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ABSTRACT 

Fluent model checking is an automated technique for verifying 
that an event-based operational model satisfies some state-based 
declarative properties. The link between the event-based and state-
based formalisms is defined through "fluents" which are state 
predicates whose value are determined by the occurrences of 
initiating and terminating events that make the fluents values 
become true or false, respectively. 

The existing fluent temporal logic is convenient for reasoning 
about untimed event-based models but difficult to use for timed 
models. The paper extends fluent temporal logic with temporal 
operators for modelling timed properties of discrete-time event-
based models. It presents two approaches that differ on whether 
the properties model the system state after the occurrence of each 
event or at a fixed time rate. Model checking of timed properties 
is made possible by translating them into the existing untimed 
framework. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications, 
Software/Program Verification – model checking 

General Terms 
Theory, Verification. 

Keywords 
Fluent linear temporal logic, discrete-time event-based models, 
model-checking, software architecture analysis. 

1. INTRODUCTION 
Event-based models are convenient formalisms for modelling 
behaviours of complex systems at the architectural level. They 
describe a system as a set of interacting components where each 
component is modelled as a state machine and interactions 
between components occur through shared events corresponding 
to the messages sent and received by components or to service 
invocations initiated or accepted by components. Such models 
provide the basis for a wide range of automated analysis 
techniques, notably deadlock analysis, model animation and 
model verification through model checking. For example, the 

Architectural Description Language (ADL) Wright [1] is based on 
the event-based process algebra CSP [7] for behaviour 
descriptions and FDR [23] for behaviour analysis; PADL [2] is 
based on CCS [20] and via TwoTowers, uses the Concurrency 
Workbench [3] for functional analysis; our own Darwin ADL [16] 
uses the process algebra style language FSP, and the Labeled 
Transition System Analyzer (LTSA) tool [17]. 

For model verification, the properties to be satisfied by the 
architecture are typically expressed in some form of temporal 
logic. Specifying these properties is often much easier if they can 
refer to system states in addition to referring to events. This 
motivated the use of "fluents" to provide a uniform framework for 
specifying properties that combine event and state predicates and 
for automatically verifying the satisfaction of those properties by 
an event-based model [5]. A fluent is a state predicate whose 
value is determined by the occurrences of initiating and 
terminating events that make the fluent value become true or 
false, respectively.  

Event-based modelling languages such as CSP, CCS and FSP are 
untimed. Their semantics are sequences of events specifying the 
order in which events occur, but not the actual time at which 
events occur or the delay elapsed between consecutive events. A 
standard way to model time in these untimed formalisms is to 
include an explicit tick event signalling the successive ticks of a 
global clock to which each timed component synchronizes [23, 
17]. These models are called discrete-time event-based models 
because the resulting time domain is isomorphic to the natural 
numbers. 

Fluent linear temporal logic (FLTL) defined in [5] is convenient 
for specifying requirements on untimed event-based models. It is 
however very difficult to use for specifying requirements on timed 
event-based systems because it involves writing complex 
formulae with explicit references to clock events. 

Various extensions of temporal logic allow one to naturally model 
properties of timed systems using bounded versions of temporal 
logic operators [12, 6]. For example, the bounded eventually 
operator <>≤d P means that P holds at some future time within the 
next d time units. However these extensions are defined for state-
based models only and cannot be used to conveniently model 
properties of timed event-based models. 

The objective of this paper is to extend FLTL with bounded 
versions of temporal logic operators for modelling timed 
properties of discrete-time event-based models. The paper 
describes two approaches. 

In the first approach, we consider properties describing sequences 
of system states observed after each occurrence of an event, as in 
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standard FLTL. The time of the system in a given state is counted 
by the number of tick events that have occurred since the 
beginning of the execution. Bounded versions of temporal logic 
operators such as <>≤d P are defined accordingly. We define an 
encoding of the bounded operators into untimed FLTL assertions 
so that bounded FLTL assertions can be model checked in the 
existing untimed framework.  

In the second approach, we consider properties describing 
sequences of system states observed at a fixed time rate, instead of 
after each occurrence of an event. In this case, zero, one or more 
events may occur between two consecutive states and the time of 
the system in a state is counted by the position of the state in the 
sequence.  In the context of this paper, temporal logics used to 
describe sequences of states observed at a fixed time rate will be 
called synchronous temporal logics, while those used to describe 
sequence of states observed after each occurrence of an event will 
be called asynchronous. Note that modelling system properties in 
a synchronous or asynchronous temporal logic does not 
necessarily mean that the event-based model being verified is also 
synchronous or asynchronous. (An event-based model is 
asynchronous if it models components that execute at arbitrary 
relative speeds and it is synchronous if it models components that 
execute in lockstep [20]). Synchronous temporal logic is a natural 
approach for describing properties of discrete-time state-based 
models [6]. It is used in particular in the KAOS goal-oriented 
requirements engineering method for the formal specification of 
system goals and requirements [14]. We will see that there exist 
subtle differences between the interpretations of the temporal 
logic operators in the two approaches. The difference applies to 
standard temporal operators as well as bounded ones. This may be 
an important source of confusions and errors for modellers that 
incorrectly use assertions defined in one formalism with a tool 
based on the other formalism. Our aim is to clarify the differences 
between the two existing paradigms and to define an encoding of 
synchronous temporal logic into asynchronous FLTL so that 
synchronous assertions can be model-checked in LTSA. 

