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Abstract

In most real-world acoustical scenarios, speech signals captured by distant micro-

phones from a source are reverberated due to multipath propagation, and the rever-

beration may impair speech intelligibility. Speech dereverberation can be achieved

by equalizing the channels from the source to microphones. Equalization systems can

be computed using estimates of multichannel acoustic impulse responses. However,

the estimates obtained from system identification always include errors; the fact that

an equalization system is able to equalize the estimated multichannel acoustic sys-

tem does not mean that it is able to equalize the true system. The objective of this

thesis is to propose and investigate robust equalization methods for multichannel

acoustic systems in the presence of system identification errors.

Equalization systems can be computed using the multiple-input/output in-

verse theorem or multichannel least-squares method. However, equalization systems

obtained from these methods are very sensitive to system identification errors. A

study of the multichannel least-squares method with respect to two classes of char-

acteristic channel zeros is conducted. Accordingly, a relaxed multichannel least-

squares method is proposed. Channel shortening in connection with the multiple-

input/output inverse theorem and the relaxed multichannel least-squares method is

discussed.

Two algorithms taking into account the system identification errors are de-

veloped. Firstly, an optimally-stopped weighted conjugate gradient algorithm is
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proposed. A conjugate gradient iterative method is employed to compute the equal-

ization system. The iteration process is stopped optimally with respect to sys-

tem identification errors. Secondly, a system-identification-error-robust equalization

method exploring the use of error models is presented, which incorporates system

identification error models in the weighted multichannel least-squares formulation.
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Chapter 1

Introduction

1.1 Context of work

Speech communication is a fast growing industry and is closing the distance between

people due to advances in technology, decreasing costs and increasing capabilities.

The ideal case scenario is to be able to speak to target audience at a different

place from you while your voice sounds just like you were sitting in front of the

target audience. However, there are many types of degradation along a signal path

that impair our ability to decipher voice transmissions, such as background noise,

reverberation, and other interferences.

In many hands-free devices such as mobile phones, PDAs, voice over IP,

hearing aids or teleconferencing equipments, where the microphone or array of mi-

crophones is not placed close to the mouth of the speaker, the reflected paths cannot

be neglected compared with the direct sound. In these applications, the reflected

paths or reverberation in the talker’s environment can be an important factor in

degrading the overall speech quality as perceived at the listener’s end.

Reverberation is the process of multipath propagation of an acoustic signal

from its source to the microphone as shown in Figure 1.1. The received signal
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direct path

reflection

talker
mic

Figure 1.1: Reverberation in a room.

generally consists of a direct sound, reflections that arrive shortly after the direct

sound (commonly called early reflections), and reflections that arrive after the early

reflections (commonly called late reflections). The effect of reverberation on speech

is to cause it to sound distant and spectrally modified which can reduce naturalness

and intelligibility. Early reflections are not perceived as separate sound events but

instead cause a spectral distortion called colouration. Late reverberation often forms

a background ambience which is distinct from the foreground sound and may impair

speech intelligibility.

The problem of reverberation can be resolved by utilizing a headset, where

the microphone is kept close to the mouth. Nevertheless, this imposes restrictions on

the flexibility and comfort of the user, which are the main desired features in the use

of the aforementioned hands-free devices. Therefore, signal processing approaches

enhancing the reverberant speech are desired.

Recent research has produced various algorithms for speech dereverberation,

which can be divided broadly into three main categories:

1. Spatial processing - the signals received at the different microphones are de-

layed, weighted and summed, so as to form a beam in the direction of the
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desired source and to attenuate sounds from other directions. Contributions

falling in this category can be found in [1, 2, 3].

2. Speech enhancement - the reverberant speech signal is modified so that some

features of it are closer to those of the clean speech signal according to a

priori models of the speech waveform or spectrum. Contributions can be

found in [4, 5, 6, 7].

3. Acoustic system equalization - the inverse system of either a single-channel or

multichannel acoustic system is estimated, where an acoustic channel refers

to the multiple propagation paths from the source to a microphone and an

acoustic system refers to the single or multiple channels. The inverse system

is either estimated directly from the reverberant speech signals [8,9,10] or from

the estimates of channel impulse responses obtained from system identification

[11,12,13,14].

1.2 Research aim and thesis structure

The objective of the research presented in this thesis is to make hands-free speech

sound as similar as possible to that of a closely located microphone. The focus of

this research is on equalization of multichannel acoustic systems robust to errors

included in the estimates of channel impulse responses, which are referred to as

system identification errors (SIEs).

Acoustic channels are usually modeled as finite impulse response (FIR) fil-

ters. Since a single acoustic channel is generally nonminimum phase [15], its infinite

impulse response (IIR) causal inverse is an unstable system which is not useful in

practice. When multiple microphones are employed, the multichannel acoustic sys-

tem can be exactly inverted by a set of FIR filters, which is referred to as multichan-
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nel inverse system, using the multiple-input/output inverse theorem (MINT) [12].

However, the estimates of channel impulse responses always include SIEs and the

multichannel inverse system is very sensitive to the SIEs, as will be shown later in

this thesis. The fact that the multichannel inverse system is able to equalize the

estimated acoustic system does not mean that it is able to equalize the true acous-

tic system, where an estimated acoustic system refers to the system formed by the

estimates of multichannel impulse responses. When the inverse system of the esti-

mated acoustic system is employed to equalize the true acoustic system, the impulse

response from the source to the output of the inverse system will deviate from the

delta function due to the aforementioned SIEs. Since in general the inverse of the

multichannel acoustic system cannot be obtained based on the estimated system, we

will use the term ‘equalization system’ rather than the more strict ‘inverse system’.

In this thesis, our aim is to find robust equalization system design methods, using

which a multichannel equalization system computed based on the estimated multi-

channel system can equalize the true system, resulting in reduced reverberation and

improved intelligibility.

The remaining chapters of this thesis are organized as follows.

Chapter 2 provides a review of system identification and equalization literature

and serves as the technical foundation of this thesis. Firstly, a formulation of

identification and equalization of multichannel acoustic systems is provided.

Then, both the supervised (non-blind) system identification (SSI) and blind

system identification (BSI) techniques are reviewed and performance measures

for them are presented. Next, system equalization techniques including MINT,

least-squares (LS), weighted least-squares (WLS), and channel shortening (CS)

are reviewed. Some of them were traditionally applied in the single-channel

scenarios or with particular restrictions. These restrictions and new problems

that arise when they are applied to multichannel systems are discussed. After
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this, characteristics of room acoustics and psychoacoustics are presented. This

is helpful for understanding the characteristics of acoustic system equalization.

Accordingly, performance measures used through this thesis for evaluation of

equalization algorithms are defined. Finally, the problem of equalization in

the presence of SIEs is discussed. Simulation examples are presented and

characteristics of acoustic system equalization are summarized.

Chapter 3 provides some new insights into the multichannel least-squares (MCLS)

method from the point of view of channel zeros, and presents a relaxed mul-

tichannel least-squares (RMCLS) method. The performance of MCLS when

common zeros among multiple channels are present is shown by an experiment.

Next, two classes of characteristic zeros causing strong peaks in the frequency

responses of the filters of MCLS equalization system, which lead to the high

sensitivity of MCLS to SIEs, are defined. The performance of RMCLS with

respect to these two classes of characteristic zeros is studied.

Chapter 4 investigates the use of channel shortening technique in equalization of

acoustic systems. Firstly a mathematical link between the MINT and the

traditional CS is derived. Next, a criterion for developing a perceptually ad-

vantageous equalization system from the multiple solutions to CS is provided.

In multichannel scenarios, the CS can provide multiple solutions but not all

of them are useful in terms of speech perception.

Chapter 5 investigates the use of conjugate gradient (CG) iterative methods for

the equalization of acoustic systems, the channel estimates of which are ob-

tained from SSI. An optimally-stopped weighted conjugate gradient (OS-

WCG) algorithm is presented. In the presence of SSI errors, firstly a peak

of the weighted direct-to-reverberant ratio (WDRR) in the iterative process

is defined. Next, a method to estimate the iteration index of the peak is pro-
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vided. Then, a condition for stopping the iteration is proposed. Finally, the

OS-WCG is evaluated.

Chapter 6 presents a system-identification-error-robust equalization method

(SIEREM) which uses models of SSI error and BSI error. An SSI error model

is obtained using information about SSI available in literature. An experimen-

tal study of BSI error is conducted and a BSI error model is developed. Then,

the SIEREM which incorporate the error models in equalization formulation

is derived. Finally, SIEREM is evaluated.

Chapter 7 summarizes the work presented in this thesis and provides a compara-

tive summary of the acoustic system equalization algorithms developed in this

thesis. Finally, the thesis is concluded with guidelines for further developments

of the herein presented ideas.

1.3 Scope and original contributions

To the best knowledge of the author, the following aspects of this thesis are believed

to be original contributions:

1. Derivation of an estimator (2.54) for normalized mean square error (NMSE).

(Chapter 2, Section 2.2.3)

2. Derivation of mean power of distortion in the equalized impulse response (2.81)

in relation to mean squared `2-norm of equalization systems. (Chapter 2,

Section 2.5)

3. Study of MCLS with respect to common zeros and characteristic zeros. (Chap-

ter 3, Section 3.1.1, Section 3.2.2)



1.3 Scope and original contributions 25

4. Development of RMCLS, and study of RMCLS with respect to common zeros

and characteristic zeros. (Chapter 3, Section 3.1.2, Section 3.2.3)

5. Derivation of a mathematical link between MINT and CS. (Chapter 4, Section

4.1)

6. Work that provides a criterion for selecting a perceptually advantageous equal-

ization system from the multiple solutions to CS. (Chapter 4, Section 4.2)

7. Development and evaluation of OS-WCG algorithm. (Chapter 5)

8. Study of BSI error. (Chapter 6, Section 6.1.2)

9. Development of an algorithm to generate representations of BSI errors. (Chap-

ter 6, Section 6.3.1)

10. Derivation and evaluation of SIEREM. (Chapter 6, Section 6.2, Section 6.3)
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Chapter 2

Literature Review

2.1 Formulation of identification and equalization

of acoustic systems

Consider a source signal s(n) propagating through an M -channel acoustic system

h = [hT
1 · · · hT

m · · · hT
M ]T , where n denotes the discrete time index, as illustrated

in Figure 2.1. The acoustic channel between the source and the mth microphone is

characterized by its impulse response hm = [hm(0) hm(1) . . . hm(i) . . . hm(L−1)]T ,

m = 1, . . . , M , where {·}T denotes the transpose operation. In our work we assume

that the acoustic channels are finite in length and time-invariant.
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Figure 2.1: Illustration of identification and equalization of an acoustic system.
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The impulse responses hm can be identified blindly or non-blindly. In super-

vised (non-blind) system identification (SSI) [16,17,18], using the source signal s(n)

and the reverberant signals

ym(n) = xm(n) + vm(n) for m = 1, . . . , M, (2.1)

where

xm(n) = s(n) ∗ hm(n), (2.2)

estimates of the room impulse responses (RIRs) hm can be obtained, where ∗ denotes

linear convolution and vm(n) denotes additive noise at the mth microphone. In blind

system identification (BSI) [8,13,19,20,21,22,23,24,25,26,27,28,29], the estimates

ĥm = [ĥm(0) . . . ĥm(i) . . . ĥm(L− 1)]T can be obtained using only the reverberant

signals ym(n).

Generally speaking, an equalization system g = [gT
1 gT

2 · · · gT
M ]T , where

gm = [gm(0) gm(1) . . . gm(i) . . . gm(Li − 1)]T is the mth-channel component, can

be computed using the estimated system ĥ = [ĥT
1 · · · ĥT

m · · · ĥT
M ]T . The ĥ includes

some error due to finite data, the existence of the additive noise, and under-/over-

modeling of channel order. As a result, the response from the source to the output

of the equalization system may still distort the speech signal severely due to the

SIEs. In this thesis, as is common practice in the current literature, we assume the

channel orders are known or can be correctly estimated.

For the sake of discussion, we define the following vectors:

s(n) = [s(n) s(n− 1) . . . s(n− L + 1)]T , (2.3)

xm(n) = [xm(n) xm(n− 1) . . . xm(n− L + 1)]T , (2.4)

vm(n) = [vm(n) vm(n− 1) . . . vm(n− L + 1)]T , (2.5)

ym(n) = [ym(n) ym(n− 1) . . . ym(n− L + 1)]T . (2.6)
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Figure 2.2: Schematic of supervised system identification.

2.2 System identification

2.2.1 Supervised system identification

Figure 2.2 depicts the schematic of supervised system identification. For the mth

channel, the cost function under the least-squares criterion is [16]

J =
1

N

N−1∑
n=0

(ym(n)− s(n)T ĥm)2. (2.7)

Introducing

Rss(N) =
1

N

N−1∑
n=0

s(n)sT (n) (2.8)

and

rm(N) =
1

N

N−1∑
n=0

s(n)ym(n), (2.9)

the estimate ĥm minimizing (2.7) can be obtained with, provided the indicated

inverse exists,

ĥm = R−1
ss (N)rm(N). (2.10)
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In the case that all channels are driven by the same input signal s(n), in matrix

form the channel estimates can be obtained from

[ĥ1 ĥ2 · · · ĥM ] = R−1
ss (N)[r1(N) r2(N) · · · rM(N)]. (2.11)

Channel identifiability

Introducing

fm(N) =
1

N

N−1∑
n=0

s(n)vm(n), (2.12)

it is found that

lim
N→∞

hm − ĥm = − lim
N→∞

R−1
ss (N)fm(N)

= −R−1
ss fm, (2.13)

where

Rss = E{s(n)sT (n)} (2.14)

and

fm = E{s(n)vm(n)} (2.15)

provided s(n) and vm(n) are quasi-stationary, where E{·} denotes expectation op-

erator. For ĥm to converge to hm, it is required that [16]

1. Rss is non-singular.

2. fm = 0. This will be the case if either:

• vm(n) is a sequence of independent random variables with zero mean

values (white noise).

• s(n) is independent of the zero mean sequence vm(n).
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Supervised system identification error

It is found that if vm(n) is white Gaussian noise, (2.10) is a minimum variance

unbiased (MVU) estimator [17]. Assuming the variance of vm(n) is σ2, the covariance

matrix of

em = [em(0) . . . em(i) . . . em(L− 1)]T (2.16)

= hm − ĥm (2.17)

is [17]

Ce =
σ2

N
R−1

ss (N), (2.18)

and

em ∼ N (0L×1,Ce), (2.19)

where N (·) denotes Gaussian distribution.

When pseudo-random noise (PRN) [18,30] is used as the probing signal s(n)

[17], it is approximately realized that

Rss(N) = σ2
sI, (2.20)

where I is identity matrix. Hence, the variance of the error approximates

var(em(i)) =
σ2

Nσ2
s

, (2.21)

where σ2
s is the variance of s(n) and var(·) denotes variance operator.

2.2.2 Blind identification of multichannel systems

Blind system identification uses only the microphone signals ym(n) to estimate the

system. Single-channel BSI needs to use higher order statistics (HOS) of the micro-
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phone signal [19], whereas multichannel systems can be blindly identified using only

second order statistics (SOS) [25]. A multichannel system can be identified using

the cross-relation (CR) method [23]. The CR between two channels is expressed as

xm(n)∗hl(n) = s(n)∗hm(n)∗hl(n) = xl(n)∗hm(n), m = 1, 2, . . . , M, l 6= m. (2.22)

In the presence of noise, an error can be formed

εml(n) = ym(n) ∗ hl(n)− yl(n) ∗ hm(n). (2.23)

A cost function is formed [23]

J =
1

N

N−1∑
n=0

M−1∑
m=1

M∑

l=m+1

ε2
ml(n). (2.24)

Introducing

Ryy(N) =




∑
m6=1 Rymym(N) −Ry2y1(N) · · · −RyMy1(N)

−Ry1y2(N)
∑

m6=2 Rymym(N) · · · −RyMy2(N)

...
...

. . .
...

−Ry1yM(N) −Ry2yM(N) · · · ∑
m6=M Rymym(N)




(2.25)

with

Rymyl(N) =
1

N

N−1∑
n=0

ym(n)yT
l (n), (2.26)

the estimate ĥ minimizing (2.24) would be the eigenvector of Ryy(N) corresponding

to its smallest eigenvalue [23]. If the multichannel system is blindly identifiable, h

can be uniquely determined up to a scaling factor.
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Introducing

Rxx(N) =




∑
m6=1 Rxmxm(N) −Rx2x1(N) · · · −RxMx1(N)

−Rx1x2(N)
∑

m6=2 Rxmxm(N) · · · −RxMx2(N)

...
...

