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Abstract 

 

The simplified analytical models developed in the companion paper for the failure assessment of 

simply supported composite floor slabs without planar restrained are investigated further in this 

paper. In addition to taking account of membrane action and the material response at elevated 

temperature, these models allow for the bond developed between the reinforcement and the 

surrounding concrete. This is an essential requirement for defining a rational performance-based 

failure criterion for for composite floor slabs at elevated temperatures, since bond along with the 

characteristics of the reinforcement response govern failure by rupture of the reinforcement 

across full depth cracks. The kinematic assumptions inherent in the formulation of the complete 

and simplied variants of the models are first verified against detailed finite element analysis, and 

comparisons are made against a previously proposed model to identify common features and 

important benefits. Subsequently, the models are utilised in several examples which demonstrate 

their applicability, and the treatment of important factors related to boundary conditions and 

geometric configuration is discussed, highlighting in the process any restrictions on the 

application of the proposed models.  
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1  Introduction 

 

With advances in computational capabilities, comprehensive procedures were developed 

[1] to evaluate conditions which have traditionally been neglected in design such as explosion 

and fire. However, for design purposes, models which are simple to use are prefered. These 

models though, should be able to account rationally for important effects, removing any 

reservations related to their validity and conservativeness [2]. In this respect nonlinear finite 

element procedures can be employed in order to enhance our understanding of structural 

behaviour and validate analytical models which are aimed at representing design cases in a 

simple manner. 

Among others issues, the fire resistance of composite floor slabs used in modern office 

buildings has received considerable attention over the recent years following reals events where 

their ability to resist the imposed load beyond expected was observed. Experimental programs 

have furtherly established these observations and served as benchmarks for the development of 

numerical and analytical procedures. 

Nevertheless, current models used for the assessment of capacities of such slabs fail to 

address the important feature of light reinfocement and bond stresses. A concrete member is 

defined as lightly reinforced if the cracking capacity of the concrete is larger than the ultimate 

tensile capacity of the reinforcement. These issues were addessed in subsequent models [2] 

which were developed for the failure assessment of lightly reinforced concrete (LRC) beams 

under elevated temperatures. Nevertheless, due to their complexity these models are not suitable 

for the failure assessment of slabs by designers.  

In the companion paper [3], two variants of an analytical model are presented in order to 

model the failure under elevated temperature of composite slabs which are supported vertically 

along the edges but do not exhibit any planar restraints. These two variants are developed 

because failure modes observed experimentally have not so far been adequetly examined in 

terms of the parameters governing the likelihood of occurence of one failure mode over the 

other. The models developed have been extended to account for the effect of elevated 

temperatures and simplified forms of these models have been shown to compare favourably with 

the more complex complete formulations. 

In the present paper, assumptions made in the formulation of the aforementioned models 
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are furtherly examined and the applicability of current models is demonstrated. 

Finally, the simplified slab models given in the companion paper , which have been 

shown to combine practicality and accuracy, are presented systematically in order to facilitate 

their application in design practice. The application of the proposed models and any restrictions 

are also discussed, and examples are presented demonstrating their applicability. 

 

2  Verification of Kinematics of Unrestrained Slab Models 

 

The kinematic assumptions adopted for the two CM and IM variant models proposed in 

the companion paper [3] for unrestrained floor slabs under fire are verified here using the 

nonlinear finite element analysis program ADAPTIC [1]. In ADAPTIC, the finite element 

employed for composite and reinforced concrete floor slabs [4] is formulated using the smeared 

crack approach, which normally represents well reinforced slabs where multiple cracks occur. 

However, for the case of LRC members, where only a single crack along a certain region occurs, 

the stresses in the reinforcement can be affected by the the mesh size and can lead to 

unrealistically high strain and consequently stress concentrations [6]. In addition to this, the 

ADAPTIC element [4] assmes full bond, thus neglecting the finite bond strength between the 

reinforcement and the surrounding concrete, and therefore it cannot be employed for full 

verification of the present simplified models. Nevertheless, ADAPTIC can be used to verify the 

accuracy of the kinematic expressions of the proposed model by neglecting the strain hardening 

of the steel reinforcement. In this way, the stress in the reinforcement across the crack does not 

exceed the yield strength of steel, and the response predicted by ADAPTIC becomes insensitive 

to the selected mesh size and can be compared against the response obtained using the proposed 

simplified models. 

