

Fluent Temporal Logic for Discrete-Time Event-Based
Models

 Emmanuel Letier Jeff Kramer, Jeff Magee, Sebastian Uchitel
 Dpt. d’Ingénierie Informatique Department of Computing
 Université Catholique de Louvain Imperial College London
 Louvain-la-Neuve, Belgium and London Software Systems, U.K.

 eletier@info.ucl.ac.be {jk, jnm, s.uchitel}@doc.ic.ac.uk

ABSTRACT

Fluent model checking is an automated technique for verifying
that an event-based operational model satisfies some state-based
declarative properties. The link between the event-based and state-
based formalisms is defined through "fluents" which are state
predicates whose value are determined by the occurrences of
initiating and terminating events that make the fluents values
become true or false, respectively.

The existing fluent temporal logic is convenient for reasoning
about untimed event-based models but difficult to use for timed
models. The paper extends fluent temporal logic with temporal
operators for modelling timed properties of discrete-time event-
based models. It presents two approaches that differ on whether
the properties model the system state after the occurrence of each
event or at a fixed time rate. Model checking of timed properties
is made possible by translating them into the existing untimed
framework.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications,
Software/Program Verification – model checking

General Terms
Theory, Verification.

Keywords
Fluent linear temporal logic, discrete-time event-based models,
model-checking, software architecture analysis.

1. INTRODUCTION
Event-based models are convenient formalisms for modelling
behaviours of complex systems at the architectural level. They
describe a system as a set of interacting components where each
component is modelled as a state machine and interactions
between components occur through shared events corresponding
to the messages sent and received by components or to service
invocations initiated or accepted by components. Such models
provide the basis for a wide range of automated analysis
techniques, notably deadlock analysis, model animation and
model verification through model checking. For example, the

Architectural Description Language (ADL) Wright [1] is based on
the event-based process algebra CSP [7] for behaviour
descriptions and FDR [23] for behaviour analysis; PADL [2] is
based on CCS [20] and via TwoTowers, uses the Concurrency
Workbench [3] for functional analysis; our own Darwin ADL [16]
uses the process algebra style language FSP, and the Labeled
Transition System Analyzer (LTSA) tool [17].

For model verification, the properties to be satisfied by the
architecture are typically expressed in some form of temporal
logic. Specifying these properties is often much easier if they can
refer to system states in addition to referring to events. This
motivated the use of "fluents" to provide a uniform framework for
specifying properties that combine event and state predicates and
for automatically verifying the satisfaction of those properties by
an event-based model [5]. A fluent is a state predicate whose
value is determined by the occurrences of initiating and
terminating events that make the fluent value become true or
false, respectively.

Event-based modelling languages such as CSP, CCS and FSP are
untimed. Their semantics are sequences of events specifying the
order in which events occur, but not the actual time at which
events occur or the delay elapsed between consecutive events. A
standard way to model time in these untimed formalisms is to
include an explicit tick event signalling the successive ticks of a
global clock to which each timed component synchronizes [23,
17]. These models are called discrete-time event-based models
because the resulting time domain is isomorphic to the natural
numbers.

Fluent linear temporal logic (FLTL) defined in [5] is convenient
for specifying requirements on untimed event-based models. It is
however very difficult to use for specifying requirements on timed
event-based systems because it involves writing complex
formulae with explicit references to clock events.

Various extensions of temporal logic allow one to naturally model
properties of timed systems using bounded versions of temporal
logic operators [12, 6]. For example, the bounded eventually
operator <>≤d P means that P holds at some future time within the
next d time units. However these extensions are defined for state-
based models only and cannot be used to conveniently model
properties of timed event-based models.

The objective of this paper is to extend FLTL with bounded
versions of temporal logic operators for modelling timed
properties of discrete-time event-based models. The paper
describes two approaches.

In the first approach, we consider properties describing sequences
of system states observed after each occurrence of an event, as in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-9/05/0009…$5.00.

70

standard FLTL. The time of the system in a given state is counted
by the number of tick events that have occurred since the
beginning of the execution. Bounded versions of temporal logic
operators such as <>≤d P are defined accordingly. We define an
encoding of the bounded operators into untimed FLTL assertions
so that bounded FLTL assertions can be model checked in the
existing untimed framework.

In the second approach, we consider properties describing
sequences of system states observed at a fixed time rate, instead of
after each occurrence of an event. In this case, zero, one or more
events may occur between two consecutive states and the time of
the system in a state is counted by the position of the state in the
sequence. In the context of this paper, temporal logics used to
describe sequences of states observed at a fixed time rate will be
called synchronous temporal logics, while those used to describe
sequence of states observed after each occurrence of an event will
be called asynchronous. Note that modelling system properties in
a synchronous or asynchronous temporal logic does not
necessarily mean that the event-based model being verified is also
synchronous or asynchronous. (An event-based model is
asynchronous if it models components that execute at arbitrary
relative speeds and it is synchronous if it models components that
execute in lockstep [20]). Synchronous temporal logic is a natural
approach for describing properties of discrete-time state-based
models [6]. It is used in particular in the KAOS goal-oriented
requirements engineering method for the formal specification of
system goals and requirements [14]. We will see that there exist
subtle differences between the interpretations of the temporal
logic operators in the two approaches. The difference applies to
standard temporal operators as well as bounded ones. This may be
an important source of confusions and errors for modellers that
incorrectly use assertions defined in one formalism with a tool
based on the other formalism. Our aim is to clarify the differences
between the two existing paradigms and to define an encoding of
synchronous temporal logic into asynchronous FLTL so that
synchronous assertions can be model-checked in LTSA.

The paper is organized as follows. Section 2 presents the
necessary background on temporal logic, labelled transition
systems and fluent temporal logic. Section 3 extends
asynchronous fluent temporal logic with bounded temporal
operators and defines an encoding of these operators into untimed
FLTL. Section 4 illustrates the use of these operators on the light
control problem. Section 5 defines synchronous fluent temporal
logic and defines a mapping from synchronous assertions into
asynchronous ones. Section 6 illustrates model checking of
synchronous fluent temporal logic assertions on the mine pump
case study.