. . .
...

−Rx1xM(N) −Rx2xM(N) · · · ∑
m6=M Rxmxm(N)




,

(2.27)

Rxv(N) =




∑
m6=1 Rxmvm(N) −Rx2v1(N) · · · −RxMv1(N)

−Rx1v2(N)
∑

m6=2 Rxmvm(N) · · · −RxMv2(N)

...
...

. . .
...

−Rx1vM(N) −Rx2vM(N) · · · ∑
m6=M Rxmvm(N)




(2.28)

and

Rvv(N) =




∑
m6=1 Rvmvm(N) −Rv2v1(N) · · · −RvMv1(N)

−Rv1v2(N)
∑

m6=2 Rvmvm(N) · · · −RvMv2(N)

...
...

. . .
...

−Rv1vM(N) −Rv2vM(N) · · · ∑
m6=M Rvmvm(N)




,

(2.29)

with

Rxmxl(N) =
1

N

N−1∑
n=0

xm(n)xT
l (n), (2.30)

Rxmvl(N) =
1

N

N−1∑
n=0

xm(n)vT
l (n) (2.31)

and

Rvmvl(N) =
1

N

N−1∑
n=0

vm(n)vT
l (n), (2.32)

and using (2.1), (2.25) can be simply expressed as

Ryy(N) = Rxx(N) + Rxv(N) + RT
xv(N) + Rvv(N). (2.33)
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Channel identifiability

Channel identifiability is concerned with the existence of a unique solution to the

unknown channel impulse responses with respect to BSI techniques using SOS. The

identifiability conditions are summarized as follows:

1. Channel diversity [23]: the use of multichannel techniques introduces channel

diversity and enables the exploration of SOS of the system outputs for blind

identification of multichannel systems. Channel diversity in this context refers

to channels being coprime, that is, multichannel transfer functions do not share

any common zero. If one or more common zeros exist across all channels then

these channels are not coprime. When common zeros exist BSI techniques

cannot distinguish the common zeros due to the unknown system from ones

due to the source signal.

2. Condition for the input signals [23]: the autocorrelation matrix of the input

signal Rs′s′ = E{s′s′T}, where s′(n) = [s(n) s(n− 1) . . . s(n− 2L + 2)]T , is of

full rank (such that the multichannel system can be fully exited).

3. It is found that

lim
N→∞

Ryy(N) = Ryy (2.34)

= Rxx + Rxv + RT
xv + Rvv, (2.35)

where

Ryy =




∑
m6=1 Rymym −Ry2y1 · · · −RyMy1

−Ry1y2

∑
m6=2 Rymym · · · −RyMy2

...
...

. . .
...

−Ry1yM
−Ry2yM

· · · ∑
m6=M Rymym




, (2.36)
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Rxx =




∑
m6=1 Rxmxm −Rx2x1 · · · −RxMx1

−Rx1x2

∑
m6=2 Rxmxm · · · −RxMx2

...
...

. . .
...

−Rx1xM
−Rx2xM

· · · ∑
m6=M Rxmxm




, (2.37)

Rxv =




∑
m6=1 Rxmvm −Rx2v1 · · · −RxMv1

−Rx1v2

∑
m6=2 Rxmvm · · · −RxMv2

...
...

. . .
...

−Rx1vM
−Rx2vM

· · · ∑
m6=M Rxmvm




(2.38)

and

Rvv =




∑
m6=1 Rvmvm −Rv2v1 · · · −RvMv1

−Rv1v2

∑
m6=2 Rvmvm · · · −RvMv2

...
...

. . .
...

−Rv1vM
−Rv2vM

· · · ∑
m6=M Rvmvm




(2.39)

with

Rymyl
= E{ym(n)yT

l (n)}, (2.40)

Rxmxl
= E{xm(n)xT

l (n)}, (2.41)

Rxmvl
= E{xm(n)vT

l (n)} (2.42)

and

Rvmvl
= E{vm(n)vT

l (n)}. (2.43)

From (2.22), we know that

Rxxh = 0ML×1. (2.44)

Therefore, for ĥ to converge to h, it is required that vm(n) is white noise,
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incoherent or uncorrelated [31], so that Ryy can be expressed as the sum of

Rxx and a scaled identity matrix, and the eigenvector of Ryy corresponding to

the smallest eigenvalue is in the 1-dimension null space of Rxx.

2.2.3 Performance measures for system identification

Mean square error (MSE) is a frequently used measure of the differences between

the estimate ĥm and the true RIR hm for SSI, which is defined as [17]

MSE(ĥm(i)) = E{(hm(i)− ĥm(i))2}. (2.45)

In our work, to measure the relative level of the error with respect to the true RIR,

we use normalized mean square error (NMSE)

NMSE =
‖hm − ĥm‖2

2

‖hm‖2
2

, (2.46)

where ‘mean’ refers to time average rather than the ensemble average in the defini-

tion of MSE in (2.45), and ‖ · ‖2 denotes `2-norm.

As for BSI, since scaling ambiguity is always introduced in ĥ, using the NMSE

can produce misleading results. A widely used measure for BSI is the normalized

projection misalignment (NPM) [32]

NPM = min
γ

‖h− γĥ‖2
2

‖h‖2
2

, (2.47)

where the minimum is attained when

γ =
ĥTh

ĥT ĥ
. (2.48)

The geometric meaning of NPM is shown in Figure 2.3. In the remainder of this
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Figure 2.3: Illustration of misalignment and scaling ambiguity introduced by
BSI.

thesis, the vector

e = h− γĥ (2.49)

shown in Figure 2.3 will be referred to as projection error vector, where e =

[eT
1 · · · eT

m · · · eT
M ]T with

em = [em(0) . . . em(i) . . . em(L− 1)]T (2.50)

= hm − γĥm. (2.51)

Estimation of NMSE and NPM

Since the SSI error sequence em(i) = hm(i)− ĥm(i) is a white sequence, as presented

in Section 2.2.1, and the error sequence is very long, which is usually thousands of

taps, it can be assumed that

‖em‖2
2 = L · var(em(i)). (2.52)

On the other hand, assuming the probing signal s(n) is white noise, we have [33]

N−1∑
n=0

(s(n) ∗ hm(n))2 = Nσ2
s‖hm‖2

2. (2.53)
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Assuming (2.20) is true, using (2.21), (2.46), (2.52) and (2.53), the NMSE of the

SSI error can be estimated using

N̂MSE =
L

N · SNR
, (2.54)

where SNR (the signal-to-noise ratio) is defined as

SNR =

∑N−1
n=0 (s(n) ∗ hm(n))2

Nσ2
. (2.55)

As for BSI, an asymptotic variance of the CR method is derived and is com-

pared with its Cramér-Rao Lower Bound (CRLB) in [34]. However, the CRLB de-

rived in [34] corresponds to a normalization different from the normalization which

leads to the NPM, and cannot be applied to the NPM [32]. What is more, the

computing of either the variance or the CRLB uses the source signal and the RIRs,

which are unknown in the blind scenarios. The blind estimation of NPM is still an

open question.

2.2.4 Simulation examples

In this section, simulation examples for both SSI and BSI are presented. In this

thesis, without loss of generality, we always assume that the direct-path propagation

time l1 from the source to the 1st microphone of the microphone array is the shortest.

The propagation time l1 is trimmed for all channels in all experiments in this thesis.1

In the first example, a 2-channel system, the RIRs of which are from the

MARDY database [35], is identified using the SSI. The length of the channels is

truncated to L = 2000 corresponding to 0.25 s with a sampling frequency of fs =

8 kHz. The channels are driven by white Gaussian noise. The SNR is set to 20 dB.

1The propagation time l1 represents only a bulk propagation delay and is not significant to
either the system identification or the equalization system design.
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Figure 2.4: The RIR of channel 1 and the SSI error of channel 1.

N = 40000 samples are used. The RIR h1 and the error vector e1 = h1 − ĥ1 are

shown in Figure 2.4. The error vector e2 has similar shape as e1 and is therefore

omitted. It can be seen that the error sequence resembles a white Gaussian sequence.

The NMSE is -32.4 dB and -32.6 dB for e1 and e2 respectively. The N̂MSE computed

from (2.54), where it is assumed that (2.20) is true, is -33.0 dB for both channels.

The true NMSE is very close to the estimate of it, which shows that (2.54) is a good

estimator of the NMSE.

In the second example, a 6-channel system is identified using normalized mul-

tichannel frequency-domain least-mean-squares (NMCFLMS) algorithm [28], which

is an adaptive approach of BSI based on the CR method. The RIRs are gener-

ated using the image method [36]. The room dimensions are 6.4 m × 5 m × 3.6 m

(length × width × height), the distance between the speaker and the center of the

microphone array is set to 1 m, the inter-microphone distance is 5 cm, the reverber-

ation time T60 [37], which will be elaborated in Section 2.4, is set to 0.6 s and the
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Figure 2.5: The RIR of channel 1 and the projection error of channel 1.

SNR is set to 25 dB. The length of the RIRs used for the experiment are L = 2000.

White Gaussian noise is used as the source signal. The RIR h1 and the error vector

e1 = h1−γĥ1 are shown in Figure 2.5. The error vectors em for m ∈ {2, . . . , M} have

similar overall temporal shape as e1 and are therefore omitted. It can be seen that

the error sequence is damping with time. The NPM between ĥ and h is −10.0 dB.

2.3 System equalization

In general, for a given multichannel system h, an equalization system g can be

computed that satisfies

M∑
m=1

hm(i) ∗ gm(i) = d(i) for i = 0, . . . , L + Li − 2, (2.56)

where d(i) defines the target impulse response (TIR), which in most cases is desired

to equal the delta function.
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2.3.1 Least-squares (LS) and MINT

An equalization system g can be obtained by solving the system of equations (2.56),

where the TIR is given by

d(i) =





0 if 0 ≤ i < τ ;

1 if i = τ ;

0 otherwise,

(2.57)

with an integer delay τ . In matrix form, (2.56) can be written as

Hg = d, (2.58)

where H = [H1 · · · HM ] and d = [d(0) . . . d(i) . . . d(L + Li − 2)]T , with Hm the

(L + Li − 1)× Li convolution matrix of hm:

Hm =




hm(0) 0 · · · 0

hm(1) hm(0) · · · 0

...
. . . . . .

...

hm(L− 1) · · · ...
...

0 hm(L− 1)
. . .

...

...
...

. . .
...

0 . . . 0 hm(L− 1)




.

When only a single microphone is deployed, (2.58) is an over-determined sys-

tem of equations, and the traditional single-channel LS inverse filter that minimizes

the cost function

J = ‖Hg − d‖2
2, (2.59)
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has been used for acoustic system equalization [11]. The LS solution is given by

g = H+d, (2.60)

where {·}+ denotes Moore-Penrose pseudo-inverse [38].

When two or more microphones are deployed, exact solution(s) to (2.58) exist

when the following two conditions are both satisfied:

C-1 There is no zero common to Hm(z), m = 1, . . . , M , the z-transforms of the

multichannel RIRs hm(i) [12].

C-2 Li ≥ Lc [39]2, where

Lc =

⌈
L− 1

M − 1

⌉
(2.61)

with dκe denotes the smallest integer larger than or equal to κ.

If both conditions are satisfied, (2.60) gives the minimum `2-norm solution to (2.58).

If any one or both conditions are violated, (2.60) gives a multichannel least-squares

solution.

2.3.2 Weighted least-squares (WLS)

The WLS method [40] has been used for over-determined cases. For multichannel

systems, over-determination happens when the condition C-2 is violated. The WLS

solution is obtained by minimizing the following cost function

J = ‖W(Hg − d)‖2
2, (2.62)

2It should be noted that the exact solution(s) to (2.58) always exist when Li ≥ L − 1 [22].
Unfortunately, this cannot be guaranteed when Li ≥ Lc. However, it has been proved in [39] that
exact solution(s) exist for almost all cases.
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where W = diag{w} denotes the diagonal weighting matrix with w =

[w(0) . . . w(i) . . . w(L + Li − 2)]T , w(i) 6= 0 for ∀ i.

The solution is given by

g = (WH)+Wd. (2.63)

When conditions C-1 and C-2 are both satisfied and w(i) 6= 0, the solution given by

(2.63) is same as that given by (2.60) [41]. This means that the use of the weighting

function is ineffective. This problem will be addressed in Chapter 5, where a method

enables the use of weighting function is developed.

2.3.3 Channel Shortening (CS)

Channel shortening techniques [42, 43, 44, 45, 46, 47, 48], which were developed for

the equalization of digital communication channels, have also been used for acous-

tic system equalization [49, 50]. The CS aims to maximize a generalized Rayleigh

quotient:

g = arg max
g

gTBg

gTAg
, (2.64)

where

B = HT diag{wd}T diag{wd}H

A = HT diag{wu}T diag{wu}H

with

wd = [0 · · · 0︸ ︷︷ ︸
τ

1 · · · 1︸ ︷︷ ︸
Lw

0 · · · 0]T(L+Li−1)×1

wu = 1(L+Li−1)×1 −wd,
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where Lw defines the region that it is desired to maximize.

The solution is the eigenvector corresponding to the largest eigenvalue of the

generalized eigenvalue problem [48]

Bg = λAg. (2.65)

However, at this point of time, the use of CS in acoustic system equalization

has not been well established. For multichannel system shortening, for specific

design parameters (such as Li = Lc), A can be rank deficient. For a rank deficient

A, (2.64) has multiple solutions and the computation load for solving the generalized

eigenvalue problem is extremely high. Although all solutions maximize the Rayleigh

quotient, the response from the source to the output of the equalization system might

be different from the viewpoint of speech perception. It is not clear in previous work

which of these solutions provides perceptually advantageous speech signals. This

issue will be addressed in Section 4.2.

2.4 Room acoustics and performance measures

for equalization

In this section, some basic properties of room acoustics are introduced, which are

important for understanding the characteristics of acoustic system equalization. Sec-

ondly, performance measures used throughout this thesis for acoustic system equal-

ization are presented.
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2.4.1 Room acoustics

In principle, any complex sound field can be considered as a superposition of nu-

merous simple sound waves. Acoustic wave equation which governs the propagation

of acoustic waves through a material medium in addition with source function and

boundary conditions is a basic form to characterize the room acoustics. However,

practically the wave equation is seldom directly used to analyze the room acous-

tics. The acoustic properties of room are modeled with various models [51, 52], i.e.

pole-zero, all-zero, all-pole, and common pole-zero. On the other hand, statistical

room acoustics provides a statistical description of the room impulse response. A

well known time-domain model developed by Polack [53] describes the RIR as one

realization of an exponentially decaying stochastic process:

hm(i) = ζ(i)e−αi (2.66)

where ζ(i) is zero-mean stationary Gaussian noise, and α is the decay rate. In

time-domain this model is valid after the time interval it takes for the reverberation

process to become diffuse after the emission of a sound pulse by the source. This

time interval is a reasonable approximation for the transition time between early

reflections and late reflections [54, 55], which is somewhere in the range from 50 to

100 ms [37].

As is common practice in the current literature dealing with identification and

equalization of room acoustic systems, the all-zero model (FIR filter in time-domain)

of the RIR is employed throughout this thesis, as has been defined in Section 2.1.

Reverberation time T60

Reverberation time T60 is a measurement of the severity of reverberation within a

room. T60 is defined as the time interval it takes for the sound energy level to drop
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Figure 2.6: An example of energy decay curve.

by 60 dB following the sudden cessation of a broadband sound of sufficient duration

(long enough to create a steady-state sound field) [37,56].

An approach to estimate the T60 is through using the energy decay curve

(EDC), which is defined as [37]

E (i) =
1

‖hm‖2
2

L−1∑
j=i

h2
m(j). (2.67)

As an example, the EDC of an RIR from the MARDY database [35] is shown in

Figure 2.6. It can be seen that the late reflections can be described by a realization

of an exponentially decaying process, since the energy level in dB against time in

the late part of the EDC is approximately linear. The gradient of the linear function

fitted to the late part of the EDC can be estimated. Denoting this gradient as ∆,

the T60 is approximated as [57]

T60 = 60∆−1. (2.68)
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Figure 2.7: Schematic representation of an RIR.