Towards this end, a 212 6m  LRC slab is analysed with ADAPTIC using the csl4 

element [4],[5], where due to symmetry only a quarter model is considered. In-plane translations 

along the simple edge supports are allowed, and appropriate translational/rotational restraints are 

applied along the lines of symmetry. A mesh of 16 8  square elements is used with a 

corresponding element side size of 375mm , and the reinforcement is located at the element mid-

height where restraints are applied, corresponding to the assumption that the slab is supported at 

the level of the reinforcement. The geometric and steel material properties of the slab, defined in 
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the companion paper [3], are given in Table 1. 

In order to simulate with ADAPTIC the crack pattern of the failure modes postulated by 

the proposed models, the tensile strength and stiffness of concrete assigned for the elements at 

the locations coinciding with the the yield lines is set to a small value compared to that for the 

rest of the elements. The material properties for the ADAPTIC steel model stl4 [5] are given in 

Table 2 and for the concrete model con11 [5] are provided in Table 3 and Table 4 [2],[6]. This 

imposes a yield line pattern which is in line with experimental results and the current analytical 

model formulation, thus enabling the verification of the proposed simplified models for the large 

displacement response under the prescribed yield pattern. Accordingly, a successful comparison 

would establish the accuracy of the kinematic descriptions of the proposed models and their 

ability to model the large displacement response for the considered deformation modes. 

The deflected shapes of the slab corresponding to the crack locations assumed by the two 

variant models, CM and IM, are shown in Figures 1 and 2 for a central deflection of 600mm . It 

is evident from these figures the cracks open at the locations intended. Moreover, it can be 

observed from Figure 1 that the crack along the central yield line is wider closer to the 

intersection of the yield line, which is in line with the kinematic assumption of the CM model.  

 The load-deflection responses obtained from ADAPTIC and the developed models are 

presented in Figure 3, where it is clear that the predictions of both variant models compare very 

favourably against the numerical predictions of ADAPTIC. Therefore, this verifies the accuracy 

of the kinematic assumptions of the two model variants, providing the necessary level of 

confidence for their use in the assessment of unrestrained LRC slabs including the influence of 

membrane action. 

 

3  Comparison against BRE Model  

 

The proposed slab CM model is compared here against the previously developed BRE 

model Error! Reference source not found., which is based on the following assumptions: 

  

• the slab is simply supported but free to move in-plane,  

• cracks are developed at locations predicted by yield line theory,  

• the slab parts bounded by the yield lines and the support rotate around them in a rigid 
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manner, 

• a full depth crack is developed perpendicular to the long span dividing the slab into two 

equal parts,  

• the reinforcement spanning across the yield lines is assumed to be at yield (Figure 4), 

while the reinforcement across the full depth crack is assumed to have reached the 

ultimate strength of the steel, with =1.1ultimate yieldf f ,  

• the compressive forces in the concrete are assumed to be constant along the central yield 

line, and increasing along the diagonal yield line to a higher value at the slab corners,  

• the compression along the full depth crack is assumed to be concentrated at the edge of 

the slab,  

• a moment-axial force interaction law is adopted, implicitly defining the centre of 

bending over a section,  

• the in-plane and out of plane equilibrium of the slab parts is used for the formulation of 

the enhanced slab capacity under larger displacements,  

• the enhancement due to the membrane forces, including their effect on the moment 

capacity, is incorporated in addition to the yield line theory capacity of each of the 

triangular and trapezoidal parts of the slab,  

• the contribution of the two parts of the slab are combined to give the total slab capacity 

using a relationship proposed by [9], which accounts for the effect of out-of-plane shear 

forces.  

 

In comparing the proposed model with the BRE model, some minor modifications have 

been necessary for a valid comparison. In the current formulation of the CM model, it is assumed 

that the full-depth crack opens at the centre of the slab, and that the adjacent trapezoidal parts are 

in contact at the centre of the slab at the top fibre. A direct comparison between the proposed 

CM model and the BRE model shows discrepancies, which are attributed to the fact that the CM 

model is based on a single degree of freedom kinematic displacement approach, whereas the 

BRE model is based on an equilibrium approach employing an assumed stress state. To establish 

more clearly the sources of discrepancy, the proposed CM model is expressed using the 

equilibrium approach in which case the compressive forces in the concrete are concentrated at 

the three points of contact between the trapezoidal part and the adjacent parts. These 
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compressive forces are then distributed to correspond more closley to the BRE model, thus 

allowing the determination of whether the discrepancies between the proposed CM model and 

the BRE model are largely due to the difference between the effective and assumed internal 

stress distributions, respectively. 