2. BACKGROUND
2.1 Linear Temporal Logic
Given a set of atomic propositions Π, a well-formed LTL formula
is defined inductively using the standard Boolean operators, and
the temporal operators X (next), [] (always), <> (eventually), U
(until) and W (Awaits) as follows:

• each member of Π is a formula
• if P and Q are formulas, then so are ¬P, P∧ Q, P∨ Q, P → Q, P

↔ Q, X P, [] P, <> P, P U Q, P W Q.
An interpretation for an LTL formula is a infinite trace h: Nat ->
2Π that maps to each position i ∈ Nat the set of propositions that

hold at that position. The notation (h,i) |= P is used to express that
the LTL formula P is true at position i of the trace h. The
semantics of the temporal logic operators is then defined as
follows [19]:

• (h,i) |= X P iff (h, i+1) |=P
• (h,i) |= [] P iff (h, j) |=P for all j ≥ i

• (h,i) |= <> P iff (h, j) |=P for some j ≥ i

• (h,i) |= P U Q iff (h, j) |= Q for some j ≥ i
 and (h, k) |=P for all k s.t. i ≤ k < j

• (h,i) |= P W Q iff (h,i) |= P U Q or (h,i) |= []P
The Boolean operators have their usual semantics. A LTL formula
P is said to be satisfied by a trace h, noted h |= P, if it is satisfied
at the initial position, i.e. (h,0) |= P.

2.2 Metric Temporal Logic
Metric Temporal Logic (MTL) extends LTL with the following
bounded temporal operators []~d P , <>~d P and P U~d Q where ~ ∈
{<, ≤, >, ≥} and d ∈ Nat [12, 6].

The semantics of these bounded operators is defined over infinite
traces h: Nat -> 2Π enriched with a time domain T and a temporal
distance function

dist: Nat × Nat -> T

where dist(i,j) denotes the time elapsed between positions i and j
in a trace. Different choices of temporal domain and distance
function are possible as long as they satisfy all desired properties
of a metric [12].

A common choice of temporal distance consists in considering
traces in which consecutive states are always separated by a single
time unit [6]. The distance function is therefore defined as dist(i,j)
= |j-i| x δ where δ is the arbitrarily chosen time unit. The time
domain is the natural multiple of δ and is therefore discrete. In this
paper, a temporal logic with this choice of temporal distance
function is called a synchronous temporal logic because it
describes traces in which the system state is observed at a fixed
time rate.

Another common temporal distance function consists in admitting
arbitrary and varying real-numbered delays between consecutive
states [6]. This results in a continuous model of time. This model
is more expressive but leads to difficulties in automated analysis.
Dense-time models will not be considered in this paper.

The semantics of the bounded temporal operators is defined over
system traces and distance functions as follows:

• (h,i)|= []~d P iff (h, j)|=P for all j ≥ i and dist(i,j) ~ d

• (h,i)|= <>~d P iff (h, j)|=P for some j ≥ i and dist(i,j) ~ d

• (h,i)|= P U~d Q iff (h, j)|=Q for some j ≥ i and dist(i,j)~ d
 and (h, k) |=P for all k s.t. i ≤ k < j
Note that for synchronous LTL, where next time and next state are
semantically equivalent, the bounded temporal operators do not
add expressive power to standard unbounded LTL operators
because they can be expanded into LTL formulae involving the
next state operator. For example, the assertion <>≤3 P is equivalent
to (P ∨ X P ∨ X X P ∨ X X X P) and the assertion []≤3 P is
equivalent to (P ∧ X P ∧ X X P ∧ X X X P). These operators

71

however add succinctness and ease of use to LTL for describing
bounded temporal requirements.

The next state operator X of MTL is the standard X operator of
LTL defined in Section 2.1. The above equivalences hold for
synchronous LTL only, which is the only timed extension of LTL
in which the 'next state' operator X also means 'at the next time
unit'. With other choices of temporal distance function, the X
operator no longer corresponds to the next time unit.

2.3 Labelled Transition Systems
We use Labelled Transitions Systems (LTS) to model the
behaviour of interacting components [17]. An LTS model
describes a system as a set of concurrent components where each
component is characterized by a set of states and by the possible
transitions between these states where each transition is labelled
by an event. The global system behaviour is the result of the
parallel composition of each component LTS so that the
components execute asynchronously but synchronize on shared
events.

Let Act be the universal set of observable events and let τ denote a
local action that is unobservable by a component's environment.
An LTS M is a quadruple <Q, A, δ, q0> where:
• Q is a finite set of states,
• A ⊆ Act is the communicating alphabet of M,
• δ ⊆ Q × A ∪ {τ} × Q is a labelled transition relation,
• q0 ∈ Q is the initial state.
The semantics of an LTS M is a set of sequences of events
(observable or τ) that the LTS can perform starting in its initial
state.

The parallel composition operator "||" is a commutative and
associative operator that combines the behaviour of two LTSs by
synchronizing the events common to their alphabets and
interleaving the remaining events.

Discrete-time systems can be modelled as LTS by including
explicit tick events signalling the regular ticks of a global clock to
which each timed processes synchronizes [17].

push

tick

on

push

tick

push

tick

push

tick

off

0 1 2 3 4 5

Figure 1. LTS Model of a light with a timer

Finite State Processes (FSP) is the input notation for the LTSA
tool. It is a simple process algebra used as a concise way to
specify LTS. For example, a light that turns itself off
automatically after 3 time units may be specified by the following
FSP model:

TimedLight = Off,
Off = (push -> on -> On[3] | tick -> Off),
On[d:0..3] = (when (d==0) off -> Off

| when !(d==0) tick -> On[d-1]
| when !(d==0) push -> On[3]).