The paper is organized as follows.  Section 2 presents the 
necessary background on temporal logic, labelled transition 
systems and fluent temporal logic. Section 3 extends 
asynchronous fluent temporal logic with bounded temporal 
operators and defines an encoding of these operators into untimed 
FLTL. Section 4 illustrates the use of these operators on the light 
control problem. Section 5 defines synchronous fluent temporal 
logic and defines a mapping from synchronous assertions into 
asynchronous ones. Section 6 illustrates model checking of 
synchronous fluent temporal logic assertions on the mine pump 
case study. 

2. BACKGROUND 
2.1 Linear Temporal Logic 
Given a set of atomic propositions Π, a well-formed LTL formula 
is defined inductively using the standard Boolean operators, and 
the temporal operators X (next), [] (always), <> (eventually), U 
(until) and W (Awaits) as follows: 

• each member of Π is a formula 
• if P and Q are formulas, then so are ¬P, P∧ Q, P∨ Q, P → Q, P 

↔ Q, X P, [] P, <> P, P U Q, P W  Q. 
An interpretation for an LTL formula is a infinite trace h: Nat -> 
2Π that maps to each position i ∈  Nat the set of propositions that 

hold at that position.  The notation (h,i) |= P is used to express that 
the LTL formula P is true at position i of the trace h. The 
semantics of the temporal logic operators is then defined as 
follows [19]: 

• (h,i) |= X P        iff      (h, i+1) |=P 
• (h,i) |= [] P        iff       (h, j) |=P for all j ≥ i 

• (h,i) |= <> P      iff       (h, j) |=P for some j ≥ i 

• (h,i) |= P U Q    iff       (h, j) |= Q  for some j ≥ i         
                                    and (h, k) |=P for all k s.t.  i ≤ k < j 

• (h,i) |= P W  Q    iff      (h,i) |= P U Q or (h,i) |= []P 
The Boolean operators have their usual semantics. A LTL formula 
P is said to be satisfied by a trace h, noted h |= P, if it is satisfied 
at the initial position, i.e. (h,0) |= P. 

2.2 Metric Temporal Logic 
Metric Temporal Logic  (MTL) extends LTL with the following 
bounded temporal operators []~d P , <>~d P and P U~d Q where ~ ∈  
{<, ≤, >, ≥} and d ∈  Nat [12, 6].  

The semantics of these bounded operators is defined over infinite 
traces h: Nat -> 2Π enriched with a time domain T and a temporal 
distance function  

dist: Nat × Nat -> T 

where dist(i,j) denotes the time elapsed between positions i and j 
in a trace. Different choices of temporal domain and distance 
function are possible as long as they satisfy all desired properties 
of a metric [12]. 

A common choice of temporal distance consists in considering 
traces in which consecutive states are always separated by a single 
time unit [6]. The distance function is therefore defined as dist(i,j) 
= |j-i| x δ where δ is the arbitrarily chosen time unit. The time 
domain is the natural multiple of δ and is therefore discrete. In this 
paper, a temporal logic with this choice of temporal distance 
function is called a synchronous temporal logic because it 
describes traces in which the system state is observed at a fixed 
time rate. 

Another common temporal distance function consists in admitting 
arbitrary and varying real-numbered delays between consecutive 
states [6]. This results in a continuous model of time. This model 
is more expressive but leads to difficulties in automated analysis. 
Dense-time models will not be considered in this paper. 

The semantics of the bounded temporal operators is defined over 
system traces and distance functions as follows: 

• (h,i)|= []~d P      iff   (h, j)|=P for all j ≥ i and dist(i,j) ~ d 

• (h,i)|= <>~d P    iff   (h, j)|=P for some j ≥ i and dist(i,j) ~ d 

• (h,i)|= P U~d Q  iff   (h, j)|=Q  for some j ≥ i and dist(i,j)~ d         
                                    and (h, k) |=P for all k s.t.  i ≤ k < j 
Note that for synchronous LTL, where next time and next state are 
semantically equivalent, the bounded temporal operators do not 
add expressive power to standard unbounded LTL operators 
because they can be expanded into LTL formulae involving the 
next state operator. For example, the assertion <>≤3 P is equivalent 
to (P ∨  X P ∨  X X P ∨  X X X P) and the assertion []≤3 P is 
equivalent to (P ∧  X P ∧  X X P ∧  X X X P). These operators 
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however add succinctness and ease of use to LTL for describing 
bounded temporal requirements. 

The next state operator X of MTL is the standard X operator of 
LTL defined in Section 2.1. The above equivalences hold for 
synchronous LTL only, which is the only timed extension of LTL 
in which the 'next state' operator X also means 'at the next time 
unit'. With other choices of temporal distance function, the X 
operator no longer corresponds to the next time unit. 

2.3 Labelled Transition Systems 
We use Labelled Transitions Systems (LTS) to model the 
behaviour of interacting components [17]. An LTS model 
describes a system as a set of concurrent components where each 
component is characterized by a set of states and by the possible 
transitions between these states where each transition is labelled 
by an event. The global system behaviour is the result of the 
parallel composition of each component LTS so that the 
components execute asynchronously but synchronize on shared 
events. 

Let Act be the universal set of observable events and let τ denote a 
local action that is unobservable by a component's environment. 
An LTS M is a quadruple <Q, A, δ, q0> where: 
• Q is a finite set of states, 
• A ⊆  Act is the communicating alphabet of M, 
• δ ⊆ Q × A ∪ {τ} × Q is a labelled transition relation, 
• q0 ∈  Q  is the initial state. 
The semantics of an LTS M is a set of sequences of events 
(observable or τ) that the LTS can perform starting in its initial 
state. 

The parallel composition operator "||" is a commutative and 
associative operator that combines the behaviour of two LTSs by 
synchronizing the events common to their alphabets and 
interleaving the remaining events. 