To enable a direct comparison, it is assumed with the BRE model that the stress of the 

reinforcement along the full depth crack is equal to the yield strength, while the influence of 

strain hardening is ignored with the proposed kinematic CM model. Moreover, since the CM 

model assumes that the slab parts are in contact at the top fibre, the centre of rotation with the 

BRE model is taken at the top fibre. Finally, the relationship combining the contribution of the 

triangular and trapezoidal parts of the BRE model is modified in order to match the equivalent 

equilibrium formulation to the proposed CM model. 

 

3.1  Equilibrium formulation with concentrated compression 

 

This formulation simply expresses the proposed kinematic CM model using an 

equilibrium approach, where concentrated compressive forces are considered at the three contact 

points. Referring to Figure 5 and considering planar rotational equilibrium of the trapezoidal part 

about the bottom left corner, the compression at the top fibre at the centre of the slab 1C  is given 

by: 

 

 1 =
4

y

a
C T  (1) 

 

Considering the out-of-plane rotational equilibrium of the tranpezoidal part about the 

long supported edge and the triangular part about the short supported edge, both with respect to 

the top fibre, the following respective equilibrium conditions are obtained: 
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where the out-of-plane shear force V  is assumed to act at the intersection of the diagonals. In the 

above, 1U   and 2U   are the vertical distances between the top fibre and the level of reinforcement 

at the deflected configuration for the trapezoidal and triangular part respectively and are given 

by: 
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The load-deflection relationship can be obtained as the solution of the two previous 

equilibrium equations as: 
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where: 
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3.2  Equilibrium formulation with distributed compression 

 

As an enhancement of the previous assumption of concentrated compression, it is 

assumed here that the concrete compression is distributed along the yield lines at the top fibre 

(Figure 6). The compression is constant along the central yield line, and increasing along the 

diagonal yield line towards the slab corner. Again, the reinforcement stress is at yield along the 

cracks, and the vertical shear force between the triangular and trapezoidal force is assumed to be 

concentrated at the intersection of yield lines. The load-deflection relationship can be obtained 
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by solving the following simultaneous equations of equilibrium, which respectively correspond 

to translational equilibrium of the trapezoidal part in the longitudinal direction, translational 

equilibrium of the triangular part in the transverse direction, planar rotational equilibrium of the 

trapezoidal part, rotational equilibrium of the trapezoidal part about the longitudinal axis and 

rotational equilibrium of the triangular part about the transverse axis: 
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where 1U   and 2U   are given in Equations (4)-(5). 

Solving the above equations, the load-deflection relationship is obtained as: 
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in which  and  are given by Equations (7) and (8). 

 

3.3  Modified BRE model formulation 

 

Considering the discussion in Sections 3.1 and 3.2, the enhanced load capacity q  of an 

unrestrained slab according to the BRE model [7], [8] is given by: 
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 = yq eq  (15) 

 

where e  is a non-dimensionless enhancement factor with respect to the yield line capacity yq  

given by: 
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In the above equation, 1e  and 2e  represent the enhancement in the load capacity for the 

trapezoidal (denoted by subscript 1) and the triangular (denoted by subscript 2) parts, 

respectively (Figure 4), and these are obtained by considering independently the out-of-plane 

moment equilibrium of each part. The enhancement factors for each slab portion include the 

contribution of both membrane and bending effects and are given by [8]: 
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In Equations (19)-(22) subscript m refers to membrane effects while subscript b refers to 
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bending effects. Moreover, the parameters k  and cb  are obtained by considering the in-plane 

equilibrium of the slab parts, where 
i  and 

i  describe the moment-axial force interaction curve 

of the cross-section, and these parameters are given by: 
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in which 0g  reflects the location of the centre of rotation of the cross section taken as 1 for the 

top fibre and 0  for the centre of the cross section. Moreover [9]: 
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Equation (16) was originally proposed by Hayes [9], suggesting that it accounts for the 

shear force interaction between the slab portions, though the derivation of the equation was not 

presented. Therefore, a new approach is presented here taking into account the vertical shear 

force between the two slab portions similar to the approach adopted in Sections 3.1 and 3.2. The 
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enhancement factors for the slab parts are then combined using the equation suggested hereafter, 

which enables a direct comparison between the models. 