In the above, “->” denotes action prefix, “|” choice and the
"when" clause is used to express conditional choice. The symbol !

denotes logical negation. The event push denotes the pushing of
the light button, the events on and off denotes the actual turning on
and off of the light. The LTS that corresponds to this FSP process
is depicted in Fig 1.

2.4 Fluent Linear Temporal Logic
Fluent linear temporal logic (FLTL) is a formalism for specifying
state-based temporal logic properties over an event-based
operational model.

A fluent Fl is a proposition defined by a pair of sets, a set of
initiating events InitFl and a set of terminating events TermFl, and
by an initial value InitiallyFl that can be true or false. The sets of
initiating and terminating events must be disjoint. The concrete
syntax for fluents in LTSA is the following:

fluent Fl = < InitFl, TermFl > initially InitiallyFl

By default, the initial value of a fluent is false.

A well-formed FLTL formula is an LTL formula whose atomic
propositions are fluents.

A set Φ of fluents defines a mapping from event-based to state-
based traces. Let tr: Nat → A be an event trace, the corresponding
state-based trace h = StateTrace(tr) is defined as follows: for
every position i ∈ Nat and every fluent Fl ∈ Φ, Fl is true at
position i of h iff either of the following conditions holds

(a) Fl holds initially and no terminating event has occurred before
position i:

 InitiallyFL and there is no k ∈ Nat, 0 ≤ k ≤ i s.t. tr(k) ∈ TermFl

(b) some initiating event has occurred before position i and no
terminating event has occurred since then:

 there is some j ∈ Nat, j ≤ i, s.t. tr(j) ∈ InitFl

 and there is no k ∈ Nat, j < k ≤ i , s.t. tr(k) ∈ TermFl

A FLTL assertion P is said to be satisfied by an event trace tr,
noted tr |= P, iff StateTrace(tr) |= P.

Note that the interval over which a fluent holds is closed on the
left and open on the right. This means that an event occurring at
position i of an event-based trace has an effect on the values of
fluents at position i of the associated state-based trace. This is
slightly different from the fluents of Miller and Shanahan [21] that
hold over intervals that are open on the left and closed on the right
which means that an event occurring at position i of an event-
based trace has an effect on the values of fluents at position i+1 of
the associated state-based trace.

FLTL assertions can also refer to event occurrences. For every
event e in an LTS model there is an implicit fluent, also noted e,
whose set of initiating events is the singleton event {e} and whose
set of terminating events contains all other events in the system
alphabet:

fluent e = <e, A-{e}> initially false

According to this definition, the fluent associated with an event e
becomes true the instant e occurs and become false with the first
occurrence of a different event.

The concrete syntax for FLTL formulas used in LTSA follows as
closely as possible the LTL syntax used in SPIN. In particular, the

72

ASCII expressions !, &&, and || are used to denote logical
negation, conjunction and disjunction, respectively.

Examples. For the light model, a property requiring the light to
eventually be on after a tick event may be specified as follows:

[](push -> <> LightOn)

where LightOn is a fluent defined as follows:

fluent LightOn = <on, off>

This property is of course very weak because it does not require
the light to be turned on immediately after a push event. The
correct specification of the required property in FLTL is not
straightforward. The assertion

[](push -> LightOn)

is too strong because it forbids a push event from occurring when
the light is off. Modelling the property as

[](push -> X LightOn)

should be avoided because the resulting formula is not closed
under stuttering [13]: the satisfaction of this property by an event
trace is affected by the insertion or removal of unobservable τ
events. A correct way to model the required property in FLTL is:

[](push -> (!tick W LightOn))

This assertion requires that after every occurrence of a push event,
the light must be on before the next occurrence of a tick event.

As a second example, the property requiring the light to be
eventually turned off when no further push events occur may be
specified as follows:

 [] ((! push W ! LightOn) -> <> ! LightOn)

This property is again too weak because it does not require the
light to be turned off within 3 time units. Specifying such bounded
properties in FLTL is extremely hard. The following section will
define bounded temporal logic operators facilitating the
specification of such properties.

{off, tick}

on

push

off

{on, push, tick} {off, push}

on

tick

-1 0 1 2

Figure 2. Property LTS for [](push -> (!tick W LightOn))

A technique for model-checking the satisfaction of an FLTL
assertion φ by an LTS is described in [5]. As for standard model-
checking, the general idea consists in generating a Büchi
automaton B that recognizes all infinite event-based traces that
violate φ and check that the synchronous product of B with the
LTS is empty. When the property to be verified is a safety
property, the Buchi automaton can be viewed as a "property
LTS", i.e. a LTS with an ERROR state so that executions leading
to the ERROR state correspond to undesired system behaviours.
Model checking safety properties therefore reduces to a simple
reachability search for the ERROR state. For example, Figure 2
shows the property-LTS generated by the tool for the safety

property [](push -> (!tick W LightOn)). In LTSA, the ERROR state
is noted by -1.

3. ASYNCHRONOUS DISCRETE-TIME
FLTL

This section defines a metric temporal logic that extends FLTL
with bounded temporal logic operators. Section 3.1 defines the
semantics of these operators by defining the temporal distance
appropriate to timed event-based models. Section 3.2 defines how
to model check properties involving bounded temporal operators
by translating them into untimed FLTL assertions with explicit
references to tick events.

3.1 Semantics of Bounded FLTL Operators
In order to define the semantics of bounded operators for FLTL,
we need to provide a temporal distance function on the positions
of state-based traces.

Let h be a state-based trace. The time elapsed between the
positions i and j of h is given by the number of times a tick event
occurs between i and j:

dist(i,j) = # {k ∈ (i, j] | (h,k) |= tick }

Note that the interval in this definition is open on the left and
closed on the right. This means that if a tick event occurs in
position i and the next tick event occurs in position n, the temporal
distance between i and j is nill for all j bigger or equal to i and
strictly smaller than n.

The semantics of bounded FLTL operators is then defined as in
Section2.2. For example, the assertion "<>≤3 P" means that P
holds at some future time position that is separated from the
current position by no more than 3 ticks.