Discrete-time systems can be modelled as LTS by including 
explicit tick events signalling the regular ticks of a global clock to 
which each timed processes synchronizes [17].  
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Figure 1. LTS Model of a light with a timer 

Finite State Processes (FSP) is the input notation for the LTSA 
tool. It is a simple process algebra used as a concise way to 
specify LTS. For example, a light that turns itself off 
automatically after 3 time units may be specified by the following 
FSP model: 

TimedLight = Off,  
Off = ( push -> on -> On[3]  | tick -> Off), 
On[d:0..3] = ( when (d==0) off -> Off 

| when !(d==0) tick -> On[d-1] 
| when !(d==0) push -> On[3]). 

In the above, “->” denotes action prefix, “|” choice and the 
"when" clause is used to express conditional choice. The symbol ! 

denotes logical negation. The event push denotes the pushing of 
the light button, the events on and off denotes the actual turning on 
and off of the light. The LTS that corresponds to this FSP process 
is depicted in Fig 1. 

2.4 Fluent Linear Temporal Logic 
Fluent linear temporal logic (FLTL) is a formalism for specifying 
state-based temporal logic properties over an event-based 
operational model.  

A fluent Fl is a proposition defined by a pair of sets, a set of 
initiating events InitFl and a set of terminating events TermFl, and 
by an initial value InitiallyFl that can be true or false. The sets of 
initiating and terminating events must be disjoint. The concrete 
syntax for fluents in LTSA is the following: 

fluent Fl = < InitFl, TermFl > initially InitiallyFl 

By default, the initial value of a fluent is false. 

A well-formed FLTL formula is an LTL formula whose atomic 
propositions are fluents. 

A set Φ of fluents defines a mapping from event-based to state-
based traces. Let tr: Nat → A be an event trace, the corresponding 
state-based trace h = StateTrace(tr) is defined as follows: for 
every position i ∈  Nat and every fluent Fl ∈  Φ, Fl is true at 
position i of h iff either of the following conditions holds 

(a) Fl holds initially and no terminating event has occurred before 
position i:   

   InitiallyFL and there is no k ∈  Nat, 0 ≤ k ≤ i s.t. tr(k) ∈  TermFl 

(b) some initiating event has occurred before position i and no 
terminating event has occurred since then:  

   there is some j ∈  Nat, j ≤ i, s.t. tr(j) ∈  InitFl 

   and there is no k ∈  Nat, j <  k ≤ i , s.t.  tr(k) ∈  TermFl  

A FLTL assertion P is said to be satisfied by an event trace tr, 
noted tr |= P, iff StateTrace(tr) |= P. 

Note that the interval over which a fluent holds is closed on the 
left and open on the right. This means that an event occurring at 
position i of an event-based trace has an effect on the values of 
fluents at position i of the associated state-based trace. This is 
slightly different from the fluents of Miller and Shanahan [21] that 
hold over intervals that are open on the left and closed on the right 
which means that an event occurring at position i of an event-
based trace has an effect on the values of fluents at position i+1 of 
the associated state-based trace. 

FLTL assertions can also refer to event occurrences. For every 
event e in an LTS model there is an implicit fluent, also noted e, 
whose set of initiating events is the singleton event {e} and whose 
set of terminating events contains all other events in the system 
alphabet: 

fluent e = <e, A-{e}> initially false 

According to this definition, the fluent associated with an event e 
becomes true the instant e occurs and become false with the first 
occurrence of a different event. 

The concrete syntax for FLTL formulas used in LTSA follows as 
closely as possible the LTL syntax used in SPIN. In particular, the 
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ASCII expressions !, &&, and || are used to denote logical 
negation, conjunction and disjunction, respectively. 

Examples. For the light model, a property requiring the light to 
eventually be on after a tick event may be specified as follows: 

[](push -> <> LightOn) 

where LightOn is a fluent defined as follows: 

fluent LightOn = <on, off> 

This property is of course very weak because it does not require 
the light to be turned on immediately after a push event. The 
correct specification of the required property in FLTL is not 
straightforward. The assertion  

[](push -> LightOn) 

is too strong because it forbids a push event from occurring when 
the light is off. Modelling the property as 

[](push -> X LightOn) 

should be avoided because the resulting formula is not closed 
under stuttering [13]: the satisfaction of this property by an event 
trace is affected by the insertion or removal of unobservable τ 
events. A correct way to model the required property in FLTL is: 

[](push -> (!tick W LightOn)) 

This assertion requires that after every occurrence of a push event, 
the light must be on before the next occurrence of a tick event. 

As a second example, the property requiring the light to be 
eventually turned off when no further push events occur may be 
specified as follows: 

 [] ((! push W ! LightOn) -> <> ! LightOn) 

This property is again too weak because it does not require the 
light to be turned off within 3 time units. Specifying such bounded 
properties in FLTL is extremely hard. The following section will 
define bounded temporal logic operators facilitating the 
specification of such properties. 

{off, tick}

on

push

off

{on, push, tick} {off, push}

on

tick

-1 0 1 2

 
Figure 2. Property LTS for [](push -> (!tick W LightOn)) 

A technique for model-checking the satisfaction of an FLTL 
assertion φ by an LTS is described in [5]. As for standard model-
checking, the general idea consists in generating a Büchi 
automaton B that recognizes all infinite event-based traces that 
violate φ and check that the synchronous product of B with the 
LTS is empty. When the property to be verified is a safety 
property, the Buchi automaton can be viewed as a "property 
LTS", i.e. a LTS with an ERROR state so that executions leading 
to the ERROR state correspond to undesired system behaviours. 
Model checking safety properties therefore reduces to a simple 
reachability search for the ERROR state. For example, Figure 2 
shows the property-LTS generated by the tool for the safety 

property  [](push -> (!tick W LightOn)). In LTSA, the ERROR state 
is noted by -1. 