The load capacities 1q  and 2q  for the individual slab parts ignoring the vertical shear 

interaction between them are obtained from: 

 

 
1 1 1=A B q  (31) 

 2 2 2=A B q  (32) 

 

where 1A  and 2A  are the moments created by the internal stress distribution, while 1B  and 2B  

are the first moments of area, corresponding to the trapezoidal and triangular part, respectively, 

with respect to the relevant supports, as given by: 
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By taking into account the vertical shear V  the load capacity q  is obtained from the 

following: 
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It should be noted that the vertical shear V  is assumed to be acting at the intersection of 

the yield lines as a concentrated force. The shear can also be assumed to be uniformly distributed 

along the diagonal yield line, in which case the moment generated with respect to each support 

would still be the same. Solving simultaneously Equations (31)-(36) the load capacity is obtained 

as: 
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For comparison purposes, a modified version of the BRE model is considered which is 

based on the above proposed equation, leading to the following enhancement factor: 
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instead of the original expression [9] given by Equation (16). 

 

3.4  Comparisons 

 

The load-deflection response of a slab is obtained here using the proposed kinematic CM 

model [3], the two variations based on this model considering the equilibrium approach, and the 

BRE equilibrium model [8] with the modified load shared between the triangular and trapezoidal 

parts. For the CM model, the force in the reinforcement is assumed constant at yT  throughout the 

loading, so as to facilitate comparison with the other models, leading to: 
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For the other three models, the load-deflection response is obtained in accordance with 

Sections 3.1, 3.2 and 3.3. For the parameters given in Table 5, the obtained results are plotted in 

Figure 7. Since the equilibrium variations of the CM model assume that the concrete remains 

completely rigid, which forces the centre of rotation of the cross section to be at the top fibre, 0g  

is set to 1 in order to facilitate direct comparison with the BRE model. This results in a yield line 

capacity of 210.2 /kN m . 

It can be observed that for all depicted models the initial load resistance corresponds to a 

value very close to the yield line capacity. Moreover, the predictions of the kinematic CM model 
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and its equilibrium variant assuming concentrated compression forces are very similar, especially 

at lower displacements, thus verifying that the kinematic and equilibrium models are equivalent.  

Furthermore, the modified BRE model compares favourably with the equilibrium variant 

of the CM model assuming distributed compression forces, both predicting a less stiff response 

in comparison with the concentrated compression kinematic equilibrium model.  

The above comparisons demonstrate that the discrepancies observed between the 

proposed CM kinematic model and the BRE equilibrium model are mainly due to the assumption 

of rigid compressive concrete in the CM model, leading to discrete points of contact. These 

discrepancies may however be reduced for the CM model by moving the points of contact 

inwards along the yield lines and along the through depth crack as well as down from the top 

extreme fibre, though this is not attempted in the present work. This is because there is no 

guarantee that the equilibrium model, which is based on an assumed stress state, is more accurate 

in the general case when the stresses in the steel reinforcement vary due to strain hardening 

combined with bond effects. 

 

4  Validation against BRE Experiment 

 

In this section, the proposed models are compared against a test that was performed at 

BRE [10] on a simply supported composite slab without planar restraint, for which the effect of 

elevated temperature was simulated by removing the steel deck. The slab was uniformly loaded, 

and the test was terminated when a central full depth crack was developed in the short span 

direction, and the reinforcement across this crack ruptured. The properties of the slab as 

measured are given in Table 6, while the bond strength is taken as 2= 0.156 /b N mm  (bond 

strength per unit width per unit length), which for the reinforcement used corresponds to 

approximately 21.67 /N mm  (bond strength per unit reinforcement surface area). It should be 

noted that the bond strength values used here is obtained from BS8110 [13] for plain 

reinforcement bars since there are no bond strength values reported.  

The load-deflection response is plotted in Figure 8, where it can be observed that the two 

proposed models [3] predict a stiffer response compared to the BRE model. It is also evident that 

the CM model compares particularly well with the test results which conforms to the 
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experimental observation of a central through-depth crack. Moreover, Table 7 demonstrates that 

the failure prediction of the current CM formulation is conservative compared to the 

experimentally observed failure point. From the same table it is also evident that the BRE model 

gives almost identical failure deflection prediction as the test result which is due to the fact that 

the BRE model has been specifically calibrated against this test. Therefore, it can be concluded 

that the proposed models can realistically capture the failure of LRC slabs, predicting the failure 

load and displacement at reinforcement rupture using sound engineering principles. 

