Visualising Dynamic Memory Allocators

A.M. Cheadle & A.J. Field,
J.W. Ayres, N. Dunn, R.A. Hayden and J. Nystrom-Persson

Imperial College London
{amc4, ajf}@doc.ic.ac.uk

Abstract

We present generic extensions to the GCspy visualisateimedr
work that make it suitable for tracking the way continuous dy
namic memory allocators such aémalloc or incremental and
concurrent garbage collectors make use of heap memoryeThes
extensions include sample-driven client-server comnatitn, in-
cremental stream updates and client-controlled strearataffce-
quency. Additional extensions to the current GCspy clieataso
described. These include hierarchical driver grouping laiedar-
chical visualisation, zooming, and the ability to define atelv
relationships between tiles in different spaces. We alsodiuce a
heuristics engine that is responsible for flipping GCspy from its de-
coupled ‘observation’ mode to a synchronous ‘single-stepte,
and describe a backtrace facility that can trace the seidercall
sequence that led to the triggering of a specified event, asithe
allocation or freeing of a block of memory. This enables atpef
the allocator (fragmentation, block ordering, splittingdacoalesc-
ing policies, etc.) to be understood in the context of a paldir ap-
plication and potential optimisations to be identified. Effective-
ness of the enhanced framework is demonstrated with a ctenple
integration withdlmalloc. The framework is evaluated in terms of
both performance and its ability to explore contrived maedifions

to dimalloc’s coalescing policy.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection); CRérformance of Sys-
tems]: Measurement techniques; D.2.Software Engineering):
Testing and Debugging; H.5.2nformation Interfaces and Pre-
sentation]: User Interfaces

General Terms Algorithms, Measurement, Performance, Lan-
guages, Human Factors.

Keywords Language implementation, Memory management, Dy-
namic memory allocation, Garbage collection, Visualmatf ob-
jects.

1. Introduction

Dynamic memory allocators are responsible for the efficaiot
cation of memory from a program’s heap — the area of memory
from which runtime data structures are allocated. Undeditey
and tuning the performance characteristics of these atloxis a

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM'06 June 10-11, 2006, Ottawa, Ontario, Canada.
Copyright(© 2006 ACM 1-59593-221-6/06/0006. . . $5.00.

complex and challenging task. This is usually achieved higrex
sive instrumentation based profiling of the allocator (antec-
tor, where there is automatic garbage collection), whilshing a
range of benchmarks. There are, however, behavioural ctiegis
tics that are best understood visually, especially wheerdehing
how they vary over time. For example, the object density edaiof
the heap, the extent to which contiguous heap areas havenkeco
fragmented, and the distribution of free blocks among sEgesl
free lists.

An established tool for visualising heap usage in the cdntex
of garbage-collected systems is GCspy [15]. GCspy provibdes
capability to track the evolution of the heap visually, bypping
blocks in memory to tiles in a graphical user interface.

In principle, GCspy can also be used to visualise more génera
memory management systems, e.g. custom allocators antagene
purpose allocators, indeed any system that comprisedipaetil
components in a simple hierarchy. However, broadeningpipdi-a
cation proves to be more difficult in practice. GCspy was glesil
for visualising the effects of a garbage collector. In thostext the
heap state is rendered in response to relatively infrequeritage
collection events, such as the start and/or end of a mingmfma
collection cycle or a mark/sweep phase. When such events,occ
the entire state of one or more heap regions is communiceted f
server to client vissTREAM commands, each of which reports the
attributes of each block of a given region.

Although the framework can, in principle, be used in a more de
coupled “asynchronous” mode, there is currently no intesog-
port for it. For example, asynchronous data capture cuyrérats
to be implemented explicitly, e.g. by building a data cagtilnread
that runs concurrently with the application. There is alecanto-
matic support for efficiently tracking high-volume, fineagr mod-
ifications to the heap state. The current stream model stgpor
“all or nothing” mode of server-client communication thasheen
tailored for the task of visualising relatively coarseigeal garbage
collection events where much of the heap changes betweatseve
When used to track high-volume fine-grained events the gurre
communication model can prove to be prohibitively expessiv

There are also other limitations within the framework whieh
come apparent when attempting to generalise its use. Forgaa
it is presently capable of visualising only two levels ofraiehy,
capturing the notion of region and block. This is completelg-
sonable in the context of a garbage collector as it neatlyucap
the basic heap memory structures as administered by mdst-col
tors. In general, however, other aspects of memory manageme
may involve richer data structures and/or logical conestithat
form more general hierarchies. The same is true of othealisa+
tion problems for which GCspy might in principle be well sdt
When these hierarchies exist, it can be desirable to vieferdiit
aspects of them at different times and at different resmhsti This
avoids ‘visual information overload’, helps to target \afisation

effort, and can also improve performance by reducing conmeadn
tion and rendering costs.