This leads to the relationship between T60 and the decay rate α in (2.66) [37]

α =
3 ln(10)

T60 · fs

, (2.69)

where fs is the sampling frequency.

Subjective room acoustics

Perceptually, an RIR can be divided into three segments, the direct path, early re-

flections, and late reflections, as illustrated in Figure 2.7. As stated in [37], early

reflections are not perceived as something separate from the direct sound. Effects

caused by early reflection mainly include two aspects: increased loudness of the di-

rect sound and changed characteristic of timbre, i.e. colouration. Since the early

reflections give support to a sound source they are considered useful. On the other

hand, late reflections are noticed as echoes and impair the intelligibility of speech

because they blur its time structure and mix up the spectral characteristics of suc-
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cessive phonemes or syllables [37]. Late reflections are considered to be detrimental

from the viewpoint of speech perception [37].

For the sake of discussion, here we define the equalized (or processed) impulse

response (EIR), which is the impulse response from the source to the output of the

equalization system:

b(i) =
M∑

m=1

hm(i) ∗ gm(i). (2.70)

Ideally, b(i) is expected to be equal to the delta function. However, in the presence

of SIEs, the delta function cannot be achieved.

It should be noted that the above descriptions of the subjective room acous-

tics are applicable to an RIR, but not always to an EIR. Suppose we have an equal-

ization system leading to an EIR which keeps exactly the direct-path and early

reflections of the RIR of one channel, and completely suppresses the late reflections.

In this case it is hard to say if the early reflections are still helpful. Since the late re-

flections impairing the intelligibility no longer exist, the loudness increase attributed

to the early reflections is not that important. An EIR which has enhanced direct-

path but not any reflection can also increase the loudness, and at the same time

does not cause any colouration. If an EIR has only direct-path and early reflections

of the RIR can be obtained, it should be better than the RIR. However, if an EIR

which only has enhanced direct-path is achievable, then it might be preferable to

the one that has both direct-path and early reflections; which is preferred depends

on the preferences of different listeners.

Another issue should be mentioned here is about the pattern of the early

reflections. In above discussion, we talked about an EIR that has early reflections

exactly the same as those of an RIR. In applications, an EIR is possibly obtained

with early reflections pattern not the same as that of an RIR. For EIRs having only

direct-path and early reflections, the fact that an EIR with early reflections pattern
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that is the same as that of an RIR is perceptively acceptable does not mean that

an EIR with any pattern is acceptable. We found by informally listening to a few

examples that the colouration caused by some patterns is not perceptually likable.

Literature on the correlation between the early reflections pattern and subjective

opinion of the caused colouration is lacking. However, studies on perceptibility of

only one reflection have been conducted and results are summarized in [37]. Useful

results for equalization system design are represented below:

• For speech with a sound pressure level of 70 dB, the audibility threshold of

the reflected sound is

P = −0.575t0 − 6 dB (2.71)

where P is the pressure level of the reflected sound signal relative to the sound

pressure of the direct sound and t0 is its time delay in milliseconds. Reflected

sound below this level is not perceivable at all; neither colouration nor separate

echo would be perceived [37].

• If the power level of reflection is 10 times the power of direct sound, reflection

within time delay of 20 ms would not be perceived as separate echo. This

finding is frequently referred to as ‘Haas effect’ [37, 58].

• For direct sound and one reflection of equal power level, the critical delay

time for the reflection to be perceived as a separate echo is between 40 and

80 ms [37,58].

2.4.2 Performance measures for equalization

In order to evaluate the performance of equalization systems different measures can

be used. In this section we define performance measures that are used in this thesis.

In the simulations in this thesis, RIRs from MARDY database [35] or generated
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using the image method [36] are used as true channel impulse responses hm. In both

system identification and equalization the true RIRs are assumed to be unknown,

but for purpose of evaluation the true RIRs are used to compute the EIRs such that

performance measures based on the EIRs can be used. The performance measures

listed below have been selected to provide a sufficiently comprehensive measurement

without being exhaustive.

The first performance measure is the energy decay curve (EDC). The EDC

of an EIR can be obtained with

E (i) =
1

‖b‖2
2

L+Li−2∑
j=i

b2(j), (2.72)

where b = [b(0) b(1) . . . b(L + Li − 2)]T . EDC is not a quantitative measure but it

shows the whole decaying process.

The second performance measure is the early-to-late reverberation ratio

(ELR), also known as the Clarity Index, which is defined as [37,59]

C50 =
E (0)− E (ne)

E (ne)
, (2.73)

where ne = 50 ms · fs. This is the ratio of the energy contained in direct-path and

early reflections to that contained in late reflections, which is highly correlated to

the intelligibility of reverberant speech [37].

The third performance measure is T30 which is defined as the time interval it

takes for the EDC E (i) to drop by 30 dB. Since the computation load for computing

an equalization system for full-length RIRs is too high to afford, we usually have to

truncate the RIRs in experiments. Therefore, it is not always possible to determine

properly the time at which the EDC has decreased by 60 dB. Therefore, we use

the T30 rather than the more conventional T60 measure. The T30 is an important
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complement to the C50. An EIR decaying fast in the first 50 ms but very slowly

after 50 ms might have good C50 but poor T30, which is not desired.

The fourth performance measure is the weighted mean square error (WMSE)

between the equalized impulse response b(i) and the target impulse response d(i)

which is defined as

WMSE =

L+Li−2∑
i=0

(
u(i)

[
1

γ
b(i)− d(i)

])2

, (2.74)

where u(i) is a weighting function. Since in the measurement the weighting function

is not necessarily equal to the weighting function used in the cost function (2.62),

it is denoted by u(i) to be distinguished from the w(i). Since in speech perception,

the samples in the EIR are not equally important (such as the late samples are more

important in that samples of small amplitudes can cause reduced speech intelligi-

bility), we use a weighting function u(i) whose samples in the early part normally

have lower amplitudes than those in the late part.

The fifth performance measure is the direct-to-reverberant ratio (DRR) [37]

which is defined as

DRR =
b(τ)2

∑
i6=τ b(i)2

. (2.75)

Again, since the samples in the EIR are not equally important, we can introduce a

weighting function and use the weighted direct-to-reverberant ratio (WDRR)

WDRR =
(u(τ) · b(τ))2

∑
i6=τ (u(i) · b(i))2

, (2.76)

where u(i) is the weighting function.
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2.5 Equalization in the presence of system iden-

tification errors

When only ĥ is available (which is always the case in practice), an equalization

system g can be computed that satisfies

M∑
m=1

ĥm(i) ∗ gm(i) = d(i) for i = 0, . . . , L + Li − 2, (2.77)

which leads to an EIR:

b(i) =
M∑

m=1

hm(i) ∗ gm(i)

= γ
M∑

m=1

ĥm(i) ∗ gm(i) +
M∑

m=1

em(i) ∗ gm(i)

= γd(i) +
M∑

m=1

em(i) ∗ gm(i). (2.78)

Since the BSI process usually introduces an unknown scaling factor γ, the first term

on the right hand side of (2.78) includes the γ, which means the system h is equalized

up to γ. As for SSI, γ = 1. In the presence of SIEs, the EIR b(i) may still distort

the speech signal severely due to the second term in (2.78).

The equalization approaches reviewed in Section 2.3 are generally designed

without the consideration of SIEs. Illustrative examples for the performance of the

MCLS are presented for both SSI and BSI. The acoustic systems used and their

estimates obtained in Section 2.2.4 are employed here. The MCLS equalization

systems are computed based on ĥ and then used to equalize the true systems h for

both SSI and BSI.

For SSI, the 2-channel MCLS equalization system is computed with param-

eters set to Li = Lc and τ = 0. The EIR and its EDC are shown in Figure 2.8. For
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Figure 2.8: The EIR and EDCs of the EIR and h1 for SSI.

BSI, we only use the first two channels of the 6-channel system used in Section 2.2.4

to form a 2-channel system since the computation load and memory requirement

for computing an MCLS equalization system of a 6-channel system is too high. The

2-channel MCLS equalization system is computed based on ĥ1 and ĥ2 with parame-

ters set to Li = Lc and τ = 0. The EIR and its EDC are shown in Figure 2.9. These

two 2-channel acoustic systems for BSI and SSI respectively will be used throughout

following chapters to compare the performance of different equalization algorithms

developed in this thesis. It can be seen that in the presence of SIEs, the MCLS fails

to equalize the acoustic system for both SSI and BSI. Although the EDC for BSI

shows equalization in the early part of the EIR, the reverberation energy level in

the late part of the EIR (the ‘tail’) is increased.

Recalling the definition of EIR in (2.78), the first term is desired, and the
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Figure 2.9: The EIR and EDCs of the EIR and h1 for BSI.

second term forms distortion. The mean power of the distortion is

E





L+Li−2∑
i=0

(
M∑

m=1

em(i) ∗ gm(i)

)2


 = E

{
M∑

m=1

L+Li−2∑
i=0

(em(i) ∗ gm(i))2

}
. (2.79)

Assuming the error sequences are white (which is true for SSI but might not be true

for BSI), we have [33]

L+Li−2∑
i=0

(em(i) ∗ gm(i))2 = ‖em‖2
2 · ‖gm‖2

2. (2.80)

Assuming the power of the error uniformly spreads among channels, and using (2.46),

(2.79) and (2.80), we have the mean power of the distortion equal to

E





L+Li−2∑
i=0

(
M∑

m=1

em(i) ∗ gm(i)

)2


 =

‖h‖2
2 · NMSE

M
· E{‖g‖2

2}, (2.81)

which is proportional to the mean squared `2-norm of g. This means that the



2.5 Equalization in the presence of system identification errors 54

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−60

−40

−20

0

Time (s)

E
D

C
 (

dB
)

 

 
τ = 800, Li = Lc

τ = 800, Li = 2Lc

h1

0 0.1 0.2 0.3

pre−echoes

Figure 2.10: The EIR obtained with τ = 800 and Li = Lc, and EDCs of h1 and
the EIRs obtained with τ = 800 and Li = Lc, and τ = 800 and Li = 2Lc.

`2-norm of the equalization system is very important for its robustness to SIEs.

It is shown in [60] that introducing delay and increasing the length of the

components of the equalization system can reduce the `2-norm of the equalization

system, where the components refer to the filters gm. In Figure 2.10, the equalization

results obtained with delay introduced and Li increased for the above SSI system

are shown. For the sake of comparison, the EDC of h1 is plotted in accordance

with the scale shown in blue color. It can be seen from the EDCs that with delay

and increased length, the overall level of the distortion is reduced and the DRR is

increased. However, introducing delay at the same time causes pre-echoes [61, 62],

which are annoying in speech perception; increasing the length of the components

introduces a longer tail in the EIR.

Unlike in digital communications where an EIR with enhanced DRR and

reverberation power uniformly distributed along time in reflections is acceptable
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(though the relevant terms in digital communications are not called DRR and rever-

beration), equalization of acoustic systems for speech dereverberation has different

requirements. We summarize them below:

• Reducing the power of the distortion is not the sole objective, though it is very

important. The power level of the EIR is also desired to decay with time.

• Long delay, which causes pre-echoes, cannot be introduced since the pre-echoes

are annoying.

• Very long equalization system components cannot be used since the long filters

introduce a long tail in the EIR.
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Chapter 3

Relaxed Multichannel

Least-Squares Equalization of

Acoustic Systems

It is revealed by Bezout’s identity [63] that for a group of polynomials Hm(z), m =

1, . . . , M , there exists polynomials Gm(z), m = 1, . . . , M , such that

M∑
m=1

Hm(z)Gm(z) = H0(z), (3.1)

where H0(z) is the greatest common factor of Hm(z). Traditionally, the polynomials

Gm(z) can be determined with the extended Euclidean algorithm [64], though they

are not unique.

When Hm(z) are coprime, i.e., they do not have any common zero, according

to Bezout’s identity, there exists Gm(z) such that

M∑
m=1

Hm(z)Gm(z) = 1. (3.2)

Regarding Hm(z) and Gm(z) as the transfer functions of RIRs hm(i) and the equal-
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ization system components gm(i), we see the same principle as that given by Miyoshi

and Kaneda in their famous paper [12] published in 1988, which is called multiple-

input/output inverse theorem (MINT). More importantly, in their paper, the au-

thors provide an approach to compute the gm(i), which is via solving the system of

equations (2.58):

Hg = d, (3.3)

where the forms of H and g are given in Section 2.3, and

d = [1 0 . . . 0]T(L+Li−1)×1. (3.4)

It is indicated in [12] that, for the cases of M = 2, (3.3) could have a unique solution

under the requirement that the length of gm is less than that of hm. However, under

what requirement for the length of gm the equation (3.3) has solution(s) is not clearly

indicated in the paper. In [22], it is indicated that solution(s) to (3.3) always exist

when Li ≥ L − 1. In [39], Harikumar and Bresler proved that exact solution(s) to

(3.3) exist for almost all cases if

Li ≥ Lc =

⌈
L− 1

M − 1

⌉
. (3.5)

Hereafter, we call Lc the critical length. These two conditions for the existence of

solution(s) to (3.3) are summarized in C-1 and C-2 in Section 2.3.1. For the sake

of discussion, we repeated them here:

C-1 Hm(z), the z-transforms of the multichannel RIRs hm(i), do not share any

common zero.

C-2 Li ≥ Lc = d L−1
M−1

e.

In [60], following MINT, the authors formulated the inverse filtering problem

into a multichannel least-squares (MCLS) form. The g is computed by minimizing
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the cost function

J = ‖Hg − d‖2
2 (3.6)

and d is generalized to include an arbitrary integer delay τ :

d = [0 . . . 0︸ ︷︷ ︸
τ

1 0 . . . 0]T(L+Li−1)×1. (3.7)

The equalization system g is computed using

g = H+d. (3.8)

In this formulation, when multiple solutions exist, (3.8) gives the minimum `2-norm

solution.

It is revealed in [60] that increasing Li and introducing τ are both important

for reducing the `2-norm of the resulting g, which is important for the robustness of

g to SIEs, as we shown in Section 2.5.

In Section 3.1, it is studied the performance of the MCLS when common

zeros are present. Then a relaxed multichannel least-squares (RMCLS) algorithm is

proposed for computing the Gm(z) satisfying (3.1) when common zeros are present

(H0(z) 6= 1). After this, in Section 3.2, we study the reasons for which the equal-

ization system obtained with (3.8) is of high `2-norm from the viewpoint of channel

zeros. Two classes of characteristic zeros that cause high `2-norm of g are defined

and how increasing Li and introducing τ reduces the effect of these classes of zeros

is investigated. Finally, we propose the use of the RMCLS in the equalization of the

acoustic systems in the presence of SIEs.
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3.1 RMCLS when common zeros are present

3.1.1 Performance of MCLS when common zeros are

present

When common zeros are present, the condition C-1 is violated and (3.3) does not

have any solution. However, a g can still be obtained from (3.8). In this section,

we study the performance of the g obtained from (3.8), which we call the MCLS

solution. An earlier version of this study was presented in [P-6].

Two synthetic impulse responses h1(i) and h2(i), the transfer functions of

which have N0 = 2 common zeros are used in this experimental study. These two

zeros are a pair of conjugate zeros. The length of h1 and h2 is L = 128. The transfer

functions H1(z) and H2(z) can be written as

H1(z) = H̃1(z)H0(z), (3.9)

H2(z) = H̃2(z)H0(z), (3.10)

where H̃1(z) and H̃2(z) are coprime, and H0(z) is the greatest common factor.

Consider an equalization system g = [gT
1 gT

2 ]T obtained using (3.8), where

Li = Lc and τ = 0. Applying g to h = [hT
1 hT

2 ]T , the EIR is obtained,

b(i) = g1(i) ∗ h1(i) + g2(i) ∗ h2(i)

= (g1(i) ∗ h̃1(i) + g2 ∗ h̃2(i)) ∗ h0(i)

= b̃(i) ∗ h0(i), (3.11)

Where h0(i), h̃1(i), and h̃2(i) are the inverse z-transforms of H0(z), H̃1(z), and

H̃2(z). On the other hand, a single-channel LS inverse filter of h0(i) with a design
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Figure 3.1: b̃ and b̃− g0.

length as same as that of b̃ = [b̃0(0) . . . b̃0(L+Li−N0−2)]T can be obtained using

g0 = H+
0 d, (3.12)

where g0 = [g0(0) . . . g0(L+Li−N0−2)]T and H0 is the (L+Li−1)×(L+Li−N0−1)

convolution matrix of h0 = [h0(0) . . . h0(N0)]
T .

