlamydial 

genome copy number in each sample. The quantity of HIV-1 present in the supernatants was 

quantified by the SG-PERT assay and by titration onto C8166 cells. Cells from time points 5, 

10 and 15 hours post-co-infection were also processed and viewed by transmission electron 

microscopy (Section 2.23) and RNA was extracted 15 hours post-co-infection, reverse-

transcribed to cDNA and the relative expression of unprocessed 16SrRNA, omcB, ompA and 

euo determined  (Section 2.22). 

 

Patient Recruitment 

 

2.25  Patient Recruitment for the ELISpot study 

Eighty five patients were recruited from St Mary‟s Hospital, London. Sixty nine adults were 

recruited from the Jefferiss Wing, Department of Genito-urinary medicine (GUM) and 

sixteen children, under the age of 12, were recruited as negative controls from the Paediatric 

Outpatients “GP bloods” clinic, Imperial College Healthcare NHS Trust. Clinical information 

was recorded on a proforma for the adults and ethical approval was obtained from both the 

Hounslow & Hillingdon Local Research Committee (file number: 07/H0709/55) and the St. 

Mary‟s Research and Ethics Committees (REC ref no: 09/H0712/58) for adults and children, 

respectively (Appendices 2 and 3). 
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Adults recruited to the study (n = 69) were all male. The mean age was 34 years old (range 18 

to 77) and the patients were from ethnically diverse backgrounds: 21 (30.4%) were British, 4 

(5.8 %) were African, 4 (5.8 %) were from the Indian Subcontinent, 8 (11.6 %) were from the 

Caribbean, 27 (39.1 %) were whites of other nationalities, while there were no data on the 

ethnicity for 5 (7.2 %) patients. Men were recruited if they had symptoms and/or signs of 

urethritis or proctitis (symptomatic), or if they had no symptoms and no detectable 

inflammation (asymptomatic). The signs or symptoms of urethritis included urethral 

discharge and or dysuria, whereas signs or symptoms of proctitis included rectal discomfort, 

discharge, or bleeding. Ten (45%) of the 22 NAAT-positive individuals were symptomatic (5 

with proctitis and 5 with urethritis), while twelve (55%) were asymptomatic. Fifteen (32%) of 

the 47 NAAT-negative individuals were symptomatic (7 with proctitis and 8 with urethritis), 

while 32 (68%) were asymptomatic. 

 

Children recruited to the study (n = 16) were all male to match the adult population. The 

mean age was 6 years old (range 2 to 10) and subjects were from ethnically diverse 

backgrounds: 2 (12.5 %) were British, 4 (25 %) were African, 1 (6.3 %) was from the Indian 

Subcontinent, 5 (31.3 %) were whites of other nationalities and 4 (25 %) were non-whites of 

other nationalities. Children were excluded from the study if they had signs or symptoms of 

acute or chronic inflammatory conditions. 

 

2.26 Patient Recruitment for the qPCR study 

Ninety-one patients were recruited to the study, of which qPCR could be conducted on 86 

(94.6%), 54 from the Bristol Sexual Health Centre (BSHC) and 32 from the Jefferiss Wing, 

Department of Genito-urinary medicine, St Mary‟s Hospital, London. Ethics approval was 

obtained from the Frenchay Research Ethics Committee (Ref 09/H0107/6) for BHSC 

(Appendix 1) and from the Hounslow & Hillingdon Local Research Committee (file number: 
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07/H0709/55) for St. Mary‟s Hospital (Appendix 2). Seventy-nine (91.9%) of the 86 subjects 

were male. The mean age was 33 years old (range 16 to 63), and 73 (84.9%) were Caucasian, 

10 (11.6%) were non-Caucasian while the ethnicity of 3 (3.5%) was undocumented.  

 

A rectal swab was obtained from each patient for quantification of chlamydial load. In 

addition, a rectal Gram-stained smear was undertaken. Proctitis was defined as greater than 

or equal to 5 polymorphonuclear leucocytes per high power (x1000) field of view when a 

Gram-stained rectal smear was viewed by light microscopy. 

 

2.27 Sample Processing and Storage 

When recruiting paediatric patients, parental informed consent was obtained and a 5 ml 

venous blood sample was collected from each child into tubes lined with EDTA for the 

extraction of PBMCs. When recruiting adult patients from the GUM clinic, informed consent 

and a clinical questionnaire were obtained and a venous blood sample (30ml) was collected 

from each patient into tubes coated with EDTA for the extraction of PBMCs. An additional 

venous blood sample (3ml) was collected into a plain glass tube for the separation of serum. 

A rectal swab was obtained from every patient with proctitis or who were asymptomatic and 

had partaken in passive anal intercourse. A first-void urine sample was obtained from adults 

who did not have proctitis and had not partaken in passive anal intercourse. The samples 

collected for each patient group are tabulated in Table 2.3 
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Table 2.3 Patient recruitment for the ELISpot study 

 

Group Blood collected 

into EDTA 

tubes for 

PBMC 

extraction 

Blood collected 

into a plain 

tube for serum 

separation 

First-void 

Urine 

sample 

Rectal 

Swab 

 
Symptomatic proctitis 

 

 
Yes (30ml) 

 
Yes (3ml) 

 
No

* 
 

Yes 

 
Symptomatic urethritis 

 

 
Yes (30ml) 

 
Yes (3ml) 

 
Yes 

 
No 

Asymptomatic with a 

history of receptive anal 

intercourse 
 

 
Yes (30ml) 

 
Yes (3ml) 

 
No

* 
 

Yes 

Asymptomatic with no 

history of receptive anal 

intercourse 
 

Yes (30ml) Yes (3ml) Yes No 

Paediatric negative 

controls 
Yes (5ml) No

# 
No No 

 

#Where no serum could be obtained, plasma was separated from the blood collected into 

EDTA tubes 

 
* 
Samples were obtained for routine screening but were not available to our laboratory for 

research use 

 
 

Table 2.3 The clinical samples obtained from each patient group are listed. 
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Patient PBMCs were extracted from whole blood by centrifugation over Histopaque and the 

cells were stored in liquid nitrogen. Serum was separated from whole blood by centrifugation 

and the serum stored at -80°C. Where no serum sample was obtained, plasma was separated 

from whole blood and stored at -80°C.  Rectal swab and urine samples were stored at -80°C. 

 

First-void urine samples were stored at -20
°
C. Urine was thawed at room temperature, mixed 

thoroughly and 1.5ml aliquots centrifuged at 15,000g for 10 minutes to pellet any Chlamydia 

present in the sample. DNA was extracted from the pellet using a DNA mini-kit (Qiagen, 

UK) (Section 2.1). 

 

Rectal swabs collected at St Mary‟s Hospital, London were collected using a BD ProbeTec 

ET C. trachomatis and N. gonorrhoeae (CT/NC) Amplified DNA Assay Collection Kit 

(Beckton Dickinson, USA) with a polyurethane-tipped collection swab that was placed into 2 

ml of fluid (supplied with the swab). The swab in the fluid was frozen at -20
°
C until further 

processing. Swabs were thawed at room temperature, mixed by vortexing, then discarded. A 

700µl aliquot of swab fluid was centrifuged at 15,000g for 10 minutes to pellet any 

Chlamydia in the sample and DNA was extracted from the pellet using a DNA mini-kit 

(Qiagen, UK). 

 

Rectal swabs collected from the Bristol Sexual Health Centre were placed into Bijou tubes 

and frozen dry at -20
°
C until further processing. Each Swab was thawed at room temperature 

and placed in a microcentrifuge tube to which 400µl PBS were added. The DNA was 

extracted using a DNA mini-kit Buccal Swab Spin Protocol (Qiagen, UK). Briefly, 

Proteinase K (20µl) and buffer AL (400µl) were added to the sample, vortex-mixed and 
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incubated at 56
°
C for 10 minutes. Molecular-grade ethanol (400µl) was added, and the 

mixture applied to a QiAmp spin column (Qiagen, UK) for centrifugation at 6000g for 1 

minute. The column was washed in buffers AW1 and AW2 and DNA eluted into 50μl buffer 

AE following 5-minutes incubation at room temperature. 

 

Blood (3ml) was collected from each patient into a silicone-coated tube that permitted 

clotting. Each sample was centrifuged at 800g for 10 minutes to pellet cellular components of 

the blood, leaving a serum supernatant. One microlitre aliquots of the serum were stored 

frozen in cryovials (Nunc, DK) at -80°C. 

 

Approximately 30 ml of blood from each adult patient were collected into EDTA-coated 

tubes (Becton Dickinson, UK). Blood was transferred into two 50ml Falcon tubes (Becton 

Dickinson) and diluted 1 in 2 with sterile Dulbecco‟s PBS (sPBS) (Sigma-Aldrich, UK). 

Diluted blood was layered onto an equal volume of Histopaque (Sigma-Aldrich, UK) and 

centrifuged at 800g for 30 minutes without break. The PBMCs (located at the interface of 

Histopaque and diluted plasma) were removed with a Pasteur pipette (alpha Laboratories, 

UK) and transferred to a 50ml Falcon tube to which sterile phosphate-buffered saline (sPBS) 

was added. Cells were pelleted (by centrifugation at 500g for 5 minutes) and repeatedly 

washed in sPBS until the supernatant was clear. An aliquot of cell suspension was mixed with 

an equal volume of Trypan Blue (Sigma-Aldrich, UK) to assess cell viability and the number 

of viable cells (excluding Trypan Blue) were counted in a haemocytometer (by light 

microscopy under x 20 objective). 

 

Approximately 5 ml of blood from each paediatric patient were collected into EDTA-coated 

tubes (Becton Dickinson, UK) and the sample centrifuged at 800g for 10 minutes to pellet 
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cellular components of the blood. The plasma supernatant was stored at -80
°
C in cryovials 

The remaining pellet was re-suspended to 7 ml in sPBS and diluted blood was layered onto 

an equal volume of Histopaque (Sigma-Aldrich, UK) and centrifuged at 800g for 30 minutes 

without break. The PBMCs were then processed as described above. 

 

2.28 Freezing and thawing PBMCs 

Suspensions of washed PBMCs were pelleted at 500g for 5 minutes, re-suspended in ice-cold 

freezing mix (90%hi FCS and10% dimethyl sulphoxide (DMSO) (Sigma- Aldrich, UK)) and 

decanted into cryotubes at 1 x 107 cells per tube. Cryotubes were placed in a cryofreezing 

container (Jencons) lined with isopropanol (Sigma-Aldrich) and kept at -80C  overnight in 

order for cells to freeze slowly at a rate of approximately 1C per minute. Cryotubes were 

subsequently placed in liquid nitrogen for long-term storage.  

 

Frozen PBMCs were rapidly thawed at 37°C in a water-bath and decanted into a 15ml Falcon 

centrifuge tube (Invitrogen) containing 10ml ice-cold sPBS (Sigma, UK) + 0.5% hiFBS 

(Gibco, UK).  Cells were pelleted by centrifugation at 500g for 5 minutes and re-suspended 

in 5ml sPBS+0.5% hiFBS before viability was assessed by Trypan blue exclusion and the 

number of viable cells counted.  

 

2.29 Chlamydial load quantification in patient samples by qPCR assay 

 

2.29.1 Selecting a suitable C. trachomatis gene target 

Chlamydia trachomatis was cultured and purified and DNA extracted from an aliquot of 

bacterial suspension. The DNA was serially diluted 10-fold, and 3 dilutions (1 in 100, 1 in 

1000 and 1 in 10,000) were amplified by qPCR with primers targeting the C. trachomatis 
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plasmid open reading frame 5 (orf5) (Chen et al., 2008) and orf 2 (Pickett et al., 2005) (Table 

2.1). Briefly, each dilution of DNA extracted from C. trachomatis organisms (2µl) was 

applied to triplicate lightcycler capillaries containing SYBR green (10µl) (Qiagen, UK), 

nuclease-free water (6µl) (Qiagen, UK), one forward primer (1µl) and the relevant reverse 

primer (1µl). Samples were amplified with a LightCycler 2.0 instrument (Roche) and the 

crossing-points determined in order to discern the gene target that gave the earliest crossing-

point for a given dilution of C. trachomatis DNA. The following cycling conditions were 

used for amplification: 1 hot-start cycle of 95°C for 15 minutes and 50 cycles of 

amplification (denaturation at 95°C for 15 seconds, annealing at 55°C for 30 seconds and 

extension at 72°C for 15 seconds followed by a single acquisition).  

 

2.29.2 Generation of C. trachomatis plasmid standard curve 

The plasmid DNA of C. trachomatis serovar L1 (Hatt et al., 1988) was provided by Professor 

Ian Clarke, University of Southampton. The concentration of the plasmid (µg/µl) was 

quantified using an Ultraspec 2000 UV/visible Spectrophotomer (Pharmacia Biotech) and the 

number of plasmid copies per microlitre determined by dividing the plasmid concentration 

(µg/µl) by the weight of 1 plasmid (µg). The weight of one plasmid was determined by 

dividing the plasmid molecular weight calculated in Daltons (g/mole) (gained from a 

knowledge of the DNA sequence and the molecular weight of each nucleotide) by 

Avogadro‟s constant (molecules/mole). The DNA (of a known plasmid copy number) was 

10-fold serially diluted in water and 2µl of each dilution was applied to lightcycler capillaries 

(Roche) containing SYBR green (10µl) (Qiagen, UK), nuclease-free water (6µl) (Qiagen, 

UK), orf5 forward primer (1µl of 10µM) and orf5 reverse primer (1µl of 10µM). Samples 

were amplified with a LightCycler 2.0 instrument (Roche), using the same cycling conditions 

in Section 2.29.1, and the crossing-points determined to generate a standard curve. 
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2.29.3 End point serial dilutions 

The C. trachomatis plasmid DNA was diluted to 10,000, 1,000, 200, 100, 50 and 10 copies 

per reaction and each dilution amplified in quadruplicate as described (Section 2.29.2). The 

sensitivity of the assay was defined as the lowest concentration of plasmid that was amplified 

in every instant. As there are a mean number of 7.72 plasmids per C. trachomatis organism 

+/- 0.68 (Michel et al 2007), the sensitivity could be expressed in terms of C. trachomatis 

organisms per reaction. 

 

2.29.4 Intra-assay variation 

Three dilutions of DNA extracted from purified C. trachomatis EBs were amplified as 

described (Section 2.29.2), 6 times per dilution. The mean crossing point and standard 

deviation was determined for each dilution and the coefficient of variation (the standard 

deviation as a percentage of the mean) calculated. 

 

2.29.5 Inter-assay variation 

Three dilutions of DNA extracted from purified C. trachomatis EBs were amplified as 

described (Section 2.29.2). Each dilution was amplified in duplicate on four separate 

occasions. The mean crossing point and standard deviation was determined for each dilution 

and the coefficient of variation calculated. 

 

2.29.6 Orf 5  qPCR with patient samples 

DNA was extracted from patient samples as described (Section 2.1) and 2µl of DNA from 

each sample were applied to duplicate lightcycler capillaries (Roche) containing SYBR green 

(10µl) (Qiagen, UK) , nuclease-free water (6µl) (Qiagen, UK), orf5 forward primer (1µl of 
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10µM) and orf5 reverse primer (1µl of 10µM) (Table 2.1). Samples were amplified using a 

LightCycler 2.0 instrument (Roche) (Section 2.29.2) and the crossing points determined. A 

standard curve (Section 2.29.2) was simultaneously produced to quantify the number of orf5 

copies per sample which, in turn, could be used to deduce the number of C. trachomatis 

organisms per ml of urine or per swab. 

 

2.29.7 Inhibition Assay 

The existence of PCR inhibitors in patient samples was investigated by use of a lambda (λ)-

phage inhibition assay. The assay involved amplifying DNA from the Lambda phage in a 

qPCR reaction and spiking the reaction with patient samples. The crossing-point of the 

Lambda DNA PCR product in the presence of a clinical sample was compared to the crossing 

point in the presence of AE buffer (Qiagen, UK).  Briefly, 2µl of a patient sample was 

applied to duplicate lightcycler capillaries (Roche) containing a master mix of SYBR green 

(Qiagen, UK) (10µl), Lambda phage DNA (1µl), Lambda phage forward primer (1µl), 

Lambda phage reverse primer (1µl) (Table 2.1) and nuclease –free water (5µl). Additionally, 

2µl of AE buffer (Qiagen, UK) were added to 4 lightcycler capillaries containing the same 

master mix. Samples were amplified with a LightCycler 2.0 instrument (Roche) and the 

crossing points determined. The following cycling conditions achieved amplification: 1 hot-

start cycle of 95°C for 15 minutes and 50 cycles of amplification (denaturation at 95°C for 15 

seconds, annealing at 55°C for 30 seconds and extension at 72°C for 15 seconds followed by 

a single acquisition).  
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2.30 Pgp3 antigen 

Proteins encoded by the C. trachomatis genome that did not have a significant BLAST hit (e 

value <0.001) with the C. pneumoniae genome were identified by using the STDgen database 

Chlamydia proteome comparisons section (http://stdgen.northwestern.edu/). The C. 

trachomatis-specific protein Pgp3 (Pubmed Accession  P10557) was selected.  

 

Fifty one overlapping peptides, spanning the entire length of the Pgp3 protein (Table 5.1) 

were purchased (GenScript, USA), to ensure the observed IFN-γ  responses were not 

restricted to, or biased by, certain HLA types. The identify and purity of each peptide was 

confirmed by mass-spectrometry and high performance liquid chromatography (HPLC).  

Each peptide was 15 residues in length (termed a “15mer”), with the exception of the last 

peptide (that was 14 residues in length), and the sequence of each peptide overlapped the 

previous by 10 residues, with the exception of the first peptide.  Peptides were suspended in 

DMSO and pooled in 4 groups of 10 peptides and one group of 11 peptides at a working 

stock concentration of 20μg/ml in RPMI and frozen at -80
°
C. 

 

 

 

 

 

 

 

 

 

 

http://stdgen.northwestern.edu/


91 

 

2.31 Detection of anti-Pgp3 antibodies in patient serum by Enzyme-Linked 

Immunosorbent Assay (ELISA) 

An in-house ELISA was developed and optimised by Dr. Gillian Wills (Wills et al., 2009). 

Briefly, wells of an Immunosorb 96-well plate (Nunc, DK) were coated with 100µl of the 

Pgp3 protein (20ng/ml) in 100mM NaHCo3 (Sigma-Aldrich, UK), pH 8.4 for 1 hour at 37
°
C 

in an atmosphere of 5% CO2.  Free antigen was discarded and the plate washed 3 times in a 

solution of 0.05% Tween 20 (Sigma-Aldrich, UK) in PBS (PBST) and blocked at 37
°
C, 5% 

CO2 for 2 hours in a solution of 1% Hammerstein casein in PBST (blocking buffer). 

Following 3 additional washes as described, 50µl patient sera (diluted 1:100 in blocking 

buffer) were added to each well in duplicate and the plate incubated for 1 hour at 37
°
C, 5% 

CO2. In addition to the test sera, serum samples from 7 individuals (2 testing highly-positive, 

2 medium positive and 3 low positive by the ELISA) were added in duplicate to each plate as 

inter-assay variability controls and duplicate wells contained no human serum (i.e. blocking 

buffer alone) as negative controls. 

Antigen and bound antibody were washed 3 times before 100µl of a goat anti-human 

antibody (Fc fragment) conjugated to horseradish peroxidise (HRP) (Sigma-Aldrich, UK) 

were added at a 1:8000 dilution in blocking buffer  before incubating  at 37
°
C, 5% CO2 for 1 

hour. Following 6 additional washes, 100µl of complete Tetramethylbenzidine (TMB) 

solution were added to each well and the plate incubated for 10 minutes at room temperature 

while the HRP metabolised the TMB to a blue product. The reaction was terminated by the 

addition of 50µl 2.5M H2SO4, and the reaction was read in a Biotrack II plate reader 

(Amersham Biosciences) at a wavelength of 450nm. 
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2.32 Detection of Effector T-cell responses to Pgp3 by an ex vivo IFN-γ Enzyme-Linked 

Immunoadsorbant Spot-forming (ELISpot) Assay. 