3. ASYNCHRONOUS DISCRETE-TIME 
FLTL 

This section defines a metric temporal logic that extends FLTL 
with bounded temporal logic operators. Section 3.1 defines the 
semantics of these operators by defining the temporal distance 
appropriate to timed event-based models. Section 3.2 defines how 
to model check properties involving bounded temporal operators 
by translating them into untimed FLTL assertions with explicit 
references to tick events. 

3.1 Semantics of Bounded FLTL Operators 
In order to define the semantics of bounded operators for FLTL, 
we need to provide a temporal distance function on the positions 
of state-based traces. 

Let h be a state-based trace. The time elapsed between the 
positions i and j of h is given by the number of times a tick event 
occurs between i and j: 

dist(i,j) = # {k ∈  (i, j] | (h,k) |= tick }  

Note that the interval in this definition is open on the left and 
closed on the right. This means that if a tick event occurs in 
position i and the next tick event occurs in position n, the temporal 
distance between i and j is nill for all j bigger or equal to i and 
strictly smaller than n. 

The semantics of bounded FLTL operators is then defined as in 
Section2.2. For example, the assertion "<>≤3 P" means that P 
holds at some future time position that is separated from the 
current position by no more than 3 ticks. 

Examples of timed properties for the timed light model are the 
following: 

[] (push -> <><1 LightOn) 
[] (on ->  []<3 LightOn) 
[](on -> <>≤3 (off ∨  push)) 

The first property requires that when a push event occurs, the light 
must be turned on within the same time unit. The second property 
requires that once the light has been turned on, it must remain on 
during the next 3 time units. The third property requires that when 
the light is turned on, it be eventually turned off within 3 time 
units except if a push event occurs during that time. 

The concrete ASCII syntax for bounded temporal operators in the 
LTSA consists in writing the temporal bound into braces as 
follows <>{<=d} P. 

3.2 Model-Checking Bounded FLTL 
Assertions 

In order to model check FLTL assertion involving bounded 
temporal operators, these operators are translated into unbounded 
FLTL assertions involving explicit references to tick events. The 
translation rules are given by the recursive function Tr defined as 
follows: 

Tr([]<d P)   = (P W (tick ∧  P))   if d=1 
 (P W (tick ∧  P ∧  X Tr([]<d-1 P))) if d>1 
Tr([]≤d P)   = Tr([]<d+1 P) 
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Tr(<><d P) = (! tick W P)   if d=1 
 ((! tick ∨  X Tr(<><d-1 P)) W P)  if d>1 
Tr(<>≤d P) = Tr(<><d+1 P) 
Tr([]≥d P)   =  [] P    if d=0 
 (!tick W [] P)   if d=1 
 (!tick W X Tr([]≥d-1 P))  if d>1 
Tr([]<d P)   = Tr([]≥d-1 P) 
Tr(<>≥d P) = <> P    if d=0 
 <>(tick ∧  <> P)   if d=1 
 <>(tick ∧  X <> Tr(<>≥d-1 P)  if d>1 
Tr(<>>d P)   = Tr(<>≥d-1 P) 
Tr(P U~d Q) = Tr(<>~d Q) ∧  (P W Q) 

The translation rules assume that in the LTS model to be verified 
time progresses without bound and tick is not in the initiating or 
terminating events of any fluent. In LTSA, the fact that time 
progresses without bound (i.e. non-zeno) can be verified 
automatically by checking the following progress property 
requiring tick to always eventually occur: 

progress TimeProgress = {tick} 

The proof that the translation rules are correct involves 
establishing that the semantics of the bounded operators with the 
given temporal distance function is equivalent to the semantics of 
their translation in unbounded FLTL.  

Intuitively, the translation of  []<d P when d = 1 says that P remains 
true unless tick and P are true. This ensures that as long as no tick 
event occurs P is true. The fact that P is still true when the first 
tick event occurs ensures that P is true if tick is the event that 
occurs at the position where []<1 P is evaluated. (It does not 
guarantee that P holds for all states that are less or equal to one 
time unit from the current position, i.e. []≤1 P, because any event 
making P false occurring between the first and the second next 
ticks would make []≤1 P false). 

The translation rules of the <><d P operator uses the assumption 
that time progresses without bound.  For example, the translation 
of <><d P when d = 1 says that from the current position, tick 
should not occur unless at some point in the future P holds. Since 
tick is assumed to always eventually occur, this guarantees that P 
will eventually hold and that no tick event has occurred before 
then. The translation of <><d P when d>1 is equivalent to the 
negation of the translation of  []<d P when d>1 (see [19] for useful 
equivalences of LTL formulae). This translation rule can also be 
understood by observing that the resulting formula is equivalent to 
((! tick W P) ∨  (! tick W X <><d-1 P)) saying that either P holds 
before the first occurrence of tick or <><d-1 P holds just after the 
first occurrence of tick. 

We do not explain the other translation rules, which are easier to 
understand. 

Once translated into unbounded FLTL, assertions involving 
bounded operators can be model checked as any other FLTL 
assertions. For example, Figures 3 and 4 depict the property LTS 
generated by the tool for the last two assertions of Section 3.1. 
The LTS generated form the first property in Section 3.1 is the 
same as the one depicted in Figure 2. 
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Figure 3. Property LTS for [] (on ->  []<3 LightOn) 
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Figure 4. Property LTS for [](on -> <>≤≤≤≤3 (off ∨∨∨∨  push)) 

4. EXAMPLE: THE LIGHT CONTROLLER  
This section illustrates discrete-time model checking in the LTSA 
toolset on the light control problem [22]. 