 

5  Application of Proposed Models for Fire Conditions 

 

Here, the simplified elevated temperature models for unrestrained slabs proposed in the 

companion paper [3] along with the model for restrained slabs developed previously [11] are 

considered, and their applicability is demonstrated with two examples. In each case, the 

deflection-temperature response for a constant load and the failure load-temperature curve are 

obtained for the restrained slab model and the two variants of the unrestrained slab model. The 

only parameter changing between the two examples is the length of the short span. The 

composite slabs are of a corrugated shape typically adopted in modern office buildings 

(Figure 9); however, the contribution of the steel decking and any secondary steel beams is 

neglected, since in the event of a fire such contributions become small especially at failure when 

the temperatures are high. The reinforcement chosen consists of the A142 mesh corresponding to 

bar of 6mm  diameter placed at 200mm  centres placed at a depth of = 45d mm  from the top of 

the slab. It is assumed that lightweight concrete with a compressive strength of 230 /N mm  is used 

resulting in a slab self weight of 22.3 /kN m . It is also assumed that the reinforcement is hot rolled 

with a characteristic yield strength of 2500 /N mm .  

For the steel model, the stress-strain response proposed by Eurocode 4 Part1-2 [12] is 

adopted. The ultimate strength of the steel at ambient temperatures is specified as 25% higher 

than the yield strength. Moreover, it is specified that after a strain of 15%, steel exhibits strain 

softening. Using this information, and assuming that the stress-strain response can be 

approximated as bi-linear, the hardeding modulus can be obtained. Moreover, for elevated 

temperatures the reduction factors suggested in Eurocode 4 [12] are adopted, where the yield 
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strength at elevated temperture is taken as the strength corresponding to the proportionality limit 

of the steel. The bond strength at ambient temperatures is taken as 20.156 /N mm  corresponding 

to 21.67 /N mm  of reinforcement perimetric bond strength as specified by BS8110 [13]. Due to 

the lack of information the variation of bond strength with temperature, its variation is assumed 

to be similar to that of the compressive strength of light weight concrete as given by Eurocode 4 

[12]. The variation of the material properties with temperature for the considered examples is 

depicted in Figure 10 and 11.  

The long span of the two considered slabs is taken as 7.5m  whereas for the first example 

the short span is taken as 4.5m  and for the second as 5.5m . The yield line capacity at ambient 

temperature is 22.39 /kN m  and 21.85 /kN m  for the two slabs respectively. It should be noted that 

these capacities ignore the contribution of the supporting secondary beams and the steel deck, in 

line with the assumption of negligible contribution at elevated temperature. The material and 

geometrical properties of the slabs are summarized in Table 8. Finally, an imposed load of 

23.0 /kN m , as given by Eurocode 1 [14],[15] for a typical office building, is considered, leading 

to a total load of 25.3 /kN m .  

The failure load-temperature responses for the two slabs are depicted in Figures 12 and 

13, as obtained obtained from a family of load-deflection responses for different temperatures. 

The predictions of the restrained slab model [11] are denoted as RM, of the unrestrained slab 

central crack model as CM, and of the unrestrained slab intersection crack model as IM. 

Moreover, for simplicity it is assumed that the thermal curvature varies linearly from 0  to 

= 4 c   at a temperature of 01000 C  which translates to a temperature gradient of 0400 C  over 

a depth of 100mm .  

It can be observed for both slabs in Figures 12 and 13 that the capacity of a fully 

restrained slab is greater than the capacity of an unrestrained slab. Moreover, it is noted that the 

capacities of the slabs increase, especially for the restrained slab, for the lower range of 

temperatures up to 0300 C . This is attributed to the fact that the ultimate strength of steel 

decreases according to Eurocode 4 [12] after 0300 C , whereas up to that temperature the 

differential expansion between the reinforcement and the concrete relieves the stress in the steel 

for both the restrained and unrestrained slabs, while thermal expansion increases deflection and 

membrane action for the restrained slab.  
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Figures 14 and 15 depict the deflection-temperature response of the slabs under a 

constant uniformly distributed load of 25.5 /kN m , which corresponds to the total load as 

discussed above. Similar to the previous case, these responses are also obtained from a family of 

load-deflection responses for different temperatures. It is noted that for both slab spans, the 

restrained slab exhibits less deflections for a given temperature than the unrestrained slab. 

Although this might not reflect the expected result at lower temperatures, where the deflections 

of a restrained slab could be more due to the restraint, it depicts correctly the behaviour in the 

latter stages of the response where the deflection of an unrestrained slab would be more than the 

restrained one. Since this model does not attempt to represent the load-deflection response at the 

initial stages of fire loading but to capture the specific instant of failure, which clearly occurs at 

larger temperatures, this initial potential inaccuracy is deemed insignificant. Moreover, it is 

noted that increasing the short span of the slab results in a decrease in the failure temperature, 

which is more evident for an unrestrained slab. Finally, it is observed that the failure temperature 

is considerably lower for unrestrained slabs, highlighting the reserved capacity a slab acquires in 

the presence of planar edge restraints. 