 

A Pgp3 –peptide- specific ex vivo IFN-γ ELISpot assay was developed to assay T-cell 

responses to C. trachomatis Pgp3. Two hundred microlitres of RMPI + 10% hiFBS + 1% 

penicillin/streptomycin were added to wells of a 96-well polyvinylidene difluoride-backed 

ELISpot plate that was supplied pre-coated with anti-IFN-γ monoclonal antibody 1-D1K  

(Mabtech, SE).  The plate was blocked for 90-120 minutes at 37
°
C in an atmosphere of 5% 

CO2 after which 100μl of each peptide pool (at a concentration of 20μg/ml in RPMI) were 

added to duplicate wells in addition to negative (unstimulated) controls comprised of 

complete RPMI only and positive controls consisting of 5μg/ml phytohaemagglutinin (Pha) 

(ICN Biomedicals) in RPMI.   

 

For each patient sample, an aliquot of frozen PBMCs was thawed rapidly, washed and the 

number of viable cells counted. Cells were pelleted and re-suspended in RPMI + 20% hiFBS 

+ 2% penicillin/streptomycin at a density of 2.5x10
6
 PMBCs/ml. One hundred microlitres of 

cell suspension (2.5 x 10
5
 PBMCs) were added to each well of the ELISpot plate that 

contained peptide pools or controls and the plate was incubated overnight (16-18 hours) at 

37
°
C in an atmosphere of 5% CO2. 

 

Following the overnight incubation, cells were washed 6 x in PBS and 100μl of the 

biotinylated anti- IFN-γ monoclonal antibody 7-B6-1 biotin (Mabtech, SE) were added at a 

concentration of 1μg/ml in PBS + 0.5% hiFBS. The plate was incubated for 2 hours at 37
°
C 

in an atmosphere of 5% CO2 and washed 6 x in PBS prior to the addition of streptavidin-

alkaline phosphatase conjugate (Mabtech, SE ) at a dilution of 1:1000 in PBS + 0.5% hiFBS. 
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The plate was incubated in the dark at room temperature for 45 minutes and washed 6 times 

with PBS, after which 100μl of the alkaline phosphatase substrate  5-Br-4-chloro-3-indolyl-

phophate-nitro blue tetrazolium chloride (BCIP/NBT (PLUS) (Europa, UK) were added to 

each well and the plate incubated at room temperature for 5-10 minutes after which the 

reaction was terminated by rinsing in tap water and air-drying. 

 

Where a cell had produced IFN-γ during the overnight incubation, a spot was visible on the 

membrane lining the relevant well. Spots were visualised using an ELISpot plate reader 

(AID, USA), in conjunction with AID software (Version 3.0) and the number in each well 

counted. The average number of spots per peptide pool was determined for each patient and 

peptide pools scored as either positive or negative. A pool was considered to be positive if the 

average number of spots was five more than the average number of spots in the negative, 

unstimulated, control wells (the background) and, additionally, this number was double the 

average number of spots in negative control wells. 

 

The number of spots above the background was summated for each pool deemed to be 

positive for a given patient. This figure represented the number of spot-forming cells (SFCs) 

per 2.5 x 10
5
 PBMCs that responded to the pgp3 antigen by producing IFN-γ. The number of 

SFCs per million PBMCs that responded to pgp3 was determined for each patient. 

 

2.33 Comparison of spot enumeration using pre-coated and non-pre-coated ELISpot 

plates 

The Ex Vivo IFN-γ ELISpot assay was conducted in a 96-well polyvinylidene difluoride-

backed ELISpot plate. Two types of plate were used during the course of the study; one that 

was supplied pre-coated with the anti- IFN-γ monoclonal antibody 1-D1K (Mabtech, SE) and 
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one that was not (Millipore, UK). In the case of the latter, plates were coated overnight at 4
°
C 

with 10μg/ml anti- IFN-γ monoclonal antibody 1-D1K (Mabtech, SE) in sterile PBS (100μl 

per well) and washed 5 x in sterile PBS. Peripheral blood mononuclear cells were thawed 

from 3 patients known to be Pgp3-ELISpot positive and the number of SFCs per million 

PBMCs determined (Section 2.36) using either plates that were supplied pre-coated or that 

were manually coated with anti- IFN-γ monoclonal antibody 1-D1K (Mabtech, SE).  

 

2.34 Identification of Chlamydia pneumoniae antibodies in patient serum 

The presence of anti- C. pneumoniae IgG antibodies in patient sera was tested using a 

Chlamydia pneumonia IgG/IgM Micro-IF Test kit (Ani Labsystems). Briefly, the kit 

contained glass slides, each containing a series of wells. Each well was dotted with three 

chlamydial antigens: C. pneumoniae, C.  trachomatis and C. psittaci. As anti-LPS antibodies 

cross-react between serovars, C. pneumoniae and C. trachomatis antigens were depleted of 

LPS. Undepleted C. psittaci served as a control to test for the presence of any anti-LPS 

antibodies. Serum from each patient was diluted 1:32 with sample diluent and 10µl applied to 

each well on the slide. Positive and negative controls were supplied with the kit. Wells were 

incubated at 37
°
C, 5%CO2 in a moist chamber for 30 minutes after which wells were washed 

4 times in sterile PBS (Sigma-Aldrich), 2 times in Milli-QPLUS Ultra pure water (Millipore) 

and air-dried. A FITC-conjugated secondary anti-human antibody (supplied) was applied to 

each well and the slide incubated at 37
°
C, 5% CO2 in a moist chamber for 30 minutes before 

washing and air-drying. Cover-slips were mounted onto the slides and antigen dots viewed 

under the x100 objective of a Nikon Eclipse TE2000-S fluorescence microscope (under oil 

emersion)  at excitation/emission wavelengths of 470/505 (FITC, green). Sera were 

considered positive for C. pneumoniae if the C. pneumoniae antigen dot appeared bright 

green, and negative if the dot appeared a dull, faint green.   
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Chapter 3 

 

Co-infection of  

C. trachomatis and HIV-1 in vitro 
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3.1 Introduction 

 

Background 

Recent studies of MSM have found that 74-76% of individuals with LGV are co-infected 

with HIV-1 (Mayaud, 2006; Jebbari et al., 2007; Ward et al., 2007). This high degree of co-

infection is puzzling and may be the result of biological synergy between C. trachomatis and 

HIV-1, high-risk behaviour within sexual networks of HIV-positive MSM, a clinical 

selection bias, or a combination of factors (Ward et al., 2009a; Ward et al., 2009b; Annan et 

al., 2009).  

 

As both pathogens are capable of traversing the epithelial barrier (Dessus-Babus et al., 2008; 

Richardson & Goldmeier 2007; Fantini et al., 1993; Plummer et al., 1991) and infecting 

reticuloendothelial cells (Matyszak et al., 2002; Numazaki et al., Bianchi et al., 1997; 

Bianchi et al., 1998), there is the potential for HIV-1 and C. trachomatis serovar L2 to 

impact upon the replication of one another. Yet, there have only been a limited number of in 

vitro models of HIV-1 and C. trachomatis co-infection conducted (Ho et al., 1995; Bianchi et 

al., 1998). These have been designed to investigate the effect of C. trachomatis co-infection 

on HIV-1 replication, however, Bianchi et al., 1998 suggest that HIV-1 accelerates the 

replication of C. trachomatis in vitro. This study was based solely on the rate of cell-lysis 

and, consequently, C. trachomatis replication in HIV-1 infected cells remains 

uncharacterised. 

 

Viral co-infection with HSV-2 can lead to C. trachomatis persistence, characterised by the 

presence of viable, but non-cultivable, organisms that are morphologically abnormal (Deka et 
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al., 2006), however, it remains unknown whether HIV-1 also causes a C. trachomatis 

persistent phenotype in co-infected cells. 

 

3.1.2 Hypothesis 

HIV-1 co-infection induces C. trachomatis persistence in vitro. 

 

3.1.3 Aims of the Project 

This project aimed to establish assays that characterised C. trachomatis growth in vitro by 

means of several experimental parameters, including chlamydial inclusion size, inclusion 

number, EB and RB morphology, EB infectivity, genome copy number and the transcription 

of unprocessed 16S rRNA, ompA, omcB, and euo.  A cell-culture model of C. trachomatis 

and HIV-1 co-infection was developed and used to assess whether HIV-1 induced C. 

trachomatis persistence in vitro. 
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3.2 Results 

 

3.2.1 Quantification of C. trachomatis by immunofluorescence microscopy (IFM) 

The compound cycloheximide inhibits eukaryotic DNA and protein synthesis and enhances 

the growth of C. trachomatis serovars A- I, L1, L2 and L3 in cell-culture (Ripa & Mårdh 

1977). However, as HIV-1 replication is dependent on the action of eukaryotic 

transcriptional and translational machinery (reviewed by Freed et al., 2006), cycloheximide 

use is precluded in studies of HIV-1 and C. trachomatis co-infection.  

 

In order to demonstrate that C. trachomatis serovar L2 could grow in the absence of the 

compound, monolayers of BGMK cells were infected with 10-fold serial dilutions of C. 

trachomatis in triplicate, in the presence or absence of cycloheximide (1µg/ml) (Figure 3.1). 

Cells were incubated for 30 hours before they were subject to immunofluorescence 

microscopy (IFM). The number of inclusions was counted for each dilution in the presence 

and absence of cycloheximide and no significant difference found, demonstrating that C. 

trachomatis could grow in the absence of the compound.  
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Figure 3.1  C. trachomatis serovar L2 can grow in the absence of cycloheximide 

 

 
 

 

Figure 3.1 C. trachomatis was serially diluted 10-fold and monolayers of BGMK cells 

infected with each dilution in triplicate. Cells were infected in the presence and absence of 

cycloheximide and subject to IFM 30 hours post-infection. The number of inclusions was 

determined for each dilution of C. trachomatis and the mean plotted graphically (+/- standard 

error of the mean (SEM)).  
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3.2.2 Quantification of C. trachomatis replication by qPCR 

The replication of C. trachomatis was quantified by determining the chlamydial genome copy 

number in infected cell-lysates at various time-points post-infection. The genome copy 

number was enumerated by using a quantitative polymerase chain reaction (qPCR) that 

targeted a 189 base-pair (bp) section of the pmpH gene (pmpH-qPCR). This gene encodes the 

polymorphic membrane protein H (PmpH) that is present in the inclusion membrane (Mygind 

et al., 2000) of all serovars of C. trachomatis, but is absent from  C.pneumoniae, making the 

gene a useful target for C. trachomatis diagnosis (Morré et al., 2005). As the gene is encoded 

by the chromosome, rather than the plasmid, it is present in only one copy per C. trachomatis 

organism. By determining the number of pmpH copies in a sample it was, therefore, possible 

to determine the number of organisms in that sample. 

 

In order to quantify the number of pmpH gene copies in a sample, a standard curve was 

generated, using a recombinant plasmid containing the target region of pmpH, termed 

pCR
®
4-TOPO

®
pmpH (constructed as described in Chapter 2, Section 2.16).. 

 

The concentration of the pCR
®
4-TOPO

®
pmpH construct (copy number/ml) was determined 

and the plasmid was serially diluted 10-fold. Aliquots were added to a reaction mixture 

containing SYBR Green I dye, the pmpH forward primer and reverse primer and water, and 

standards were processed in a LightCycler 1.5 instrument. The SYBR Green I dye fluoresced 

when bound to double- stranded DNA. As the number of PCR amplification cycles increased, 

the number of amplification products increased and, hence, the fluorescence signal increased. 

When reagents became limiting, amplification decreased and the fluorescent signal reached a 

plateau, giving rise to a sigmoidal amplification plot (Figure 3.3 A). As the plasmid was 

serially diluted, it took an increasing number of amplification cycles for a given fluorescence 
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to be reached, so the sigmoidal curve shifted progressively to the right. The point at which 

fluorescence crossed a pre-determined threshold (the crossing point) was determined and 

plotted against plasmid number to produce a standard curve showing a linear relationship 

between crossing point and cycle number, with a gradient of -3.33 (Figure 3.3 B). 

 

To confirm the specificity of the amplified products, a melting curve (Figure 3.3 C) and 

melting peak (Figure 3.3 D) were constructed. Briefly, the temperature of the post-

amplification reaction-mix was gradually increased. At a temperature of approximately 83
°
C, 

the double strands of the DNA product separated. As SYBR Green I only binds double-

stranded DNA, the fluorescence dropped sharply (Figure 3.3 C), confirming the products to 

be of the same constituency. The negative control (water) did not give rise to a sigmoidal 

amplification plot, a melting curve or a melting peak.  

 

The analytical sensitivity of the assay was determined by diluting the pCR
®

4-TOPO
®
pmpH 

plasmid to concentrations of 10,000, 1,000, 100, 70, 50, 30 and 10 copies per 5µl (the volume 

added to each lightcycler capillary) and amplifying the target DNA in quadruplicate. The 

lowest concentration of plasmid that amplified in all 4 replicates was 50 copies per reaction 

(Table 3.1) and, as there is one pmpH gene copy per C. trachomatis organism, the sensitivity 

of the assay was 50 organisms per reaction. This is consistent with the sensitivities of 

previously published qPCR assays that target the pmpH gene (Chen et al., 2008) and was 

adequate for subsequent in vitro experiments. 

 

Assay reproducibility was determined by amplifying 3 dilutions of DNA extracted from an 

aliquot of purified C trachomatis EBs between 5 and 9 times in one experiment to determine 

intra-assay variation, and in 4 separate experiments to determine inter-assay variation. The 
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mean crossing point, standard deviation and coefficient of variation per dilution were 

determined. Intra-assay variability and inter-assay variability were low, with co-efficient of 

variations ranging from 1.93-3.75% for intra-assay variation (Table 3.2) and 1.21-2.24% for 

inter-assay variation (Table 3.3).   

 

The replication of C. trachomatis in BGMK cells was determined by qPCR. Briefly, BGMK 

monolayers were infected with C. trachomatis at an MOI of 0.1 in duplicate. At various times 

(0, 6, 16, 24, 30, 40, 48 and 64 hours) post-infection, DNA was extracted from the cells and 

amplified by qPCR. The number of pmpH copies in each sample was determined from the 

standard curve, and the mean number of organisms present at each time-point plotted 

graphically (+/- standard error of the mean (SEM)) in order to characterise the growth of C. 

trachomatis over time (Figure 3.4). Organisms divided in a logarithmic fashion between 0 

and 40 hours post-infection, reflecting one replication cycle, after which cell-lysis and a 

second round of replication likely occurred. 
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Figure 3.3 Standard Curve for the quantification of C. trachomatis by qPCR 

        

     

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The pCR
®

4-TOPO
®
pmpH recombinant plasmid was quantified and serially 

diluted 10-fold in nuclease-free water. For each dilution (10
1 

-10
8 

copies per reaction), the 

amplification plot of fluorescence over cycle number (A) showed a typical sigmoidal curve, 

from which the crossing point was determined. A standard curve with a gradient of -3.33 was 

generated of crossing point against DNA copy number (B). The melting curve (C) and 

melting peak (D) showed a single peak for plasmid dilutions 10
1 

-10
8
 copies per reaction, 

whereas the negative control (H2O) did not give rise to a sigmoidal amplification plot, a 

melting curve or melting peak. 
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Table 3.1 End-point serial dilutions of pCR
®
4-TOPO

®
pmpH 

 

 

 

Number of 

pmpH copies 

per reaction 

 Repeats 

 1 2 3 4 

10,000  + + + + 

1,000  + + + + 

100  + + + + 

70  + + + + 

50  + + + + 

30  + + - - 

10  + - - - 

 

 

 

Table 3.1 The pCR
®
4-TOPO

®
pmpH recombinant plasmid was diluted to 10,000, 1,000, 100, 

70, 50, 30 and 10 copies per 5µl reaction and each dilution amplified in quadruplicate. The 

lowest concentration of plasmid that was amplified in each replicate reflected the sensitivity 

of the assay (50 copies per reaction). As there is 1 pmpH gene per C trachomatis organism, 

the sensitivity of the assay is 50 organisms per reaction. 
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Table 3.2 pmpH-qPCR intra-assay variation 

 

 

 

Sample 

Intra-assay variation 

Mean crossing 

point 

SD Coefficient of 

variation (%) 

1 12.24 0.46 3.75 

2 16.39 0.50 3.06 

3 23.32 0.45 1.93 

 

 

Table 3.2 Three dilutions of DNA extracted from purified C. trachomatis EBs (samples 1, 2 

and 3) were amplified with the pmpH qPCR. Samples 1 and 2 were amplified 9 times each, 

and sample 3 was amplified 5 times (due to an insufficient volume of DNA for 9 repeats). 

The mean crossing point, standard deviation and coefficient of variation for each sample were 

determined.  The intra-assay variability was low, with the highest co-efficient of variation 

being 3.75%. 

 

 

 

Table 3.3  pmpH-qPCR inter-assay variation 

 

 

 

Sample 

Inter-assay variation 

Mean crossing 

point 

SD Coefficient of 

variation (%) 

1 20.32 0.45 2.24 

2 24.39 0.41 1.69 

3 28.32 0.34 1.21 

 

 

Table 3.3 Three dilutions of DNA extracted from purified C. trachomatis EBs (samples 1, 2 

and 3) were amplified in duplicate with the pmpH qPCR in 4 independent experiments. The 

mean crossing point, standard deviation and coefficient of variation for each sample were 

determined. The inter-assay variability was low, with the highest coefficient of variation 

being 2.24%. 
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Figure 3.4 Replication kinetics of C. trachomatis in BGMK cells  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 At 0, 6, 16, 24, 30, 40, 48 and 64 hours post-C. trachomatis infection, DNA was 

extracted from infected BGMK cells and the number of organisms in each sample determined 

by qPCR in duplicate. A graph of the mean number of C. trachomatis organisms over time 

(+/- SEM) was plotted to determine the replication dynamics of C. trachomatis in BGMK 

cells.  
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3.2.3 Quantification of the infectivity of C. trachomatis progeny by sub-culture 

 

Optimisation of sub-culture 

The infectivity of Chlamydia progeny is routinely quantified by lysing infected cell-cultures, 

and inoculating cell-lysates onto reporter cell-lines to quantify the number of IFUs that 

subsequently develop. Methods for lysing cells to release intracellular C. trachomatis include 

multiple freeze-thaw cycles (Suchland et al., 2003), sonication (Rothermel et al., 1983) or a 

combination of the two (Deka et al., 2006; Deka et al ., 2007; Vanover et al., 2008). 

 

 The yields of C. trachomatis (IFU per ml undiluted cell-lysate) resulting from the different 

methods of cell-lysis were compared. Briefly, BGMK cells were infected with C. 

trachomatis at an MOI of 1, in duplicate. Fourty hours post-infection, cells were subject to 

either one freeze-thaw cycle, two rounds of sonication, or one freeze-thaw cycle followed by 

two rounds of sonication. Additional BGMK monolayers were inoculated with the lysates. 

These were fixed, stained and viewed by IFM 30 hours post-infection in order to determine 

the number of IFUs per ml cell-lysate for each lysis condition. Sonication yielded a titre that 

was 100 times higher than other lysis techniques and was the method of choice in subsequent 

experiments (Figure 3.5, blue bars).   