Figure 3.1 indicates that b̃ and g0 are almost identical. In the experiment,

the `2-norm distance between b̃ and g0 is actually 1.2× 10−11, which is due to the

rounding error in the computation. This means that when common zeros exist, the

overall effect of MCLS is equivalent to performing single-channel LS inversion of the

inverse z-transform of the common factor H0(z). Experiments with 100 generated

systems which have two or four common zeros indicate the same property of the

MCLS.
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3.1.2 Performance of RMCLS when common zeros are

present

By Bezout’s identity, when common zeros are present, there exists g such that

M∑
m=1

gm(i) ∗ hm(i) = h0(i). (3.13)

In this section, we propose an approach to compute such g, which we call relaxed

multichannel least-squares (RMCLS) method. Instead of minimizing (3.6), we min-

imize

J = ‖W(Hg − d)‖2
2, (3.14)

where W = diag{w} with

w = [1 . . . 1︸ ︷︷ ︸
τ

1 0 . . . 0︸ ︷︷ ︸
Lw

1 . . . 1]T(L+Li−1)×1, (3.15)

where Lw defines the ‘relaxed window’. The difference of the RMCLS from the

traditional WLS reviewed in Section 2.3.2 is that in the weighting function w(i) of

RMCLS, a segment of entries equal to 0 is included, whereas in the traditional WLS,

w(i) has non-zero entries. In the minimization process of (3.14), the amplitudes of

the samples in the relaxed window is unconstrained. The first entry in the relaxed

window is set to 1 rather than 0 to avoid the trivial solution. The solution g can be

obtained using

g = (WH)+Wd. (3.16)

By employing this relaxed window, we expect that the h0 can be manifested in the

resulting EIR within the relaxed region, rather than is inverted in the single-channel

LS sense. To achieve this, the number of common zeros N0 is needed.

Firstly, we assume N0 is known, and then Lw can be set to Lw = N0 + 1,



3.1 RMCLS when common zeros are present 62

0 50 100 150 200 250

0

0.5

1

i

A
m

pl
itu

de

(a)

0 50 100 150 200 250
−2

−1

0

1

i

A
m

pl
itu

de

(b)

Figure 3.2: (a) EIR obtained with MCLS and (b) EIR obtained with RMCLS.

which is equivalent to the length of h0. The system h used in Section 3.1.1 is used

in this experimental study. Parameters are set to Li = Lc and τ = 0. The EIR

obtained using g computed from (3.16) is shown in Figure 3.2(b). Figure 3.2(a)

shows the EIR obtained using the g computed from (3.8). It can be seen in Figure

3.2(a) that the EIR has a non-zero tail exhibiting ripple. As has been discussed

in Section 3.1.1, the EIR is equal to an LS inversion of h0(i). In Figure 3.2(b),

since the ‘relaxed window’ is employed and no attempt is made to equalize h0, the

equalization tail is completely suppressed with no evidence of ripple.

The number of common zeros N0 is not always known a priori. However, in

the application to acoustic system equalization of interest in this thesis, the exact

value of N0 is not required. Using any Lw ≥ N0 + 1, the equalization tail can

be completely suppressed and the common part h0 is included as a convolutional

factor in the EIR (the EIR can be expressed as the convolution of h0(i) with another

function).



3.2 RMCLS method in the presence of characteristic zeros 63

3.2 RMCLS method in the presence of character-

istic zeros

Practically, common zeros do not exist and the significance of the study carried

out in Section 3.1 only shows up when zeros from different channels are too close

such that the numerical precision of the employed computations cannot discriminate

them. In this case, the zeros are regarded as common zeros by the computing system

and in this thesis we do not distinguish these ‘too-close’ zeros from the true common

zeros and just refer to both of them as common zeros. Actually, the effect of common

zeros on the MCLS is not very important since though common zeros are present in

some acoustic systems, the number N0 is not large. As a result, the total effect of

MCLS is to perform single-channel LS inversion to a very short system h0(i) with a

long filter b̃(i), which gives rise to ripple with negligible amplitude in the tail of the

EIR.

On the other hand, two classes of characteristic zeros are commonly present

for acoustic systems, which are harmful for the robustness of the MCLS to SIEs.

One class is near-common zeros. The near-common zeros are different from the

above mentioned ‘too-close’ zeros. Near-common zeros are also close, but can be

discriminated within the given numerical precision. A more strict definition for

near-common zeros is given in Section 3.2.1. The other class is zeros far outside

the unit circle. The performance of MCLS and RMCLS with respect to these two

classes of characteristic zeros is studied in this section. An earlier version of this

study was presented in [P-5].
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3.2.1 Features of zeros of acoustic channels

In this section, we summarize the features of zeros of the room channels. For a

typical RIR of thousands taps, the zeros of it have the following features:

1. The angles θ of the zeros are approximately uniformly distributed on (−π, π]

and the modulus r of most of the zeros is close to 1 [65]. Our studies have

shown that the modulus r of most of the zeros lies in the interval (0.995, 1.002).

2. The modulus of a few zeros is evidently smaller than 1.

3. The modulus of a few zeros is evidently greater than 1. The modulus of such

zeros can be r > 1.03.

4. Among multiple channels, near-common zeros usually exist.

Here we use the definition in [66] that a cluster of near-common zeros is defined when

M zeros from M different RIRs are located in the same vicinity in the z-plane, the

vicinity being characterized by a small ‘tolerance’ δ .

In Figure 3.3 an example is provided showing the distribution of the zeros

of an RIR from the MARDY database [35]. The length of this RIR is truncated to

L = 2000. In Figure 3.3, the zeros whose angles are in [0, π] are shown; complex

conjugates of these zeros are omitted for clarity. It can be seen in Figure 3.3 that

there are two zeros of r > 1.05. In Figure 3.4, we show the number of clusters of

near-common zeros against the tolerance δ between two MARDY channels. The

clusters are identified with a clustering algorithm described in [66]. It can be seen

that between these two L = 2000 channels, near-common zeros that are within

vicinities of δ > 10−5 commonly exist.
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Figure 3.3: An example showing the distribution of the zeros of a typical RIR.
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Figure 3.4: An example showing the number of clusters of near-common zeros
against the tolerance δ.
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3.2.2 Frequency responses of the components of equaliza-

tion system in the presence of characteristic zeros

In [67], for the cases of 2 channels and with Li = Lc employed, the transfer functions

Gm(z) are expressed based on Hm(z) and the the zeros of Hm(z). Assuming the

zeros of the mth channel are zm,1, . . . , zm,L−1, G1(z) and G2(z) can be expressed

as

G1(z) =
L−1∑

k=1

z−τ−1
2,k

H1(z2,k)H
′
2(z2,k)

H2(z)

(1− z2,kz−1)
(3.17)

G2(z) =
L−1∑

k=1

z−τ−1
1,k

H2(z1,k)H
′
1(z1,k)

H1(z)

(1− z1,kz−1)
, (3.18)

where H
′
m(zm,k) = d

dz
Hm(z)|z=zm,k

.

G1(z) is a weighted sum of H2(z)/(1 − z2,kz
−1) with weights

z−τ−1
2,k /H1(z2,k)H

′
2(z2,k), for k = 1, . . . , L − 1. When H2(z) has zeros approxi-

mately uniformly distributed around the unit circle, the frequency response of

H2(z)/(1− z2,kz
−1) has a peak at the frequency corresponding to the angle of z2,k.

Therefore, if the modulus of the weight z−τ−1
2,k /H1(z2,k)H

′
2(z2,k) for any particular k

is great, then there would be a great peak at the frequency corresponding to the

angle of z2,k in the frequency response of G1(z), and likewise for G2(z). Recalling

the features of the channel zeros listed in Section 3.2.1, it is seen that firstly, if z2,k

and z1,l are a cluster of near-common zeros, z2,k would lead to H1(z2,k) of very small

modulus and therefore result in a great peak in the frequency response of G1(z) at

the frequency corresponding to the angle of z2,k, and likewise for G2(z). Secondly,

if z2,k is a zero far outside the unit circle, z2,k would lead to H1(z2,k) and H
′
2(z2,k) of

very small modulus, and therefore in low delay cases (where τ has small value and

the modulus of z−τ−1
2,k is not small) result in a great peak in the frequency response

of G1(z) at the frequency corresponding to the angle of z2,k, and likewise for G2(z);
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however, we can see from (3.17) and (3.18) that the strong peaks caused by the

zeros far outside the unit circle can be reduced by introducing delay which leads to

z−τ−1
2,k of small modulus.

In remainder of this section, it will be shown by experiments that the near-

common zeros and zeros far outside the unit circle cause strong peaks in the fre-

quency responses of the components of MCLS equalization systems obtained from

(3.8). Hereafter, these two classes of zeros will be referred to as characteristic zeros.

The effect of delay in reducing the level of the peaks caused by zeros far outside the

unit circle will also be shown. Since we cannot analyze the effect of increasing the

length Li using (3.17) and (3.18), we will show by experiments that increasing Li

can reduce the level of the peaks caused by the near-common zeros.

The RIRs used in the experiments are all from MARDY database [35] and

are truncated to L = 128. For the sake of comparison, all h are normalized to unit

`2-norm in the experiments.

Clusters of near-common zeros (Case 1)

The zeros of h1 and h2 used in this experiment are shown in Figure 3.5. A zero of h2

at the angle of θ = 0.6812π is manually moved towards a zero of h1 at θ = 0.6823π

to make these two zeros within the vicinity of δ = 3×10−5. The modulus of this pair

of near-common zeros is r = 0.983. The frequency responses of g1 and g2 are shown

in Figure 3.6. It can be seen in Figure 3.6 that, the frequency responses of g1 and g2

obtained with Li = Lc and τ = 0 have a strong peak at the normalized frequencies

around 0.68π. It can also be seen that introducing delay does not help to reduce

the level of peaks caused by the common-zeros. On the other hand, increasing the

length Li reduces the level of the peaks.
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Figure 3.5: Zeros of the RIRs used to show the effect of near-common zeros.
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Figure 3.6: The frequency responses of g1 and g2 showing the effect of near-
common zeros.
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Figure 3.7: Zeros of the RIRs used to show the effect of zeros far outside the
unit circle.

Zeros far outside the unit circle (Case 2)

The zeros of the RIRs used to show the effect of zeros far outside the unit circle are

shown in Figure 3.7. It can be seen from Figure 3.7 that at angles about 0.02π and

0.81π, both of the two channels have zeros of r > 1.03. The modulus of the zeros at

0.02π is r = 1.045 and r = 1.048; the zeros at angle 0.81π are of modulus r = 1.053

and r = 1.032. The frequency responses of g1 and g2 are shown in Figure 3.8. It can

be seen in Figure 3.8 that there are two peaks in the frequency responses of g1 and

g2 obtained with Li = Lc and τ = 0. One peak is at low frequencies corresponding

to the zeros at 0.02π and the other is at frequencies around 0.81π corresponding to

the zeros at 0.81π. It can also be seen that only increasing the length Li helps little

to reduce the level of the peaks caused by the zeros far outside the unit circle. On

the other hand, introducing delay reduces the level of the peaks.
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Figure 3.8: The frequency responses of g1 and g2 showing the effect of zeros
far outside the unit circle.

Discussion

It can be seen in Figure 3.8 that even if with τ = 200 and Li = 3Lc employed, the

frequency responses of g1 and g2 still have some peaks. (The frequency responses

are repeatedly shown in Figure 3.9(a) for clearness.) It is shown in Figure 3.9(b)

that these peaks are related to the notches in

H(ω) =

√√√√
M∑

m=1

|Hm(ejω)|2. (3.19)

We can see in Figure 3.9 that the peaks in the frequency responses of g1 and g2

appear at the frequencies where H(ω) has notches. H(ω) indicates the sum of the

magnitude responses of the multiple channels. For g to be inverse system of h its

components gm must have peaks in their magnitude responses to compensate these

notches, which is what has been shown in Figure 3.9. These peaks cannot be seen in



3.2 RMCLS method in the presence of characteristic zeros 71

0 pi/4 pi/2 3pi/4 pi
−50

−40

−30

−20

−10

0

10
(a) Frequency response of g1 and g2

normalized frequency

S
qu

ar
ed

 a
m

pl
itu

de
 (

dB
)

 

 

0 pi/4 pi/2 3pi/4 pi
−50

−40

−30

−20
(b) H(ω)

normalized frequency

S
qu

ar
ed

 a
m

pl
itu

de
 (

dB
)

g1 g2

Figure 3.9: (a) The frequency responses of g1 and g2, and (b) squared H(ω).

the magnitude responses of gm obtained with τ = 0 and Li = Lc because the strong

peaks caused by the characteristic zeros mask them. With τ = 200 and Li = 3Lc

employed, the effect of the characteristic zeros is reduced, and therefore the other

peaks are more clearly visible.

3.2.3 Performance of the RMCLS in the presence of char-

acteristic zeros

In this section, it will be shown that using (3.16) with a weighting function

w = [1 · · · 1︸ ︷︷ ︸
τ

1 0 · · · 0︸ ︷︷ ︸
Lw

1 · · · 1]T(L+Li−1)×1

can reduce the level of the peaks caused by the characteristic zeros without employ-

ing delay or increasing the length Li.
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Figure 3.10: The frequency responses of g1 and g2 obtained using the RMCLS
in the presence of near-common zeros.

Clusters of near-common zeros

In Case 1 in Section 3.2.2, the channels have a cluster of near-common zeros at the

angle θ = 0.6823π. Counting in their conjugates, there are two clusters of near-

common zeros in all. Therefore, we experiment with Lw = 3. Figure 3.10 shows

the frequency responses of g1 and g2 obtained from (3.16) with Li = Lc and τ = 0.

It can be seen that without using of delay nor increased length, the peak at about

θ = 0.68π does not exist.

The resulting EIR has accordingly from its first nonzero tap to its last nonzero

tap Lw = 3 taps . Factorizing these 3 taps, we obtain zeros at (r = 0.9706, θ =

±0.6781π), which can be regarded as replacements of the cluster of near-common

zeros at (r = 0.983, θ = ±0.6823π).
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Figure 3.11: The frequency responses of g1 and g2 obtained using the RMCLS
in the presence of zeros far outside the unit circle.

Zeros far outside the unit circle

In Case 2 in Section 3.2.2, the channels have zeros far outside the unit circle at the

angles about 0.02π and 0.81π. Counting in their conjugates, there are four clusters

of zeros far outside the unit circle. Therefore, we experiment with Lw = 5. Figure

3.11 shows the frequency responses of g1 and g2 obtained from (3.16) with Li = Lc

and τ = 0. It can be seen that with neither introduced delay nor increased length,

the peaks corresponding to these zeros do not exist, which shows the advantage of

employing the relaxed window.

The resulting EIR has accordingly from its first nonzero tap to its last nonzero

tap Lw = 5 taps . Factorizing these 5 taps, we obtain the zeros at (r = 1.0237,

θ = ±0.0266π) and zeros at (r = 1.0182, θ = ±0.8114π), which correspond to the

zeros far outside the unit circle at 0.02π and 0.81π respectively.
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Figure 3.12: (a) the EIR, (b) the frequency response of the EIR and (c) squared
H(ω).

Discussion

We experiment with the h used in Case 2 with Li = Lc and τ = 0, but with a

larger Lw = 32. The EIR b(i), its frequency response and H(ω) are shown in Figure

3.12(a), (b) and (c) respectively.

It can be seen in Figure 3.12(b) that with Lw = 32 taps relaxed, the frequency

response of the EIR also manifests the notches of H(ω). This shows to us that,

using the RMCLS, the notches in H(ω) are left without compensation. This further

reduces the `2-norm of g.

3.2.4 Summary of Section 3.2

We have shown in (2.81) in Section 2.5 that the mean power of the distortion in

the EIR is proportional to the mean squared `2-norm of the equalization system



3.3 Simulations 75

Table 3.1: Summary of squared `2-norm of g in different cases.