 

6  Model Characteristics and Restrictions 

 

In this section, the main characteristics of the developed models [3] are discussed, and 

any restrictions relating to the various assumptions made in the model formulation are 

highlighted. 

 

6.1  Boundary Conditions 

 

In all the proposed models, it is assumed that there is only one layer of reinforcement, 

and that the slab is supported at the level of the reinforcement and is free to rotate at the supports. 

Furthermore, it is assumed that the reinforcement is anchored at the supports, where two variant 

models [3] are developed for a slab that is unrestrained against planar movement at the support, 

with the case of a slab subject to planar restraint considered in previous work by the authors [11].  

For slabs that are adjacent to large openings or are located at the perimeter of a building, 

it is expected that the unrestrained slab model would provide an adequate representation of the 
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behaviour. On the other hand, for slabs located in the interior of a building, the restrained slab 

model is more appropriate, provided the stiffness and strength of the edge restraints is sufficient 

to prevent planar movement. Moreover, even for slabs located at the perimeter of the building, 

the yield line pattern adopted for the unrestrained models would have to be modified if the 

internal edges of the slab are sufficiently strong to prevent rotation along those edges. In any 

case, the unrestrained slab models proposed in this work along with the restrained slab model 

proposed in [11] constitute the two limiting cases of simply supported slab behaviour. In reality, 

none of the slabs would be completely restrained or unrestrained against planar movement, 

though the restrained and unrestrained slab models would define the range of expected capacity, 

with the actual capacity being closer to one or other of the models, depending on the actual 

boundary conditions. 

The models also assume a single layer of reinforcement. In reality, there could be an 

extra layer of reinforcement over the supports providing resistance against cracking or hogging 

moments for the interior slabs. For an interior slab subject to large deflections, cracks also form 

at the supports, and the slab rotates there about the bottom fibre. Thus, additional energy is 

dissipated mainly at a possible top reinforcement layer, enabling the slab to sustain a higher load, 

and hence the proposed models would offer a conservative lower bound assessment for such 

cases. In any case, the modelling of a top reinforcement layer at the supports, whilst not included 

in the proposed models, could be incorporated by considering the additional energy dissipated in 

such reinforcement.  

 

6.2  Material properties 

 

The present models aim at providing a basis for the evaluation of the capacity of slabs 

under elevated temperature. Material properties which are not widely considered in conventional 

structural design codes, such as the bond strength between steel and concrete, the ultimate 

strength of the steel, and the steel hardening modulus, are needed.  

Although the steel exhibits a plateau just after yielding a bilinear approximation of the 

steel response (Figure 16) can be made for direct use in the proposed models. The variation of 

the material parameters ( 2,b E ) with temperature can also be deducted from design codes such 

as Eurocode 4 [12].  
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In addition, the present models require the bond strength, which affects the load- 

deflection response but more significantly the failure displacement of the slab. Generally, design 

codes provide values related to bond strength, but there is very little information on the bond 

strength at elevated temperatures. Therefore, in absence of data on bond, reduction could be 

related to concrete strength. This highlights the need for more experimental research to establish 

bond-slip characteristics at elevated temperature and its influence on the failure of floor slabs. 

 

6.3  Applicability of proposed models 

 

The models developed in this work are aimed at providing a tool for the assessment of 

LRC slabs under elevated temperature. It is assumed that the slab carries the imposed load by 

means of tensile membrane action combined with bending action, and failure is expected to 

occur in this range by rupture of the reinforcement along full depth cracks. The compressive 

membrane contribution of the concrete is ignored in the response, and thus the model is expected 

to predict lower capacity at smaller deflections, where considerable compressive arching action 

can occurs, particularly for slabs with planar restraint [11]. Therefore, the models are applicable 

provided that failure occurs following compressive arching action and within the tensile 

membrane action stage. Nevertheless, in the context of LRC slabs where the depth to length ratio 

is relatively small, it is expected that rupture of the reinforcement would not occur until well into 

the tensile membrane range and at relatively large deflections, as demonstrated in previous 

examples.  