 

In order to remove viral contamination from HSV-2/C. trachomatis co-infected cell-lysates, 

Deka et al., 2006 pelleted the C. trachomatis organisms, discarded the supernatant, and 

washed and re-suspended the C. trachomatis in complete medium prior to passage (purified 

cell-lysates). Following this protocol, the titre of C. trachomatis in purified cell-lysates was 

found to be the same log-factor as un-purified cell-lysates (Figure 3.5, pink bars).    
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Figure 3.5 Comparison of C. trachomatis yield from different cell-lysis techniques 

 

 

 

Figure 3.5 BGMK cells were infected in duplicate with C. trachomatis at an MOI of 1. Forty 

hours post-infection, cells were subjected to either freeze/thawing, sonication, or freeze-

thawing and sonication. Additional BGMK cell-monolayers were inoculated with the lysates 

and the number of IFUs/ml cell-lysate for each lysis condition was compared to determine 

which gave the highest yield. Lysates were either un-purified (blue bars) or purified (pink 

bars) by pelleting the C. trachomatis organisms in the lysate, discarding the supernatant, 

washing the bacteria and re-suspending them in complete medium prior to BGMK-cell 

inoculation as per Deka et al., 2006. 
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The infectivity of C. trachomatis progeny over 48 hours 

BGMK cells were infected with C. trachomatis at an MOI of 0.1 in duplicate. At various 

times (6, 16, 24, 30, 40 and 48  hours) post-infection, cells were lysed by sonication and 

additional BGMK monolayers inoculated with 10-fold serially diluted cell-lysates in 

triplicate. Cells were fixed, stained and viewed by IFM 30 hours post-infection (Figure 3.6 

A). The average number of IFUs/ml of undiluted lysate was determined and plotted 

graphically over time (+/- SEM) (Figure 3.6 B). Between 6 and 24 hours post-infection, no 

infectious organisms were present in the cell lysates, despite a logarithmic growth curve 

throughout this period (Figure 3.4). This is consistent with the intracellular presence of non-

infectious, replicative RBs. Between 24 hours and 40 hours post-infection, the number of 

infectious organisms increased, consistent with the differentiation of RBs to EBs. At later 

time-points, the number of infectious organisms reached a plateau, despite a continued 

increase in replication of Chlamydia genomes, possibly as infected cultures became 

asynchronous, with some cells lysing to begin a second round of replication while other RBs 

continuing to differentiate into non-replicative, infectious EBs. 
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Figure 3.6 The infectivity of C. trachomatis progeny over time 

 

 

Figure 3.6 A 
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Figure 3.6 B   

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.6. BGMK cells were infected with a C. trachomatis at an MOI of 0.1. At 6, 16, 24, 

30, 40, and 48 hours post-infection, cells were lysed by sonication and cell a second 

monolayer of BGMK cells inoculated with serial dilutions of cell-lysate in triplicate. Thirty 

hours post-inoculation, cells were fixed, stained and observed by IFM (Figure 3.6 A). The 

average number of IFU in the BGMK monolayer was determined for a given dilution and 

extrapolated to the number of IFU per ml of undiluted cell-lysate. This was plotted 

graphically for each time-point (Figure 3.6B). 

 

 

 

 

 

 

 
 

 

 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

6 16 24 30 40 48

C
. 
tr

a
c
h

o
m

a
ti

s
IF

U
 p

e
r 

m
l 
c
e
ll

-l
y
s
a
te

Time post-infection (hours)



112 

 

3.2.4 Development of a C. trachomatis model of persistence with Penicillin  

The assays described above characterised the growth of C. trachomatis during a lytic cycle of 

infection. The growth of C. trachomatis during a persistent infection was subsequently 

assessed. Penicillin is known to induce C. trachomatis persistence (Matsumoto & Manire, 

1970; Lambden et al., 2006; Ouellette et al., 2006). During penicillin-induced chlamydial 

persistence, the genes ompA and omcB (encoding the EB outer membrane proteins, MOMP 

and OMP2, respectively) are down-regulated and the expression of the gene „euo’ (whose 

product silences late-gene expression) is upregulated (Ouellette et al., 2006). In addition, 

there is no significant reduction in chlamydial viability, as determined by the continued 

presence of unprocessed 16S rRNA transcripts (Ouelette et al., 2006), but there is a 

significant reduction in the number of infectious progeny.  

 

Monolayers of BGMK cells were infected with C. trachomatis at an MOI of 2 in the presence 

or absence of 5μg/ml penicillin (Sigma-Aldrich, UK). Twenty four hours post-infection, cells 

were lysed and DNA and RNA extracted. Additional BGMK monolayers were also 

inoculated with the cell-lysates to determine the number of infectious organisms present in 

the samples.  

 

The RNA was reverse-transcribed to cDNA that was amplified by qPCR using primers 

against Chlamydia unprocessed 16s rRNA, ompA, omcB and euo, in order to determine the 

number of cDNA transcripts of each gene in the sample. The DNA extracted from the cells 

was also amplified by qPCR using the same primers in order to determine the number of 

DNA copies of each gene present. The number of cDNA transcripts for each gene was 

divided by the number of DNA copies, in order to quantify gene expression in the sample 
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(cDNA copies/DNA copies) in the presence and absence of penicillin. This was plotted 

graphically (Figure 3.7).  

 

In the presence of penicillin, the infectivity of C. trachomatis was reduced (Figure 3.7 A), 

and there was no change in the genome copy number (Figure 3.7 B). In addition, although 

the expression of unprocessed 16S ribosomal RNA (rRNA) was slightly reduced in the 

presence of penicillin, viable organisms continued to remain in the culture (Figure 3.7 C). 

The expression of euo was upregulated (Figure 3.7 D), whereas ompA and omcB were down-

regulated (Figure 3.7 E and F). These observations were consistent with penicillin inducing a 

persistent phenotype in the C. trachomatis organisms and demonstrated that the assays 

developed for characterising Chlamydia growth in vitro could detect C. trachomatis 

persistence. 
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Figure 3.7 The effect of Penicillin on chlamydial infectivity, genome copy number, and the 

transcription of 16srRNA, euo, ompA and omcB 

 

 

 

Figure 3.7  Monolayers of BGMK cells were infected with C. trachomatis at an MOI of 2 in 

the presence or absence of penicillin. Cells were either lysed and titrated onto additional 

BGMK cells to quantify the number of infectious organisms present in the samples (A) or the 

DNA and RNA were extracted in order to determine the C. trachomatis genomic copy 

number (B), and the expression of unprocessed 16SrRNA (C), euo (D), ompA (E), and omcB 

(F) in the presence (red bars) and absence (blue bars) of penicillin. 
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3.2.5 Identification of a cell-line to investigate C. trachomatis and HIV-1 co-infection 

 

Cell-lines expressing CD4 that are known to be permissive to HIV-1 infection were 

investigated for their ability to support the replication of C. trachomatis. The BGMK 

epithelial cell-line (Hobson et al., 1982) was chosen as the standard against which the other 

cell-lines were compared, as it is known to be permissive for C. trachomatis infection. The 

following CD4-positive cell-lines were investigated: MAGI P4R5 (epithelial cell-line) 

(Kimpton & Emerman 1992), C8166  (T-cell-line) (Sodroski et al., 1986), Jurkat E6.1 (T-cell-

line) (Alkhatib et al., 1996), U937 (monocytic cell-line) (Sundström &Nilsson 1976) and THP-

1 (monocytic cell-line) (Tsuchiya et al., 1980) (Table 2.2).  

 

Cells were infected in duplicate with C. trachomatis at an MOI of 10 for 30 hours. Cells were 

fixed, permeabilised, stained with anti-LPS-FITC antibody solution and viewed by IFM with 

a x 20 objective lens. At least 5 fields of view were imaged under white light (phase contrast) 

and at excitation/emission wavelengths of 470/505nm (Figure 3.8 A). The number of cells 

(visible under white light) and the number of inclusions (that fluoresced green at 

excitation/emission wavelengths of 470/505nm) were counted and the average percentage of 

infected cells per field of view determined for each cell-line and plotted graphically +/- SEM 

(Figure 3.8 B).  

 

The MAGI P4R5 cell-line was as permissive to C. trachomatis infection as BGMK cells, and 

was used in subsequent co-infection experiments.  
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Figure 3.8 Identification of a cell-line to investigate C. trachomatis and HIV-1 co-

infection 

 

 

Figure 3.8 A – IFM Images of C. trachomatis- infected CD4+ cells 
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Figure 3.8 B – Quantification of C. trachomatis infection of CD4+ cell-lines 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 BGMK cells and the CD4-positive cell-lines MAGI P4R5, C8166, Jurkat E6.1, 

U937 and THP-1 were infected with C. trachomatis at an MOI of 10. Thirty hours post-

infection, cells were fixed, stained with anti-LPS-FITC and subject to IFM (Figure 3.6A).  

Cells were viewed by white light (phase contrast), blue light (anti-LPS-FITC) and the images 

merged (Figure 3.8A). The percentage of CD4-positive cells infected with C. trachomatis 

(blue bars) was compared with BGMK cells (red bar) (Figure 3.8 B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

BGMK MAGI P4R5 C8166 Jurkat U937 THP-1

p
e
rc

e
n

ta
g

e
 o

f 
 c

e
ll

s
 i

n
fe

c
te

d
 (

%
)

Cell-Line



118 

 

3.2.6 Quantification of HIV-1 infection in MAGI P4R5 cells 

 

The MAGI P4R5 cells are transformed with a β-galactosidase gene under the control of the 

HIV-1 long terminal repeat (LTR). When they are incubated in the presence of a solution 

containing X-gal, infected cells catabolise the substrate to a coloured product and the cells‟ 

cytoplasm  appear blue (Kimpton & Emerman 1992). This feature was exploited in 

quantifying viral infection (Figure 3.9 A). However, in co-infected cells, C. trachomatis 

inclusions were not clearly visible against the blue cytoplasmic background.  An antibody 

raised against the HIV-1 core antigens (55, 39, 33 and 24KDa proteins) conjugated to the red 

fluorophore phycoerythrin (anti-P24-PE) was therefore used to visualise the HIV-1 infection 

(Figure 3.9 B).  

 

In order to validate the antibody staining, monolayers of MAGI P4R5 cells were infected 

with HIV-1 at increasing MOIs  and the number of cells with a blue cytoplasm after X-gal 

staining was compared with the number of cells fluorescing red after staining with anti-P24-

PE at 20 hours post-infection. The percentage of infected cells was calculated for each field 

of view and the mean value plotted graphically (+/- SEM) for each MOI (Figure 3.9 C).  

There was no significant difference in the percentage of infected cells as determined by X-gal 

staining (yellow bars)or anti-P24-PE antibody staining (red bars).  
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Figure 3.9 HIV-1MN infection of MAGI P4R5 cells 

 

 
Figure 3.9 MAGI P4R5 cells were infected with HIV in duplicate at MOIs of 0, 0.5, 1, 5 and 

10. Twenty hours post-infection, cells were either fixed and stained with X-gal in X-gal 

buffer, or subject to IFM with anti-P24-PE antibody. Infected cells possessed a blue 

cytoplasm when cultures were stained with X-Gal (Figure 3.9 A), and a red cytoplasm when 

cultures were stained with anti-P24-PE antibody and viewed at excitation/emission 

wavelengths of 535/565 nm by a fluorescence microscope (Figure 3.9 B). The percentage of 

infected cells was determined for each field of view and the mean value plotted graphically 

(+/- SEM) for each MOI (Figure 3.9 C).  
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3.2.7 Co-infection of HIV-1-infected cells with C. trachomatis 

 

The growth of C. trachomatis in MAGI P4R5 cells infected with HIV-1 was compared to 

when the virus was absent. Briefly, duplicate monolayers of MAGI P4R5 cells were either 

mock-infected with complete medium (Figure 3.10 A, grey circle) or infected with HIV-1 at 

an MOI of 5 for 2 hours (Figure 3.10 A, red diamond). Cultures were incubated for 20 hours, 

after which cells were either mock-infected once more, or were infected with C. trachomatis 

at an MOI of 0.1 (Figure 3.10 A, green square). Four hours post-co-infection, the inoculum 

was replaced with complete medium (Time point 0). At various times (6, 12, 24, 30, 36 and 

48 hours) post-co-infection, cells were either subject to IFM, or removed from the substratum 

by incubation with trypsin. Cell suspensions were either lysed by sonication and BGMK cells 

inoculated with the cell-lysates to establish the quantity of infectious C. trachomatis present, 

or DNA was extracted to quantify the chlamydial genome copy number in each sample. In 

addition, the quantity of HIV-1 virus present in the cell supernatents at each time-point was 

quantified by the SG-PERT assay and by titration onto C8166 cells. 

 

At 6, 12, 24, 36 and 48 hours post-co-infection, cells were subject to IFM with anti-LPS-

FITC and anti-P24-PE. The cells were viewed with a fluorescence microscope (x20 objective 

lens) (Figure 3.10 B). The C. trachomatis inclusions fluoresced green at excitation/emission 

wavelengths of 470/505nm and the cytoplasm of cells infected with HIV-1 fluoresced red at 

excitation/emission wavelengths of 535/565 nm. The number of C. trachomatis inclusions 

per well was counted for each time point and the mean plotted graphically (+/- SEM) in the 

presence and absence of HIV-1 (Figure 3.10 C).   
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There were significantly fewer C. trachomatis inclusions at 36 and 48 hours post-co-infection 

in cells that were infected with HIV-1, compared to when HIV-1 was absent (Student‟s t-test 

P < 0.01).  

 

C. trachomatis inclusions in at least 5 fields of view were imaged for each well and the 

surface area of each inclusion was determined (pixels
2
) by the IFM computer software 

(Lucia). The median inclusion surface area for each time point, where inclusions were visible, 

in the presence and absence of HIV-1 was plotted graphically (Figure 3.10 D). In HIV-1-

infected cells, C. trachomatis inclusions were significantly larger at 36 and 48 hours post-co-

infection, compared to when HIV-1 was absent (Mann-Whitney U P < 0.01).  

 

At 6, 12, 24, 36 and 48 hours post-co-infection, DNA was extracted from cell cultures and 

amplified with primers against the C. trachomatis pmpH gene (Table 2.1) by qPCR. The 

genome copy number in each sample was determined and the mean for each time point 

plotted graphically (+/- SEM) for each time point in the presence (red line) and absence (blue 

line) of HIV-1(Figure 3.10 E). There was no significant difference in the replication of 

Chlamydia genomes in the presence or absence of HIV-1. 

 

Infected cell-cultures were lysed by sonication at 24, 36 and 48 hours post-co-infection. 

Lysates were purified as described (Section 3.2.3) and monolayers of BGMK cells were 

infected with 10-fold serial dilutions of the lysates. Cells were incubated for 30 hours prior to 

IFM, whereupon the average number of IFUs per ml of undiluted cell-lysate was calculated 

and plotted graphically for each time point in the presence (red bar) and absence (blue bar) of 

HIV-1 (Figure 3.10 F). There was no significant difference in the infectivity of Chlamydia 

progeny in the presence or absence of HIV-1. As persistence is characterised by a loss of 



122 

 

infectivity Johnson & Hobson, 1977; Beatty et al., 1993), this result is not consistent with a 

persistent phenotype. 

 

At 6, 12, 24, 36 and 48 hours post-co-infection, an aliquot of supernatant was taken from 

each well and the activity of HIV-1 reverse transcriptase quantified by means of an in-house 

SYBR Green I-based product-enhanced reverse transcriptase (SG-PERT) assay. Additionally, 

the tissue culture infectious dose 50 (TCID50) of HIV-1in the supernatants was also 

calculated as described (section 2.4.2) (Figure 3.10 G). The addition of C. trachomatis to 

MAGI P4R5 cells did not alter the replication of HIV-1 as determined by either the SG-PERT 

or TCID50 assays. 
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Figure 3.10 A – Co-infection of HIV-1 infected cells with C. trachomatis 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 A MAGI P4R5 cells were either mock infected with complete medium (grey 

circle) or infected with HIV-1 (red diamond) and incubated for 20 hours, after which cells 

were either mock infected with complete medium (grey circle), or infected with C. 

trachomatis (green square). Four hours post- C. trachomatis infection, the inoculum was 

replaced with complete medium (grey circle) (Time point 0) and the cells incubated at 37
°
C 

in 5% CO2. At 6, 12, 24, 30, 36 and 48 hours post co-infection, cells were processed for the 

following assays: IFM, passage onto BGMK cells to establish the quantity of infectious C. 

trachomatis in the samples (CT Passage), Chlamydia genome copy number quantification by 

qPCR (CT qPCR), and HIV-1 quantification by the SG-PERT assay and titration onto C8166 

cells (HIV-1 quantification). 
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Figure 3.10 B -   IFM of C. trachomatis inclusions in cells that were either mock infected, or 

co-infected with HIV-1. 

 
Figure 3.10 B MAGI-P4R5 cells were either mock infected with complete medium, or 

infected with HIV-1 at an MOI 5 for 20 hours. Cells were co-infected with C. trachomatis at 

an MOI of 0.1 and at various times (T 6, 12, 24, 30, 36 and 48 hours) post co-infection, cell 

cultures were subject to IFM with anti-LPS-FITC and anti-P24-PE.  Cells were viewed with a 

fluorescence microscope (x20 objective). C. trachomatis inclusions fluoresced green at 

excitation/emission wavelengths of 470/505nm and the cytoplasm of cells infected with HIV-

1 fluoresced red at excitation/emission wavelengths of 535/565 nm. 
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Figure 3.10 C - Significantly fewer C. trachomatis inclusions develop in cells infected with 

HIV-1, compared to when HIV-1is absent 

 

 

Figure 3.10 C MAGI P4R5 cells that had previously been mock-infected with complete 

medium, or infected with HIV-1, were infected with C. trachomatis. At 6, 12, 24, 36 and 48 

hours post-co-infection, cells were subject to IFM and the number of C. trachomatis 

inclusions per well counted. The mean value was plotted graphically (+/- SEM) for each time 

point in the presence (red bars) and absence (blue bars) of HIV-1.  Ct pos, C. trachomatis 

infected cells; HIV pos, HIV-1 infected cells; HIV neg, cells not infected with HIV-1. 
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Figure 3.10 D-   Significantly larger C. trachomatis inclusions develop in cells infected with 

HIV-1, compared to when HIV-1 is absent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 D MAGI P4R5 cells that had either been mock-infected with complete medium, 

or infected with HIV-1, were co-infected infected with C. trachomatis. At 6, 12, 24, 36 and 

48 hours post-co-infection, cells were subject to IFM and imaged in at least 5 fields of view 

per well.  The surface area of each inclusion (pixel
2
) was determined by the IFM computer 

software (Lucia) and the median inclusion surface area for each time point where inclusions 

were visible (24, 36 and 48 hours post co-infection) were plotted graphically  in the presence 

(red plots) and absence (blue plots) of HIV-1. CT +, C. trachomatis infected cells; HIV +, 

HIV-1 infected cells; HIV-, cells not infected with HIV-1; pi, post-infection. Dots and stars 

are out-lier points. 
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Figure 3.10 E -The replication of C. trachomatis genomic copies remains unchanged in cells 

infected with HIV-1 compared to when HIV-1 is absent. 

 
 

 

 

Figure 3.10 E MAGI P4R5 cells that had previously been mock-infected with complete 

medium, or infected with HIV-1, were co-infected with C. trachomatis in duplicate. At 6, 12, 

24, 36 and 48 hours post-co-infection, DNA was extracted from the cells and amplified with 

primers against the C. trachomatis pmpH gene by qPCR in order to determine the genome 

copy number in each sample. The mean Chlamydia genome copy number was plotted 

graphically (+/- SEM) for each time point in the presence (red line) and absence (blue line) of 

HIV-1.  
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Figure 3.10 F-  The infectivity of C. trachomatis progeny remains unchanged in cells that 

infected with HIV-1 compared to when HIV-1 is absent. 

 

 

 

Figure 3.10 F MAGI P4R5 cells that had been mock-infected with complete medium, or 

infected with HIV-1, were co-infected with C. trachomatis in duplicate. At 24, 36 and 48 

hours post-co-infection, cell-suspensions were lysed by sonication. Monolayers of BGMK 

cells were inoculated with 10-fold serial dilutions of the cell-lysates, and the number of IFUs 

counted. The number of C. trachomatis IFUs per ml of undiluted cell-lysate was calculated 

and plotted graphically for each time point in the presence (red bar) and absence (blue bar) of 

HIV-1.  
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Figure 3.10 G -  The replication of HIV-1 remains unchanged by the addition of C. 

trachomatis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 G MAGI P4R5 cells were either mock-infected with complete medium, or 

infected with HIV-1. Cells were co-infected with C. trachomatis and, at 6, 12, 24, 36 and 48 

hours post-co-infection, aliquots of cell supernatants were obtained from each well. The 

activity of HIV-1 RT in the supernatant was quantified by means of an in-house SG-PERT 

assay (A), and the TCID50 of HIV-1 was calculated (B). The RT activity and TCID50 of HIV-

1 was compared in the presence (red lines) and absence (blue lines) of C. trachomatis. 
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3.2.7 Co-infection of C. trachomatis-infected cells with HIV-1 

 

The effect of HIV-1 co-infection on C. trachomatis growth in MAGI P4R5 was investigated. 