Li = Lc Li = 3Lc

Case 1
MCLS

τ = 0 3032.6 τ = 0 22.3
τ = 60 23354.2 τ = 60 7.2

RMCLS τ = 0 4.7 ×

Case 2
MCLS

τ = 0 4194.5 τ = 0 2634.4
τ = 100 249.4 τ = 200 31.5

RMCLS τ = 0 4.5 ×

g, which shows that the `2-norm of g is very important for its robustness in the

presence of SIEs. The squared `2-norms of g obtained in all above experiments in

Section 3.2 are summarized in Table 3.1. It can be seen that the squared `2-norm

of g obtained with MCLS can be thousands times higher than that obtained from

RMCLS, especially when neither delay nor increased length is employed. Introducing

delay and increasing the length Li can greatly reduce the `2-norm of g obtained from

MCLS. On the other hand, using the RMCLS, the resulting `2-norm of g is very

small. We have shown above when RMCLS is used, the characteristic zeros and the

notches in H(ω) do not cause high `2-norm of g, which is because they are left in

the EIR, without compensation.

3.3 Simulations

It has been shown that in the presence of characteristic zeros, the relaxed window

employed in RMCLS can reduce the level of the peaks in the frequency responses of

gm caused by these characteristic zeros, and the characteristic zeros are manifested in

the resulting EIR. We have also shown that with the RMCLS, the notches in H(ω)

are left without compensation, which suppresses the peaks in |Gm(ejω)| obtained

from MCLS, which are caused by these notches.

In this section, we apply the RMCLS to the estimates of the acoustic systems
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Figure 3.13: The EIR and EDCs of the EIR obtained using RMCLS and h1

for SSI. (A comparison of the EDC obtained from RMCLS with the EDCs
obtained from MCLS and other algorithms developed in this thesis can be
found in Figure 7.1.)

used in Section 2.5 and use the resulting RMCLS equalization system to equalize

the acoustic systems. Parameters are set to τ = 0, Li = Lc and Lw = 400 (corre-

sponding to 50 ms for sampling frequency fs = 8000 Hz, which is a typical transition

time between early reflections and late reflections). The Lw is set according to the

duration of early reflections such that the reflections in the relaxed window in the

resulting EIR do not impair the intelligibility of the equalized speech. The EIR and

its EDC for the SSI is shown in Figure 3.13. The EIR and its EDC for the BSI is

shown in Figure 3.14. It can be seen that compared with the EIRs obtained using

the MCLS, which are shown in Figure 2.8 and Figure 2.9, the equalization results

obtained from RMCLS is better. Although the early reflections are not suppressed

much, the late reflections are greatly suppressed. The EDCs shows more than 15 dB

reduction compared with those of the RIRs at any time in the late parts for both

the SSI and BSI.
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Figure 3.14: The EIR and EDCs of the EIR obtained using RMCLS and h1

for BSI. (A comparison of the EDC obtained from RMCLS with the EDCs
obtained from MCLS and other algorithms developed in this thesis can be
found in Figure 7.2.)

3.4 Summary

In this chapter, a relaxed multichannel least-squares (RMCLS) equalization method

is proposed. The performance of both MCLS and RMCLS when common zeros

among multiple channels are present is studied. It is shown that the overall effect

of MCLS is equivalent to performing single-channel least-squares inversion of the

common factor, and the RMCLS avoids equalizing the common factor. Then, two

classes of characteristic zeros causing strong peaks in the frequency responses of the

MCLS equalization system components, which lead to the high sensitivity of the

MCLS to SIEs, are defined. The performance of both MCLS and RMCLS with

respect to these two classes of characteristic zeros is studied and it is shown that

since the RMCLS reduces the level of the peaks caused by the characteristic zeros,

it is more robust to the SIEs than MCLS.
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Due to the high computational complexity of RMCLS, which needs singu-

lar value decomposition for large matrix, we were not able to produce systematic

evaluation of RMCLS. This could be carried out in future work.
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Chapter 4

Channel Shortening for Use in

Acoustic System Equalization

Channel shortening (CS) techniques have been developed in the context of digital

communications to mitigate inter-symbol and inter-carrier interference. Both closed

form [42] and adaptive [43,45,46] methods have been well studied. These techniques

have been extended to the multiple-input/multiple-output (MIMO) systems in [44,

47]. A common frame work for CS can be found in [48]. Channel shortening has

been used for acoustic system equalization in [49] and [50].

In an unified form [48], which is adopted in [50], the CS aims to maximize a

generalized Rayleigh quotient in (2.64), which is repeated here:

g = arg max
g

gTBg

gTAg
, (4.1)

where

B = HT diag{wd}T diag{wd}H

A = HT diag{wu}T diag{wu}H
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with

wd = [0 · · · 0︸ ︷︷ ︸
τ

1 · · · 1︸ ︷︷ ︸
Lw

0 · · · 0]T[L+Li−1]

wu = 1[(L+Li−1)×1] −wd,

where Lw defines the region of the EIR that it is desired to maximize.

For single-channel shortening, since the target shortening length Lw is always

desired to be smaller than the channel order L, A is of full rank. For multichannel

shortening, for specific design parameters (such as Li = Lc), A can be rank deficient.

For a rank deficient A, (4.1) has multiple solutions. Any of these solutions leads

to an EIR of zero late reflections, but different solutions lead to EIRs of different

early reflections patterns. In digital communications, the main issue of concern is

that the quotient in (4.1) is maximized; the pattern of the impulse response after

shortening is not important. In acoustic system equalization however, although

all solutions maximize the Rayleigh quotient, the resulting EIRs are different from

a perceptual point of view. This issue has not been considered in previous work

for use of channel shortening in acoustic system equalization. In this chapter, a

mathematical link between the CS and the MINT is derived. Then, a criterion

for developing a perceptually advantageous equalization system from the multiple

solutions to CS is provided. An earlier version of the content of this chapter was

presented in [P-1].

4.1 A link between MINT and channel shortening

It is shown by MINT that, when both conditions C-1 and C-2 in Section 2.3.1,

i.e. multiple channels do not have common zeros and Li ≥ Lc, are satisfied, a

multichannel system can be exactly inverted. When Li ≥ Lc, A is rank deficient.
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Therefore, g that satisfies 



gTAg = 0

gTBg 6= 0
(4.2)

maximizes the Rayleigh quotient in (4.1). Equivalently, since F
.
= HTH = B + A,

g that satisfies 



gTAg = 0

gTFg 6= 0
(4.3)

is a solution to (4.1).

When multiple channels do not have common zeros, H is full row-rank [39],

and the rank of F is (L + Li − 1). Since null(F) ⊂ null(A), where

dim(null(F)) = MLi − (L + Li − 1)
.
= LF (4.4)

and

dim(null(A)) = MLi − (L + Li − 1− Lw), (4.5)

we can assume vectors q1, q2, . . ., qLw , p1, p2, . . ., pLF
to be a basis of null(A),

with p1, p2, . . . , pLF
to be a basis of null(F), where dim(·) denotes the dimension

and null(·) denotes the null space. Any solution to (4.1), which is in the space

null(A)\null(F), where \ denotes exclusion operator, can be expressed as

g = [q1 q2 · · · qLw ]t[Lw×1] + [p1 p2 . . . pLF
]r[LF×1], (4.6)

with t[Lw×1] 6= 0.

In [48], the g maximizing the quotient in (4.1) is found by solving the gener-

alized eigenvalue problem

Bg = λAg. (4.7)

The solution to (4.1) is then obtained by computing the eigenvector relating to
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the largest eigenvalue. For rank deficient A, (4.7) can be solved using the QZ

algorithm [68]. In this work, the MATLAB function eig(B,A,‘qz’) which employs

the QZ algorithm is used to solve (4.7). Lw vectors relating to λ = ∞ can be

obtained. Since the equalization system(s) obtained from MINT satisfy (4.3) as well,

there must be one MINT solution which can be expressed as a linear combination

of these Lw vectors.

4.2 A criterion for selecting perceptually advan-

tageous equalization system

The MATLAB function eig(B,A,‘qz’) provides Lw independent vectors correspond-

ing to λ = ∞. Using these vectors as equalization systems, some of them result in

EIRs which lead to improved perceptual speech quality after equalization compared

to the original received signal, but some do not.

As an illustrative example, Figure 4.1 shows two EIRs resulting from two

equalization systems of the Lw solutions obtained by solving the generalized eigen-

value problem, for which the acoustic system is the 2-channel system from MARDY

database used in Section 2.5 and parameters are set to Li = Lc, τ = 0, and Lw = 400

(corresponding to 50 ms for sampling frequency fs = 8000 Hz, which is a typical

transition time between early reflections and late reflections). As has been dis-

cussed in Section 2.4.1, although these two EIRs only have early reflections, they

may not be both satisfactory for perception. It can be seen that the EIR shown in

Figure 4.1(a) has a decaying pattern, whereas the one shown in Figure 4.1(b) has

a non-decaying pattern. We conducted informal listening tests to investigate the

sound quality of speech relating to the different EIRs. In the tests, speech segments

were listened using a Sennheiser HD 650 headphone by 8 subjects. The following

questions were investigated in the tests: is the speech warm or not warm, thin or
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Figure 4.1: (a) An EIR resulting in perceptually improved speech, and (b) an
EIR resulting in perceptually degraded speech, which are obtained from CS.

not thin, perceptually close to or not close to the anechoic speech? The obtained

results indicated that speech relating to the EIR in Fig. 4.1(b) is perceived as thin

and harsh, whereas speech relating to the EIR in Fig. 4.1(a) is perceived as warm,

closer to the anechoic speech, and is perceptually preferred. The speech resulted

from some other solutions obtained from the generalized eigenvalue decomposition

sounds similar to that relating to the EIR in Figure 4.1(b) and the solution leading

to the EIR in Figure 4.1(a) is more likeable than these solutions. Our proposal is

that exhaustive comparison of all the Lw solutions is not necessary; a method with

which the solution leading to the EIR in Figure 4.1(a) can be picked out is adequate.

We found that the solution leading to the EIR in Figure 4.1(a) has the following

characteristic: among the EIRs resulted from all Lw solutions, the EIR resulted from

it has minimum `2-norm.

Experiments with 30 different acoustic systems show that an equalization

system leading to an EIR similar (in terms of leading to similar sounding equalized
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Figure 4.2: The EIR obtained from CS, and EDCs of the EIRs obtained using
RMCLS and CS, and h1 for SSI.

speech) to the one in Figure 4.1(a) always exists for different systems, and it always

retains the above `2-norm characteristic. Therefore, we propose the following cri-

terion for selecting a solution that will result in improved perceptual quality of the

speech: among the multiple solutions obtained by solving the generalized eigenvalue

problem (4.7), we choose the one which results in the minimum `2-norm EIR. In the

remainder of this thesis, when CS equalization system is mentioned, it always refers

to the one selected with the above criterion.

4.3 Simulations and discussion

We show the performance of CS equalization system in the presence of SIEs by

simulation examples. The two systems used in Section 2.5 for SSI and BSI are used

again to test the robustness of the CS equalization system. Parameters are set to

τ = 0, Li = Lc and Lw = 400. The EIR and its EDC for the SSI is shown in Figure
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Figure 4.3: The EIR obtained from CS, and EDCs of the EIRs obtained using
RMCLS and CS, and h1 for BSI.

4.2. The EIR and its EDC for the BSI is shown in Figure 4.3. It can be seen that

in the presence of SIEs, the part of the EDC before 0.2 s is below the EDC of h1 for

both SSI and BSI. However, the decay rate of the EDC after 0.05 s is smaller than

that of h1, and a deleterious tail in the EIR is introduced.

Generally speaking, the RMCLS method discussed in Chapter 3 can also be

classified under the concept of channel shortening. The RMCLS equalization system

satisfies (4.3) as well and is in the solution space of (4.1). The early reflections

pattern given by the RMCLS, which is also decaying, can be seen in Figure 3.13 and

Figure 3.14. In informal listening tests, the sound of speech resulting from RMCLS

is thinner than the selected CS equalization system, but is warmer and preferred

to the other CS solutions. On the other hand, the RMCLS equalization system

is superior in robustness to SIEs due to its characteristics discussed in Chapter 3.

The EDCs obtained from RMCLS are also plotted in Figure 4.2 and Figure 4.3. It

can be seen that the RMCLS is more robust than the CS. The EDCs for RMCLS
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shows more than 15 dB reduction compared with h1 at any time after 0.05 s and no

artificial tail is introduced for both SSI and BSI.

4.4 Summary

The use of channel shortening technique in equalization of acoustic systems is in-

vestigated in this chapter. A mathematical link between MINT and CS is derived.

Multiple solutions to CS can be obtained and one MINT solution can be expressed

as a linear combination of the CS solutions. Then, a criterion for selecting a per-

ceptually advantageous equalization system from the multiple solutions to CS is

provided. The results of informal listening tests showed that equalization using the

solution corresponding to the EIR with minimum `2-norm is perceptually preferred.

Extended listening tests are required to reach scientifically significant conclusions

and could be conducted in future work. The performance of CS is compared with

RMCLS and simulations show that RMCLS outperforms CS in robustness to SIEs.

It might be possible to formulate the maximization of the generalized

Rayleigh quotient in (4.1) and finding the CS solution which leads to the minimum

`2-norm EIR in one optimization problem. This could be investigated in future

work.
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Chapter 5

Equalization System Construction

Using an Iterative Method

The weighted multichannel least-squares (WMCLS) method, with which the solution

is obtained by minimizing the cost function

J = ‖W(Hg − d)‖2
2, (5.1)

where the weighting function w(i) 6= 0 for ∀ i, is used in the over-determined cir-

cumstances in [40] for acoustic system equalization. The over-determination happens

when the condition C-2 in Section 2.3.1 is violated, i.e. when Li < Lc.

The solution is given by

g = (WH)+Wd. (5.2)

However, when conditions C-1 and C-2 in Section 2.3.1 are both satisfied and

the weights w(i) 6= 0 for ∀ i, the solution given by (5.2) is equal to that given

by (2.60) [41], which means the WMCLS makes no difference from the MCLS, or

in other words, the weighting function w(i) is not effective. In Chapter 3, it has
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been shown that with a relaxed window Lw, where the entries w(i) = 0 in this

window, the RMCLS exhibits its characteristic difference from the MCLS, and the

robustness of the resulting equalization system to SIEs is improved. Using RMCLS,

the equalization in the relaxed region is totally unconstrained, and the pattern of the

early reflections in the EIR is out of control. However, we prefer an approach with

which the pattern of the early reflections in the EIR can be to some extent shaped.

When conditions C-1 and C-2 are both satisfied, an approach which enables the

weighting function with weights w(i) 6= 0, for ∀ i, is desired.

In this chapter, we use an iterative method to approach a solution of the

system of equations

WHg = Wd, (5.3)

where w(i) 6= 0 for ∀ i. The iterative method of course can also be applied to the

MINT equations (2.58):

Hg = d. (5.4)

Although the solutions to (5.3) and (5.4) are equivalent, the iteration processes

converging to the solutions are different. In our approach, a particular initialization

is assigned for the iterative method and the adaptation for (5.3) is stopped at some

‘proper point’, rather than after final ‘convergence’. The system obtained at the

‘proper point’ is used as the equalization system, which is different from any of the

closed-form solutions.

Iterative methods such as steepest descent [69,70] and conjugate gradient [70]

can be used. In this work, we employ the conjugate gradient (CG) method. When

using the CG method to solve (5.4), we refer to it simply as CG, and when we use

it to solve (5.3), we refer to it as weighted conjugate gradient (WCG). After every

iteration, a system g can be obtained and results in a corresponding EIR b(i).

In this work, we only consider the use of the iterative method for robust
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equalization to SSI error. Firstly, we show the different iteration processes of the

CG and WCG in terms of the resulting EIRs after every iteration. Secondly, it is

shown that in the presence of SSI error, the WDRR (see Section 2.4.2) of the EIR

has a peak in the iteration process of the WCG, where the iteration index of the

peak was referred to as ‘proper point’ above. Thirdly, we present an approach to

estimate the iteration index of the peak of WDRR in the presence of SSI error such

that the g after this iteration is recorded and adaptation is properly stopped. The

g obtained from such approach provides the optimal WDRR, so we call the whole

algorithm optimally-stopped weighted conjugate gradient (OS-WCG). Fourthly, the

OS-WCG algorithm is evaluated.

5.1 The iteration process of the WCG

The WCG is given in Table 5.1, where k in the square brackets [·] denotes the index of

iteration, and d is the vector form of the delayed delta function defined in (2.57). An

earlier demonstration of this algorithm was presented in [P-4]. When implementing

the CG, the line labeled 2 in Table 5.1 should be replaced by f = HTd, A = HTH.