It is also assumed that the slab is lightly reinforced, and no more cracks are formed in the 

vicinity of an already open crack. This would be the case if the reinforcement ratio is relatively 

low, defined in terms of the cracking capacity of the concrete section being greater than the 

ultimate capacity governed by reinforcement strength. Thus, following the opening of a crack, 

the reinforcement would continue to carry load up to the rupture point, and the tensile stresses in 

the vicinity of the crack would remain below the tensile strength of concrete. Therefore, there is 

stress/strain concentration in the reinforcement at the crack location due to the bond stresses 

developed between the reinforcement and the concrete, which govern the reinforcement stress at 

the crack tip. This is also a valid assumption for composite slabs where typically only the 

minimum reinforcement ratio specified by the design codes is used, especially under elevated 
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temperature when the contribution of the steel deck may be ignored. Finally, the assumption of a 

single crack constitutes a conservative assumption, since if further cracks were to develop the 

strain is distributed over several adjacent cracks resulting in a delay in the rupture of 

reinforcement. In this case, it is likely that other failure criteria, such as compressive crushing of 

concrete, may govern the capacity of the floor slab. 

The advantage of the proposed models lies in the fact that the deflection corresponding to 

reinforcement rupture can be assessed using simplified formulations which capture important 

parameters based on well-established engineering principles. This results in an important 

advancement compared to previously proposed semi-empirical methods which neglect stress 

concentrations [8]. Following the establishment of the failure deflection, the load corresponding 

to that deflection can be obtained using relatively simple expressions, and comparisons can be 

made against the design load of the slab to check whether the slab can sustain the specified load 

at a given temperature. Nevertheless, the designer has to establish whether the slab is closer to a 

fully restrained or to an unrestrained slab, so as to apply the relevant equations. Moreover, for 

the case of the unrestrained slab, since it is not clear whether the slab will fail by developing a 

central crack or two cracks at the intersection of the yield lines, a safe approximation would be to 

obtain the failure corresponding to both CM and IM variant models, and then compare the design 

load against the lower capacity. 

 

7  Conslusions 

A model is proposed in the companion paper for the failure assessment of simply 

supported lightly reinforced concrete slabs that are unrestrained against planar movement. Two 

variants of the model are developed adopting different failure modes, since available 

experimental work appears to indicate the possibility of both failure modes, and the parameters 

governing their formation have not yet been established. Thus, in addition to cracks at the yield 

line locations, the existence in the short span direction of a full depth crack at the centre of the 

slab or alternatively two full depth cracks at the intersection of the yield lines is formulated as 

two model variants. It is assumed that the slab fails by rupture of the reinforcement along these 

cracks. The current work does not attempt to reveal the parameters affecting the location of the 

full depth crack, but rather the resulting slab response following the opening of the full depth 

crack at either location is sought. This location affects both the load-deflection response of the 
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slab and the displacement corresponding to failure.  

In this paper, the kinematic assumptions of the two variant CM and IM models are 

verified against ADAPTIC, and the differences and similarities between these models and the 

existing BRE model are discussed. The proposed models compare favourably with ADAPTIC 

and experimental results, in the latter case also providing favourable predictions of failure load 

and displacement. 

The proposed models offer considerable advantages related to the failure assessment of 

composite floor slabs under fire, since it can predict the concentration of strain at crack location 

using fundamental engineering principles, which is especially important in the context of lightly 

reinforced concrete members. Previous slab models do not deal with this issue adequately, and 

the failure is based on semi-empirical average strain considerations thus providing results that 

are independent of the bond and the reinforcement response. It is demonstrated that the bond 

strength can affect the load-deflection response to a certain degree and the failure deflection to a 

far more significant extent. This is due to the fact that higher bond stresses result in higher strain 

concentrations at crack locations thus accelerating the failure of the slab. However, currently 

there are no codified values for the bond strength between the reinforcement and concrete at 

elevated temperatures, and the full potential of these models can only be exploited once relevant 

experimental studies on the bond strength have been undertaken. 

In applying the proposed models, the issue of strength and stiffness of the slab 

surroundings should be investigated. In this respect, the conditions under which a slab can be 

considered restrained or unrestrained need to be identified. Furthermore, for slabs located in the 

interior of a building the energy dissipated at cracks developed at the perimeter of the slab may 

need to be included in the evaluation of the load-deflection response, though the proposed 

models for simply supported slabs offer a lower bound in such cases. For simply supported slabs 

without planar restraint, it is suggested that both the CM and IM variant models are used, and the 

one predicting the lowest failure load is adopted as representing the critical failure mode. 