Briefly, cells were either mock infected with complete medium (Figure 3.11 A, grey circle) 

or infected with C. trachomatis at an MOI of 10 (Figure 3.11 A, green square) and incubated 

for 24 hours, after which cells were either mock infected with complete medium (Figure 3.11 

A, grey circle), or co-infected with HIV-1 at an MOI of 10 (Figure 3.11 A, red triangle). Two 

hours post co-infection, the inoculum was replaced with complete medium (Time point 0). At 

various times (0, 5, 10, 15 and 20 hours) post co-infection, cells were either subject to IFM, 

or they were removed from the substratum by incubation with trypsin. Cell suspensions were 

either lysed by sonication and BGMK cells inoculated with the cell lysates to establish the 

quantity of infectious organisms in the samples, or DNA was extracted to quantify the 

chlamydial genome copy number present. In addition, RNA was extracted from cells 15 

hours post-co-infection and reverse transcribed to cDNA in order to determine the relative 

expression of Chlamydia genes in the presence and absence of HIV-1. Cells were also subject 

to transmission electron microscopy (TEM) 5, 10 and 15 hours post-co-infection to 

characterise the morphology of intracellular organisms in the presence and absence of HIV-1. 

Finally, the quantity of HIV-1 virus present in the cell supernatants at each time point was 

quantified by the SG-PERT assay and by titration onto C8166 cells in the presence and 

absence of C. trachomatis. 

 

Infected cell cultures were subject to IFM with anti-LPS-FITC and anti-P24-PE  and viewed 

with a fluorescence microscope (x20 objective lens) (Figure 3.11 B). The C. trachomatis 

inclusions fluoresced green at excitation/emission wavelengths of 470/505nm and the 

cytoplasm of cells infected with HIV-1 fluoresced red at excitation/emission wavelengths of 
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535/565 nm. The number of C. trachomatis inclusions in at least 5 fields of view per well 

was counted at 0, 5, 10, and 15 hours post-infection, and the mean plotted graphically (+/- 

SEM) (Figure 3.11 C).  There were significantly fewer C. trachomatis inclusions at 10 and 15 

hours post-HIV-1 co-infection compared to when HIV-1 was absent (Student‟s t-test P = 

0.03).  

 

C. trachomatis inclusions in at least 5 fields of view were imaged for each well at 

excitation/emission wavelengths of 470/505nm with the fluorescence microscope x 20 

objective lens. For each inclusion imaged, the surface area was determined (pixels
2
) by the 

IFM computer software (Lucia). The median inclusion surface area was determined for each 

time point and plotted graphically (Figure 3.11 D). In the presence of HIV-1, C. trachomatis 

inclusions were significantly larger at 5, 10 and 15 hours post-co-infection, compared to 

when HIV-1 was absent (Mann-Whitney U P < 0.01).  

 

At 0, 5, 10, and 15 hours post-co-infection, duplicate cell-cultures were removed from the 

substratum by incubation with trypsin in 3 independent experiments. In the first, DNA was 

extracted from the cells and amplified with primers against the C. trachomatis pmpH gene by 

qPCR in order to determine the number of genome copies in each sample. The mean for each 

time point was plotted graphically in the presence and absence of HIV-1 (+/- SEM) (Figure 

3.11 E). The presence of HIV-1 made no significant difference to the replication of 

Chlamydia genomes, indicating that the virus did not accelerate the C. trachomatis life cycle 

as has been suggested (Bianchi et al., 1998). In the second, cell-suspensions were lysed by 

sonication and purified as described (Section 3.2.3). Monolayers of BGMK cells were 

inoculated with10-fold serial dilutions of the lysates and incubated for 30 hours prior to IFM 

with anti-LPS-FITC. The number of C. trachomatis IFUs per ml of undiluted cell-lysate was 
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determined and plotted graphically for each time point (Figure 3.11 F). The presence of HIV-

1 did not significantly alter the infectivity of C. trachomatis organisms in the lysates at 0, 5 

and 10 hours post-infection, however, there was a slight decrease in chlamydial infectivity at 

15 hours post-co-infection. When BGMK cells were inoculated with the supernatant from 

cell cultures 15 hours post-co-infection, the number of C. trachomatis IFUs recovered per ml 

was not significantly altered by the presence of HIV-1 (Figure 3.11 G). As persistence is 

characterised by a loss of infectivity (Johnson & Hobson, 1977; Beatty et al., 1993), this 

result is not consistent with a persistent phenotype 

 

In the third, the cell-suspension from each well was divided into 2 equal aliquots that were 

pelleted by centrifugation. The RNA was extracted from one cell-pellet and reverse-

transcribed to cDNA that was amplified by qPCR using primers against C. trachomatis 

unprocessed 16s rRNA, ompA, omcB and euo, in order to determine the number of cDNA 

transcripts of each gene in the sample. The DNA was extracted from the other cell-pellet and 

amplified by qPCR using the same primers in order to determine the number of DNA copies 

of each gene in the sample. The number of cDNA transcripts for each gene was divided by 

the number of DNA copies of each gene to quantify gene expression in the sample. The 

expression of each gene (cDNA copies/DNA copies) in the presence (red bars) and absence 

(blue bars) of HIV-1 was plotted graphically (Figure 3.11 H). Co-infection with HIV-1 

significantly upregulated the expression of omcB, an RB late-gene that encodes the outer 

membrane protein B, found in EBs. There was, however, no significant alteration in the 

expression of unprocessed 16S rRNA, ompA (encoding MOMP) or euo (involved in the 

silencing of late-genes) compared to when HIV-1 was absent. These results are not consistent 

with a persistent phenotype. 
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At 0, 5, 10, and 15 hours post-co-infection, cells were fixed and subject to TEM (Figure 3.11 

I). C. trachomatis inclusions containing EBs, intermediate bodies (IBs) and RBs were 

observed at all time-points in the presence and absence of HIV-1 , demonstrating that HIV-1 

does not lead to C. trachomatis persistence. The number of C. trachomatis EBs, IBs and RBs 

were counted as per the protocol by Timms et al., 2009 in 5 inclusions in co-infected cultures 

and 5 inclusions in cultures infected with C. trachomatis alone. The median number of EBs, 

RBs, and IBs per inclusion was determined in the presence and absence of HIV-1 at 15 hours 

post co-infection and tabulated (Table 3.4). The ratio of EBs / RBs was not significantly 

altered by the presence of HIV-1 (Mann Whitney U P = 0.310). As Chlamydia persistence is 

characterised by an alteration in the morphology of intracellular organisms, these 

observations are not consistent with a persistent phenotype. Moreover, these data suggest that 

co-infection did not promote the differentiation of RBs to EBs. 

 

An aliquot of supernatant was taken from each well at 0, 5, 10, and 15 hours post-co-

infection,  and the quantity of HIV-1 assayed by means of an in-house SG-PERT assay 

(Figure 3.11 J) and TCID50 (Figure 3.11 K). The replication of HIV-1 was not significantly 

altered in cells that were infected with C. trachomatis compared to when the bacteria were 

absent. 
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Figure 3.11 A -  HIV-1 co-infection of C. trachomatis-infected cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 A  MAGI P4R5 cells were either mock infected with complete medium (grey 

circle) or infected with C. trachomatis (green square) and incubated for 24 hours at 37
°
C, 5% 

CO2, after which cells were either mock infected with complete medium (grey circle), or 

infected with HIV-1 (red diamond). Two hours post-co-infection, the inoculum was replaced 

with complete medium (grey circle) (Time point 0) and the cells incubated at 37
°
C in 5% 

CO2. At various times (5, 10, 15 and 20 hours) post co-infection, cells were processed for the 

following assays: IFM, passage onto BGMK cells to establish the quantity of infectious C. 

trachomatis in the samples (Passage), Chlamydia genome copy number quantification 

(qPCR), C. trachomatis gene expression characterisation by RT qPCR, TEM and HIV-1 

quantification by the SG-PERT assay and titration onto C8166 cells (HIV-1 quantification). 

Medium only

C. trachomatis (L2) at MOI 10
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Figure 3.11 B- The growth of C. trachomatis in HIV-1-co-infected cells 

 

 

Figure 3.11 B MAGI-P4R5 cells were infected with C. trachomatis at an MOI of 10 for 24 

hours and mock-infected with complete medium, or infected with HIV-1 at an MOI 10. At 

various times (0, 5, 10, 15 and 20 hours) post co-infection, cell cultures were fixed, 

permeabilised subject to IFM with anti-LPS-FITC and anti-P24-PE.  Cells were viewed with 

a fluorescence microscope (x20 objective) and C. trachomatis inclusions fluoresced green at 

excitation/emission wavelengths of 470/505nm and the cytoplasm of cells infected with HIV-

1 fluoresced red at excitation/emission wavelengths of 535/565 nm. 
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Figure 3.11 C and D - Significantly fewer, but larger, C. trachomatis inclusions develop in 

cells co-infected with HIV-1. 

 

Figure 3.11 C and D  MAGI P4R5 cells were infected with C. trachomatis and mock- 

infected with complete medium, or infected with HIV-1. At various times (0, 5, 10 and 15 

hours) post-co-infection, cells were subject to IFM and the average number of inclusions per 

well plotted graphically (+/- SEM) for each time point in the presence (red bars) and absence 

(blue bars) of HIV-1 (Figure 3.11 C).  The median C. trachomatis inclusion surface area was 

also determined for each time point and plotted graphically in the presence (red plots) and 

absence (blue plots) of HIV-1 (Figure 3.11 D).  
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Figure 3.11 E, F and G -The replication of C. trachomatis genomic copies and the infectivity 

of C. trachomatis progeny remain unchanged by the presence of HIV-1 

 

 

Figure  3.11 E, F and G. MAGI P4R5 cells were infected with C. trachomatis and mock 

infected with complete medium, or infected with HIV-1 in duplicate. At various times (0, 5, 

10, 15 and 20 hours), the mean C. trachomatis genome copy number was determined by 

pmpH qPCR and plotted graphically (+/- SEM) in the presence (red line) and absence (blue 

line) of HIV-1 (Figure 3.11 E). Cell-suspensions were also lysed by sonication and BGMK 

monolayers inoculated with the cell-lysates in order to determine the infectivity of C. 

trachomatis progeny in the presence (red bars) and absence (blue bars) of HIV-1 (Figure 3.11 

F). In addition, BGMK cells were inoculated with aliquots of the culture supernatant from 15 

hours post-co-infection (Figure 3.11 G). 
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Figure 3.11 H – C. trachomatis gene transcription in HIV-1 co-infected cultures  

 

 

 

 
 

Figure 3.11 H MAGI P4R5 cells were infected with C. trachomatis and either mock infected 

with complete medium, or infected with HIV-1. At various times (0, 5, 10, and 15 hours) 

post-co-infection, DNA and RNA were extracted and the RNA reverse-transcribed to cDNA 

in order to quantify the expression of C. trachomatis unprocessed 16s rRNA, ompA, omcB 

and euo (copies cDNA/DNA.). The expression of each gene in the presence (red bars) and 

absence (blue bars) of HIV-1 was plotted graphically (Figure 3.11 H).  
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Figure 3.11 I - Transmission Electron Microscopy of C. trachomatis- infected cells in the 

presence and absence of HIV-1 

 

 

 
Figure 3.11 I MAGI P4R5 cells were infected with C. trachomatis and mock-infected with 

complete medium (A, C and E) or co-infected with HIV-1 (B, D and F). At 5 (A and B) 10 (C 

and D) and 15 (E and F) hours post-co-infection, samples were processed and viewed by 

TEM. EB, elementary body (arrow); RB, reticulate body (arrow with star); IB, intermediate 

body (arrow with diamond). 
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Table 3.4 TEM of C. trachomatis in the presence and absence of HIV-1 

 

 

 

  
Ct pos, HIV-1 neg 

 
Ct pos, HIV-1 

pos 
 

 
Number of inclusions imaged 

 
5 

 
5 
 

 
Median number organisms per inclusion (IR) 

 
112 (108-113) 

 
195 (188-325) 

 

 
Median number RBs per inclusion (IR) 

 

 
38 (32-39) 

 
108 (96-131) 

 

 
Median number EBs  per inclusion (IR) 

 
57 (33-59) 

 
71 (59-119) 

 

 
Median number IBs per inclusion (IR) 

 
17 (14-17) 

 
28 (25-58) 

 

 
Median EB/RB ratio (interquartile range) 

 
1.55 (0.85-1.78) 

 
0.74 (0.70-0.91) 

 
Mann Whitney U P value 0.310 

 
 

 

Table 3.4 MAGI P4R5 cells infected with C. trachomatis were co-infected with HIV-1. At 

15 hours post-co-infection, cells were subject to TEM. Five inclusions were imaged in the 

presence and absence of HIV-1 and the median number of EBs, IBs and RBs determined (IR, 

interquartile range). 
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Figure 3.11 J and K - The replication of HIV-1 remains unchanged in cells that are infected 

with C. trachomatis, compared to when the bacteria are absent. 

 

 

Figure 3.11 J and K. MAGI P4R5 cells were infected with C. trachomatis and either mock-

infected with complete medium, or infected with HIV-1. At various times (0, 5, 10, 15 and 20 

hours) post-co-infection, an aliquot of supernatant was taken from each well and the activity 

of HIV-1 RT quantified by means of an in-house SG-PERT assay. The TCID50 was also 

determined by titration onto C8166 cells. Blue lines, absence of C. trachomatis; red lines, 

presence of C. trachomatis. 
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3.3 Discussion 

 

In this investigation we sought to characterise the effect of HIV-1 co-infection on C. 

trachomatis replication by means of several experimental parameters, including chlamydial 

inclusion size, inclusion number, EB and RB morphology, EB infectivity, genome copy 

number and the transcription of unprocessed 16S rRNA, ompA, omcB, and euo.  This study 

represents, to our knowledge, the first characterisation of C. trachomatis replication in HIV-1 

co-infected cells. 

 

When Chlamydia organisms are in a persistent state, the morphology is typically aberrant, 

infectivity is significantly reduced and gene transcription is altered (Johnson et al., 1977; 

Matsumoto et al., 1970; Beatty et al., 1993; Beatty et al., 1994b; Raulston et al., 1997; 

Belland et al., 2003; Hogan et al., 2004; Ouellette et al., 2006; Goellner et al., 2006).  As 

HIV-1 co-infection did not induce significant changes in EB or RB morphology, the 

infectivity of EBs, or in the transcription of ompA (that encodes the EB major outer 

membrane protein, MOMP) and euo (the product of which silences late gene expression), it 

is reasonable to conclude that the presence of HIV-1 did not induce C. trachomatis 

persistence. Moreover, as there was no significant alteration in C. trachomatis genome copy 

number in the presence of HIV-1, it is also unlikely that HIV-1 accelerated the replication of 

C. trachomatis. In addition, the presence of C. trachomatis did not alter the replication of 

HIV-1 in co-infected cells. 

 

The lack of an observed interaction between C. trachomatis and HIV-1 is surprising. Both 

organisms manipulate the actin cytoskeleton to gain entry to cells (Scidmore, 2006; Carabeo 

et al., 2007;  Fackler et al., 2006; Liu et al., 2009) and C. trachomatis proteins can interact 
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with the cytoplasm (Scidmore, 2006), where HIV-1 structural proteins are located (Freed, 

2006).  The Chlamydia inclusion also intercepts exocytic vesicles budding off the Golgi 

network (Hackstadt et al., 1996) and, as the HIV-1 gp120 traffics through the Golgi (Stein & 

Engleman, 1990) it could potentially be re-routed to the inclusion. Interestingly, C. 

trachomatis inclusions have been shown to interact with vesicles derived from multivesicular 

bodies (Beatty et al., 2006; Beatty, 2008) and, as HIV-1 has been shown to assemble in these 

structures (Sherer et al., 2003; Joshi et al., 2009), there is additional potential for viral – 

chlamydial interaction. 

 

Co-infection of C. trachomatis-infected HeLa cells with HSV-2 induces C. trachomatis 

persistence (Deka et al., 2006) by initiating intracellular signalling events upon binding to the 

host-cell plasma membrane (Vanover et al., 2010).  Ligation of one such receptor class, the 

nectins, activates pathways that may be responsible for inducing C. trachomatis persistence 

(Deka et al., 2007).  When Nectins 1 and 2 bind their natural ligands, they lead to 

cytoskeletal rearrangements (Nakanishi et al., 2004) and it has been hypothesised that HSV-2 

induction of these pathways induces Chlamydia persistence in co-infected cells (Deka et al., 

2007).  However HIV-1 also leads to actin re-modelling during infection (Fackler et al., 

2006; Liu et al., 2009). Why, therefore, does HSV-2 induce C. trachomatis persistence but 

HIV-1 does not?  

 

The answer may lie in differences between the signalling pathways invoked by the two 

viruses. Intracellular signalling pathways are extraordinarily complex and our knowledge of 

some remains incomplete. As such, it has not been possible to identify which differences 

affect Chlamydia development, or how.  In addition, as MAGI P4R5 cells do not naturally 

express CD4, CCR5 and CXCR4, they may lack components of the downstream signalling 
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pathways. It may be that the presence of incomplete signalling pathways in MAGI P4R5 cells 

is responsible for the lack of persistence observed in this study. 

 

Bianchi et al., 1998 suggest that the presence of HIV-1 accelerated the C. trachomatis 

infection cycle in co-infected cells (Bianchi et al., 1998). This is not consistent with 

observations made in the present study, however, their conclusions were based on an 

apparent accelerated rate of cell lysis in HIV-1 co-infected culture, but there was no 

quantification of C. trachomatis inclusions by microscopy, or genomic replication by 

molecular techniques. Thus, it is not possible to draw conclusions regarding the susceptibility 

of cells to C. trachomatis infection, or the kinetics of Chlamydia replication as Bianchi et al., 

propose.  Of note is the cell-line used in the studies Bianchi et al were U-937 cells. How 

permissive these cells are to C trachomatis serovar L2 is questionable. While some studies 

have been able to infect the cells with the organism (Bianchi et al., 1997; Bianchi et al., 

1998), others claim that typical inclusions are not observed in these cells and they are not 

permissive to Chlamydia infection (Mpiga et al., 2006).The present study identified 

punctuate regions of fluorescence when infected U-937 cells were stained with an anti- 

Chlamydia LPS-FITC antibody and viewed by a fluorescence microscope (Figure 3.8 A). 

Typical inclusions were not observed, consistent with the observations of Mpiga et al and it 

is possible the punctuate fluorescence resembled aggregated Chlamydia organisms adhered 

to the cells. Further analysis with molecular assays to determine whether cells were infected 

was beyond the scope of this project. 

 

The possibility also remains, however, that C. trachomatis and HIV-1 pathogens do not 

interact at all.  The high levels of co-infection observed may reflect high risk sexual 

behaviour in distinct groups of HIV-1 positive MSM, with HIV-1 positive MSM 
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preferentially meeting other HIV-positive MSM for whom the imperative to practice safer 

sex has been diminished. Alternatively, there may be a selection bias, with clinicians 

selectively testing HIV-1 positive men, and HIV-1 positive men being more aware of LGV as 

a result of publicity generated through organisations such as the Terrance Higgins Trust 

(Ward et al., 2007).  

 

This study has also shown that HIV-1 significantly reduces the number, but increases the 

size, of C. trachomatis inclusions in cell culture. When cells were infected with HIV-1, they 

formed syncytia (multi-nucleated giant cells). A plausible explanation for these observations 

is that as multiple C. trachomatis- infected cells fuse together in an HIV-induced syncytium, 

multiple inclusions also fuse to form one “giant” inclusion. To our knowledge, this is the first 

documentation of C. trachomatis development within HIV-1 induced syncytia and it has 

important implications for intracellular chlamydial biology. 

 

Firstly, despite its location within the inclusion, C. trachomatis maintains its intracellular 

niche through the interaction of bacterial proteins with host-cellular proteins in a co-

ordinated fashion that can be remarkably complex. The organism can inhibit apoptosis, 

down-regulate MHC presentation, interact with the NF-kB pathway, intercept vesicles 

budding from the Golgi network and multivesicular bodies, while excluding the fusion of 

vesicles from the lysosomal pathway (reviewed by Cocchiaro et al., 2009). The observation 

that C. trachomatis replication is unaltered in syncytia implies the continued presence and 

function of these Chlamydia-host cell interactions, despite considerable cell-cell fusion and 

intracellular re-modelling. This observation, although surprising, is consistent with previous 

studies that demonstrate C. trachomatis serovar L2 inclusions fuse to form one large 
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inclusion in the absence of an intact cytoplasm when cells are treated with compounds that 

disrupt microtubules and microfilaments (Schramm et al., 1995). 