Examples of timed properties for the timed light model are the
following:

[] (push -> <><1 LightOn)
[] (on -> []<3 LightOn)
[](on -> <>≤3 (off ∨ push))

The first property requires that when a push event occurs, the light
must be turned on within the same time unit. The second property
requires that once the light has been turned on, it must remain on
during the next 3 time units. The third property requires that when
the light is turned on, it be eventually turned off within 3 time
units except if a push event occurs during that time.

The concrete ASCII syntax for bounded temporal operators in the
LTSA consists in writing the temporal bound into braces as
follows <>{<=d} P.

3.2 Model-Checking Bounded FLTL
Assertions

In order to model check FLTL assertion involving bounded
temporal operators, these operators are translated into unbounded
FLTL assertions involving explicit references to tick events. The
translation rules are given by the recursive function Tr defined as
follows:

Tr([]<d P) = (P W (tick ∧ P)) if d=1
 (P W (tick ∧ P ∧ X Tr([]<d-1 P))) if d>1
Tr([]≤d P) = Tr([]<d+1 P)

73

Tr(<><d P) = (! tick W P) if d=1
 ((! tick ∨ X Tr(<><d-1 P)) W P) if d>1
Tr(<>≤d P) = Tr(<><d+1 P)
Tr([]≥d P) = [] P if d=0
 (!tick W [] P) if d=1
 (!tick W X Tr([]≥d-1 P)) if d>1
Tr([]<d P) = Tr([]≥d-1 P)
Tr(<>≥d P) = <> P if d=0
 <>(tick ∧ <> P) if d=1
 <>(tick ∧ X <> Tr(<>≥d-1 P) if d>1
Tr(<>>d P) = Tr(<>≥d-1 P)
Tr(P U~d Q) = Tr(<>~d Q) ∧ (P W Q)

The translation rules assume that in the LTS model to be verified
time progresses without bound and tick is not in the initiating or
terminating events of any fluent. In LTSA, the fact that time
progresses without bound (i.e. non-zeno) can be verified
automatically by checking the following progress property
requiring tick to always eventually occur:

progress TimeProgress = {tick}

The proof that the translation rules are correct involves
establishing that the semantics of the bounded operators with the
given temporal distance function is equivalent to the semantics of
their translation in unbounded FLTL.

Intuitively, the translation of []<d P when d = 1 says that P remains
true unless tick and P are true. This ensures that as long as no tick
event occurs P is true. The fact that P is still true when the first
tick event occurs ensures that P is true if tick is the event that
occurs at the position where []<1 P is evaluated. (It does not
guarantee that P holds for all states that are less or equal to one
time unit from the current position, i.e. []≤1 P, because any event
making P false occurring between the first and the second next
ticks would make []≤1 P false).

The translation rules of the <><d P operator uses the assumption
that time progresses without bound. For example, the translation
of <><d P when d = 1 says that from the current position, tick
should not occur unless at some point in the future P holds. Since
tick is assumed to always eventually occur, this guarantees that P
will eventually hold and that no tick event has occurred before
then. The translation of <><d P when d>1 is equivalent to the
negation of the translation of []<d P when d>1 (see [19] for useful
equivalences of LTL formulae). This translation rule can also be
understood by observing that the resulting formula is equivalent to
((! tick W P) ∨ (! tick W X <><d-1 P)) saying that either P holds
before the first occurrence of tick or <><d-1 P holds just after the
first occurrence of tick.

We do not explain the other translation rules, which are easier to
understand.

Once translated into unbounded FLTL, assertions involving
bounded operators can be model checked as any other FLTL
assertions. For example, Figures 3 and 4 depict the property LTS
generated by the tool for the last two assertions of Section 3.1.
The LTS generated form the first property in Section 3.1 is the
same as the one depicted in Figure 2.

{off, tick}

on

off

on

tick

off

on

tick

off

on

tick

-1 0 1 2 3

Figure 3. Property LTS for [] (on -> []<3 LightOn)

{off, push, tick}

on

{off, push}

tick

on

{off, push}

tick

on

{off, push}

tick

on

{off, push}

tick

on
-1 0 1 2 3 4

Figure 4. Property LTS for [](on -> <>≤≤≤≤3 (off ∨∨∨∨ push))

4. EXAMPLE: THE LIGHT CONTROLLER
This section illustrates discrete-time model checking in the LTSA
toolset on the light control problem [22].

4.1 Problem Statement
Consider an automated light controller used to control the lights in
a room. The controller has to ensure that the lights are
automatically turned on as soon as someone enters the room and
the lights are automatically turned off T1 time units after the room
has become unoccupied. Presence inside the room is detected by a
movement detector.

The light level can be adjusted manually with a dimmer. There is
a default setting that must be restored automatically if the room
becomes reoccupied more than T2 time units after a movement
was last detected (T2 > T1). If the room becomes reoccupied less
than T2 time unit after a movement was last detected, the lights
must be turned on at the level they were the last time the room
was occupied.

4.2 Architecture Model
The system is composed of a light, a light controller, a movement
detector. An additional process models the behaviours of users.
Interfaces between these components is shown in the Figure 5.

Figure 5. Architecture the Light Controller Example

The behaviour of the light controller is specified by the FSP
model in Figure 6. The behaviour models of the other components

74

are not shown. It is assumed that when a user is inside the room, a
movement is detected at least once per time unit.

Figure 6. FSP Model of the light controller

4.3 Modelling the Properties
The requirements that the light must be turned on when the room
becomes occupied may be specified in discrete-time FLTL as
follows:

assert LightTurnedOnWhenFirstEntry
= [] (first_entry -> <>{<1} LightOn)

In this assertion, the fluent LightOn is defined as follows:

fluent LightOn = <on, off>

and the event first_entry is an event in the Users process denoting
that a first user enters the previously unoccupied room.