We use an example to show the iteration processes of CG and WCG. In this example,

the 2-channel acoustic system h used in Section 2.5 for SSI, the RIRs hm of which

are from the MARDY database [35], is employed. As discussed in Section 2.4.1,

suppression of late reflections of the RIR is more important than the suppression of

early reflections for improving the intelligibility of the speech signal. Therefore, for

WCG, it is natural to use some weighting function w(i) for which the amplitudes

relating to the late reflections are larger than those relating to the early reflections.

We adopt the following weighting function:

w(i) =





1 if 0 ≤ i ≤ τ ;

eα(i−τ) − 1 if i > τ.
(5.5)
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Table 5.1: WCG algorithm.

1 g[0] = 0MLi

2 f = (WH)TWd, A = (WH)T (WH)
3 ra = f −Ag[0], pa = ra, µ = (rT

a ra)/(p
T
a Apa)

4 g[1] = g[0] + µpa, rb = ra − µApa

5 for k = 1, 2, . . .
6 β = (rT

b rb)/(r
T
a ra)

7 pb = rb + βpa

8 q = Apb

9 µ = (rT
b rb)/(p

T
b q)

10 g[k + 1] = g[k] + µpb

11 ra = rb

12 rb = rb − µq
13 pa = pb

14 end for

The parameters are set to τ = 0, Li = Lc, and α = 0.0014 for the weighting function.

The EIR b[k] at different iterations, where k denotes the index of iteration, are shown

in Figure 5.1 and Figure 5.2 for CG and WCG respectively. It can be seen that

in the iteration process, the amplitude of b(0) approaches 1, and the amplitudes

of b(i) for i 6= 0 decrease. In the iteration process of CG, b(i) decrease in similar

rates for different i. On the other hand, the decreasing rates of b(i) for different i

are different in the iteration process of WCG. This means that unlike in the closed-

form approach, the weighting function in the iterative approach is effective in that

if we stop the adaptation at some iteration before convergence, we have different

equalization systems g for different weighting functions used. This is important for

controlling the shape of both the early part and the tail of the EIR in the presence

of SSI error.
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Figure 5.1: The EIR b[k] at different iterations showing the iteration process
of CG.
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Figure 5.2: The EIR b[k] at different iterations showing the iteration process
of WCG.
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5.2 The peak of WDRR in the iteration process

In the presence of SSI error, the EIR b[k] can be written as

b[k] = p[k] + q[k], (5.6)

where

p[k] = [p(0, k) · · · p(i, k) · · · p(L + Li − 2, k)]T (5.7)

with

p(i, k) =
M∑

m=1

ĥm(i) ∗ gm(i, k) (5.8)

and

q[k] = [q(0, k) · · · q(i, k) · · · q(L + Li − 2, k)]T (5.9)

with

q(i, k) =
M∑

m=1

em(i) ∗ gm(i, k). (5.10)

In the WCG, g is initialized as g[0] = 0MLi×1. With the iteration progressing (the

number k increasing), p(τ, k) increases to 1, and the amplitudes of p(0, k), · · · , p(τ−
1, k), p(τ + 1, k), · · · , p(L + Li − 2, k) decrease to 0, though the convergence rates

of different samples are not the same. The ratio

p(τ, k)2

∑
i6=τ p(i, k)2

(5.11)

correspondingly increases. Meanwhile, since g is initialized as g[0] = 0MLi×1, gener-

ally the amplitudes of the coefficients gm(i, k) increase; as a result, the amplitudes

of q(i, k) increase. Therefore, it can be expected that

WDRR[k] =
(u(τ, k) · b(τ, k))2

∑
i6=τ (u(i, k) · b(i, k))2

(5.12)
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Figure 5.3: Trajectory of WDRR and ŴDRR.

would undergo a process of firstly increasing and then dropping, where the increasing

is due to the increase of (5.11) and the dropping is due to the increase of the

amplitudes of q(i, k). It should be noted that in (5.12), as well as in the definition of

WDRR in (2.76), weighting function is denoted by u(i) to distinguish it from w(i),

since the weighting function used for computing the WDRR is not necessarily equal

to the one used for constructing the equalization system. The turning point from

increasing to dropping, i.e. the peak, would give us the largest WDRR. Accordingly,

g[kopt], where kopt is the index of the peak, would be the optimal equalization system

in the sense of WDRR.

The solid curve in Figure 5.3 shows an example of the trajectory of WDRR.

The acoustic system h and the estimates ĥm for SSI in Section 2.5 are used in

this example. The parameters are set to τ = 0 and Li = Lc. The weighting

functions u(i) is set to u(i) = w(i) with α = 0.0014, where w(i) is defined in

(5.5). We see in Figure 5.3 that the WDRR has a peak in the iteration process.
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Therefore, to obtain the optimal g, the kopt should be found. However, in (5.12),

where b(i, k) = p(i, k) + q(i, k), p(i, k) is observable in every iteration, but q(i, k) is

unobservable since e is unknown, so WDRR as a total is unobservable. Therefore,

we need to find a way to estimate the peak index kopt. In next section, the estimation

of the kopt is discussed.

5.3 Estimation of the iteration index of the peak

We discuss the estimation of kopt for the SSI. We know from Section 2.2.1 that the

SSI error is a white Gaussian process. We can also estimate the NMSE of the SSI

error using (2.54). Using the above information, we propose the following approach

to estimate kopt.

The idea is to use a substitute of the unknown e to compute the WDRR after

each iteration. As presented in Section 2.2.1, the SSI error em = hm − ĥm satisfies

em ∼ N (0L×1,Ce), (5.13)

where N (·) denotes Gaussian distribution, and Ce is the covariance matrix of em

which is asymptotically a scaled identity matrix. Therefore, we use

ẽm(i) = β · εm(i) (5.14)

to substitute em(i) in (5.10) to compute an estimate of q(i, k), where εm(i) is a

generated unit-variance white Gaussian sequence, and

β = ‖hm‖2 ·
√

NMSE

L
(5.15)

with NMSE defined in (2.46). The value of β given by (5.15) ensures that the

generated sequence has the same power as the true error sequence em. Then an
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estimate of the WDRR can be computed

ŴDRR[k] =
(u(τ) · (p(τ, k) + q̂(τ, k)))2

∑
i6=τ (u(i) · (p(i, k) + q̂(i, k)))2

, (5.16)

where

q̂(i, k) =
M∑

m=1

ẽm(i) ∗ gm(i, k). (5.17)

Then, k̂opt, the peak index of ŴDRR[k] is used as the estimate of kopt.

To obtain an estimate of kopt using the above approach, the NMSE of em

is necessary. In practice, the NMSE can be estimated using (2.54). However, the

estimate may not be accurately equal to the true NMSE. In this section we assume

the NMSE is known. An evaluation of the performance of the proposed algorithm

when the NMSE is not exactly known is conducted later in Section 5.5.3.

The dashed line in Figure 5.3 shows the ŴDRR obtained with a random

generation of ẽ = [ẽT
1 · · · ẽT

M ]T with ẽm = [ẽm(0) . . . ẽm(L− 1)]T . The value of the

ŴDRR is not important; we only use the ŴDRR to obtain an estimate of the peak

index. What is important is that k̂opt, the peak index of ŴDRR, is a good estimate

of kopt and WDRR[k̂opt] only has 0.01 dB degradation compared with WDRR[kopt].

5.4 Stopping condition for the WCG

In practical implementation, a stopping condition is needed to ensure g[k̂opt] is

recorded and the adaptation well stopped. Since the trajectory of ŴDRR in Figure

5.3 is not smooth but at the same time does not ripple dramatically, k that satisfies

the following condition would be found to be k̂opt and is recorded as the estimate of

the peak index of WDRR:

ŴDRR[k] > ŴDRR[k + j], for j = 1, · · · , 100.
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Table 5.2: Stopping condition for OS-WCG.

1 g ⇐ 0MLi×1, ŴDRRmax ⇐ 0, j ⇐ 0
2 while j < 100
3 update g

4 calculate ŴDRR using (5.16)

5 if ŴDRRmax < ŴDRR

6 go ⇐ g, ŴDRRmax ⇐ ŴDRR, j ⇐ 0
7 else
8 j ⇐ j + 1
9 end if
10 end while

Accordingly, g[k̂opt] is recorded as the optimal equalization system

go = g[k̂opt]. (5.18)

This stopping condition can be realized with the codes given in Table 5.2.

5.5 Performance evaluation

In this section, simulations are delivered to evaluate the performance of the OS-

WCG. Firstly, we evaluate the accuracy of the peak index estimation. Secondly, the

performance of the OS-WCG is evaluated using some of the performance measures

given in Section 2.4.2. Thirdly, the sensitivity of the OS-WCG to NMSE estimation

is evaluated. In the simulations, 2-channel systems with RIRs generated using the

image method [36] are used as the acoustic systems h. The OS-WCG can be applied

to systems with more channels but it requires more memory and the computation

load could be increased. Another reason for which we employ 2-channel systems is

that if good performance can be achieved for 2-channel systems, systems with more

channels are not necessary. Since it has been shown in Section 2.2.1 that the SSI
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error is white Gaussian sequences, instead of truly identifying the acoustic systems

we generate white Gaussian sequences to represent the error and subtract them

from the RIRs to obtain the ĥ. The room dimensions are 6.4 m× 5 m× 3.6 m; the

distance between the speaker and the center of the microphone array is set to 1 m,

2 m and 3 m, and the inter-microphone distance is 10 cm; the reverberation time

T60 is set to 0.6 s and 0.8 s; the NMSE of generated errors are −30 dB and −40 dB.

The sampling frequency is fs = 8000. The RIRs are of L = 2000. Parameters for

equalization system design are set to Li = Lc, τ = 0. In each run of the simulation,

the relative geometry of the speaker and microphone array is kept constant, but the

speaker is relocated at a random position in the room, and new error is randomly

generated. The evaluation results are obtained by averaging 100 runs.

The weighting function (5.5) is used, but with α set to different values for

different room settings. The value of α is set relating to the T60 [37]

α =
3 ln(10)

T60 · fs

. (5.19)

The weighting function u(i) for computing the WDRR is set to u(i) = w(i).

5.5.1 The accuracy of the peak index estimation

The accuracy of the peak index estimation is evaluated by comparing the mean

of WDRR[k̂opt] and WDRR[kopt], and the standard deviation of WDRR[kopt] −
WDRR[k̂opt] obtained in the 100 runs. The mean of WDRR[k̂opt] and WDRR[kopt]

are shown in Table 5.3. It can be seen that compared with WDRR[kopt], WDRR[k̂opt]

only has a degradation of 0.02−0.04 dB, which means that the g obtained after the

k̂optth iteration is almost the optimal equalization system. The standard deviation

of WDRR[kopt] − WDRR[k̂opt] is shown in Table 5.4. We can see that the values

of the standard deviation are at least 21 dB smaller than the mean values, which
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Table 5.3: Mean of WDRR[k̂opt] and WDRR[kopt].

NMSE (dB) T60 (s) dist (m) WDRR[kopt] (dB) WDRR[k̂opt] (dB)

-30

0.6
1 -0.36 -0.40
2 -5.90 -5.93
3 -9.12 -9.16

0.8
1 3.42 3.39
2 -2.14 -2.16
3 -5.81 -5.84

-40

0.6
1 7.12 7.09
2 1.17 1.14
3 -2.09 -2.11

0.8
1 10.87 10.85
2 4.79 4.76
3 1.08 1.06

Table 5.4: Standard deviation of WDRR[kopt]−WDRR[k̂opt].

NMSE (dB) T60 (s) dist (m) standard deviation (dB)

-30

0.6
1 -21.89
2 -26.83
3 -30.33

0.8
1 -18.86
2 -24.63
3 -29.03

-40

0.6
1 -15.30
2 -21.26
3 -23.04

0.8
1 -12.81
2 -19.05
3 -22.65
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Table 5.5: The C50 of h1 and the EIR obtained with OS-WCG.

NMSE (dB) T60 (s) dist (m) C50 of EIR (dB) C50 of h1 (dB)

-30

0.6
1 15.70 5.25
2 13.57 3.70
3 13.15 3.59

0.8
1 16.90 2.91
2 14.48 1.54
3 14.22 1.38

-40

0.6
1 27.15

as above

2 23.83
3 23.26

0.8
1 27.51
2 24.04
3 23.35

means that the OS-WCG performs well in each run.

5.5.2 Performance evaluation of OS-WCG

In this section, we present the improvement in C50 and T30 achieved by the OS-

WCG. Table 5.5 shows the averaged C50 of the EIR and h1. It can be seen that

for all parameter settings, it shows more than 10 dB improvement in C50 compared

with h1 for NMSE = −30 dB. For NMSE = −40 dB, the OS-WCG provides about

20 dB improvements. Table 5.6 shows the averaged T30 of the EIR and h1. It can

be seen that for all parameter settings, the OS-WCG improves the T30.

Apply the OS-WCG to the estimate of the acoustic system for SSI used in

Section 2.5, the EIR and its EDC is shown in Figure 5.4. Parameters are set to τ = 0,

Li = Lc. It can be seen that compared with h1, the EDC of the EIR shows more

than 10 dB improvement at any time after 0.1 s. Compared with the EDC obtained

from RMCLS shown in Figure 3.13, the OS-WCG achieves more suppression of the

reflections before 0.05 s, and unlike the RMCLS whose EDC shows a sudden drop

at 0.05 s, the EDC of OS-WCG shows a smooth transition from early part to late
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Table 5.6: The T30 of h1 and the EIR obtained with OS-WCG.

NMSE (dB) T60 (s) dist (m) T30 of EIR (s) T30 of h1 (s)

-30

0.6
1 0.151 0.234
2 0.167 0.237
3 0.171 0.238

0.8
1 0.202 0.245
2 0.218 0.246
3 0.223 0.246

-40

0.6
1 0.063

as above

2 0.076
3 0.079

0.8
1 0.066
2 0.092
3 0.099
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Figure 5.4: The EIR and EDCs of the EIR obtained using OS-WCG and h1

for SSI.
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Table 5.7: The WDRR[k̂opt] of EIR obtained with different NMSE estimates.

NMSE (dB) N̂MSE (dB) WDRR[k̂opt] (dB) WDRR of h1 (dB)

-30
-20 -9.25

-14.94

-30 -5.94
-40 -7.42

-40
-30 -1.61
-40 1.14
-50 -0.29

part.

5.5.3 Sensitivity to NMSE estimation

As stated in Section 5.3, the OS-WCG algorithm needs the NMSE. In practice, the

NMSE needs to be estimated. The NMSE can be estimated using (2.54), which is

repeated here:

N̂MSE =
L

N · SNR
. (5.20)

Firstly, recalling the derivation of (5.20) in Section 2.2.3, it is assumed that (2.20)

is true, i.e. the autocorrelation matrix of the probing signal s(n) is a scaled identity

matrix. However, it cannot be ensured the true variance of the error is equivalent to

that approximated by (2.21). There must be a difference between the approximated

variance and the true variance, though the difference is small. Secondly, to compute

N̂MSE, the SNR is needed, which usually needs to be estimated. Therefore, it is very

possible that the estimated NMSE is not equal to the true NMSE. As a necessary

part for the evaluation of the OS-WCG, we investigate the robustness of OS-WCG

to NMSE estimation in this section. The WDRR[k̂opt] for T60 = 0.6 s and distance

between speaker and center of the microphone array 2 m are shown in Table 5.7.

We can see that with error in NMSE estimates, OS-WCG shows performance

degradation in the WDRR of EIR. However, even with ±10 dB error in NMSE
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Figure 5.5: The trajectory of the WDRR and EDCs of the EIR at the iteration
of the peak and h1 for BSI.

estimates, the resulting WDRR of the EIR still shows at least 5 dB improvement

compared with that of h1 for NMSE = −30 dB. This means that the OS-WCG is

not sensitive to the NMSE estimation. We also see that under-estimation of NMSE

is better than over-estimation.

5.6 Discussion

Above we only discussed the application of WCG to SSI. A stopping condition for

the WCG is provided and results in the OS-WCG algorithm. The WCG can also be

applied to acoustic systems with BSI error and a peak of the WDRR in the iteration

process can also be seen. We apply WCG to the ĥ used in Section 2.5 for the BSI,

and the trajectory of the WDRR is shown in Figure 5.5, where we can see the peak.

The EDC of the EIR obtained at the iteration of the peak is also shown in Figure

5.5. We see that the trajectory curve of the WDRR around its peak is very flat,
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which means that if we have an approach to roughly estimate the peak index, the

acoustic system with BSI error can be well equalized using WCG. However, we do

not have such an approach now and it could be further explored in future work.