 

Secondly, the fusion of multiple Chlamydia inclusions is thought to be mediated by the 

inclusion membrane protein A (IncA). Micro-injection of antibodies against IncA results in 

the development of aberrant, multi-lobed inclusions (Hackstadt et al., 1999) and isolates of C. 

trachomatis that occupy non-fusogenic inclusions lack IncA (Suchland et al., 2000).  The 

IncA protein contains two SNARE-like motifs which mimic members of the eukaryotic 

SNARE protein family that are involved in intracellular membrane fusion events (Paumet et 

al., 2009). However, much remains unknown regarding inclusion membrane fusion, and the 

role of IncA. To our knowledge, fusion on the scale seen in this study has not been previously 

documented, demonstrating that the C. trachomatis fusion machinery is capable of generating 

structures larger than previously observed. The mature Chlamydia inclusion is, however, 

considered to be fragile (Scidmore, 2008). How can such large structures be maintained 

without lysis or collapse?  

 

Recently, it was discovered that the Chlamydia inclusion is surrounded by a dynamic 

structural scaffold comprised of actin and intermediate filaments (Kumar & Valdivia, 2008). 

This scaffolding, or cage, is thought to provide structural support to the inclusion. 

Interestingly, as the inclusion grows, the Chlamydia protease CPAF cleaves the Head domain 

of the intermediate filaments and essentially „nicks‟ the scaffolding in order to provide the 

cage with enough flexibility to permit inclusion expansion. Little else is known about this 

remarkable structure, but observations from this present study suggesting it has the capacity 

to stabilise structures larger than previously documented. 
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Finally, the mechanism of RB differentiation to EB remains unknown. In an intriguing model 

suggested by Horare et al., an RB is attached to the inclusion membrane by type 3 secretion 

(T3S) systems and, as the inclusion grows, the surface area contact between an RB and the 

membrane decreases, reducing the number of these attachments.  The authors hypothesise 

that as the number of T3S systems attached to the inclusion decrease below a threshold, the 

RB is triggered to differentiate into an EB (Hoare et al., 2008). In such a model, one might 

expect an increase in the differentiation of RBs to EBs in giant inclusions. As this is not 

observed in the present study, additional factors may play a role in RB differentiation. 
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Chapter 4 

 

Quantification of rectal Chlamydia 

trachomatis  
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4.1 Introduction 

 

The C. trachomatis load in the genital tract is reported to be associated with the presence of 

clinical symptoms (Geisler et al., 2001; Michel et al., 2007), transmissibility and persistence 

of infection (Geisler et al., 2008; Rogers et al., 2008) and the risk of developing chronic 

sequeleae (Geisler et al., 2001), however, there has been no study that investigates rectal 

chlamydial load. 

 

Studies of MSM in the United Kingdom estimate the prevalence of rectal C. trachomatis (D-

K) infection to be between 6.5 and 8.2% (Anan et al., 2009; Benn et al., 2007; Manavi et al., 

2004) and LGV to be ~1.0% (Anan et al., 2009; Ward et al., 2009). The majority (>80%) of 

individuals infected with LGV  have rectal symptoms (Anan et al., 2009; Hamill et al., 2007), 

whereas the majority (>80%) of patients with serovar D-K infections are asymptomatic 

(Anan et al., 2009; Kent et al., 2005; Ward et al., 2009).  

 

Asymptomatic individuals are likely to be unaware of their infection, remaining undiagnosed 

and untreated, thus representing a reservoir of infection in the community. This is particularly 

important in MSM, as unprotected anal intercourse is not uncommon (Dodds et al., 2007). It 

is not known, however, how infectious men with rectal Chlamydia are, or the extent to which 

they transmit infection. It has been postulated that individuals with a lower genital tract C. 

trachomatis load may be less infectious than those with a higher load (Wiggins et al., 2009), 

so it would be of interest to know how the chlamydial load varies between individuals with 

rectal symptoms and asymptomatic infections, and between those with LGV and non-LGV 

infections. In addition, as HIV-1 and C. trachomatis co-infection is not uncommon, it would 
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be of interest to determine if rectal C. trachomatis load differs between HIV-1 sero-positive 

and HIV-1 sero-negative individuals. 

 

Hypotheses 

We hypothesised that the quantity of C. trachomatis shed from individuals with rectal 

symptoms would be higher than those with asymptomatic infection, the rectal load would be 

higher in patients infected with LGV serovars than non-LGV serovars and HIV-1 

seropositive patients would shed more C. trachomatis than HIV-1 negative individuals. 

 

Aims of the project: 

This study aimed to develop a qPCR assay to determine C. trachomatis load in rectally 

infected individuals and investigate how load varies between symptomatically and 

asymptomatically infected patients, HIV-1 sero-positive and HIV-1 sero-negative individuals 

and between those infected with LGV serovars and non-LGV serovars. 
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4.2 Results 

 

4.2.1 Patient Recruitment 

Figure 4.1 illustrates patient recruitment. Ninety-one patients were recruited to the study, 

however 5 were excluded as research swabs were unavailable. The qPCR assay was 

conducted on 86 patients (94.6%), 54 from the Bristol Sexual Health Centre (BSHC) and 32 

from the Jefferiss Wing, Department of Genito-urinary medicine, St Mary‟s Hospital, 

London. Patient recruitment is detailed in Chapter 2, Section 2.26. Seventy-nine (91.9%) of 

the 86 subjects were male. The mean age was 33 years old (range 16 to 63), and 73 (84.9%) 

were Caucasian, 10 (11.6%) were non-Caucasian while the ethnicity of 3 (3.5%) was 

undocumented. Twenty-nine (33.7%) subjects were confirmed as being rectally infected with 

C. trachomatis by a positive NAAT test (Strand Displacement Assay, ProbeTec CT system, 

Becton Dickinson at St Mary‟s Hospital and the Aptima Combo 2, Genprobe, at BSHC), 

whereas 55 (64%) were found to be C. trachomatis negative by NAAT. Two patients (2.3%) 

did not have NAAT performed on rectal swabs, so were excluded from further analysis. 

Twenty-one (24.4%) of the patients were HIV-1 sero-positive, 13 (61.9%) of whom were 

also C. trachomatis-NAAT-positive.   

 

Of the 29 C. trachomatis-NAAT-positive individuals, 28 were male and one was female, 23 

were Caucasian, 5 were non-Caucasian and the ethnicity of one was undocumented. Six 

patients were between 16 and 24 years of age, while 23 were between 25 and 66 years of age. 

Four (14%) patients were from BSHC and 25 (86%) were from St Mary‟s Hospital. Ten 

(34.5%) patients presented with rectal symptoms (bleeding, discharge, discomfort, pain, 

constipation and tenesmus), but only 2 symptomatic patients were infected with LGV 

serovars. 



152 

 

A rectal swab was obtained from each patient for quantification of chlamydial load. Samples 

were collected, processed and stored as described (Chapter 2, Section 2.27). Proctitis was 

defined as greater than or equal to 5 polymorphonuclear leucocytes per high power (x1000) 

field of view when a Gram-stained rectal smear was viewed by light microscopy. 
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Figure 4.2 Patient Recruitment for the qPCR study 

 

 

 

 
 

 

 

Figure 5.2 Patients were recruited as indicated. The number of patients in each category is 

shown.  
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4.2.2 Development of a qPCR assay to enumerate C. trachomatis load in patient samples 

A qPCR was developed to enumerate C. trachomatis organisms in infected cell cultures as 

described (Chapter 3). The assay amplified a C. trachomatis-specific section of the pmpH 

gene and had an analytical sensitivity of 50 organisms per reaction, consistent with other 

published qPCR assays that target pmpH (Chen et al., 2008). The pmpH gene, encoded by the 

chlamydial chromosome, is present in one copy per organism. Many qPCR assays, however, 

target the Chlamydia plasmid in order to improve sensitivity (Mahony et al., 1993), as the 

plasmid is reported to be present in 7.72 copies per Chlamydia organism (+/- 0.68) (Michel et 

al., 2007).  

 

The majority of qPCR assays that target the chlamydial plasmid are aimed at orf2 (Pickett et 

al., 2005; Michel et al., 2007) or orf5 (Chen et al., 2007; Alexander et al., 2007; Chen et al., 

2008). In order to select the most appropriate target in the present study, the ability of primer 

pairs to amplify orf2 and 5 regions were compared (Table 4.1). Briefly, DNA was extracted 

from 10-fold serial dilutions of purified C. trachomatis EBs. The DNA in each sample was 

amplified by qPCR in triplicate, with primers targeting either orf2 (Pickett et al., 2005), or 

orf5 (Chen et al., 2008). Primer sequences are tabulated in Table 2.1. The crossing points of 

the two targets were compared for each sample, but no significant difference observed (Table 

4.1). It was decided that C. trachomatis plasmid orf 5 should be the target of choice as it 

encodes the C. trachomatis protein, Pgp3, which is the subject of Chapter 5.  
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Table 4.1 Selection of a suitable gene target of amplification  

 

 

 orf2 (SD) orf5 (SD) Student‟s t-test P 

value 

    

Sample 1 19.87 (0.09) 20.01 (0.93) 0.800 

Sample 2 23.88 (0.03) 23.27 (0.50) 0.103 

Sample 3 27.50 (0.30) 27.07 (0.59) 0.323 

    

 

 

 

 

Table 4.1 The mean crossing points were determined for qPCR  assays targeting C. 

trachomatis plasmid orf2 and orf5. These were tabulated, along with the standard deviation 

(SD) and Student‟s t-test P value. Sample 1, 2 and 3 refer to EBs diluted 1 in 100, 1 in 1,000 

and 1 in 10,000 in PBS.  
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In order to quantify the number of orf5 copies in a sample, a standard curve was generated 

using a recombinant plasmid (pCTL11a) consisting of the full-length C. trachomatis serovar 

L1 cryptic plasmid (pLGV440) ligated into an E. coli vector (pAT153) (Hatt et al., 1988), 

supplied by Professor Ian Clarke, Southampton University.  

 

The concentration of pCTL11a (copy number/ml) was determined and the plasmid serially 

diluted 10-fold in nuclease-free water. Aliquots were added to a reaction mixture containing 

Taq polymerase, SYBR Green I dye, deoxyribose nucleotides, the orf5 forward primer and 

reverse primer, and nuclease-free water. Standards were amplified in a LightCycler 2.0 

instrument as described (Chapter 2, Section 2.29). The SYBR Green I dye fluoresced when 

bound to double- stranded DNA, giving rise to a sigmoidal amplification plot (Figure 4.1 A), 

described in Chapter 3, Section 3.2.2. As the plasmid was serially diluted, it took an 

increasing number of amplification cycles for a given fluorescence to be reached, so the 

sigmoidal curve shifted progressively to the right. The crossing point was determined and 

plotted against plasmid copy number to give a standard curve (Figure 4.1 B). A melting curve 

(Figure 4.1 C) and melting peak (Figure 4.1 D) were also constructed to characterise the 

specificity of the amplified products as described (Chapter 3, Section 3.2.2). The negative 

control (water) did not give rise to a sigmoidal amplification plot, a melting curve or a 

melting peak.  

 

The analytical sensitivity of the orf5 –qPCR assay was determined by diluting the pCTL11a 

recombinant plasmid to concentrations of 10,000, 1,000, 100, 50, and 10 copies per 2µl (the 

volume added to each lightcycler capillary) and amplifying the target DNA in quadruplicate. 

The lowest concentration of recombinant plasmid that amplified in all 4 replicates was 100 

copies per reaction (Table 4.2) and, as there is an average of 7.72 orf5 gene copies per C. 

trachomatis organism (+/- 0.68 copies) (Michel et al., 2007), the threshold of detection for 
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the assay was 13 organisms per reaction. As swabs were placed into 2ml fluid and DNA was 

extracted from 700μl of this fluid into a total volume of 50μl, the threshold of detection was 

929 organisms per swab (Materials and Methods).  

 

Assay reproducibility was determined by amplifying 3 dilutions of DNA extracted from an 

aliquot of purified C trachomatis EBs (Samples 1, 2 and 3) six times in one experiment to 

determine intra-assay variation, and in 4 separate experiments to determine inter-assay 

variation. The mean crossing point, standard deviation and coefficient of variation per 

dilution were determined. Intra-assay variability and inter-assay variability were low, with 

co-efficient of variations ranging from 1.23-2.01% for intra-assay variation (Table 4.3) and 

1.48-3.15% for inter-assay variation (Table 4.4).   
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Figure 4.1 The C. trachomatis plasmid orf5 Standard curve 

 

 

 

 
 

Figure 4.1 The pCTL11a construct was quantified and serially diluted 10-fold in nuclease-

free water. For each dilution (10
6 

-10
2 
copies per reaction), the amplification plot of 

fluorescence over cycle number (A) showed a typical sigmoidal curve, from which the 

crossing point was determined. A standard curve was generated of crossing point against 

DNA copy number (B). The melting curve (C) and melting peak (D) showed a single peak 

for the plasmid dilutions, whereas the negative control (H2O) did not give rise to a sigmoidal 

amplification plot, a melting curve or melting peak. 
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Table 4.2 End point serial dilutions of pCTL11a 

 

 

 

Number of orf5 

copies 

Number of     

C. trachomatis 

organisms 

 Repeats 

  1 2 3 4 

10,000 1,300  + + + + 

1,000 130  + + + + 

100 13  + + + + 

50 7  + + - - 

10 1  + - - - 

 

Sensitivity = 13 organisms per reaction 

 

 

 

 

Table 4.2 The pCTL11a construct was diluted in nuclease- free water to 10,000, 1,000, 200, 

100, 50 and 10 copies per 2µl reaction and each dilution amplified in quadruplicate. As each 

C. trachomatis organism contains an average of 7.72 plasmids per organism (+/- 0.68), the 

dilutions contained 1,300, 130, 13, 7 and 1 organism. 
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Table 4.3 orf5-qPCR Intra- assay variation 

 

 

 

Sample 

Intra-assay variation 

Mean crossing 

point 

SD Coefficient of 

variation (%) 

1 19.86 0.30 1.50 

2 24.51 0.49 2.01 

3 28.08 0.35 1.23 

 

 

 

Table 4.3 Three dilutions of DNA extracted from purified C. trachomatis EBs (samples 1, 2 

and 3) were amplified 6 times using the orf5 qPCR. The mean crossing point, standard 

deviation and coefficient of variation for each sample were determined.   

 

 

 

 

Table 4.4 orf5-qPCR Inter-assay variation 

 

 

 

Sample 

Inter-assay variation 

Mean crossing 

point 

SD Coefficient of 

variation (%) 

1 19.35 0.42 2.17 

2 23.63 0.75 3.15 

3 27.57 0.41 1.48 

 

 

 

Table 4.4 Three dilutions of DNA extracted from purified C. trachomatis EBs (samples 1, 2 

and 3) were amplified in duplicate using the orf5 qPCR in 4 independent experiments. The 

mean crossing point, standard deviation and coefficient of variation for each sample were 

determined.  
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4.2.3 Assay Sensitivity and Specificity 

DNA was extracted from patient samples and amplified using a LightCycler 2.0 instrument. 

A standard curve was simultaneously amplified and used to quantify the number of orf5 

copies per ml of urine or per swab. The sensitivity of the assay was determined from a 

population of known C. trachomatis-NAAT-positive patients. The orf5 qPCR was positive in 

22 out of 29 NAAT-positive rectal swabs, giving rise to a sensitivity of 76% (95% confidence 

intervals (CI), 56-89%). The specificity of the assay was determined from a population of 

known C. trachomatis-NAAT-negative patients. The orf5 qPCR was positive in 0 out of 55 

NAAT-negative rectal swabs, giving rise to a specificity of 100% (95% CI, 92-100%). 

 

4.2.4 Inhibition Assay 

As the DNA extracted from 7 NAAT-positive rectal swabs failed to amplify with the orf5 

qPCR, the existence of PCR inhibitors was investigated by use of a lambda (λ)-phage 

inhibition assay. Briefly, DNA from the λ-phage was amplified in a qPCR reaction that was 

spiked with patient samples. The crossing point of the λ-phage PCR-product in the presence 

of a patient sample was compared buffer alone and no significant difference observed 

(Student‟s t-test P values ranging from 0.27 to 0.84) (Table 4.5). It is, therefore, unlikely that 

PCR inhibition is responsible for the failure of these samples to amplify, and more probable 

that patients were infected with chlamydial loads below the limit of assay detection 
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Table 4.5  λ-phage Inhibition Assay 

 

 

Spiked condition Mean crossing point 

of lambda phage 

DNA (SD) 

Student‟s t-test  P 

value 

 

   

Buffer alone 29.22 (0.23)  

   

Patient 1 29.01 (0.02) 0.27 

Patient 2 29.18 (0.17) 0.84 

Patient 3 28.97 (0.06) 0.22 

Patient 4 29.27 (0.25) 0.82 

Patient 5 29.34 (0.11) 0.53 

Patient 6 29.41 (0.26) 0.41 

Patient 7 29.32 (0.02) 0.60 

   

 
 

Table 4.5 The existence of PCR inhibitors in 7 NAAT-positive patient samples that failed to 

amplify by orf5-qPCR was investigated by use of a λ-phage inhibition assay. DNA from λ-

phage was amplified by qPCR and the reaction spiked with patient samples. The crossing 

point of the λ-phage PCR-product in the presence of a patient sample was compared to the 

crossing point in the presence of buffer alone.  
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4.2.6 Statistical Analysis 

The number of C. trachomatis organisms per swab was determined for each patient and log-

transformed. The log10 mean chlamydial load of different patient groups (+/- standard 

deviation (SD)) was tabulated (Table 4.6) and compared by parametric statistical tests 

(Student‟s t-test (2-tailed significance, assuming equal variances)). It is known from previous 

work that NAAT-positive clinical specimens can contain chlamydial loads below the 

detection limit of detection of a qPCR assay (Michel et al., 2007; Wiggins et al., 2009). We 

therefore, assumed that where a patient was negative by the qPCR assay, but NAAT-positive, 

these individuals were indeed true positives and that the C. trachomatis load was below the 

limit of detection our assay. For the purposes of analysis we assumed this to be half the 

detection limit (i.e. 470 organisms per swab, or 2.67 log 10 organisms per swab). 

 

 

4.2.7 Chlamydial loads in different specimens 

The geometric mean C. trachomatis rectal load for all NAAT-positive patients was 5.0 x 10
5
 

organisms per swab (SD, 1.52). There was no significant difference in the C. trachomatis 

load when patients were grouped according to gender, ethnicity, age, or exposure to N. 

gonorrhoeae (Table 4.6). Patients with proctitis had a significantly higher chlamydial load 

(6.43 log10 organisms per swab (SD, 1.18) compared to patients with no proctitis (3.39 log10 

organisms per swab (SD, 1.25), Student‟s t-test P = 0.038 (Table 4.6 and Figure 4.2). There 

was, however, no significant difference in the load in patients with rectal symptoms (4.54 

log10 organisms per swab (SD, 1.48)) and individuals with an asymptomatic infection (4.74 

log10 organisms per swab (SD,1.72)), Student‟s t-test  P = 0.761 (Table 4.6 and Figure 4.3, 

discussed in Section 4.3). 
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The C. trachomatis load in patients with LGV (6.06 log10 organisms per swab (SD, 0.27) was 

higher than non-LGV infection (4.50 log10 organisms per swab (SD, 1.51)), however this was 

not significant (Student‟s t-test P = 0.163) (Table 4.6 and Figure 4.4). There was also no 

significant difference in the C. trachomatis load in HIV-1 sero-positive individuals (4.20 

log10 organisms per swab (SD, 1.43)) compared to HIV-1 seronegative individuals (5.10 log10 

organisms per swab (SD, 1.58)), Student‟s t-test P = 0.125 (Table 4.6 and Figure 4.5). 
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Table 4.6 Mean C. trachomatis loads, by patient group 

 

 

Study group n Log10 mean C. trachomatis 

load (Log10 organisms per 

swab (SD)) 

Student‟s t-test P 

value 

 

Gender 

   

0.318 

     Men 28 4.50 (1.20)  

     Women 

 

1 5.77  

Ethnicity   0.813 

     Caucasian 23 4.92 (2.11)  

     Non-Caucasian 

 

5 4.74 (1.44)  

Age   0.879 

     16-24 yr 6 4.61 (2.27)  

     25-66 yr 

 

23 4.72 (1.39)  

N. gonorrhoeae exposure   0.066 

     N. gonorrhoeae + 3 5.09 (2.57)  

     N. gonorrhoeae – 

 

26 4.65 (1.48)  

Inflammation   0.038 

     Proctitis 3 6.43 (1.18)  

     No Proctitis 

 

3 3.39 (1.25)  

Rectal symptoms   0.761 

     Symptomatic 10 4.54 (1.48)  

     Asymptomatic 

 

17 4.74 (1.72)  

LGV status   0.163 

     LGV + 2 6.06 (0.27)  

     LGV – 

 

26 4.50 (1.51)  

HIV-1 status   0.125 

     HIV-1 + 13 4.20 (1.43)  

     HIV-1 – 

 

16 5.10 (1.58)  

 

 

 

Table 4.6. Patients were grouped according to gender, ethnicity, age, and the presence or 

absence of N. gonorrhoeae, inflammation, symptoms, LGV or HIV-1. The number of 

patients in each group (n) and the log10 mean chlamydial load (Standard deviation (SD)) and 

the Student‟s t-test P value were tabulated. 
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Figure 4. 2 Patients with proctitis shed significantly more C. trachomatis than patients 

with no evidence of inflammation 

 
 

 

Figure 4.2 The Log 10 mean C. trachomatis load (Log10 organisms per swab) was determined 

for patients who had proctitis or no proctitis  
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Figure 4.3 Patients with rectal symptoms do not shed a significantly different amount of 

C. trachomatis as asymptomatic individuals 

 

 

Figure 4.3 The Log 10 mean C. trachomatis load (Log10 organisms per swab) was determined 

for patients who had rectal symptoms or no rectal symptoms. 
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Figure 4.4 Patients with LGV have high C. trachomatis loads 

 
Figure 4.4 The Log 10 mean C. trachomatis load (Log10 organisms per swab) was determined 

for patients who had LGV and non-LGV rectal C. trachomatis infection.  