The requirement that the light must remain on during T1 time
units after the last exit from the room may be specified as follows:

assert LightOnDuringT1AfterLastExit
= [] (last_exit ∧ LightOn -> []{<T1} LightOn)

The requirement that the light must be turned off when the room
has been unoccupied for more than T1 units may be specified as
follows:

assert LightOffWhenUnoccupiedDuringT1
= [] (! Occupied -> <>{<=T1} (Occupied || !LightOn))

where fluent Occupied is defined as follows:

fluent Occupied = <first_entry, last_exit>.

This assertion specifies that if the room is unoccupied, then within
T1 time units either the room is reoccupied or the lights are turned
off.

We now consider the properties concerning light settings. A first
property is that a dimmed setting has to be maintained during T2
time units after the room becomes unoccupied:

assert DimmedMaintainedDuringT2AfterExit
= [] (last_exit && Dimmed -> []{<T2} Dimmed)

The fluent Dimmed is defined as follows:

fluent Dimmed = <level, default>

Note that the event level and default set the lights level settings but
do not turn the lights on. Therefore, the lights are not necessarily
on when Dimmed holds.

Conversely, after T2 time units the default light setting is restored:

assert DefaultRestoredWithinT2AfterExit
= [](last_exit -> <>{<=T2} (Occupied || ! Dimmed))

4.4 Model Analysis
Deadlock and progress analysis allowed us to detect and correct
errors in our initial version of the light controller model. For
example, in the LightController process in Figure 6, an off
transition from a process On_Dimmed[i][j] was leading to a process
Off_Dimmed[j-1] instead Off_Dimmed[j]. The error was revealed as
a deadlock. The model in Figure 6 contains no deadlock and no
violation of the time progress property.

The light controller model in Figure 6 composed with
environment processes satisfies the five properties in the previous
section. In our initial model, we had inadvertently omitted the 'on'
event in the third line of the OffDimmed process. The error was
revealed by the following error trace violating the property
LightTurnedOnWhenFirstEntry:

 tick
 first_entry
 move_signal
 on LightOn
 tick LightOn
 dim LightOn
 level LightOn
 last_exit LightOn
 move_signal LightOn
 tick LightOn
 tick LightOn
 off
 first_entry
 move_signal
 tick
The column on the left shows the sequence of events that leads to
the error, the column on the right shows the fluents involved in
the assertion that hold after the occurrence of each event.

During the last time period, a first_entry event occurs and the light
is not turned on before the following occurrence of a tick event.
The model is checked with T1 = 2. Examining the error trace
reveals that the error occurs after the light has been dimmed
(during the first time unit) and automatically turned off (during
the fourth time unit).

Model checking can also be used to generate witness system
executions. For example, a witness execution satisfying the goals

LightController = (tick -> Off_Default),
Off_Default =

(tick -> Off_Default
| move_signal -> on -> On_Default[T1]
| dim -> level -> on -> On_Dimmed[T1][T2]),

On_Default[i:0..T1] =
(when (i==0) off -> Off_Default
| when ! (i==0) tick -> On_Default[i-1]
| when ! (i==0) move_signal -> On_Default[T1]
| when ! (i==0) dim -> level -> On_Dimmed[T1][T2],

On_Dimmed[i:0..T1][j:0..T2] =
(when (i==0) off -> Off_Dimmed[j]
| when ! (i==0) tick -> On_Dimmed[i-1][j-1]
| when ! (i==0) move_signal -> On_Dimmed[T1][T2]
| when ! (i==0) dim -> On_Dimmed[i][j]),

Off_Dimmed[j:0..T2] =
(when (j==0) default -> Off_Default
| when !(j==0) tick -> Off_Dimmed[j-1]
| when !(j==0) move_signal -> on -> On_Dimmed[T1][T2]
| when !(j==0) dim -> on -> On_Dimmed[T1][T2]).

75

LightOnDuringT1AfterLastExit can be generated by model checking
the following stronger assertion with a longer time bound:

assert Witness_NotLightOnDuringMoreThanT1AfterLastExit
 = [](last_exit && LightOn-> []{<T1+1} LightOn)

As expected, this assertion is violated and the model checker
generates the following system execution in which the light
remains on during 2 time units (T1 = 2) after the last time the
room was occupied but not longer:

 tick
 first_entry
 move_signal
 on LightOn
 tick LightOn
 last_exit LightOn
 move_signal LightOn
 tick LightOn
 tick LightOn
 off

5. SYNCHRONOUS DISCRETE-TIME
FLTL

Fluent temporal logic in [5] is an asynchronous temporal logic
because its properties describe sequences of system states
observed after each occurrence of an event. Synchronous temporal
logic is an alternative paradigm in which properties describe
sequence of states observed at a fixed time rate. Both variants are
used in practice.

Temporal logic operators have very different meanings in
synchronous and asynchronous temporal logics. For example, 'X
P' in an asynchronous temporal logic means 'P holds after the next
event', whereas in a synchronous temporal logic it means 'P holds
at the next time unit'. Similarly, '[] P' in an asynchronous temporal
logic means 'P holds after each event' whereas in a synchronous
temporal logic it means 'P holds at each time point'. Confusion
between the two variants of temporal logic may lead to important
errors in the formal specification of system properties.

Synchronous temporal logic is used by the KAOS goal-oriented
requirements elaboration method for the formal specification of
system goals and requirements. KAOS provides systematic
support for the gradual identification and formal specification of
system requirements through goal refinements, goal conflict
analysis and obstacle analysis.

The purpose of this section is to define a synchronous variant of
fluent temporal logic so that properties elaborated using goal-
oriented requirements elaboration techniques can be used as
assertions to be model-checked in LTSA.

In this section we first define the synchronous fluent linear
temporal logic, then provide example of synchronous FLTL
assertions and discuss some differences between synchronous and
asynchronous FLTL. Finally, we describe how to model check
synchronous FLTL assertions by translating them into
asynchronous FLTL assertions and discusss the handling of events
in synchronous FLTL assertions which requires special treatment.

5.1 Syntax and Semantics
The syntax of synchronous FLTL is the same as that of
asynchronous FLTL; well-formed synchronous FLTL assertions

are assertions formed with standard LTL operators extended with
bounded temporal operators and whose atomic propositions are
fluents.