5.7 Summary

This chapter investigates the use of conjugate gradient iterative method for the

equalization of acoustic systems, the channel estimates of which are obtained from

SSI. An optimally-stopped weighted conjugate gradient (OS-WCG) algorithm is

presented. In the presence of SSI error, firstly a peak of WDRR in the iterative

process is shown. After this, a method to estimate the iteration index of the peak

is provided. Then, a stopping condition for the iteration is proposed. Evaluation

results show that using OS-WCG, WDRR at the estimated peak index only shows

0.02-0.04 dB drop compared with it at true peak index. The OS-WCG improves

both the C50 and T30. For NMSE = −40 dB, the OS-WCG provides about 20

dB improvement in C50. Meanwhile, the OS-WCG is not sensitive to the NMSE

estimation. With ±10 dB error in NMSE estimates, the resulting WDRR of the

EIR only shows less than 4 dB degradation for NMSE = −30 dB.

Similar peak in the WDRR trajectory for BSI can be seen. However, we

do not have a method to estimate the peak index for BSI. This could be further

explored in future work.
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Chapter 6

Equalization of Acoustic Systems

Using Models of System

Identification Error

In foregoing work, except for Chapter 5 where we use the statistics of the SSI error

to estimate the optimal iteration index in the OS-WCG algorithm, information of

the SIEs is not used in any of the equalization method. In contrast, we explore

the use of SIE models for system equalization in this chapter. The statistics for

the SSI error are well known from textbooks [17] and were reviewed in Section

2.2.1. A model of SSI error can be immediately obtained from the statistics and is

presented in Section 6.1.1. On the other hand, statistics of BSI error that can be

straightforwardly used for system equalization are not yet available. Therefore, we

conduct an experimental study of the BSI error in Section 6.1.2 and then investigate

methods for modeling the error based on the statistics of the error obtained in the

study. Then, in Section 6.2, the models of both the SSI and BSI error will be

incorporated in the formulation of the proposed equalization method, which we call

System-Identification-Error-Robust Equalization Method (SIEREM). The SIEREM

is evaluated in Section 6.3.
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6.1 Modeling of system identification error

It has been shown in Section 2.2 that when the channel identifiability conditions are

satisfied, the channels can be identified using either the supervised or blind system

identification techniques. However, in practice, even if the identifiability conditions

are satisfied, we can never use infinitely long data sequences in the identification.

As a result, the channel estimates always include errors. In this section, we model

the SIEs.

6.1.1 Supervised system identification error

As presented in Section 2.2.1, the SSI error em = hm − ĥm satisfies

em ∼ N (0L×1,Ce), (6.1)

where N (·) denotes Gaussian distribution, and Ce is the covariance matrix of em

which is asymptotically a scaled identity matrix. An immediate model of the SSI

error based on this is a white Gaussian sequence

ẽm(i) = β · εm(i), (6.2)

where εm(i) is a unit-variance white Gaussian sequence, and

β = ‖hm‖2 ·
√

NMSE

L
(6.3)

with

NMSE =
‖hm − ĥm‖2

2

‖hm‖2
2

, (6.4)

as defined in (2.46).
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6.1.2 Blind system identification error

Using the cross-relation (CR) method [23], the estimate ĥ of the multichannel system

h is found by computing the eigenvector corresponding the the smallest eigenvalue

of Ryy(N) in (2.33):

Ryy(N) = Rxx(N) + Rxv(N) + RT
xv(N) + Rvv(N). (6.5)

Compared with h, which is the eigenvector corresponding to the smallest eigenvalue

of Rxx(N), ĥ is misaligned due to the matrix Rxv(N)+RT
xv(N)+Rvv(N). In [34], an

asymptotic variance of the CR method is derived and is compared with its CRLB.

However, these analytical results cannot be used in system equalization. Firstly, the

normalized projection misalignment (NPM), as defined in (2.47):

NPM =
‖h− γĥ‖2

2

‖h‖2
2

(6.6)

with γ = ĥTh/(ĥT ĥ), is regarded as the most consistent measure for BSI but the

CRLB derived in [34] corresponds to a normalization different from the normaliza-

tion which leads to the NPM, and cannot be applied to the NPM [32]. Secondly,

the computation of either the variance or the CRLB uses the source signal and the

RIRs, which are unknown in blind scenarios. Therefore, instead, we conduct an

experimental study of the BSI error and propose a model based on the study.

We use the normalized multichannel frequency-domain least-mean-squares

(NMCFLMS) algorithm, which is an adaptive algorithm based on the CR method,

to identify RIRs which are generated using the image method [36], and study the

projection error vector which is defined in (2.49):

e = h− γĥ. (6.7)
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It is well known that the NMCFLMS algorithm suffers misconvergence under noisy

conditions [71]. In the adaptation process, the NPM of the estimate ĥ would firstly

decrease and then diverge. In this work, we study the error relating to the ĥ which

achieves the minimum of the NPM in the adaptation process. In the first experiment,

the room dimensions are set to 6.4 m×5 m×3.6 m and the reverberation time T60 is

set to 0.6 s, which represent the geometry and reverberation of a typical conference

room. A linear microphone array with M = 6 microphones and inter-microphone

distance 5 cm is deployed and the distance between the speaker and the center of

the microphone array is set to 1 m. The sampling frequency is fs = 8000 Hz. The

RIRs are L = 2000 taps. The SNR is set to 25 dB. The RIRs are driven by white

Gaussian noise. In each run of the simulation, the speaker is relocated at a random

position in the room. The speaker and microphone arrays are avoided being too

close to the walls. We employ 1000 runs and the statistical characteristics of the

resulting BSI error are studied.

The 1000 error vectors obtained in the experiment are of different NPM level

(and different power level). To consider the overall temporal shape of the error

regardless of the power level, firstly all the error vectors are normalized to unit

norm. The power level of the error relating to the corresponding NPM will be

considered secondly.

The squared mean and the variance of the error of the first channel, e1(i), are

shown in Figure 6.1. It can be seen that firstly, except for a few taps in the range

i < 200, the mean of e1(i) is very small compared with its standard deviation, and

secondly, the temporal shape of the variance (or standard deviation) of the error,

especially for i ≥ 200, is approximately exponentially decaying. An exponential

function βe−αi is fitted to the standard deviation of the error for i ≥ 200, and the

fitted value of α is α = 0.0013. The fitted value of β is not important at this stage;

it only relates to the power level of the error and will be elaborated later. With the
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Figure 6.1: Squared mean and variance of the error of the first channel, and
the exponential decay curve fitted to the variance of the error.

relation [37]

α =
3 ln(10)

T60 · fs

, (6.8)

the value of α corresponds to T60 = 0.67 s, which is about 12% higher than the

reverberation time of the room set to T60 = 0.6 s in the experiment.

Figure 6.2 shows the autocorrelation coefficients of the error e1(i). It can be

seen that the coefficients Ra(i, j) = 1 for i = j and is very small for i 6= j.

The cross-correlation coefficients of the error of two different channels are

shown in Figure 6.3. The distance between the microphones corresponding to these

two channels is 25 cm. It can be seen that the cross-correlation coefficients Rc(i, j)

are smaller than 0.4 for i = j and is smaller than 0.1 for most of i 6= j. Our study

also finds that for channels with smaller inter-microphone distance, the Rc(i, j) for

some i = j can be greater, though for i 6= j it remains very small.

In the second experiment, the room dimensions are set to 6.4 m×5 m×3.6 m;
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Figure 6.2: Autocorrelation coefficients of e1(i).
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Figure 6.3: Inter-channel cross-correlation coefficients of the error.
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linear microphone array with M = 4 microphones and inter-microphone distance

10 cm is deployed and the distance between the speaker and the centre of the

microphone array is set to 2 m; the reverberation time T60 is set to 0.8 s. The

sampling frequency is fs = 8000 Hz. The RIRs are truncated to L = 2800 taps. We

again employ 1000 runs.

The statistical characteristics of the error in this experiment are similar to

those in the first experiment. The only obvious difference is that the fitted α =

0.00098, which corresponds to T60 = 0.88 s. This is about 10% higher than the

reverberation time of the room set to T60 = 0.8 s in the experiment.

With all these observations, the BSI error can be approximately modeled by

a random sequence with an exponential decay rate α:

ẽm(i) = β · εm(i) · e−αi (6.9)

for m = 1, . . . , M and i = 0, . . . , L − 1, where εm(i) is a white sequence with unit

variance, β a multiplicative factor relating to the power level of e, and the decay

rate α equal to the decay rate of the RIRs, which can be estimated from ĥ. The

following modeling approximations have been made: firstly, the amplitudes of the

errors are assumed to have zero mean; secondly, the errors are assumed to have an

exponential decay rate equal to that of the RIRs; and thirdly, the errors for different

channels are assumed to be uncorrelated.

The error model (6.9) will be used in next section to derive an equalization

system. Although some approximations are made in modeling the error, it will be

shown that with this model used, the equalization method is robust to the BSI error.

Now we derive the relationship between the multiplicative factor β and the

NPM of the estimate ĥ. A version of the derivation was presented in [P-3]. The BSI

usually introduces an unknown scaling factor γ, and our equalization system g can
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Figure 6.4: Illustration of misalignment and scaling ambiguity introduced by
BSI.

only be designed based on ĥ to equalize (1/γ)h (see Figure 6.4, which is a repetition

of Figure 2.3), rather than h. However, assuming that equalizing (1/γ)h gives

b′(i) =
M∑

m=1

1

γ
hm(i) ∗ gm(i), (6.10)

using (2.78) we see that the resulting equalized impulse response (EIR) b(i) = γb′(i),

i.e., the acoustic system is equalized only up to a scaling factor γ.

Therefore, we need to model the (1/γ)e rather than e. The NPM can be

expressed as (see Figure 6.4),

NPM =
‖e‖2

2

‖h‖2
2

= sin2(θ), (6.11)

where θ is the angle between h and ĥ as defined in Figure 6.4. Alternatively, we

have

‖e‖2
2

‖γĥ‖2
2

= tan2(θ). (6.12)

In order to make the NPM caused by ẽ on average equal to the true NPM, where

ẽ = [ẽT
1 . . . ẽT

M ]T with ẽm = [ẽm(0) . . . ẽm(L− 1)]T , we require that

E{‖ẽ‖2
2} =

∥∥∥∥
1

γ
e

∥∥∥∥
2

2

. (6.13)
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Using (6.9), (6.11), (6.12) and (6.13), we can express β as

β =
tan

[
arcsin(

√
NPM)

]
· √e−2α − 1

√
M · (e−2αL − 1)

· ‖ĥ‖2. (6.14)

6.2 The system-identification-error-robust equal-

ization method

In this section, the system-identification-error-robust equalization method

(SIEREM) using the above error models is derived. A version of the SIEREM

was presented in [P-3].

We aim to obtain

go = arg min
g

J (6.15)

where

J =

∥∥∥∥W

[
(Ĥ +

1

γ
E)g − d

]∥∥∥∥
2

2

, (6.16)

where E is formed from e and has the same form as H, and γ = 1 for SSI. Compared

with the cost function for WMCLS in (2.62), it can be seen a term (1/γ)E relating

to SIE is incorporated. Since e is unknown, E is also unknown. In order to find g

that minimizes (6.16), we replace (1/γ)E by Ẽ giving

go = arg min
g

∥∥∥W
[
(Ĥ + Ẽ)g − d

]∥∥∥
2

2
, (6.17)

where Ẽ is formed by realizations of (6.2) and (6.9) for SSI and BSI respectively.

However, with different realizations of the sequence εm(i), (6.2) or (6.9) provides

good and bad replacements for (1/γ)E, and the performance of g obtained from

(6.17) with different realizations of the sequence εm(i) varies much. Our proposal is

to compute a g which performs well on average for all realizations. Therefore, the
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g that minimizes

J = E

{∥∥∥W
[
(Ĥ + Ẽ)g − d

]∥∥∥
2

2

}
(6.18)

is computed. Although the g minimizing (6.18) is not designed for the particular

error vector relating to the ĥ in question, it is desired that the g is more robust than

an equalization system designed without any consideration of the SIE.

Expanding the right hand side of (6.18) gives

J = (WĤg −Wd)T (WĤg −Wd)

+(WĤg −Wd)TWE{Ẽ}g

+(WE{Ẽ}g)T (WĤg −Wd)

+gT E{ẼTWTWẼ}g, (6.19)

where E{Ẽ} is a zero matrix. The g that minimizes (6.19) can be obtained by

computing the derivative of J with respect to g and subsequently solving

∂J

∂g
= 0MLi×1. (6.20)

Using (6.19) and (6.20), we can obtain

g = (ĤTWTWĤ + E{ẼTWTWẼ})−1ĤTWTWd. (6.21)

The matrix R = E{ẼTWTWẼ} is a diagonal matrix with r(j) on its diagonal,

where

r((m− 1) · Li + j) = β2

L−1∑
i=0

w2(i + j − 1) (6.22)

for m = 1, . . . , M and j = 1, . . . , Li for SSI and

r((m− 1) · Li + j) = β2

L−1∑
i=0

w2(i + j − 1)e−2αi (6.23)
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Table 6.1: Summary of SIEREM.

1 Estimate NMSE for SSI, or NPM and T60 for BSI.
2 Compute β using (6.3) for SSI or (6.14) for BSI.
3 Compute α using (6.8) for BSI (not applicable to SSI).
4 Compute r(j) using (6.22) for SSI or (6.23) for BSI.
5 Compute equalization system g using (6.21).

for BSI. Since the error models for SSI and BSI in Section 6.1 are different, we obtain

different r(j) for SSI and BSI.

Following the above derivation, we conclude that, given the NMSE of the SSI

error, or the α of the RIRs and the NPM of the BSI error, we are able to design

equalization systems that takes into account the SIE. Clearly the NMSE, or the

decay rate and NPM are not known a priori and therefore need to be estimated.

The NMSE can be estimated using (2.54):

N̂MSE =
L

N · SNR
; (6.24)

the decay rate (or equivalently the T60 of the room) can be estimated from ĥ or other

methods [72, 73], but an approach to blind estimation of NPM is not yet available

and blind NPM estimation is still an open question. We will therefore investigate

later in this chapter the sensitivity in performance of our equalization method to

the accuracy of the estimates of the NMSE, and the decay rate and NPM.

The SIEREM is summarized in Table 6.1.
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6.3 Evaluation

In this section, the performance of the proposed SIEREM is evaluated. The weight-

ing function (5.5)

w(i) =





1 if 0 ≤ i ≤ τ ;

eα(i−τ) − 1 if i > τ,
(6.25)

is used again for SIEREM, where α is directly related to T60 with (6.8).

Because existing BSI techniques are not yet able to provide channel estimates

with very low NPM, we evaluate the performance at different NPM by subtracting

a generated error vector e from h. An algorithm to generate representations of BSI

error of desired NPM is presented firstly.

6.3.1 Generation of BSI error

In this section, an algorithm to generate representations of BSI error, which enables

systematic testing of the performance of system equalization, is presented. With

this algorithm, the NPM of the generated error representation can be chosen to suit

any desired level.

We formulate the problem in Figure 6.5. For illustration, we reduce this prob-

lem to 2 dimensions although extension to higher dimensionality is straightforward.
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Since the scaling factor γ in the true estimates does not influence the equalization

quality, we neglect the γ in error generation.

The NPM corresponds, in terms of Figure 6.5, only to the angle θ between h

and ĥ. The error vector e can be decomposed into two components, of which one is

parallel to h and the other is normal to h. The length of the parallel component ep

is ‖ep‖2 = sin2θ‖h‖2. The component ev normal to h is constrained by

hTev = 0 (6.26)

‖ev‖2 = ‖h‖2sinθcosθ. (6.27)

Substituting (6.11) into (6.27) gives

‖ev‖2 = ‖h‖2

√
NPM(1− NPM). (6.28)

It can be seen that the direction of ev is constrained by (6.26) and its length is

determined from (6.28).

An ensuing procedure is first to generate a random vector orthogonal to h,

and then adjust it to the desired length. The error vector can be generated following

the steps below:

1. Generate

am(i) = εm(i)e−αi (6.29)

to form a = [aT
1 · · · aT

M ]T with am = [am(0) . . . am(L − 1)]T , where εm(i) is

a white Gaussian sequence with unit variance.

2. Apply Gram-Schmidt orthogonalization [74] to h and the random vector a to

obtain a new vector av which is orthogonal to h.