 

 

 

 

 



169 

 

Figure 4.5 There is no significant difference in the C. trachomatis load between HIV-1 

sero-positive and sero-negative individuals 

 
 

Figure 4.5 The Log 10 mean C. trachomatis load (Log10 organisms per swab) was determined 

for patients who were HIV-1 sero-positive and sero-negative. 
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4.3 Discussion 

 

This study developed a qPCR assay and quantified the rectal C. trachomatis load in patients 

who were C. trachomatis-NAAT-positive. The geometric mean rectal load was 5.0 x 10
5
 

organisms per swab (Standard Deviation, 1.52) and patients with proctitis had a significantly 

higher chlamydial load compared to patients who did not have proctitis. There was, however, 

no significant difference in the load between patients who presented with rectal symptoms 

and individuals with an asymptomatic infection. Patients with LGV were found to have high 

C. trachomatis loads, but there was no significant difference in the chlamydial load between 

HIV-1 sero-positive and sero-negative individuals.  

 

The geometric mean rectal C. trachomatis load found in this study (5.0 x 10
5
 organisms per 

swab (SD, 152)) is approximately 50-100 fold higher than the geometric mean C. trachomatis 

load reported in the female genital tract. Michel et al., 2007 found an average of 2.2 x 10
4 

organisms per swab using endocervical swabs (95% CI, 2.5x10
1 

- 5.0x10
6
), and 3.9 x 10

3 
 

organisms per swab using self-collected vaginal swabs (95% CI, 1.6x10
1 

- 9.7x10
5 

). Wiggins 

et al.,2009 also reported a mean chlamydial load of 1.0 x 10
4
 organisms per swab in self-

collected vulvovaginal swab samples (95% CI, 5.2x10
3 

- 2.1x10
4
).   

 

The reason for this difference between rectal and genital tract load is unknown. Different 

mucosal surfaces may vary in how permissive they are to C. trachomatis infection (Miyairi et 

al. 2006; Dessus-Babus et al.. 2008) which could explain the observation, but there are no 

published data on growth in rectal mucosal cells compared to cervical cell culture.  
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At St. Mary‟s Hospital only male patients were recruited who were at high risk of having 

rectal C. trachomatis infection, whereas at Bristol men and women practising anal intercourse 

were recruited. It is possible that individuals with higher loads were over represented in this 

study compared to an unselected population practising anal sex. In addition , as only one 

Chlamydia-positive woman was included in this study,  it is also possible that rectal loads are 

higher in men than women. This is, however, unlikely, as Chlamydia load in first voided 

urine specimens is similar in asymptomatic men and women (Wiggins et al., 2009). A 

possible implication of this observation may be that patients rectally infected with C. 

trachomatis may be more infectious per episode of sexual intercourse than women with a 

genital tract infection. 

 

To be confident of these data, the qPCR assay described in this chapter was validated by 

extracting the DNA from first void urine (FVU) samples from 5 male patients with a urethral 

C. trachomatis infection, identified by a positive-NAAT result. These patients were recruited 

as part of the study described in Chapter 5. The DNA was amplified in the assay described 

above and the geometric mean C. trachomatis load found to be 2.69 x 10
4
 organisms per ml 

urine. Michel et al., (2007) report a geometric mean load of 1.2x10
4
 organisms per ml urine 

in men. This figure is similar to our own. 

 

The analytical sensitivity of the assay was only 13 organisms per reaction. This is surprising 

as the assay utilised published primers, documented as capable of detecting 1-10 copies of the 

plasmid per reaction (Chen et al., 2008), the qPCR efficiency was adequate (1.866) and there 

were no evidence of primer dimers. The assay presented by Chen et al., 2008 utilised 

Taqman
(R)

 probe technology and a real-time PCR instrument (Rotor-gene 3000; Corbet 

Research), whereas the assay presented in our study utilised SYBR
(R)

 green technology and a 
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Lightcycler 2.0 instrument (Roche). While it is unlikely that these differences gave rise to the 

observed differences in sensitivity, SYBR
(R)

  green has been documented to inhibit PCR 

reactions (Nath et al., 1999; Monis et al., 2005) and may have contributed to the reduced 

sensitivity. It would be prudent in the future to repeat the quantification of C. trachomatis by 

using a Taqman
(R)

- based assay or using an alternative gene target with a higher analytical 

sensitivity.  It is of interest that 7 individuals had undetectable Chlamydia load in their rectal 

specimens. This may be a true observation, or a sampling error as many of the rectal 

specimens were taken without the use of a proctoscope. As they were Chlamydia NAAT-

positive we assumed the load was half the cut-off. This enabled us to use parametric statistics 

by converting the load to logarithms (Wiggins et al. 2006). 

 

Patients with proctitis had significantly higher C. trachomatis loads than individuals without 

proctitis in this study. This observation is consistent with reports that chlamydial load is 

associated with an inflammatory response (Geisler et al., 2001;  Horner, 2007; Michel et al., 

2007). As LGV is associated with proctitis (Anan et al., 2009; Hamill et al., 2007; Ward et 

al., 2007), one would expect infected patients to have high C. trachomatis loads. Consistent 

with this observation, both patients with LGV in this study were symptomatic and had high 

C. trachomatis rectal loads (7.5x10
5
 and 1.83x10

6
 organisms per swab respectively). 

 

In the genital tract, both the degree of inflammation and presence of symptoms are associated 

with C. trachomatis infection (Geisler et al., 2001; Michel 2007 et al., and Wiggins et al., 

2009). In men with urethral infection, those with greater inflammation are also more likely to 

be symptomatic (Wiggins et al., 2006 and Horner, 2007). In this study, however, an increased 

C. trachomatis load was not significantly associated with the presence of rectal symptoms. 

The observation does, however, demonstrate that asymptomatic individuals shed as much C. 
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trachomatis as patients with symptoms. These individuals could be a reservoir of infection 

and maintain chlamydial transmission in the community. 

 

Individuals who were HIV-1 sero- positive were found to shed as much C. trachomatis as 

HIV-1 sero-negative individuals. This is consistent with the recent observation of Soni et al., 

2010, who failed to observe an association of HIV-1 infection with C. trachomatis infection 

in MSM.  It should be noted, however, that the HIV-1 viral load, duration of viral infection, 

and the CD4 count remain unknown in these patients, nor is it known how many are on anti-

retroviral therapy. It is, therefore, not possible to draw conclusions regarding the effect of 

HIV-1 immunosuppression on chlamydial load. 

 

In conclusion, this study found that patients with rectal C. trachomatis infection have high 

loads relative to what is found in a genital tract infection. Moreover, asymptomatic 

individuals shed a similar quantity of C. trachomatis as patients with rectal symptoms 

suggesting that they are as infectious and likely to maintain transmission in the community.   
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Chapter 5 

 

Characterisation of ex vivo cellular 

immune responses to Chlamydia 

trachomatis 
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5.1 Introduction 

 

Animal models have shown that clearance of a Chlamydia infection is dependent on the 

generation of IFN-γ as part of a cell-mediated immune response (Brunham & Rey-Ladino 

2005). Unfortunately, data from mouse- models using C. muridarum cannot be directly 

extrapolated to C. trachomatis because of fundamental differences in the biology of the 

organisms (reviewed by Brunham & Rey-Ladino 2005). Consequently, research has also 

been conducted using PBMCs or synovial fluid mononuclear cells (SFMCs) from human 

patients infected with C. trachomatis, or from patients with SARA (Brunham & Rey-Ladino 

2005). These studies, however, typically use in vitro expanded T-cell clones which, not only 

are less physiologically relevant, but also limit any immunological assessment to the one cell 

from which the clonal population was derived. In addition, every antigen in which T-cell 

epitopes have been identified contains a homologue in the common respiratory pathogen, C. 

pneumoniae.  Consequently, there have been no studies investigating ex vivo human cellular 

immune responses to C. trachomatis-specific antigens. 

 

An IFN-γ ELISpot assay is one means of quantifying ex vivo antigen-specific cellular 

immune responses by enumerating T-cells in the peripheral blood of patients that recognise, 

and respond to, specific antigens by secreting IFN-γ (Lalvani et al., 1997).  Interestingly, ex 

vivo Mycobacterium tuberculosis- specific IFN-γ responses can identify a current infection, 

as once an infection has been cleared, the number of T-cells circulating in the peripheral 

blood that recognise M. tuberculosis-specific antigens decline  (Pathan et al., 2001; 

Millington et al., 2007). Both M. tuberculosis and C. trachomatis are intracellular pathogens 

in which IFN-γ is believed to play an important role in the immune response (reviewed by 

Cooper, 2009 and Brunham  Rey-Ladino, 2005). Therefore, quantification of PBMCs that 
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recognise C. trachomatis-specific antigens and secrete IFN-γ could potentially be useful as a 

biomarker for current C. trachomatis infection.  

 

Such a biomarker is desirable as, although C. trachomatis at the lower genital tract, rectum or 

oropharynx can be detected by NAAT with swabs or urine samples, the organism is capable 

of migrating to the endometrium, salpinges and peritoneal cavity of women, epididymi and 

testicles of men, and the joints of those afflicted with sexually acquired reactive arthritis 

(SARA). The extent to which infection at these sites is identified by the use of lower genital 

tract or rectal samples is unknown (Taylor-Robinson et al., 2009).   An ex vivo IFN-γ 

ELISpot assay may be of benefit in detecting such infection. 

 

Hypotheses 

C. trachomatis-specific T-cells that secrete IFN-γ can be quantified from the peripheral blood 

of patients during a C. trachomatis infection and the C. trachomatis- specific IFN-γ is a 

useful biomarker for infection. 

 

Aims of the Project 

This pilot study aimed to identify a C. trachomatis-specific antigen recognised by the cellular 

immune response, recruit C. trachomatis-infected patients and uninfected negative controls, 

and develop an IFN-γ ELISpot assay to quantify C. trachomatis-specific IFN-γ in different 

patient groups. These aims were developed in order to characterise the immunogenicity of 

the selected antigen, investigate the dynamics of the human T-cell response during a C. 

trachomatis infection, and determine whether C. trachomatis-specific IFN-γ is a useful 

biomarker for infection. 

 



177 

 

5.2 Results 

 

5.2.1 The IFN-γ ELISpot assay antigen 

 

The Pgp3 antigen (PubMed Accession number: YP_001569038), encoded by orf 5 of the 

chlamydial plasmid (Hatt et al., 1988) (PubMed Accession number: NC_010029) was 

selected for use in the ELISpot assay as the protein is C. trachomatis-specific and recognised 

by acquired immune responses (antibodies) (Chapter 1, Section 1.7). 

 

Fifty one overlapping peptides, spanning the entire length of the Pgp3 protein (Table 5.1) 

were purchased (GenScript, USA). Overlapping peptides were used to ensure the observed 

IFN-γ  responses were not restricted to, or biased by, certain HLA types. Each peptide was 

15 residues in length (termed a “15mer”), with the exception of the last peptide (that was 14 

residues in length), and the sequence of each peptide overlapped the previous by 10 residues, 

with the exception of the first peptide.  Peptides were pooled in 4 groups of 10 peptides and 

one group of 11 peptides.  
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Table 5.1 Pgp3 overlapping peptide sequences 

 

 
 

Table 5.1 Fifty-one overlapping peptide sequences spanning the entire length of the Pgp3 

protein (residues 1-246). Peptides were pooled into 4 groups of 10 peptides and 1 group of 

11.  

Pool Peptide Residues Amino acids 
1 1 1-16 MGNSGFYLYNTQNCV 

2 6-20 FYLYNTQNCVFADNI 

3 11-25 TQNCVFADNIKVGQM 

4 16-30 FADNIKVGQMTEPLK 

5 21-35 KVGQMTEPLKDQQII 

6 26-40 TEPLKDQQIILGTTS 

7 31-45 DQQIILGTTSTPVAA 

8 36-50 LGTTSTPVAAKMTAS 

9 41-55 TPVAAKMTASDGISL 

10 46-60 KMTASDGISLTVSNN 

2 11 51-65 DGISLTVSNNPSTNA 

12 56-70 TVSNNPSTNASITIG 

13 61-75 PSTNASITIGLDAEK 

14 66-80 SITIGLDAEKAYQLI 

15 71-85 LDAEKAYQLILEKLG 

16 76-90 AYQLILEKLGDQILG 

17 81-95 LEKLGDQILGGIADT 

18 86-100 DQILGGIADTIVDST 

19 91-105 GIADTIVDSTVQDIL 

20 96-110 IVDSTVQDILDKITT 

3 21 101-115 VQDILDKITTDPSLG 

22 106-120 DKITTDPSLGLLKAF 

23 111-125 DPSLGLLKAFNNFPI 

24 116-130 LLKAFNNFPITNKIQ 

25 121-135 NNFPITNKIQCNGLF 

26 126-140 TNKIQCNGLFTPRNI 

27 131-145 CNGLFTPRNIETLLG 

28 136-150 TPRNIETLLGGTEIG 

29 141-155 ETLLGGTEIGKFTVT 

30 146-160 GTEIGKFTVTPKSSG 

4 31 151-165 KFTVTPKSSGSMFLV 

32 156-170 PKSSGSMFLVSADII 

33 161-175 SMFLVSADIIASRME 

34 166-180 SADIIASRMEGGVVL 

35 171-185 ASRMEGGVVLALVRE 

36 176-190 GGVVLALVREGDSKP 

37 181-195 ALVREGDSKPYAISY 

38 186-200 GDSKPYAISYGYSSG 

39 191-205 YAISYGYSSGVPNLC 

40 196-210 GYSSGVPNLCSLRTS 

5 41 201-215 VPNLCSLRTRIINTG 

42 206-220 SLRTRIINTGLTPTT 

43 211-225 IINTGLTPTTYSLRV 

44 216-230 LTPTTYSLRVGGLES 

45 221-235 YSLRVGGLESGVVWV 

46 226-240 GGLESGVVWVNALSN 

47 231-245 GVVWVNALSNGNDIL 

48 236-250 NALSNGNDILGITNT 

49 241-255 GNDILGITNTSNVSF 

50 246-260 GITNTSNVSFLEVIP 

51 251-264 SNVSFLEVIPQTNA 
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5.2.2 Patient Recruitment  

 

Figure 5.1 illustrates patient recruitment. Eighty five patients were successfully recruited 

from St Mary‟s Hospital, London. Sixty nine adults were recruited from the Jefferiss Wing, 

Department of Genito-urinary medicine (GUM) and sixteen children, under the age of 12, 

were recruited as negative controls from the Paediatric Outpatients “GP bloods” clinic, 

Imperial College Healthcare NHS Trust. 

 

Initially, patient recruitment was limited to the GUM clinic and negative controls were men 

who tested C. trachomatis-negative by NAAT (GUM negative controls). However, these 

individuals had a history of sexual intercourse, and may not represent an unexposed 

population. It was, therefore, necessary to recruit negative controls from a population who 

were less likely to have been exposed to C. trachomatis. Children under the age of 12 were 

selected as a suitable control population (Paediatric negative controls). 

 

Adults recruited to the study (n = 69) were all male. The mean age was 34 years old (range 

18 to 77) and the patients were from ethnically diverse backgrounds: 21 (30.4%) were 

British, 4 (5.8 %) were African, 4 (5.8 %) were from the Indian Subcontinent, 8 (11.6 %) 

were from the Caribbean, 27 (39.1 %) were whites of other nationalities, while there were no 

data on the ethnicity for 5 (7.2 %) patients. Twenty two (32%) of the 69 recruited men were 

confirmed as being infected with C. trachomatis by a positive NAAT test (Strand 

Displacement Assay, ProbeTec CT system, Becton Dickinson) (NAAT-positive) whereas 47 

(68%) were found to be C. trachomatis negative by NAAT (NAAT-negative). Eleven 

(15.9%) of the patients were HIV-1 sero-positive, 6 (55%) of whom were also C. 

trachomatis-NAAT-positive. Men were recruited if they had symptoms and/or signs of 
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urethritis or proctitis (symptomatic), or if they had no symptoms and no detectable 

inflammation (asymptomatic). The signs or symptoms of urethritis included urethral 

discharge and or dysuria, whereas signs or symptoms of proctitis included rectal discomfort, 

discharge, or bleeding. Ten (45%) of the 22 NAAT-positive individuals were symptomatic (5 

with proctitis and 5 with urethritis), while twelve (55%) were asymptomatic. Fifteen (32%) 

of the 47 NAAT-negative individuals were symptomatic (7 with proctitis and 8 with 

urethritis), while 32 (68%) were asymptomatic. 

 

Children recruited to the study (n = 16) were all male to match the adult population. The 

mean age was 6 years old (range 2 to 10) and subjects were from ethnically diverse 

backgrounds: 2 (12.5 %) were British, 4 (25 %) were African, 1 (6.3 %) was from the Indian 

Subcontinent, 5 (31.3 %) were whites of other nationalities and 4 (25 %) were non-whites of 

other nationalities. Children who were born in, or had travelled to, areas where Trachoma is 

endemic were excluded from the study, as were children with signs or symptoms of acute or 

chronic inflammatory conditions. 

 

Samples were collected, processed and stored as described (Chapter 2, Section 2.27). 
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Figure 5.1ELISPot study Patient Recruitment 

 

 

 

 
 

 

 

Figure 5.1 Patients were recruited as indicated. The number of patients in each category is 

shown. 
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5.2.3 Development of the C. trachomatis ex vivo IFN-γ ELISpot Assay  

 

The ex vivo IFN-γ ELISpot assay was conducted as described (Chapter 2, Section 2.32), 

Figure 5.2.  Briefly, the assay was conducted in ELISpot plates lined with a membrane that 

was coated with anti-IFN-γ antibody and blocked with complete medium. Patient PBMCs 

(2.5 x 10 
5 
)
 
were added to each well and incubated overnight at 37

°
C, 5% CO2, in the 

presence of Pgp3 peptide pools, complete medium alone (negative control), or the mitogen 

Phytohaemagglutinin (Pha) (positive control). Where PBMCs were from an infected patient, 

cells recognised the Pgp3 peptides and secreted IFN-γ that was captured by the antibody 

coating the well. An additional anti-IFN-γ antibody, conjugated to alkaline phosphatase 

(ALP), was added to each well followed by ALP substrate (BCIP/NBT). ALP hydrolysed the 

substrate to a coloured product that formed a spot on the membrane where a cell had 

produced IFN-γ. For each patient, the number of spots in 14 wells was counted: 5 wells 

containing one peptide pool each, one well containing unstimulated PBMCs in medium alone 

and one well containing mitogen-stimulated cells, with the assay being conducted in 

duplicate (Figure 5.3). 