The semantics of synchronous FLTL is defined by relating event-
based traces to state-based traces modelling the system state at the
successive occurrences of tick.

Let tr be an infinite sequence of events and hasync = StateTrace(tr)
be the asynchronous state-based trace associated to tr (see Section
2.4). There is one and only one mapping TickPosition: Nat -> Nat
that assigns to every time point i the position of the ith occurrence
of tick in tr, i.e. TickPosition (i) = j iff i = #{k ∈ 0..j | tr(k) =
tick}. The synchronous state-based trace associated to tr, noted
hsync = Sync-StateTrace(tr) is defined as follows:

hsync (i) = hasync (TickPosition (i)) for all i ∈ Nat

i.e. the set of fluents that hold at the ith position of the
synchronous state-based trace is the set of fluents that hold at the
ith occurrence of a tick event in the asynchronous state-based
trace. The temporal distance function defining the semantics of
bounded temporal operators is given by dist(i,j) = |j-i|.

A synchronous FLTL assertion P is then said to be satisfied by a
sequence of events tr, noted tr |=Sync-FLTL P, iff Sync-
StateTrace(tr) |= P.

Synchronous FLTL is less expressive than asynchronous FLTL
because satisfaction of its assertions depends on fluent values at
the occurrence of tick events only. Synchronous FLTL assertions
cannot constrain the occurrence of events between two
occurrences of tick. While being less expressive in terms of event-
based traces, some properties are expressed in a more natural way
in synchronous temporal logic than in asynchronous FLTL.
Differences between synchronous and asynchronous FLTL are
discussed in the following section.

5.2 Differences with Asynchronous FLTL
This section presents examples of synchronous FLTL assertions
and discusses differences between synchronous and asynchronous
FLTL.

5.2.1 The 'Always' Temporal Operator
As mentioned before, the 'always' temporal operator has very
different interpretations in the synchronous and asynchronous
FLTL. This may be a source of errors if a property written in
synchronous temporal logic is interpreted as a property in
asynchronous temporal logic, or vice-versa.

Consider the mine pump problem [11, 10], which we discuss in
more detail in the Section 6 and Figure 7, and the property
requiring that when the water level is high, the pump must be on.
In synchronous FLTL this property may be specified as follows:

[](HighWater -> PumpOn)

The fluents involved in this assertion are defined as follows:

fluent HighWater = <water[High…Max], water[0…High-1] >
fluent PumpOn = <start, stop>

The meaning of this assertion in synchronous FLTL is that at
every time point if the water level is high (that is that the water
level is between constants High and Max), the pump must be on.

If the same assertion is interpreted as an asynchronous FLTL

76

assertion, it has a very different meaning: it requires the pump to
be on when the water level is high after the occurrence of each
event. In asynchronous FLTL, this assertion requires that the
pump be on at all events satisfying HighWater. Modellers may not
realize that this assertion prevents the water level from rising
above High when the pump is off. This is due to the fact that in
an asynchronous trace with interleaving semantics, the event start
may not occur concurrently with changes in water level.

The problem does not exist for the synchronous interpretation of
the assertion because in that framework, the pump and the water
level can both change value within the same time unit.

5.2.2 'Next' and Closure under stuttering
Consider now the property requiring that when the water level is
high, the pump must be on at the next time unit. In synchronous
temporal logic, this property is specified as

[](HighWater -> X PumpOn).

The same assertion in FLTL does not specify the required
property correctly because the X operator means 'after the next
event' instead of 'at the next time point'.

In asynchronous FLTL, some assertions involving 'next' are not
closed under stuttering [13]. In our event-based framework, an
assertion is said to be closed under stuttering if its satisfaction is
the same for event traces that differ only by unobservable τ
events. The above assertion involving next is not closed under
stuttering.

Assertions that are not closed under stuttering should not be used
to specify system properties because their satisfaction is not
preserved by refinements of the event-based model. Invariance
under stuttering is also needed for the use of partial order
reduction techniques that are critical to the success of any LTL
model checking procedure [8].

Interestingly, all synchronous FLTL assertions are closed under
stuttering because the satisfaction of a property depends only on
the values of fluents at the occurrence of tick events and these
values are unaffected by the occurrences of τ events.

5.2.3 Bounded Temporal Operators
The semantics of bounded temporal operators is also slightly
different in synchronous and asynchronous FLTL.

The synchronous assertion []<d P is weaker than the asynchronous
one because it does not constrain P to be true between tick events.
The synchronous version is sometimes more appropriate than the
asynchronous one when one needs to model requirements in
which the property P may be temporarily violated between ticks,
as in the example of Section 4.2.1.

The synchronous assertion <><d P is stronger than the
asynchronous one because it requires P to hold at some
occurrence of a tick event, while the asynchronous one requires P
to hold at the occurrence of any event, even if P becomes false
before the next tick event occurs. Deciding which operator to use
will depend on the problem and the property to be specified.

5.3 Model-Checking Synchronous FLTL
Assertions

Synchronous FLTL assertions are model-checked by translating
them into untimed asynchronous FLTL. The Translation function
Tr: FLTLSync -> FLTLAsync is defined recursively as follows:

Tr([] P) = [] (tick -> Tr(P))
Tr(<> P) = <> (tick ∧ Tr(P))
Tr(P U Q) = (tick -> Tr(P)) U (tick ∧ Tr(Q))
Tr(X P) = X (¬ tick W (tick ∧ Tr(P)))

Boolean operators remain unchanged (i.e. Tr(not P) = not Tr(P),
etc.). The translation of bounded temporal operators consists in
expanding them into assertions involving the synchronous X
operator as outlined in Section 2.2.

Example. The synchronous FLTL assertion

[](HighWater -> X PumpOn)

is translated into the asynchronous FLTL assertion

[](tick -> (HighWater -> X (¬ tick U (tick ∧ PumpOn))))

As required, the translation rules ensure that fluent values are
evaluated at the occurences of tick events only. The event-based
interpretations of a synchronous FLTL assertion are therefore the
same as those of its translation into asynchronous FLTL.