3. Adjust the length of av according to (6.28) to obtain ev.
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4. Generate ep = sin2θh.

5. Sum ev and ep to obtain e.

We have presented an algorithm to generate representations of BSI error.

A version of this algorithm is presented in [P-7]. The proposed error generation

algorithm facilitates repeatable testing of system equalization.

6.3.2 Performance evaluation

Firstly, we present the evaluation results of SIEREM for SSI error. In the simu-

lations, 2-channel systems with RIRs generated using the image method [36] are

used as the acoustic systems h. Since it has been shown in Section 2.2.1 that the

SSI error is white Gaussian sequences, white Gaussian sequences are generated and

subtracted from the RIRs to obtain the ĥ.

The room dimensions are 6.4 m × 5 m × 3.6 m; the distance between the

speaker and the center of the microphone array is set to 1 m, 2 m and 3 m, and the

inter-microphone distance is 10 cm; the reverberation time T60 is set to 0.6 s and

0.8 s; the NMSE of generated error is −30 dB and −40 dB. The RIRs are truncated

to L = 2000. Parameters for equalization are set to Li = Lc, τ = 0. In each run of

the simulation, the relative geometry of the speaker and microphone array is kept

constant, but the speaker is relocated at a random position in the room, and new

error is randomly generated. The evaluation results are obtained by averaging 100

runs.

Table 6.2 shows the averaged C50 of the EIR and h1. It can be seen that for

all room and source-microphone settings, the SIEREM improves the C50 by more

than 10 dB for NMSE = −30 dB and more than 20 dB for NMSE = −40 dB. Table

6.3 shows the averaged T30 of the EIR and h1. It can be seen that for all room and

source-microphone settings, the SIEREM also improves the T30.
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Table 6.2: The C50 of h1 and the EIR obtained with SIEREM for SSI.

NMSE (dB) T60 (s) dist (m) C50 of EIR (dB) C50 of h1 (dB)

-30

0.6
1 16.55 5.34
2 14.45 3.79
3 14.15 3.61

0.8
1 16.96 3.02
2 14.58 1.50
3 14.23 1.40

-40

0.6
1 26.17

as above

2 23.12
3 22.53

0.8
1 26.68
2 23.32
3 22.68

Table 6.3: The T30 of h1 and the EIR obtained with SIEREM for SSI.

NMSE (dB) T60 (s) dist (m) T30 of EIR (s) T30 of h1 (s)

-30

0.6
1 0.153 0.234
2 0.174 0.237
3 0.175 0.238

0.8
1 0.194 0.245
2 0.214 0.246
3 0.217 0.246

-40

0.6
1 0.065

as above

2 0.080
3 0.083

0.8
1 0.068
2 0.094
3 0.102
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Figure 6.6: The C50 of h1 and the EIRs obtained with SIEREM for BSI.

Secondly, we present the evaluation results for BSI error. 2-channel systems

with RIRs generated using the image method [36] are used as the acoustic systems

h. The room dimensions are 6.4 m× 5 m× 3.6 m; the distance between the speaker

and the center of the microphone array is set to 1 m, 2 m and 3 m, and the inter-

microphone distance is 5 cm; the reverberation time T60 is set to 0.4 s, 0.5 s and

0.6 s; the error vectors are generated with the algorithm presented in Section 6.3.1

and the NPM is set to −10 dB, −15 dB and −20 dB. Parameters for equalization

are set to Li = Lc, τ = 0. In each run of the simulation, the relative geometry

of the speaker and microphones is kept constant, but the speaker is relocated at a

random position in the room. The averaged C50 of the resulting EIRs, which are

obtained using 100 randomly chosen speaker positions and generated error vectors,

are plotted in Figure 6.6.
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We also use estimates ĥ obtained from actual BSI experiments using adap-

tive estimation of ĥ from NMCFLMS. In the 1000 ĥ obtained in the 1000 runs

of the NMCFLMS in Section 6.1.2 for T60 = 0.6 s, we use the ĥ in the range

of −9.95 dB < NPM < −10.05 dB, and set NPM = −10 dB to compute the

corresponding equalization systems for each ĥ using SIEREM. In the simulations,

2-channel systems which include the hm and ĥm of the first two channels are used.

There are 52 ĥ in this NPM range, and we average the C50 of the 52 resulting EIRs.

The averaged value of the C50 is 10.29 dB. The C50 obtained with generated error for

the same room and source-to-microphone distance, which is already shown in Fig-

ure 6.6, is 8.92 dB. Comparing these two figures, we see that the C50 obtained with

generated error is not substantially different from the one obtained with the true

error. It can be seen in Figure 6.6 that SIEREM can always equalize the acoustic

systems to good effect.

Finally, we apply SIEREM to the estimates of the acoustic systems used in

Section 2.5 and use the resulting equalization system to equalize the true acoustic

systems. These systems have been used in foregoing chapters to show the perfor-

mance of different algorithms developed in this thesis and are employed here again.

Parameters are set to τ = 0, Li = Lc. The EIR and its EDC for the SSI is shown

in Figure 6.7. The EIR and its EDC for the BSI is shown in Figure 6.8. It can

be seen that SIEREM can equalize the acoustic system for both SSI and BSI. The

EDC for the SSI shows the effect of equalization in both the early part and the late

part. In late part, the EDC is improved by up to 18 dB. The EDC for BSI in Figure

6.8 shows that the early part is less suppressed than the late part, which is due to

the high NPM of the BSI error.
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Figure 6.7: The EIR and EDCs of the EIR obtained using SIEREM and h1

for SSI.
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Figure 6.8: The EIR and EDCs of the EIR obtained using SIEREM and h1

for BSI.



6.3 Evaluation 122

Table 6.4: The WMSE of EIR obtained with different NMSE estimates.

NMSE (dB) N̂MSE (dB) WMSE (dB) WMSE of h1 (dB)

-30
-20 -0.57

15.14

-30 -1.42
-40 2.41

-40
-30 -2.15
-40 -4.34
-50 -1.44

6.3.3 Sensitivity of SIEREM to model parameters

As was mentioned in Section 6.2, the equalization system g in (6.21) depends on the

NMSE for SSI, and NPM and the decay rate for BSI. However, in practice, the exact

NMSE or the NPM and decay rate are not typically known. Therefore, to compute

g, these model parameters need to be estimated. In this section, the sensitivity of

the SIEREM to the accuracy to which these parameters can be estimated is studied.

Firstly, we study the sensitivity of SIEREM to NMSE estimation for SSI.

The WMSE, which is defined in (2.74) and equal to cost function (6.16) when the

weighting function u(i) is equal to w(i), is computed for different NMSE estimates.

In this work, to compute the WMSE, the u(i) is set to u(i) = w(i). The WMSE of

h1 is computed after h1 is normalized by the amplitude of its direct-path response.

The WMSE results for T60 = 0.6 s and distance between speaker and center of the

microphone array 2 m are shown in Table 6.4. It can be seen that even with ±10 dB

error in NMSE estimates, the SIEREM still provides at least 12 dB improvements

in WMSE for NMSE = −30 dB.

Secondly, we study the sensitivity of SIEREM to NPM and T60 (which is

directly related to the decay rate α) estimation for BSI. 2-channel systems with

RIRs generated using the image method [36] are used in the experiment. The room

dimensions are 6.4 m × 5 m × 3.6 m; the distance between the speaker and the
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Figure 6.9: The WMSE as a function of the estimated NPM, demonstrates
the sensitivity of the SIEREM to the errors in NPM estimates.

center of the microphone array is set to 2 m, and the inter-microphone distance is

5 cm. In the study of the sensitivity of SIEREM to NPM estimation, T60 is set to

0.6 s; the error vectors are generated with the algorithm presented in Section 6.3.1

and the NPM is set to −10 dB, −15 dB and −20 dB. The WMSE of the EIRs

obtained with SIEREM for NPM estimates from −30 dB to −6 dB is calculated.

Parameters for equalization are set to Li = Lc, τ = 0. In each run of the simulation,

the relative geometry of the speaker and microphones is kept constant, but the

speaker is relocated at a random position in the room. The averaged WMSE over

100 randomly chosen speaker positions and generated error vectors are plotted in

Figure 6.9. It can be seen in Figure 6.9 that the SIEREM is not sensitive to NPM

estimation. For example, for NPM = −20 dB, even with ±10 dB error in NPM

estimates, the SIEREM shows less than 4 dB performance degradation in WMSE.

In the study of the sensitivity of SIEREM to T60 estimation, the reverberation

time is set to T60 = 0.4 s, T60 = 0.5 s and T60 = 0.6 s, and the NPM of generated
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Figure 6.10: The WMSE as a function of the estimated T60, demonstrates the
sensitivity of the SIEREM to the error in T60 estimates.

error vectors is set to −10 dB, −15 dB and −20 dB respectively. The WMSE of

the EIRs obtained with SIEREM for T60 estimates from 0.3 s to 0.7 s is calculated.

Parameters for equalization are set to Li = Lc, τ = 0. The averaged WMSE over 100

randomly chosen speaker positions and generated error vectors are plotted in Figure

6.10. We can see in Figure 6.10 that the SIEREM is not sensitive to T60 estimation.

±20% error in T60 estimates causes less than 1 dB degradation in WMSE.

6.4 Summary

In this chapter, system identification error is modeled for both the SSI and BSI. A

system-identification-error-robust equalization method exploring the use of the error

models is presented. Evaluation results show that the SIEREM can give significantly

beneficial equalization results for both SSI and BSI. SIEREM requires as input

estimate of the NMSE for SSI, and estimates of T60 associated with the acoustic
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system and an estimate of the NPM level for BSI, however, it has been shown that

SIEREM is not significantly sensitive to the accuracy of these estimates.
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Chapter 7

Conclusions

7.1 Summary and discussion

The aim of this thesis was to propose and investigate robust equalization methods

for acoustic systems in the presence of system identification errors, in order for

speech dereverberation. In Chapter 2, the fundamentals of system identification

and equalization were reviewed. Characteristics of room acoustics were discussed

and performance measures for equalization were accordingly defined. In Chapter 3,

the MCLS method was investigated from the viewpoint of channel zeros. Two classes

of characteristic zeros resulting in sensitive MCLS equalization systems were defined.

The RMCLS method was proposed and investigated. The RMCLS is more robust

than traditional MCLS. In Chapter 4, channel shortening for use in acoustic system

equalization was investigated. A link between MINT, CS, and RMCLS was derived.

A criterion for selecting a perceptually advantageous equalization system from the

multiple solutions to channel shortening was provided. In Chapter 5, the OS-WCG

algorithm was proposed for robust equalization of acoustic systems estimated using

SSI. A conjugate gradient iterative method was employed and the peak index of

WDRR in the iteration process was estimated, which led to an optimal equalization
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Figure 7.1: Comparison of the EDCs obtained using MCLS, RMCLS, OS-
WCG and SIEREM for SSI.

system. In Chapter 6, an equalization method using models of SIEs was discussed.

A study of BSI error relating to the BSI performance measure NPM was conducted.

The SSI and BSI error models were incorporated in the least-squares formulation

and the SIEREM was obtained.

As a summary, we compare these methods in terms of performance and com-

putational complexity. The EDCs obtained by applying different methods to the

systems and their estimates used in Section 2.5 are reproduced together in Figure

7.1 and Figure 7.2 for SSI and BSI respectively. It was found that for SSI, OS-WCG

and SIEREM produce comparable results, which was also reflected by the evaluation

results in C50 and T30 presented in Section 5.5.2 and Section 6.3.2. The RMCLS,

OS-WCG, and SIEREM can all equalize the acoustic system. A difference of the

EDC of RMCLS from those of OS-WCG and SIEREM is that it shows a sudden

drop at 0.05 s. For BSI, the level of the EDC of RMCLS is about 10 dB less than

that of SIEREM in the period shortly after 0.05 s, but the difference between the
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Figure 7.2: Comparison of the EDCs obtained using MCLS, RMCLS and
SIEREM for BSI.

level of the EDCs of RMCLS and SIEREM decreases with time. Compared with

RMCLS for BSI, speech resulted from SIEREM sounds more natural. (It sound like

speech captured in a room which is less reverberant than the original room, whereas

the RMCLS introduces colouration due to the sudden drop at 0.05 s.)

As for computational complexity, both MCLS and RMCLS need singular

value decomposition (SVD), CS needs QZ decomposition, which result in high com-

putation load for these algorithms. On the other hand, OS-WCG only needs one

multiplication of a matrix by a vector in each iteration, and SIEREM only needs a

matrix inversion. Considering a simple case, in which H is a square matrix (which

can be achieved by, for example, M = 2 and Li = Lc) with size ι× ι, the computa-

tional complexity of these algorithms in terms of floating point operations (flops) [70]

is shown in Table 7.1. The results in Table 7.1 are obtained using the computational

complexity analysis of SVD, QZ, and matrix inversion via Gaussian elimination given

in [70]. The complexity of OS-WCG depends on the NMSE of the SSI error. Lower
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Table 7.1: Computational complexity comparison.

computational complexity (flops)

MCLS 25ι3

RMCLS 25ι3

CS 48ι3

OS-WCG 2ι3 + 2ι2 × number of iterations
SIEREM (7/3)ι3

NMSE needs more iterations. As an example, a typical number of iterations needed

for NMSE = −30 dB is 130. It can be seen that the computational complexities of

OS-WCG and SIEREM are 10-20 times lower than RMCLS or CS.

7.2 Future directions

In this section, we discuss some future work directions arising from this thesis.

• In Chapter 3, it was shown that the characteristic zeros causing strong peaks

in the frequency responses of the components of equalization systems obtained

from MCLS did not cause peaks in the RMCLS counterparts. Replacements

of the characteristic zeros, which were near the characteristic zeros, could be

found in the zeros of the EIR resulted from RMCLS. These results were shown

by experiments. Mathematical explanations for them are desired.

• In Chapter 4, the generalized eigenvalue problem was solved and multiple so-

lutions that maximize the quotient in (4.1) were obtained. Then the solution

which results in the minimum `2-norm EIR was regarded as a perceptually ad-

vantageous equalization system and was selected for use. It might be possible

to formulate the maximization of the generalized Rayleigh quotient in (4.1)

and finding the CS solution which leads to the minimum `2-norm EIR in one

optimization problem.
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• The OS-WCG algorithm was developed for SSI in Chapter 5. One character-

istic of OS-WCG is that the iterative method enables the weighting function,

which is not effective in the closed-form WMCLS. Another characteristic is

that the peak index of WDRR in the iteration process is estimated, which

results in an optimal equalization system. Applying the iterative method to

BSI, the WDRR also showed a peak. An approach to estimate the peak index

for BSI is not yet available and is to be explored.

• In Chapter 6, the SIEREM needs NPM of the BSI error as an input parameter.

However, method for blind estimation of NPM is not yet available and the blind

estimation of NPM is still an open question.

• In our work, NPM was used as the measure for BSI quality. This measure

characterizes the angle between the true acoustic system and the estimated

system and is considered to be a consistent measure among all measures base

on `2-norm distance. However, no evidence shows that an `2-norm distance

based measure can capture all the characteristics of BSI. Therefore, other

measures are desired to be explored. This would be helpful for both the peak

index estimation for BSI in OS-WCG and BSI error model improvement for

SIEREM.

• Due to the high computational complexity of RMCLS and CS, which need

singular value decomposition and QZ decomposition respectively for large ma-

trix, we were not able to produce systematic evaluation of RMCLS and CS.

This could be carried out in future work.

• For both OS-WCG and SIEREM, weighting function (5.5) was used. Since it

was desired that the decay rate of the EIR was not larger than that of the

RIR, the parameter α controlling w(i) in (5.5) was set according to (5.19).

However, α is not necessarily related to the T60, and (5.5) is not necessarily
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used. Different α or different weighting functions can result in EIRs leading to

speech with different characteristics. Performance of OS-WCG and SIEREM

with different values of α or with different weighting functions is interesting.

In this thesis, the performance of the developed algorithms was evaluated with

limited design parameter settings. Their performance for parameters such as

τ and Li set to different values is relevant.

• The main objective of this work was to improve the intelligibility of rever-

berant speech. The performance of the algorithms was evaluated with objec-

tive measures, which are considered to be correlated to subjective perception.

Evaluation confirmed the improvements made by the algorithms. However, it

is known that objective measures have not yet been able to characterize the

whole picture of speech perception. Therefore, formal listening tests could be

organized.
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