 

The average number of spots per peptide pool was determined for each patient, and pools 

were scored as positive if the average of the duplicate test wells was at least 5 spots more 

than the average of the unstimulated negative control wells, and this number was at least 

twice that of the negative control well average. This threshold, or “cut-off” is routinely used 

in ex vivo ELISpot studies (Lalvani et al., 2001a and b; Pathan et al., 2001; Chapman et al., 

2002; Millington et al., 2007). The average number of spots in each positive pool was 

summated and expressed as the number of spot-forming cells (SFCs) per million PBMCs that 

responded to Pgp3 peptides. 
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Two types of ELISpot plates were used during the course of the study, one that was supplied 

pre-coated with anti- IFN-γ monoclonal antibody (pre-coated) (Mabtech, SE) and one that 

was not (non-pre-coated) (Millipore, UK). In the latter, plates were manually coated with 

anti- IFN-γ monoclonal antibody. The number of SFCs per million PBMCs that responded to 

Pgp3 peptides was determined for 3 patients using both plates and recorded graphically 

(Figure 5.4). No significant difference was observed between the number of SFC per million 

PBMC in the pre-coated and non-pre-coated plates for any of the patients tested. Data from 

both types of plate could, therefore, be analysed together. 
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Figure 5.2 A schematic of the ELISpot Assay 

 
 

 

 

 

Figure 5.2 A schematic of the ELISpot assay (adapted from Mabtech, SE). (1) ELISpot 

plates were coated with anti-IFN-γ antibody and blocked with complete RPMI. (2)  Patient 

PBMCs were added to each well in the presence of Pgp3 peptides. (3) Anti-IFN-γ conjugated 

to ALP was added to each well followed by (4) the addition of ALP substrate (BCIP/NBT). 

ALP hydrolysed the substrate to a coloured product that formed a spot on the membrane. (5) 

Spots were counted and the number of spot forming cells (SFC) per million PBMCs 

determined. 
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Figure 5.3 Example ELISpot data 

 

 
 

 

Figure 5.3 Example data for a positive patient (A) and a negative patient (B). Five pools of 

Pgp3 peptides were added to duplicate wells containing PBMCs (wells 1, 2, 3, 4 and 5). 

Complete medium was added to one pair of wells (medium) and the mitogen Pha was added 

to another pair of wells (Pha) as negative and positive controls respectively. Cells were 

incubated at 37°C overnight, the ELISpot plate was developed and the number of spots 

counted.  For patient A, the average number of SFC per 2.5 x 10
5
 cells was 20.4 (82 SFC per 

million PBMC).  For patient B, no membrane contained more than the cut-off and the 

average number of SFC per million PBMC was considered to be 0. 
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Figure 5.4 Pre-coated Vs non-pre-coated plates 

 
Figure 5.4 The number of SFCs per million PBMCs that responded to Pgp3 peptides was 

determined for 3 patients using ELISpot plates that were either supplied pre-coated with anti-

IFN- antibody  (blue bars) or were manually coated (non-precoated, pink bars).  
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5.2.4 Pgp3 is a target of the human cellular immune response to C. trachomatis  

 

The number of SFCs per million PBMCs that recognised Pgp3 peptides was quantified and 

plotted graphically for C. trachomatis-NAAT-positive men, asymptomatic NAAT-negative 

men (GUM negative controls), and paediatric negative controls (Figure 5.5). The threshold 

for a positive ELISpot result was 5 SFC per 2.5 x 10
5
 cells (20 SFC per million PBMC). 

Thirteen (59%) of 22 C. trachomatis-NAAT-positive patients possessed T-cells that produced 

IFN-γ in response to Pgp3 peptide stimulation, compared with only 8 (25%) of 32 GUM 

negative controls (χ
2
 P = 0.01) and 3 (18.8%) of 16 paediatric negative controls (χ

2
 P = 0.01), 

demonstrating not only that Pgp3 is a target of the cellular immune response during a C. 

trachomatis infection, but also that T-cells recognising a C. trachomatis-specific antigen 

could be enumerated from the peripheral blood of infected humans ex vivo. However, as 41% 

of NAAT-positive individuals were ELISpot-negative and 19% of paediatric negative 

controls were ELISpot-positive, the assay sensitivity was calculated to be only 59% (95% 

confidence intervals (CI), 39-77%) and specificity 81% (95% CI, 57-93%).  

 

The frequency of T-cells that recognised and responded to Pgp3 was low, with a median of 

only 44 SFC per million PBMCs (interquartile range (IR) 26.8-63) in C. trachomatis-NAAT-

positive, ELISpot-positive individuals. In contrast, IFN-γ responses to M. tuberculosis-

specific antigens are higher in individuals with TB (median 200 SFC per million PBMCs, 

interquartile range 105-596 (Lalvani et al., 2001b)). The magnitude of the ELISpot response 

in C. trachomatis-NAAT-positive individuals was not significantly different to GUM 

negative controls (60.5 SFC per million PBMCs (IR 35.2-78.4), Mann-Whitney U P = 0.55) 

or paediatric negative controls (36 SFC per million PBMCs (IR 34-42), Mann-Whitney U P = 

0.8).  
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Figure 5.5 Pgp3 is a target of the human cellular immune response to C. trachomatis 

 
 

Figure 5.5 The number of SFCs per million PBMCs was quantified and plotted graphically 

for C. trachomatis-NAAT positive men, asymptomatic C. trachomatis-negative men (GUM 

negative controls), and paediatric negative controls. Each circle represents an individual 

patient. For each individual, the number of T cells that recognised Pgp3 peptides was 

summated. Circles on the baseline represent individuals with no response to any of the Pgp3 

peptide pools. The horizontal line represents the pre-defined cut-off point (20 Pgp3-specific T 

cells per million PBMC). NAAT, nucleic acid amplification technique; PBMC, peripheral 

blood mononuclear cells; SFC, spot-forming cell. 
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5.2.5 Pgp3 contains T-cell epitopes along its entire length 

 

The Pgp3 peptides were divided into 4 pools of 10 and one pool of 11 peptides and the 

percentage of ELISpot-positive patients who responded to each pool plotted graphically 

(Figure 5.6).   Many of the Pgp3-ELISpot-positive individuals responded to multiple peptide 

pools spanning the length of Pgp3, indicating that the protein contains T-cell epitopes 

throughout its length. The amino terminus was preferentially recognised by NAAT-positive 

patients, compared to NAAT-negative individuals, however peptide pool 2 was the most 

commonly recognised, with over 80% of Pgp3-ELISpot-positive individuals responding to 

this pool. The pattern of recognition to the other peptide pools was similar in C. trachomatis-

NAAT-positive and NAAT-negative individuals who responded. 
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Figure 5.6  Pgp3 contains T-cell epitopes along its entire length 

 

 

 
 

 

Figure 5.6 The response of T-cells from C. trachomatis-NAAT-positive and GUM negative 

controls to Pgp3 peptide pools. Pgp3 peptides were divided into 4 pools of 10 peptides (1-4) 

and one pool of 11 peptides (5) and the percentage of Pgp3-ELISpot-positive patients who 

responded to each pool was plotted.  
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5.2.6 Pgp3-induced ex vivo IFN-γ responses are dependent on C. trachomatis exposure 

 

In order to further characterise the relationship between Pgp3-induced IFN-γ and C. 

trachomatis exposure, serum from 69 patients recruited at the GUM clinic was tested for the 

presence of anti-C. trachomatis antibodies by a Pgp3-ELISA developed in this laboratory 

(Wills et al., 2009). Individuals testing ELISA and NAAT-positive are more likely to have 

either experienced more severe clinical disease or been exposed to C. trachomatis for a 

longer duration than those testing NAAT-positive alone (Mårdh, 1989b). Antibody-negative, 

NAAT-positive individuals are likely to have been exposed more recently than those testing 

serology-positive alone, as antibodies take a number of weeks to develop after infection and 

persist after the infection has been resolved, but NAATs become negative (Mårdh, 1989b). 

Individuals testing ELISA and NAAT-negative are less likely to have been exposed to C. 

trachomatis than the other groups, with children being at the lowest risk. 

 

The percentage of patients in each group who were Pgp3-ELISpot-positive was calculated 

and plotted graphically in addition to the percentage of GUM negative controls and paediatric 

controls who tested Pgp3-ELISpot-positive (Figure 5.7).  Ten (67%) of 15 NAAT-positive, 

Serology-positive individuals were Pgp3-ELISpot positive, compared with 3 (43%) of 7 

NAAT-positive and serology-negative, 5 (42%) of 12 NAAT-negative and serology-positive, 

and 12 (34%) of 35 NAAT-negative and serology-negative individuals. Five (24%) of 21 

GUM negative controls were Pgp3-ELISpotg-positive, as were 3 (19%) of 16 paediatric 

controls. A trend was apparent in the difference in IFN-γ production between NAAT-positive 

and serology-positive patients and NAAT-negative and serology-negative individuals, 

suggesting that Pgp3-induced IFN-γ is dependent on C. trachomatis exposure, 

 but the numbers of patients in each group were too small for statistical analysis. 
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Figure 5.7  Pgp3-induced IFN-γ and C. trachomatis-exposure 

 

 
 

 

Figure 5.7 Patients were grouped according to whether they were NAAT-positive and 

serology-positive, NAAT-positive and serology-negative, NAAT-negative and serology-

positive, or NAAT-negative and serology-negative. The percentage of patients in each group 

who were Pgp3-ELISpot-positive was calculated and plotted graphically in addition to the 

percentage of GUM negative controls and paediatric controls testing Pgp3-ELISpot-positive. 

NAAT +, NAAT-positive; Serology -, Serology-negative. 
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5.2.7 Pgp3-induced IFN-γ responses are dynamic 

 

M. tuberculosis-specific IFN-γ responses have been shown to decrease following effective 

anti-tuberculosis therapy (Pathan et al., 2001; Millington et al., 2007) and we reasoned the 

same might be true for C. trachomatis- specific IFN-γ. Pgp3-induced IFN-γ was quantified 

prior to, and following, effective treatment in 2 clinically symptomatic patients infected with 

C. trachomatis (Figure 5.8). The first patient, who initially presented with urethritis and 

tested C. trachomatis-NAAT positive, was Pgp3-ELISpot-positive, with 61 SFC per million 

PBMCs that recognised Pgp3 peptides at the time of presentation. The patient was treated 

with azithromycin (a single oral administration of 1g), followed up 8 weeks-post treatment 

and found to be asymptomatic, NAAT-negative and Pgp3-ELISpot-negative, with only 4 

SFC per 10
6
 PBMCs that recognised Pgp3 peptides.  The second patient, who presented with 

proctitis, was NAAT-positive and Pgp3-ELISpot-positive, with 53 SFC per million PBMC at 

the time of presentation. This patient was treated with 100mg doxycycline (twice daily oral 

medication for 12 days), followed up 6 weeks after the initial presentation and found to be 

asymptomatic, NAAT-negative and Pgp3-ELISpot-negative, with only 1 SFC per 10
6
 PBMC.  
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Figure 5.8 Pgp3 specific IFN-γ responses are dynamic 

 

 
 

Figure 5.8 Pgp3-induced IFN-γ was quantified prior to, and following, effective treatment in 

2 clinically symptomatic patients infected with C. trachomatis. The first patient (represented 

by circles) had 61 SFC per million PBMCs that recognised Pgp3 peptides at initial 

presentation and only 4 SFC per 10
6
 PBMCs on the second presentation, 8 weeks following 

effective treatment.  The second patient (represented by squares) had an average of 53 SFC 

per million PBMC at initial presentation and only1 SFC per 10
6
 PBMC 6 weeks after 

effective treatment. The cut-off for a positive ELISpot response was 20 SFC per million 

PBMC.  
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5.2.8 Pgp3-induced IFN-γ responses do not correlate with Chlamydia load 

 

In order to ascertain whether chlamydial load influenced the anti-C. trachomatis IFN-γ 

response in infected patients, the number of C. trachomatis organisms in patient samples was 

quantified by qPCR and the level of IFN-γ responses (SFC per million PBMC) compared 

between patients of differing loads. 

 

Of the NAAT-positive individuals, rectal swab samples were available from 10 patients and 

urine samples available from 4 patients for the quantification of C. trachomatis load. DNA 

was extracted from each sample and the number of C. trachomatis organisms quantified by 

qPCR, with primers targeting orf5 of the cryptic plasmid (encoding Pgp3) (Chapter 4). The 

relationship between the IFN-γ response (SFC per million PBMC) and the Chlamydia load in 

rectal samples (number of organisms per swab) and urine samples (organisms per ml) was 

plotted graphically (Figure 5.9 A & B). There was no significant correlation between the 

Chlamydia load and the magnitude of the IFN-γ response. 
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Figure 5.9 Pgp3-sepcific IFN-γ responses do not correlate with Chlamydia load 

 

 

 
 

Figure 5.9 The relationship between the IFN-γ response (SFC per million PBMC) and the 

Chlamydia load in rectal samples (organisms per swab) (A) and urine samples (organisms per 

ml) (B).  DNA was extracted from the samples and the number of C. trachomatis organisms 

quantified by qPCR with primers targeting orf5.  
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5.2.9The HIV-status does not significantly affect Pgp3-induced IFN-γ responses  

 

In order to investigate whether exposure to HIV-1 influenced the number of peripheral blood 

T-cells that recognised and responded to Pgp3, the percentage of patients who were Pgp3-

IFN-γ-ELISpot-positive, and the magnitude of the Pgp3-induced IFN-γ response (SFC per 

million PBMC), was compared between patients who were HIV-1 sero-positive and HIV-1 

sero-negative.  

 

No significant difference in the median IFN-γ responses against Pgp3 was observed between 

HIV-1 sero-positive and sero-negative individuals in those who were ELISpot-positive. The 

median response was 39 SFC per million PBMCs (IR 28-55) in HIV-1 sero-positive 

individuals and 53 SFC per million PBMCs (IR 31-78) in HIV-1 sero-negative individuals 

(Mann Whitney U P = 0.302).  As the number of patients in this study was low, these data 

were interpreted with caution, however the observation is consistent with what is documented 

for M. tuberculosis (Chapman et al., 2002).  

 

There was also no significant difference in the proportion of patients who were Pgp3-

ELISpot-positive between HIV-1 sero-positive and sero-negative individuals. Seven (64%) of 

11 HIV-1 sero-positive individuals were Pgp3-ELISPot-positive compared to 25 (44%) of 57 

HIV-1 sero-negative individuals (χ
2
 P = 0.23). The higher percentage of ELISpot-positive 

individuals amongst HIV-1 sero-positive individuals is consistent with a high level of HIV-1 

and C. trachomatis co-infection in this study. Thirteen (76%) of 17 HIV-1sero-positive 

patients were co-infected with C. trachomatis compared to 17 (25%) of 66 HIV-1 sero-

negative individuals (χ
2
 P = 0.001). 
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5.2.10 Pgp3-induced IFN-γ responses are independent of C. pneumoniae exposure 

 

In order to investigate whether exposure to C. pneumoniae influenced the number of 

peripheral blood T-cells that recognised and responded to Pgp3, the percentage of patients 

who were Pgp3-IFN-γ-ELISpot-positive, and the magnitude of the Pgp3-induced IFN-γ 

response (SFC per million PBMC), was compared between patients who had anti-C. 

pneumoniae antibodies in serum and those who did not. The C. pneumoniae IgG/IgM 

microimmunofluorescence (MIF) test kit (AniLabsystems, Finland) was used to detect anti-C. 

pneumoniae antibodies and sera were considered positive if IgG was detected at a dilution of 

1:32 as per the manufacturer‟s instructions. 

 

Ten (56%) of 15 C. pneumoniae antibody-positive individuals were Pgp3-ELISpot-positive 

compared with 20 (39%) of 51 C. pneumoniae antibody-negative individuals ( χ
2 

P = 0.06) 

and the median IFN-γ response in C. pneumoniae antibody-positive individuals was 57 SFC 

per million PBMCs (IR 46-65) compared with 39 SFC per million PBMCs (IR 27-76) in C. 

pneumoniae antibody-negative individuals (Mann Whitney U P = 0.253). These data 

reinforce sequence homology searches that found no Pgp3 homology with C. pneumoniae 

proteins, however, the number of patients in this study was small and the data should be 

interpreted with this in mind. 
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5.2.11 There is no correlation between Pgp3-induced IFN-γ responses and cell viability 

 

Following the recovery of cells from storage in liquid nitrogen, cell viability ranged from 

52% to 98%. To investigate the possibility that cell viability influenced the quantity of IFN-γ 

produced by the cells in a non-specific manner, a graph was plotted of the Pgp3-IFN-γ 

ELISpot response (SFC per million PBMCs) and PBMC viability (Figure 5.10). There was 

no significant correlation between cell-viability and the IFN-γ response to Pgp3, indicating 

that the IFN-γ response was unlikely to be a non-specific result of poor cell viability. 
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Figure 5.10 Pgp3-induced IFN-γ is independent of cell-viability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 To investigate the possibility that cell viability influenced the magnitude of the 

IFN-γ response in a non-specific manner, a graph was plotted of the Pgp3-IFN-γ ELISpot 

response (SFC per million PBMCs) Vs PBMC viability.  
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5.3 Discussion 

 

The work described in this chapter represents the first ex vivo characterisation of human 

cellular immune responses to the C. trachomatis-specific protein, Pgp3. The protein is 

recognised by human T-cells circulating in the peripheral blood of patients infected with C. 

trachomatis, with T-cell epitopes located throughout its length. The Pgp3- induced IFN-γ 

responses are dependent on C. trachomatis exposure, and are dynamic. However, the 

magnitude of anti-Pgp3 IFN-γ responses in humans is low, and the sensitivity and specificity 

of the ELISpot assay for the detection of C. trachomatis was calculated to be 59% (95% CI, 

39-77%) and 81% (95% CI, 57-93%) respectively. Moreover, the Pgp3-induced IFN-γ 

responses are independent of C. trachomatis load, HIV-1 status, C. pneumoniae exposure and 

cell viability. 

 

A cellular immune response is required for the clearance of C. trachomatis infection 

(reviewed by Brunham & Rey-Ladino 2005;  Rank, 2006) and targets of the cellular immune 

response have been identified ex vivo using T-cells extracted from the peripheral blood of 

infected patients (Ortiz et al., 1996; Ortiz et al., 2000; Kim et al., 1999; Kim et al., 2000; 

Goodall et al., 2001a and b; Gervassi et al., 2004; Deane at al., 1997; Kinnunen et al., 2003; 

Meoni et al., 2009; Olsen et al., 2006; Olsen et al., 2007). However, only one published study  

has investigated responses in the absence of in vitro clonal expansion (Meoni et al., 2009). As 

the protein identified (CT043), shares 95% identity with a C. pneumoniae protein (Cpn0387), 

the present study is the first to investigate ex vivo human cellular immune responses to a C. 

trachomatis-specific antigen. 
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Pgp3 is known to be a target of the humoral response in humans with C. trachomatis 

infection (Comanducci et al., 1994; Ratti et al., 1995; Bas et al., 2001; Bas et al., 2002; 

Ghaem-Maghami et al., 2003; Li et al., 2008a; Donati et al., 2008; Wills et al., 2009), 

however, no previous study has investigated human cellular immune responses to the protein.  

Data from this study are consistent with the observation that mice immunised with the gene 

encoding Pgp3 produce a robust IFN-γ response (Li et al., 2008c) and that Pgp3 has been 

found both in the inclusion membrane (Comanducci et al., 1994) and in the cytoplasm (Li et 

al., 2008b) and,  therefore, may be presented to either CD4
+
  or CD8

+
 T-cells. 

 

This study demonstrated, for the first time, that T-cell epitopes are present throughout the 

length of the Pgp3 protein sequence, rather than being restricted to one antigenic “hot-spot”. 

This phenomenon is similarly documented for M. tuberculosis-specific secreted antigens 

ESAT-6 and CFP-10 (Lalvani et al., 2001a and Chapman et al., 2002).  Moreover, several 

peptide pools were recognised by T-cells from a high percentage of patients from different 

ethnic backgrounds and are, therefore, not restricted to one HLA haplotype.  

 

These observations suggest that Pgp3 is an immunodominant antigen during a C. trachomatis 

infection in humans, with epitopes recognised by both the humoral and cellular immune 

responses, however, the median frequency of IFN-γ-secreting T-cells that recognised Pgp3 in 

infected patients was only 44 per million PBMCs (interquartile range, 26.8-63). In contrast, 

ESAT-6, an immunodominant protein of M. tuberculosis, was recognised by 200 cells per 

million PBMCs (interquartile range, 105-596) (Lalvani et al., 2001b)).  