For example, the translation of []P means that P must hold every
time a tick event occurs. Similarly, the translation of <> P says
that P must eventually hold when some tick occurs. The
translation of the synchronous 'next' operator is slightly more
complicated. It encodes the property that P must be true at the
next occurrence of a tick event. This is done by saying that just
after the current event (possibly a tick event) there should be no
tick event until there is a tick and P holds. This ensures that if at
the next occurrence of tick, P does not hold, the translation of the
synchronous assertion X P is false, otherwise it is true. This
translation rule is based on the assumption that time progress
without bound and can therefore use the awaits temporal operator
(W) instead of the until operator (U).

5.4 Handling Events in Synchronous FLTL
The previous sections do not handle the case of fluents associated
to events. As explained in Section 2.4, in FLTL the implicit
fluent associated to an event becomes false as soon as another
event occurs. This is not adequate for synchronous FLTL because
the fluent denoting the occurrence of an event should remain true
until the next tick event.

We therefore need to introduce explicit fluents

Occurs[ev:Event]

denoting that event e as occurred during the last time unit.

These fluents cannot be simply defined as

fluent Occurs[e:Event] = <e, tick>.

because we need Occurs[e] to still be true when tick occurs and
fluents in [5] have been defined so that they hold over intervals
that are closed on the left and open on the right. This means that
an event has an effect on the current values fluents. Therefore,
contrary to what is needed, Occurs[e] would be false when tick
occurs.

To solve that problem we need to introduce a toc event that
always occurs just after a tick event and define the fluent
associated to event as follows:

fluent Occurs[e] = <ev, toc>.

This ensures that Occurs[e] is still true at the occurrence of tick.

77

The FSP process that ensures that every tick event is immediately
followed by a toc event is given by

TickToc = (tick -> toc -> TickToc | {AllEvents} -> TickToc).

In this process, AllEvents is the alphabet of the LTS model being
verified. Referring to the complete alphabet of the LTS model
guarantees that tick is immediately followed by a toc with no other
events in between. This is needed because if during some time
unit an event e could occur between the tick and the toc, Occurs[e]
will be false at the next occurrence of tick.

Note that, contrary to [5], the fluents of Miller and Shanahan [21]
hold over intervals that are open on the left and closed on the
right. This means that an event has an effect on the values of
fluents in the next state. In this framework, tick could be defined
as terminating event for Occurs[ev] and we wouldn't need toc
events. The translation rules of Section 4.2 would remain the same
in that framework because, since domain fluents (i.e. fluents that
are not associated to the occurrence of an event) do not have tick
among their initiating or terminating events, they have the same
value at the occurrence of a tick (as evaluated in [5]) and just after
(as evaluated in [21]).

Pump
Controller

Water
Sensors

Methane
Sensor

Pump
level.{high,low}

methane.{high,low}

Sump

Drain

start, stop

drop

drip

water.[0..Max]

methane

Figure 7. Architecture of the Mine Pump Case Study

6. EXAMPLE: THE MINE PUMP
This section illustrates model checking of synchronous FLTL
assertions on the mine pump case study [11, 10].

A FSP model for the mine pump system had been developed
previously to illustrate the SceneBean animation feature of the
LTSA toolset [18]. The structure of this model is shown in the
Figure 7.

The properties to be satisfied by the mine pump control system
may be modelled in synchronous FLTL as follows:

assert PumpOnWhenHighWaterAndNoMethane
= [](HighWater && ! Methane -> PumpOn)

assert PumpOffWhenLowWater = [](LowWater -> ! PumpOn)
assert PumpOffWhenMethane = [](Methane -> ! PumpOn)

These properties correspond to well known properties of the mine
pump problem as they are frequently specified in requirements
models [10]. The first property requires the pump to be on when
the water level is high and there is no methane, the second
requires the pump to be off when the water level is low and the
third on requires the pump to be off when there is methane.

For more complex systems in which the identification and
formalisation of the required properties might be more difficult
than for the mine pump, a goal-oriented method such as KAOS
would provide guidance for identifying and specifying the
properties to be satisfied by the system. A KAOS goal model of
the mine pump system containing the above properties may be
found in [15].

In order to interpret KAOS goals as synchronous FLTL assertions,
currently one also needs to manually provide the fluent definitions
that relate the predicates involved in the goal definitions to the
events appearing in the behaviour model. In this case, the fluents
appearing in the required properties are defined as follows:

fluent HighWater = <water[High..Max], water[0..High-1]>
fluent LowWater = <water[0..Low], water[Low+1..Max]>

initially True
fluent Methane = <methane.high, methane.low>
fluent PumpOn = <start, stop>

This step of relating fluents to events may be delicate. In the
future, we intend to provide automated support for deriving fluent
definitions from a KAOS operational model.

In our FSP model of the mine pump system, there are two
different models for the mine pump controller. In a first model,
the controller is unsafe because it ignores the presence of
methane. Checking the model against the above properties
generates a counter-example in which the water level raises to the
high position (water.11 in our model), the pump is turned on,
methane appears and the pump is not turned off before the
following tick. The last two time units of the generated counter-
example are shown below:

 …
 tick
 water.10
 tick
 drip
 water.11
 level.high
 start PumpOn
 drop PumpOn
 methane PumpOn
 methane.high Methane && PumpOn
 tick Methane && PumpOn

The second model for the pump controller resolves the problem
by ensuring that the pump is turned off when methane is detected.
This new model satisfies all three properties.

Note that, as discussed in Section 5.2, the same assertions
interpreted as asynchronous FLTL assertions would not correctly
capture the intended system properties. In asynchronous FLTL,
these assertions are in fact too strong and are violated by the
correct specification of the pump controller.

7. CONCLUSION
Fluent linear temporal logic is a convenient formalism for
modelling and reasoning about properties of event-based systems
such as those used to describe software architectures.