4.1 Problem Statement 
Consider an automated light controller used to control the lights in 
a room. The controller has to ensure that the lights are 
automatically turned on as soon as someone enters the room and 
the lights are automatically turned off T1 time units after the room 
has become unoccupied. Presence inside the room is detected by a 
movement detector.  

The light level can be adjusted manually with a dimmer. There is 
a default setting that must be restored automatically if the room 
becomes reoccupied more than T2 time units after a movement 
was last detected (T2 > T1). If the room becomes reoccupied less 
than T2 time unit after a movement was last detected, the lights 
must be turned on at the level they were the last time the room 
was occupied. 

4.2 Architecture Model 
The system is composed of a light, a light controller, a movement 
detector. An additional process models the behaviours of users. 
Interfaces between these components is shown in the Figure 5. 

 
Figure 5. Architecture the Light Controller Example 

The behaviour of the light controller is specified by the FSP 
model in Figure 6. The behaviour models of the other components 
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are not shown. It is assumed that when a user is inside the room, a 
movement is detected at least once per time unit. 

Figure 6. FSP Model of the light controller 

4.3 Modelling the Properties 
The requirements that the light must be turned on when the room 
becomes occupied may be specified in discrete-time FLTL as 
follows: 

assert LightTurnedOnWhenFirstEntry   
= [] (first_entry -> <>{<1} LightOn ) 

In this assertion, the fluent LightOn is defined as follows: 

fluent LightOn = <on, off> 

and the event first_entry is an event in the Users process denoting 
that a first user enters the previously unoccupied room. 

The requirement that the light must remain on during T1 time 
units after the last exit from the room may be specified as follows: 

assert LightOnDuringT1AfterLastExit  
= [] ( last_exit ∧  LightOn -> []{<T1} LightOn ) 

The requirement that the light must be turned off when the room 
has been unoccupied for more than T1 units may be specified as 
follows: 

assert LightOffWhenUnoccupiedDuringT1 
= [] ( ! Occupied -> <>{<=T1} (Occupied || !LightOn) ) 

where fluent Occupied is defined as follows: 

fluent Occupied = <first_entry, last_exit>. 

This assertion specifies that if the room is unoccupied, then within 
T1 time units either the room is reoccupied or the lights are turned 
off. 

We now consider the properties concerning light settings. A first 
property is that a dimmed setting has to be maintained during T2 
time units after the room becomes unoccupied: 

assert DimmedMaintainedDuringT2AfterExit 
= [] (last_exit && Dimmed -> []{<T2} Dimmed) 

The fluent Dimmed is defined as follows: 

fluent Dimmed = <level, default> 

Note that the event level and default set the lights level settings but 
do not turn the lights on. Therefore, the lights are not necessarily 
on when Dimmed holds. 

Conversely, after T2 time units the default light setting is restored: 

assert DefaultRestoredWithinT2AfterExit 
= [](last_exit -> <>{<=T2} (Occupied || ! Dimmed)) 

4.4 Model Analysis 
Deadlock and progress analysis allowed us to detect and correct 
errors in our initial version of the light controller model. For 
example, in the LightController process in Figure 6, an off 
transition from a process On_Dimmed[i][j] was leading to a process 
Off_Dimmed[j-1] instead Off_Dimmed[j]. The error was revealed as 
a deadlock. The model in Figure 6 contains no deadlock and no 
violation of the time progress property.  

The light controller model in Figure 6 composed with 
environment processes satisfies the five properties in the previous 
section. In our initial model, we had inadvertently omitted the 'on' 
event in the third line of the OffDimmed process. The error was 
revealed by the following error trace violating the property 
LightTurnedOnWhenFirstEntry: 

 tick   
 first_entry   
 move_signal   
 on  LightOn 
 tick  LightOn 
 dim  LightOn 
 level  LightOn 
 last_exit  LightOn 
 move_signal LightOn 
 tick  LightOn 
 tick  LightOn 
 off   
 first_entry   
 move_signal   
 tick     
The column on the left shows the sequence of events that leads to 
the error, the column on the right shows the fluents involved in 
the assertion that hold after the occurrence of each event.  

During the last time period, a first_entry event occurs and the light 
is not turned on before the following occurrence of a tick event. 
The model is checked with T1 = 2. Examining the error trace 
reveals that the error occurs after the light has been dimmed 
(during the first time unit) and automatically turned off (during 
the fourth time unit). 

Model checking can also be used to generate witness system 
executions. For example, a witness execution satisfying the goals 

LightController = (tick -> Off_Default), 
Off_Default =  

( tick -> Off_Default 
| move_signal -> on -> On_Default[T1] 
| dim -> level -> on -> On_Dimmed[T1][T2] ), 

On_Default[i:0..T1] =  
( when (i==0) off -> Off_Default 
| when ! (i==0) tick -> On_Default[i-1] 
| when ! (i==0) move_signal -> On_Default[T1] 
| when ! (i==0) dim -> level -> On_Dimmed[T1][T2], 

On_Dimmed[i:0..T1][j:0..T2] =  
( when (i==0) off -> Off_Dimmed[j] 
| when ! (i==0) tick -> On_Dimmed[i-1][j-1] 
| when ! (i==0) move_signal -> On_Dimmed[T1][T2] 
| when ! (i==0) dim -> On_Dimmed[i][j]), 

Off_Dimmed[j:0..T2] =  
( when (j==0) default -> Off_Default 
| when !(j==0) tick -> Off_Dimmed[j-1] 
| when !(j==0) move_signal -> on  -> On_Dimmed[T1][T2]
| when !(j==0) dim -> on -> On_Dimmed[T1][T2]). 
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LightOnDuringT1AfterLastExit can be generated by model checking 
the following stronger assertion with a longer time bound: 

assert Witness_NotLightOnDuringMoreThanT1AfterLastExit 
  = [](last_exit && LightOn-> []{<T1+1} LightOn ) 