 

Studies that have involved the screening of either a library of Chlamydia antigens, or 

fractions of C. trachomatis lysates with T-cells reactive to C. trachomatis in order to identify 
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immunodominant antigens (Goodall et al., 2001 a and b; Starnbach et al., 2003; Olsen et al., 

2006; Olsen et al., 2009) did not identify Pgp3 as a target of the cellular immune response. 

These techniques identify the most imunodominant proteins, and it may be that the IFN-γ 

responses to Pgp3 are too small to be detected by such means. As the ex vivo ELISpot assay 

is able to detect as few as 20 cells that respond to antigen out of 1 million PBMCs, it may 

have identified T-cell epitopes where other studies have failed. 

 

The sensitivity of the ELISpot assay is 59% (95% confidence intervals (CI), 39-77%). While 

this is low, it is superior to the average sensitivity of commercial MOMP-peptide ELISAs for 

the detection of C. trachomatis, which range from 44.4-49.2% (Wills et al., 2009). Either C. 

trachomatis does not induce a systemic immune response in some patients, or the immune 

responses are directed against different antigens.  

 

The specificity of the ELISpot assay is 81% (95% CI, 57-93%) compared to that of the Pgp3 

ELISA, 97.6% ( 95% CI, 96.2-98.6%). Sequence homology searches of the SwissProt and 

translated GenBank databases of all known protein sequences were conducted with a basic 

local alignment search tool (BLAST) for each Pgp3-peptide. Two peptides (21 and 46) had 

homology with members of the Aspergillus genus that may cause infection in humans (9 out 

of 15 residues identical) and one peptide (44) had homology with Roseburia inulinivorans, a 

human colonic commensal (Duncan et al., 2006) (10 out of 15 residues identical). In addition, 

24 peptides had homology with the zoonotic pathogen, C. psittaci. While it is possible that 

exposure to this pathogen contributed to the poor specificity, this is unlikely, as the 

prevalence of C. psittaci infection is low (around 100 cases reported in the US annually 

(Vanrompay et al., 2007). 
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Of note is that 6 (31%) of the paediatric patients were from Africa. It is possible they could 

have been exposed to C. trachomatis serovars A-C (Trachoma), thus reducing assay 

specificity.  It is also possible that some of the clinically asymptomatic, NAAT-negative, 

Pgp3-ELISA-negative men had previously been exposed to C. trachomatis as the number of 

new sex-partners in the 3 months preceding presentation was not significantly different from 

NAAT-positive individuals.  

 

Peptides were dissolved in DMSO which can increase the permeability of cell membranes. It 

is, therefore, possible that DMSO increased the release of intracellular IFN-γ non-

specifically, leading to the background observed in the paediatric controls. Never-the-less, if 

this were the case, the same background IFN-γ would be expected in all patient groups 

investigated. The fact that, significantly more C. trachomatis-NAAT-positive individuals are 

Pgp3-ELISpot-positive compared with NAAT-negative individuals indicates that the IFN-γ 

response observed is specific to a C. trachomatis antigen. 

 

A positive correlation was observed between ELISpot positivity and C. trachomatis 

exposure. Pgp3-induced IFN-γ may, therefore, have potential as a biomarker for C. 

trachomatis infection. Chlamydial exposure was based on NAAT and ELISA results: 

Individuals testing ELISA and NAAT-positive are more likely to have either been exposed to 

C. trachomatis for a longer duration than those testing NAAT-positive alone, or experienced 

more severe clinical disease (Mårdh, 1989b). Antibody-negative, NAAT-positive individuals 

are likely to have been exposed more recently than those testing serology-positive alone, as 

antibodies  take a number of weeks to develop after infection and persist after the infection 

has been resolved, but NAATs become negative (Mårdh, 1989b). Individuals testing ELISA 
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and NAAT-negative are less likely to have been exposed to C. trachomatis than the other 

groups, with children being at the lowest risk. 

 

In this study, cells secreted IFN-γ in the absence of in vitro stimulation and, were therefore, 

capable of rapid effector function. High frequencies of circulating effector T-cells are likely 

to be maintained following a recent encounter with antigen in vivo (Zinkernagel et al., 1996) 

and, as continued Pgp3 expression by reticulate bodies would require metabolically active 

and viable C. trachomatis organisms, it was reasoned that the presence of circulating IFN-γ 

secreting effector T-cells that recognise Pgp3-peptides is more likely to indicate a recent C. 

trachomatis infection, as opposed to prior exposure to the organism. In support of this 

hypothesis, two C. trachomatis-infected patients with positive Pgp3-ELISpot responses were 

followed post-treatment and found to be NAAT-negative and Pgp3-ELISpot-negative, 

demonstrating that Pgp3-induced IFN-γ responses were dynamic. This suggests that an ex 

vivo IFN-γ ELISpot  is capable of distinguishing between a recent C. trachomatis infection 

and prior exposure to the organism not related to the current episode. A larger longitudinal 

study following patients before and after treatment is necessary to confirm these findings. In 

contrast, anti-C. trachomatis IgG antibodies persist after resolution of infection (Ghaem-

Maghami et al., 2003; Mårdh, 1989b) and, therefore, titres do not permit temporal analysis of 

transient immune responses (although rising IgM antibody titres can be used to identify 

recent exposure (Mårdh, 1989b). An ex vivo IFN-γ ELISpot assay using a C. trachomatis-

specific antigen may, therefore, prove a useful additional tool for studying the burden of 

acute disease caused by C. trachomatis infection. (Horner, 2007). 

 

As Pgp3-induced IFN-γ responses declined after effective treatment, it is possible that the 

frequency of Pgp3-specific T cells was related to antigenic load. In order to address this 
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hypothesis, a qPCR was developed to quantify C. trachomatis plasmid orf5 copies (encoding 

Pgp3) in patient samples and the magnitude of Pgp3-induced IFN-γ responses was compared 

to the Chlamydia load. No significant correlation was found. 

 

It is possible that a positive correlation between the Chlamydia load and the frequency of 

Pgp3-specific T-cells was not observed as some patients may have acquired a recent infection 

and not yet mounted an immune response, giving rise to high Chlamydia loads and low IFN-γ 

responses. Other patients may have, however, generated an immune response that cleared the 

infection, giving rise to high IFN-γ responses but low Chlamydia loads. A longitudinal study 

would enable a more detailed investigation into the kinetics of the anti-Chlamydia immune 

response, and how it relates to Chlamydia load in humans.  

 

Neither the magnitude of the Pgp3-induced IFN-γ response, nor the proportion of people who 

responded were significantly influenced by exposure to HIV-1.  Although it is possible that 

the low number of samples in this study accounted for the lack of statistical significance, 

these preliminary data imply the assay may be valuable in an HIV-1 sero-positive population.  

 

There was a slight reduction in the frequency of T-cells that responded to Pgp3 peptides in 

HIV-1sero-positive patients compared to HIV-1 sero-negative individuals. This has been also 

been reported for M. tuberculosis (Chapman et al., 2002) and may be due to an impaired 

ability of T-cells to mount an IFN-γ response in HIV-1 infected individuals.  In contrast, the 

proportion of individuals who responded to Pgp3 peptides was slightly higher in HIV-1 sero-

positive individuals than HIV-1 sero-negative. This may be due, in part, to the high level of 

HIV-1 and C. trachomatis co-infection seen in this study and is consistent with observations 
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by Ratti et al., 1995 who reported that a higher proportion of HIV-1 seropositive individuals 

have a anti-Pgp3-antibodies, compared with HIV-1 negative individuals. 

 

Exposure  to C. pneumoniae does not significantly influence either the magnitude of the 

Pgp3-induced IFN-γ response, or the proportion of patients responding. While the small 

number of patients in this study may account for this observation, it is consistent with Pgp3 

being absent from human C. pneumoniae isolates, which lack the cryptic plasmid (Campbell 

et al., 1987; Lusher et al., 1989). 

 

This study has shown that Pgp3 is a target of the human cellular immune response during C. 

trachomatis infection and suggests that Pgp3-specific IFN-γ may be a useful biomarker for C. 

trachomatis- specific inflammation. 
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Chapter 6 

 

Discussion 
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More than a hundred years after the first identification of intra-cytoplasmic chlamydial 

inclusions, Chlamydia trachomatis remains the most common curable sexually transmitted 

bacterial infection in young people, with approximately 5-10% of sexually active women 

under the age of 24 and men between 20-24 years old currently infected (Horner, 2008).  

 

Clinically, there is no non-invasive way of identifying infected individuals who are not 

shedding organisms from the lower genital tract or rectum, nor is there a licensed vaccine 

against Chlamydia. There is a paucity of information on the load shed by individuals with a 

rectal C. trachomatis infection and the recent LGV outbreaks have highlighted our lack of 

understanding on the association between C. trachomatis and HIV-1 co-infection.  

 

This thesis addresses three aspects of chlamydial biology that have clinical implications. 

Firstly, as over 75% of patients with LGV are HIV-1 sero-positive (Mayaud, 2006) for 

reasons that remain unknown, a cell-culture model was established to investigate whether 

HIV-1 altered the replication of C. trachomatis serovar L2. This was the first investigation of 

C. trachomatis growth in HIV-1 co-infected cells and we found that HIV-1 does not induce 

chamydial persistence, or accelerate the lytic cycle, suggesting that the association of LGV 

with HIV-1 infection is not due to induction of chlamydial persistence by HIV-1 in vivo. 

 

The high levels of co-infection observed may reflect high risk sexual behaviour in distinct 

groups of individuals, with HIV-1 positive MSM preferentially meeting other HIV-positive 

MSM for whom the imperative to practice safer sex has been diminished. Alternatively, there 

may be a selection bias, with clinicians selectively testing HIV-1 positive men, or HIV-1 

positive men being more aware of LGV as a result of publicity generated through 

organisations such as the Terrance Higgins Trust (Ward et al., 2007).  
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It also remains possible that HIV-1 and C. trachomatis interact indirectly in a co-infected 

host. In models of HIV-1 and Leishmania co-infection, HIV-1 infection leads to a decrease in 

Th-1 cytokines such as IFN-γ and IL-12 and an increase in the Th2 cytokine IL-4 and the 

inhibitory cytokine IL-10. As Th1 responses are required for clearance of Leishmania 

infection, the HIV-1 induced shift to Th2 responses could explain the increased severity of 

disease seen in co-infected patients (Alvar et al., 2008). A similar scenario is documented in 

HIV-1 and M. tuberculosis co-infection models, with a shift from Th1 to Th2 dominance 

impairing the ability of the immune response to contain the bacilli in a latent form, with 

subsequent reactivation of disease in co-infected individuals (Siawaya et al., 2007).   As C. 

trachomatis also requires a protective Th1 cellular response to clear the infection (reviewed 

by Brunham & Rey-Ladino, 2005) it is possible that an HIV-1- mediated shift toward Th2 

responses affects the pathogenesis of the bacteria.  

 

Our findings could potentially be of use in defining pathways that lead to chlamydial 

persistence. Currently, although HSV-2 is known to induce chlamydial persistence, the 

mechanism of this remains unknown (Vanover et al., 2010). As HIV-1 does not induce 

persistence, it might be possible to identify where the two viruses differ in the cellular 

pathways they activate, in order to narrow down those that induce persistence.  

 

We found that HIV-1 co-infection leads to a significant enlargement of chlamydial 

inclusions. This is most likely due to the fusion of multiple inclusions in an HIV-1 induced 

syncytium to form one “giant” inclusion, something not previously reported. This observation 

demonstrates that the chlamydial fusogenic machinery is capable of producing structures far 

larger than previously documented and that the protective mesh or scaffold that surrounds the 



211 

 

inclusion (Kumar & Valdivia, 2008) is capable of supporting such structures. Moreover, as 

no alteration in chlamydial growth was observed in co-infected cultures, the Chlamydia 

organisms must be maintaining their complex intracellular niche despite considerable 

cytoplasmic rearrangement. 

 

In order to complete the investigation of C. trachomatis and HIV-1 co-infection in vitro, 

future studies should be conducted  in reticuloendothelial cell-lines and ex vivo macrophages. 

These cells are more representative of the likely site of co-infection in vivo and there are 

notable differences in the growth of C. trachomatis in these cells compared to epithelial cells 

(Köhler et al., 1997). If co-infection is found to influence the replication of either organism, 

the effect on the sensitivity of antibiotics and antiretroviral drugs could then be investigated 

in vitro. 

 

The second aim of the thesis was to develop a qPCR and use it to determine the number of C. 

trachomatis organisms per rectal swab in NAAT-positive patients with a rectal infection. 

This was the first evaluation of the quantity of bacteria shed during a rectal C. trachomatis 

infection. As rectal C. trachomatis is not uncommon in MSM, with prevalence estimated 

between 6.5 and 8.2% (Annan et al., 2009; Benn et al., 2007; Manavi et al., 2004) and little is 

known of how infectious such patients are, this information is clinically relevant. 

 

We found the average rectal load to be considerably higher than the average load reported in 

the female genital tract on the basis of endocervical or vulvo-vaginal swabs (Michel et al., 

2007; Wiggins et al., 2009). While this could be due to a bias in patient recruitment 

(favouring those with higher chlamydial loads), it may reflect a difference in how permissive 

the rectal mucosa is to C. trachomatis infection, compared with the mucosa of the genital 
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tract, and may mean that patients with a rectal infection are more infectious per episode of 

unprotected intercourse than women with a genital tract infection.  

 

We found that a higher chlamydial load was associated with proctitis, but not the presence of 

rectal symptoms or HIV-1 infection. As chlamydial load is associated with inflammation in 

the genital tract (Geisler et al., 2001; Wiggins et al., 2006; Horner, 2007; Michel et al., 

2007), the former observation is to be expected. The lack of association between load and 

rectal symptoms or HIV-1 infection may be due a lack of statistical power of the study. 

Nevertheless, we found that asymptomatic individuals shed as much C. trachomatis as 

patients with rectal symptoms. Asymptomatic individuals are likely to be unaware of their 

infection, remaining undiagnosed and untreated, thus representing a reservoir of infection in 

the community. This is particularly important in MSM, as unprotected anal intercourse is not 

uncommon (Dodds et al., 2007) and where the majority (>80%) of serovar D-K infections are 

asymptomatic (Annan et al., 2009; Kent et al., 2005; Ward et al., 2009a).  

 

Although the qPCR developed in this study was adequate for the investigations described 

above, the analytical sensitivity was low. It would, therefore, be wise to utilise a confirmatory 

assay, such as a validated in house qPCR or commercial NAAT platform capable of 

quantifying infection, such as the RealArt C. trachomatis PCR kit (Qiagen).  

 

Finally, an ex vivo IFN-γ ELISpot assay was developed to characterise human cellular 

immune responses to the C. trachomatis-specific protein, Pgp3. This not only represents the 

first characterisation of T-cell immune responses to Pgp3, but is also the first investigation 

into ex vivo human cellular immune responses to a C. trachomatis-specific antigen.  
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There is currently a drive in the Chlamydia field toward developing a sub-unit vaccine 

comprised of chlamydial antigens. We found that Pgp3 is a target of human cellular immune 

responses and, although we found the magnitude of these responses to be low, this study 

highlights the potential of an ex vivo IFN-γ ELISpot assay in identifying additional proteins 

recognised by the human immune response during a natural chlamydial infection that could 

then be tested in vaccine studies. 

 

The Pgp3- induced IFN-γ response correlated with C. trachomatis exposure and was 

dynamic, decreasing after effective treatment. As M. tuberculosis- specific IFN-γ is known to 

be a marker for current TB infection (Lalvani et al., 2001a and b; Millington et al., 2007), it 

may be that C. trachomatis-specific IFN-γ also signifies the presence of an active infection. If 

this is so, the ELISpot assay may represent a non-invasive way of identifying individuals 

with a chlamydial infection who are not shedding organism from the lower genital tract. This 

may prove to be a more satisfactory approach than serological screening to identify patients 

at risk of TFI. However, the specificity and sensitivity of the assay requires to be improved 

before this can be put to the test. 

 

To improve assay sensitivity, additional C. trachomatis-specific antigens that are more 

immunodominant could be investigated. The antigen CT694 has been identified as C. 

trachomatis-specific (Griffiths et al., 2006), is located within the cytosol (Hower et al., 

2009), and found to be recognised by antibodies from infected patients (Sharma et al., 2006; 

Frikha-Gargouri et al., 2009). This protein may also contain T-cell epitopes and be of use in 

an IFN-γ ELISpot assay for the detection of C. trachomatis.  
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It may be possible to refine the response to Pgp3 by enumerating the frequency of T-cells that 

recognise and respond to individual Pgp3-peptides rather than peptide pools. This would 

enable an “epitope map” to be constructed of the whole antigen, in the same manner as has 

been done for the M. tuberculosis antigens, ESAT-6 and CFP-10 (Lalvani et al., 2001b; 

Pathan et al., 2001; Chapman et al., 2002) and enable peptides that contribute to the poor 

specificity to be identified and omitted from the assay. 

 

Murine studies have implicated CD4
+
 Th1 cells to be of major importance for the clearance 

of Chlamydia infection. However, the contribution of CD4
+
 and CD8

+
 T-cells to the human 

anti-Chlamydia immune response remains unknown (reviewed in Wizel et al., 2008). As this 

study considered human cellular immune responses to Pgp3 in the context of a mix 

population of PBMCs, it would be of benefit to deplete patient PBMCs of either CD4
+
 or 

CD8
+
 T-cells and enumerate cytokine responses from each cell population to characterise 

patient CD4
+
 and CD8

+
 T-cell responses to C. trachomatis-specific antigens. This would 

enable more information to be obtained on the nature of human cellular immune responses to 

C. trachomatis. 

 

A longitudinal study could be conducted in order to determine the kinetics of anti-C. 

trachomatis-IFN-γ and antibody responses. However, once a patient presents at the clinic 

with suspected C. trachomatis infection, they would be treated with antibiotics. A 

longitudinal study would collect patient samples at initial presentation and periodically 

during and after treatment to determine how quickly IFN-γ responses declined and if C. 

trachomatis-antibody responses develop and persist. This would enable increased information 

on the natural history and the host response to infection. 
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By culturing PBMCs in the presence of antigen in vitro, memory T-cell responses can be 

evaluated (Todryk et al., 2009). As vaccines aim to stimulate immunological memory, it 

would be of benefit to establish if Pgp3 elicits memory T-cell responses in humans. If 

memory responses are detected in response to this protein, it could explain why murine 

models of Pgp3 vaccination show protective immune responses (Donati et al., 2003; Li et al., 

2008c) whereas the magnitude of the effector IFN-γ response to Pgp3-peptides is low.  

 

In conclusion, this thesis has examined three novel aspects of C. trachomatis translational 

research and characterises, for the first time, C. trachomatis growth in HIV-1 co-infected 

cells, rectal chlamydial load in different patient groups, and ex vivo human T-cell responses 

to a C. trachomatis-specific antigen. The information gained from these studies will be of 

benefit to the Chlamydia research field. 
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Figure Appendix 1. Bristol Sexual Health Centre Ethics Approval 
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Facsimile: 0117 323 2832 

08 April 2009 
 

Dr. P.J. Horner 
Consultant Senior Lecturer in Genitourinary Medicine 
University of Bristol  
Bristol Sexual Health Centre 
Tower Hill 
Bristol 
BS2 OJD 
 
 
Dear Dr. Horner 
 

Full title of study: A study to assess rectal Chlamydia trachomatis using 
quantitative PCR in individuals having receptive anal 
sexual intercourse. 

REC reference number: 09/H0107/6 
 

Thank you for your letter of 19 March 2009, responding to the Committee’s request for further 
information on the above research and submitting revised documentation. 

 

The further information has been considered on behalf of the Committee by the Chair. 
 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised, subject to the conditions specified below. 
 

Ethical review of research sites 
 
The Committee has designated this study as exempt from site-specific assessment (SSA). The 
favourable opinion for the study applies to all sites involved in the research. There is no 
requirement for other Local Research Ethics Committees to be informed or SSA to be carried 
out at each site.  
 
Conditions of the favourable opinion 
 
The favourable opinion is subject to the following conditions being met prior to the start of the 
study. 
 
Management permission or approval must be obtained from each host organisation prior to the 
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After ethical review 
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Figure Appendix 2. St. Mary’s Hospital Ethics Approval for Recruitment of Adults 
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Figure Appendix 3. St. Mary’s Hospital Ethics Approval for Recruitment of Children 
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