This paper has presented two extensions of FLTL for modelling
properties of discrete-time event-based models.

78

Firstly, we have extended FLTL with bounded temporal logic
operators allowing modellers to easily specify timed properties of
discrete-time event-based models and have defined an encoding of
these new operators into untimed FLTL so that they can be
model-checked into the untimed framework.

Secondly, we have considered a synchronous variant of fluent
temporal logic for describing sequence of states observed at a
fixed time rate, rather than after each occurrence of an event. The
synchronous approach is a natural way to model properties of
discrete-time state-based models. It is used in particular in the
KAOS goal-oriented requirements elaboration method for the
formal specification of goals and requirements. We have seen that
the interpretation of temporal logic operators is different in
synchronous and asynchronous temporal logics with important
risks of confusion between the two. Our aim in this paper was to
clarify the differences between the two existing paradigms and to
define a mapping from synchronous FLTL to asynchronous FLTL
so that properties written in synchronous FLTL can be model
checked in the existing asynchronous framework.

It is not yet clear to us whether the two flavours of temporal logic
specifications need to be kept in the long term or not.

The work reported in this paper is part of our larger effort to
integrate goal-oriented requirements elaboration methods with
automated techniques for the formal analysis of event-based
models such as those implemented in the LTSA toolset. A
recurrent problem in the use of model-checking tools concerns the
difficulty of identifying and correctly specifying the required
system properties [4, 9]. This paper partly address this problem by
allowing LTSA modellers to use a goal-oriented requirements
elaboration process à la KAOS for the incremental identification,
elaboration and specification of the formal properties to be model-
checked with the LTSA toolset. Future work will define how to
automatically derive an event-based LTS model from a KAOS
operation model so that KAOS modellers can use the LTSA
toolset for the formal analysis of their operational models. We
also wish to explore a more constructive process for elaborating
event-based models of software architectures from declarative
specification of requirements expressed in fluent temporal logic.

ACKNOWLEDGEMENT
The work reported herein was partially supported by the Belgian
“Fond National de la Recherche Scientifique” (FNRS) and
EPSRC grant READS GR/S03270.

8. REFERENCES
[1] R. Allen and D. Garlan, A Formal Basis for Architectural

Connection, ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol. 6, No. 3, pp. 213-249, 97.

[2] M. Bernardo, P. Ciancarini and L. Donatiello, Architecting
Software Systems with Process Algebras, University of
Bologna, UBLCS-2201-7, July 2001.

[3] R. Cleaveland, J. Parrow and B. Steffen, The Concurrency
Workbench: A Semantics-Based Tool for the Verification of
Concurrent Systems, ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 1, pp. 36-72, 1993.

[4] M.B. Dwyer, G. S. Avrunin and J.C. Corbett, “Patterns in
Property Specifications for Finite-State Verification”, Proc.
ICSE’99 - 21st Intl. Conference on Software Engineering,
Los Angeles, May 1999.

[5] D. Giannakopoulou and J. Magee, "Fluent Model Checking
for Event-Based Systems", in Proc. of the 4th joint meeting
of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003), September 2003,
Helsinki, Finland.

[6] T. A. Henzinger. It's about time: Real-time logics reviewed.
Proc. 9th International Conference on Concurrency Theory
(CONCUR), LNCS 1466, Springer, 1998, pp. 439-454.

[7] C. A. R. Hoare, Communicating sequential processes,
Prentice-Hall International, 1985.

[8] G.J. Holzmann, The Model Checker Spin, IEEE
Transactions. on Software Engineering, Vol. 23, No. 5, May
1997, pp. 279-295.

[9] G.J. Holzmann, The Logic of Bugs, Proc. ACM
Foundations of Software Engineering (FSE), Charleston SC
USA, November 2002.

[10] M. Joseph, Real-Time Systems: Specification, Verification
and Analysis. Prentice Hall, 1996.

 [11] J. Kramer, J. Magee, M. Sloman et al, CONIC: an
Integrated Approach to Distributed Computer Control
Systems. IEE Proceedings, Part E 130, 1, January 1983.

[12] R. Koymans, Specifying message passing and time-critical
systems with temporal logic, LNCS 651, Springer, 1992.

[13] L. Lamport, The Temporal Logic of Actions, ACM
Transactions on Programming Languages and Systems,
Vol. 16, No. 3, pp. 872-923, 1994.

[14] A. van Lamsweerde, Requirements Engineering in the Year
00: A Research Perspective, 22nd International Conference
on Software Engineering, Limerick, ACM Press, 2000.

[15] E. Letier, Reasoning about Agents in Goal-Oriented
Requirements Engineering. Ph. D. Thesis, University of
Louvain, May 2001.

[16] J. Magee, N. Dulay, S. Eisenbach and J. Kramer, Specifying
Distributed Software Architectures, 5th European Software
Engineering Conference (ESEC'95), Sitges, Spain, 989, pp.
137-153, September 1995.

[17] J. Magee and J. Kramer, Concurrency - State Models &
Java Programs, Chichester, John Wiley & Sons, 1999.

[18] J Magee, N Pryce, D Giannakopoulou, J Kramer, Graphical
animation of behavior models, 22nd International
Conference on Software Engineering, Limerick, 2000.

[19] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1992.

[20] R. Milner, Communication and Concurrency, Prentice-Hall,
1989.

[21] R. Miller and M. Shanahan, The Event Calculus in Classical
Logic - Alternative Axiomatisations, Linkoping Electronic
Articles in Computer and Information Science, Vol. 4, No.
16, pp. 1-27, 1999.

[22] S. Queins et al., The Light Control Case Study: Problem
Description, Journal of Universal Computer Science,
Special Issue on Requirements Engineering: the Light
Control Case Study, Vol.6(7), 2000.

[23] A. W. Roscoe, A Classical Mind: Essays in Honour of
C.A.R. Hoare, pp. 353-378, Prentice-Hall, 1994.

79