As expected, this assertion is violated and the model checker 
generates the following system execution in which the light 
remains on during 2 time units  (T1 = 2) after the last time the 
room was occupied but not longer: 

 tick   
 first_entry   
 move_signal   
 on  LightOn 
 tick  LightOn 
 last_exit  LightOn 
 move_signal LightOn 
 tick  LightOn 
 tick  LightOn 
 off    

5. SYNCHRONOUS DISCRETE-TIME 
FLTL 

Fluent temporal logic in [5] is an asynchronous temporal logic 
because its properties describe sequences of system states 
observed after each occurrence of an event. Synchronous temporal 
logic is an alternative paradigm in which properties describe 
sequence of states observed at a fixed time rate. Both variants are 
used in practice. 

Temporal logic operators have very different meanings in 
synchronous and asynchronous temporal logics. For example, 'X 
P' in an asynchronous temporal logic means 'P holds after the next 
event', whereas in a synchronous temporal logic it means 'P holds 
at the next time unit'. Similarly, '[] P' in an asynchronous temporal 
logic means 'P holds after each event' whereas in a synchronous 
temporal logic it means 'P holds at each time point'. Confusion 
between the two variants of temporal logic may lead to important 
errors in the formal specification of system properties.  

Synchronous temporal logic is used by the KAOS goal-oriented 
requirements elaboration method for the formal specification of 
system goals and requirements. KAOS provides systematic 
support for the gradual identification and formal specification of 
system requirements through goal refinements, goal conflict 
analysis and obstacle analysis. 

The purpose of this section is to define a synchronous variant of 
fluent temporal logic so that properties elaborated using goal-
oriented requirements elaboration techniques can be used as 
assertions to be model-checked in LTSA. 

In this section we first define the synchronous fluent linear 
temporal logic, then provide example of synchronous FLTL 
assertions and discuss some differences between synchronous and 
asynchronous FLTL. Finally, we describe how to model check 
synchronous FLTL assertions by translating them into 
asynchronous FLTL assertions and discusss the handling of events 
in synchronous FLTL assertions which requires special treatment. 

5.1 Syntax and Semantics 
The syntax of synchronous FLTL is the same as that of 
asynchronous FLTL; well-formed synchronous FLTL assertions 

are assertions formed with standard LTL operators extended with 
bounded temporal operators and whose atomic propositions are 
fluents. 

The semantics of synchronous FLTL is defined by relating event-
based traces to state-based traces modelling the system state at the 
successive occurrences of tick. 

Let tr be an infinite sequence of events and hasync = StateTrace(tr) 
be the asynchronous state-based trace associated to tr (see Section 
2.4). There is one and only one mapping TickPosition: Nat -> Nat 
that assigns to every time point i the position of the ith occurrence 
of tick in tr, i.e. TickPosition (i) = j iff i = #{k ∈  0..j | tr(k) = 
tick}. The synchronous state-based trace associated to tr, noted 
hsync = Sync-StateTrace(tr) is defined as follows:  

hsync (i) = hasync (TickPosition (i)) for all i ∈  Nat 

i.e. the set of fluents that hold at the ith position of the 
synchronous state-based trace is the set of fluents that hold at the 
ith occurrence of a tick event in the asynchronous state-based 
trace. The temporal distance function defining the semantics of 
bounded temporal operators is given by dist(i,j) = |j-i|. 

A synchronous FLTL assertion P is then said to be satisfied by a 
sequence of events tr, noted tr |=Sync-FLTL P, iff Sync-
StateTrace(tr) |= P. 

Synchronous FLTL is less expressive than asynchronous FLTL 
because satisfaction of its assertions depends on fluent values at 
the occurrence of tick events only. Synchronous FLTL assertions 
cannot constrain the occurrence of events between two 
occurrences of tick. While being less expressive in terms of event-
based traces, some properties are expressed in a more natural way 
in synchronous temporal logic than in asynchronous FLTL. 
Differences between synchronous and asynchronous FLTL are 
discussed in the following section. 

5.2 Differences with Asynchronous FLTL  
This section presents examples of synchronous FLTL assertions 
and discusses differences between synchronous and asynchronous 
FLTL. 

5.2.1 The 'Always' Temporal Operator 
As mentioned before, the 'always' temporal operator has very 
different interpretations in the synchronous and asynchronous 
FLTL. This may be a source of errors if a property written in 
synchronous temporal logic is interpreted as a property in 
asynchronous temporal logic, or vice-versa. 

Consider the mine pump problem [11, 10], which we discuss in 
more detail in the Section 6 and Figure 7, and the property 
requiring that when the water level is high, the pump must be on. 
In synchronous FLTL this property may be specified as follows: 

[](HighWater -> PumpOn) 

The fluents involved in this assertion are defined as follows: 

fluent HighWater = <water[High…Max], water[0…High-1] > 
fluent PumpOn = <start, stop> 

The meaning of this assertion in synchronous FLTL is that at 
every time point if the water level is high (that is that the water 
level is between constants High and Max), the pump must be on. 

If the same assertion is interpreted as an asynchronous FLTL 
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assertion, it has a very different meaning: it requires the pump to 
be on when the water level is high after the occurrence of each 
event.  In asynchronous FLTL, this assertion requires that the 
pump be on at all events satisfying HighWater. Modellers may not 
realize that this assertion prevents the water level from rising 
above High when the pump is off.  This is due to the fact that in 
an asynchronous trace with interleaving semantics, the event start 
may not occur concurrently with changes in water level. 