It is believed that following further research, especially related to the bond-slip 

characteristics under elevated temperatures, the developed models will provide the necessary 

tools for the adoption of performance-based failure criteria in the fire design of composite steel 

concrete floor slabs, and will replace the current prescriptive approaches which neglect important 

parameters influencing slab failure under fire conditions. Towards this end, experimental studies 
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are currently underway at Imperial College which aim to address this shortfall and provide the 

necessary data for the application of the proposed models in performance-based design of 

composite floor slabs under fire. 
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Tables 

 

Table 1 Geometric properties for the verification of the unrestrained slab models 

  h (slab height)   150mm   a    12000mm   
sA   0.45mm 2 / mm  

 d  (reinforcement depth)   120mm   b    6000mm   b    20.05 /N mm   

  

 

Table 2 Material properties for stl4 

  Elastic modulus   Yield strength   Strain-hardening modulus  

 210 GPa   400 MPa   0.00001   210 GPa  

 

Table 3 Material properties for con11 [4],[5] 

Poisson's ratio 0.2 

Compressive strength 40 MPa 

Shear retention factor 0.5 

Shear softening parameter 0.0 

Initial compressive nonlinearity parameter 0.4 

Residual postrcrushing strength parameter 0.2 

Compressive interaction parameter 0.6 

Shear interaction parameter 0.4 

 

Table 4 Material properties for con11 [4],[5] affecting the opening of a crack 

      CM   IM  

Cracks  

  

  

 Elastic modulus   100 GPa   50 GPa  

 Tensile strength   0.1 MPa   0.2MPa  

 Tensile softening modulus   300 MPa   300MPa  

No cracks  

  

  

 Elastic modulus   300 GPa   50 GPa  

 Tensile strength   5.0 MPa   2.0MPa  

 Tensile softening modulus   3000 MPa  1000MPa  
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Table 5 Slab properties used for comparisons with the BRE model 

  a    b    d    yT   

 9000 mm   6000 mm   120 mm   180 N/mm  

      0g    yield line capacity  

 0.3964   1   10.2 2/kN m   

 

Table 6 Geometric and material properties for the tested slab 

  a    9.50m    sA   20.142 /mm mm    yT    82.3 /N mm   

 b    6.46m    2E    500MPa    uT    91.3 /N mm   

 d    72mm    b    20.156 /N mm    cf    252 /N mm   

  

Table 7 Failure displacement and loads of test slab 

      CM(approach 1)   CM(approach 2)   IM   BRE   Test  

 ( )fcU mm    186    186    175    216    223   

 
2( / )fq kN m    4.34    4.34    3.73    3.89    4.75   

 

  

Table 8 Slab properties representing realistic office buildings floor slab 

  a (m)   b (m)   d (mm)   ( )sA mm    2

2( / )E N mm   

 7.5    4.5,5.5    45    0.142    833   

  ( / )yT N mm    ( / )uT N mm    0 1( )s C     0 1( )c C     2( / )b N mm   

 71.0    88.8    614 10    68 10    0.156   
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(a) top view (b) bottom view 

 

Figure  1: Deflected shape of unrestrained slab using ADAPTIC: displacement scale=20 (CM)  

  

(a) top view (b) bottom view 

Figure  2: Deflected shape of unrestrained slab using ADAPTIC: displacement scale=20 (IM) 
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Figure  3: Load-deflection response of slab according to kinematics of CM and IM models 
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Figure  4: Resultant stress distribution assumed in the BRE model for the trapezoidal part of a 

quarter slab 
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Figure  5: Stress distribution over a quarter slab for concentrated concrete compression 
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Figure  6: Stress distribution over a quarter slab for distributed concrete compression 
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Figure  7: Load deflection response using kinematic and equilibrium approaches 
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Figure  8: Load deflection response comparison between models and test results 
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Figure  9: Cross-section through the thickness of a slab typically used in office buildings 
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Figure  10: Variation of yield and ultimate reinforcement force with temperature  
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Figure  11: Variation of steel hardening modulus and bond strength with temperature 



34 

 

T
r 
(
0
C)

0 100 200 300 400 500 600 700

q
f 
(k

N
/m

2
)

0

1

2

3

4

5

6

7

8

9

10

11

12

RM

CM

IM

yield line capacity

 

Figure  12: Failure load-temperature variation for b=4.5m 
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Figure  13: Failure load-temperature variation for b=5.5m 
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Figure  14: Deflection-temperature response for b=4.5m 



37 

 

T
r 
(
0
C)

0 50 100 150 200 250 300 350 400 450 500 550 600

U
c

 (
m

m
)

150

200

250

300

350

400

450

500

RM

CM

IM

 

Figure  15: Deflection-temperature response for b=5.5m 
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Figure  16: Schematic steel stress strain response 
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