The problem does not exist for the synchronous interpretation of 
the assertion because in that framework, the pump and the water 
level can both change value within the same time unit.  

5.2.2 'Next' and Closure under stuttering 
Consider now the property requiring that when the water level is 
high, the pump must be on at the next time unit. In synchronous 
temporal logic, this property is specified as  

[](HighWater -> X PumpOn). 

The same assertion in FLTL does not specify the required 
property correctly because the X operator means 'after the next 
event' instead of 'at the next time point'.  

In asynchronous FLTL, some assertions involving 'next' are not 
closed under stuttering [13]. In our event-based framework, an 
assertion is said to be closed under stuttering if its satisfaction is 
the same for event traces that differ only by unobservable τ 
events. The above assertion involving next is not closed under 
stuttering. 

Assertions that are not closed under stuttering should not be used 
to specify system properties because their satisfaction is not 
preserved by refinements of the event-based model. Invariance 
under stuttering is also needed for the use of partial order 
reduction techniques that are critical to the success of any LTL 
model checking procedure [8]. 

Interestingly, all synchronous FLTL assertions are closed under 
stuttering because the satisfaction of a property depends only on 
the values of fluents at the occurrence of tick events and these 
values are unaffected by the occurrences of τ events. 

5.2.3 Bounded Temporal Operators 
The semantics of bounded temporal operators is also slightly 
different in synchronous and asynchronous FLTL.  

The synchronous assertion []<d P is weaker than the asynchronous 
one because it does not constrain P to be true between tick events. 
The synchronous version is sometimes more appropriate than the 
asynchronous one  when one needs to model requirements in 
which the property P may be temporarily violated between ticks, 
as in the example of Section 4.2.1. 

The synchronous assertion <><d P is stronger than the 
asynchronous one because it requires P to hold at some 
occurrence of a tick event, while the asynchronous one requires P 
to hold at the occurrence of any event, even if P becomes false 
before the next tick event occurs. Deciding which operator to use 
will depend on the problem and the property to be specified. 

5.3 Model-Checking Synchronous FLTL 
Assertions 

Synchronous FLTL assertions are model-checked by translating 
them into untimed asynchronous FLTL. The Translation function 
Tr: FLTLSync -> FLTLAsync is defined recursively as follows: 

Tr([] P)   =  [] ( tick -> Tr(P)) 
Tr(<> P)  =  <> ( tick ∧  Tr(P)) 
Tr(P U Q)  =  (tick -> Tr(P)) U  (tick ∧  Tr(Q)) 
Tr(X P)    =  X ( ¬  tick W (tick ∧  Tr(P) ) ) 

Boolean operators remain unchanged (i.e. Tr(not P) = not Tr(P), 
etc.). The translation of bounded temporal operators consists in 
expanding them into assertions involving the synchronous X 
operator as outlined in Section 2.2. 

Example. The  synchronous FLTL assertion  

[](HighWater -> X PumpOn) 

is translated into the asynchronous FLTL assertion 

[](tick -> ( HighWater -> X (¬  tick U (tick ∧  PumpOn) ) ) ) 

As required, the translation rules ensure that fluent values are 
evaluated at the occurences of tick events only. The event-based 
interpretations of a synchronous FLTL assertion are therefore the 
same as those of its translation into asynchronous FLTL. 

For example, the translation of []P means that P must hold every 
time a tick event occurs. Similarly, the translation of <> P says 
that P must eventually hold when some tick occurs. The 
translation of the synchronous 'next' operator is slightly more 
complicated. It encodes the property that P must be true at the 
next occurrence of a tick event. This is done by saying that just 
after the current event (possibly a tick event) there should be no 
tick event until there is a tick and P holds. This ensures that if at 
the next occurrence of tick, P does not hold, the translation of the 
synchronous assertion X P is false, otherwise it is true.  This 
translation rule is based on the assumption that time progress 
without bound and can therefore use the awaits temporal operator 
(W) instead of the until operator (U). 

5.4 Handling Events in Synchronous FLTL 
The previous sections do not handle the case of fluents associated 
to events.  As explained in Section 2.4, in FLTL the implicit 
fluent associated to an event becomes false as soon as another 
event occurs. This is not adequate for synchronous FLTL because 
the fluent denoting the occurrence of an event should remain true 
until the next tick event. 

We therefore need to introduce explicit fluents  

Occurs[ev:Event] 

denoting that event e as occurred during the last time unit. 

These fluents cannot be simply defined as 

fluent Occurs[e:Event] = <e, tick>. 

because we need Occurs[e] to still be true when tick occurs and 
fluents in [5] have been defined so that they hold over intervals 
that are closed on the left and open on the right. This means that 
an event has an effect on the current values fluents. Therefore, 
contrary to what is needed, Occurs[e] would be false when tick 
occurs. 

To solve that problem we need to introduce a toc event that 
always occurs just after a tick event and define the fluent 
associated to event as follows: 

fluent Occurs[e] = <ev, toc>. 

This ensures that Occurs[e] is still true at the occurrence of tick. 
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The FSP process that ensures that every tick event is immediately 
followed by a toc event is given by 

TickToc = (tick -> toc -> TickToc | {AllEvents} -> TickToc). 

In this process, AllEvents is the alphabet of the LTS model being 
verified. Referring to the complete alphabet of the LTS model 
guarantees that tick is immediately followed by a toc with no other 
events in between. This is needed because if during some time 
unit an event e could occur between the tick and the toc, Occurs[e] 
will be false at the next occurrence of tick. 

Note that, contrary to [5], the fluents of Miller and Shanahan [21] 
hold over intervals that are open on the left and closed on the 
right. This means that an event has an effect on the values of 
fluents in the next state. In this framework, tick could be defined 
as terminating event for Occurs[ev] and we wouldn't need toc 
events. The translation rules of Section 4.2 would remain the same 
in that framework because, since domain fluents (i.e. fluents that 
are not associated to the occurrence of an event) do not have tick 
among their initiating or terminating events, they have the same 
value at the occurrence of a tick (as evaluated in [5]) and just after 
(as evaluated in [21]). 
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Figure 7. Architecture of the Mine Pump Case Study 

6. EXAMPLE: THE MINE PUMP  
This section illustrates model checking of synchronous FLTL 
assertions on the mine pump case study [11, 10].  

A FSP model for the mine pump system had been developed 
previously to illustrate the SceneBean animation feature of the 
LTSA toolset [18]. The structure of this model is shown in the 
Figure 7. 

The properties to be satisfied by the mine pump control system 
may be modelled in synchronous FLTL as follows: 

assert PumpOnWhenHighWaterAndNoMethane  
= [](HighWater && ! Methane -> PumpOn) 

assert PumpOffWhenLowWater = [](LowWater -> ! PumpOn) 
assert PumpOffWhenMethane = [](Methane -> ! PumpOn) 

These properties correspond to well known properties of the mine 
pump problem as they are frequently specified in requirements 
models [10]. The first property requires the pump to be on when 
the water level is high and there is no methane, the second 
requires the pump to be off when the water level is low and the 
third on requires the pump to be off when there is methane.  

For more complex systems in which the identification and 
formalisation of the required properties might be more difficult 
than for the mine pump, a goal-oriented method such as KAOS 
would provide guidance for identifying and specifying the 
properties to be satisfied by the system. A KAOS goal model of 
the mine pump system containing the above properties may be 
found in [15]. 

In order to interpret KAOS goals as synchronous FLTL assertions, 
currently one also needs to manually provide the fluent definitions 
that relate the predicates involved in the goal definitions to the 
events appearing in the behaviour model. In this case, the fluents 
appearing in the required properties are defined as follows: 

fluent HighWater = <water[High..Max], water[0..High-1]> 
fluent LowWater = <water[0..Low], water[Low+1..Max]> 

initially True 
fluent Methane = <methane.high, methane.low> 
fluent PumpOn = <start, stop> 

This step of relating fluents to events may be delicate. In the 
future, we intend to provide automated support for deriving fluent 
definitions from a KAOS operational model. 

In our FSP model of the mine pump system, there are two 
different models for the mine pump controller. In a first model, 
the controller is unsafe because it ignores the presence of 
methane. Checking the model against the above properties 
generates a counter-example in which the water level raises to the 
high position (water.11 in our model), the pump is turned on, 
methane appears and the pump is not turned off before the 
following tick. The last two time units of the generated counter-
example are shown below: 

 … 
 tick   
 water.10   
 tick   
 drip   
 water.11   
 level.high   
 start  PumpOn 
 drop  PumpOn 
 methane  PumpOn 
 methane.high Methane && PumpOn 
 tick  Methane && PumpOn 

The second model for the pump controller resolves the problem 
by ensuring that the pump is turned off when methane is detected. 
This new model satisfies all three properties.  

Note that, as discussed in Section 5.2, the same assertions 
interpreted as asynchronous FLTL assertions would not correctly 
capture the intended system properties. In asynchronous FLTL, 
these assertions are in fact too strong and are violated by the 
correct specification of the pump controller. 

7. CONCLUSION 
Fluent linear temporal logic is a convenient formalism for 
modelling and reasoning about properties of event-based systems 
such as those used to describe software architectures.  

This paper has presented two extensions of FLTL for modelling 
properties of discrete-time event-based models. 
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Firstly, we have extended FLTL with bounded temporal logic 
operators allowing modellers to easily specify timed properties of 
discrete-time event-based models and have defined an encoding of 
these new operators into untimed FLTL so that they can be 
model-checked into the untimed framework.  

Secondly, we have considered a synchronous variant of fluent 
temporal logic for describing sequence of states observed at a 
fixed time rate, rather than after each occurrence of an event.  The 
synchronous approach is a natural way to model properties of 
discrete-time state-based models. It is used in particular in the 
KAOS goal-oriented requirements elaboration method for the 
formal specification of goals and requirements. We have seen that 
the interpretation of temporal logic operators is different in 
synchronous and asynchronous temporal logics with important 
risks of confusion between the two. Our aim in this paper was to 
clarify the differences between the two existing paradigms and to 
define a mapping from synchronous FLTL to asynchronous FLTL 
so that properties written in synchronous FLTL can be model 
checked in the existing asynchronous framework. 

It is not yet clear to us whether the two flavours of temporal logic 
specifications need to be kept in the long term or not.  

The work reported in this paper is part of our larger effort to 
integrate goal-oriented requirements elaboration methods with 
automated techniques for the formal analysis of event-based 
models such as those implemented in the LTSA toolset.  A 
recurrent problem in the use of model-checking tools concerns the 
difficulty of identifying and correctly specifying the required 
system properties [4, 9]. This paper partly address this problem by 
allowing LTSA modellers to use a goal-oriented requirements 
elaboration process à la KAOS for the incremental identification, 
elaboration and specification of the formal properties to be model-
checked with the LTSA toolset. Future work will define how to 
automatically derive an event-based LTS model from a KAOS 
operation model so that KAOS modellers can use the LTSA 
toolset for the formal analysis of their operational models. We 
also wish to explore a more constructive process for elaborating 
event-based models of software architectures from declarative 
specification of requirements expressed in fluent temporal logic. 
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