Despite its current limitations, GCspy provides an excglle
basis for the realisation of a general-purpose visuatigaiol. It
provides a minimally-intrusive client-server frameworkiwmany
of the visualisation and communication abstractions megui

allocator either by an explicit request for a contiguous block of a
specified size (e.gnalloc) or by a request to build a new object
of a specified type (e.aew). Previously allocated memory that is
no longer required by the program can be released to the nyemor
manager either implicitly (and automatically) byarbage collec-

tor or explicitly by calling a general-purposieallocation function

In this paper we present enhancements to the GCspy framework(e.g.free).

aimed at extending its scope to include a wide range of memory

management systems. This requires significant extensoitiset
existing server-side architecture that enable it to trackl report,
fine-grain high-frequency memory management events effigie
whilst relieving the software burden associated with unstenta-
tion. In adapting and applying the new framework, we have als
identified and implemented a number of useful enhancements t
the client-side visualisation, some of which have impdrtenpli-
cations for the server architecture. Two significant nevitfiess are
the ability to definetriggers, that are designed to fire in response
to specific events generated by the application, and théyatul
report backtraces that record the sequence of function calls that
led to the firing of a particular trigger. These new faciktiequip
the framework with additional performance debugging cdjbis
that can help to correlate observed behaviour with cal sitehe
application.

Using GCspy as a starting point avoids ‘reinventing the Whee
and creates a single integrated tool, rather than anotiméasi yet
disparate tool. Our hope is that this work will help to promtie
adoption of GCspy as the de facto memory management tool.

2.1 Garbage Callection

A comprehensive review of garbage collection techniqueshza
found in [2]. Most collectors fall under the heading of “sttige
world”, in which program execution is halted whilst the eaitor
runs. However, where there are real-time constraints,x@etgion

of the program and collector can be interleaved in such a way a
to bound the inheremnpauses that arise in program execution and
ensure a minimum level of useful progress [12, 13, 14]. Froen t
point of view of this paper the distinction is potentially sbme
importance: stop-the-world collectors induce coarséngmem-

ory management events relatively infrequently; concuroafiec-
tors induce fine-grained events which occur with much hidresr
quency. In some contexts it may be desirable to monitor fine-
grained collection events as they occur.

2.2 General-purpose Allocators

The distinguishing feature of a general-purpose allodaterdrop
the word ‘deallocator’ although the allocator and dealtocao

This paper serves to document the enhanced framework, and tohand-in-hand) is the use of explicit function calls to aditeand

evaluate various aspects of its performance and usabildgscrip-

tion of how the new framework can be used to describe and visu-

alise the key structures maintained by Doug Ledvsalloc is also
presented. In order to evaluate qualitative aspects ofrthareed

deallocate memory, for examplealloc/new and free/delete in
C/C++ respectively. Explicit deallocation involves redewy the
space occupied by an object so that it can be used to satisfy-a s
sequent allocation request. This typically involves neitug the ob-

framework, we also document an experiment aimed at exgjorin ject to a free list/bin which in turn may result in its assdeéhblock

aspects oflimalloc’s coalescing policy. This is not intended as a
full-scale investigation, but rather to illustrate potahy useful as-
pects of the new framework.

The paper makes the following contributions:

being coalesced with its adjacent free blocks, if they theves
are free. Details of specific general-purpose allocataifdeator
architectures can be found in [1, 4, 5, 6].

In order to clarify some of the issues involved in allocator

.. design, and to set the scene for the rest of the paper, we now
* We present enhancements to the GCspy framework to facili- pignlight the internal structure of Doug Leal$malloc, which is

tate the instrumentation of systems with high-frequenanés; a popular implementation @falloc() andfree () used in nearly

such as custom, and general-purpose memory allocators, andy| ¢ programs for dynamic memory allocation. Section 5 dbes

concurrent garbage collectors (Section 3). a visualisation ofiimalloc using our enhanced GCspy framework.
¢ We present a number of general enhancements to the framework

that renders it suitable for visualising structures thatrfoich 2.2.1 dImalloc

physical and/or logical hierarchies (Section 4). dImalloc, and allocators derived directly from it, are included in

¢ We extend the capacity of the framework as a performance de- a number of Linux distributions as the native user-spaaatbr
bugger with backtrace and event-driven monitoring cafias! and are also included in a number of software packages as an
(Section 4.4). implementation olalloc (), overriding the standard C library’s

e We present performance results evaluating the enhanced GC_native_maIIoc. Full details ofdlmalloc can be found in [1] and the
spy in part usingdimalloc benchmarks designed to stress the 2associated source code.
framework (Section 6). Details of tlidmalloc visualisation are
presented in Section 5.

¢ We explore the utility of the new framework by showing how it
can be used to understand qualitatively the effect of a @uatr
modification todimalloc’s coalescing policy (Section 7).

key
[group

O space

indexed space

dimalloc

space
(with zoom capability)

The source code for the enhanced GCspy framework and the in-
strumenteddimalloc (version 2.8.3) is freely available and can be
obtained from [3].

smallbins

...........

2. Background

Most modern programming languages support some notialy-of
namic memory management in which memory can be claimed and
released when required at run time. Memory is acquired fitwen t

Figure 1. dlmalloc architecture in GCspy group hierarchy form

Allocation within dlmalloc initially proceeds using a bump-
pointer allocator with a set of empty free lists. When a chohk
n bytes is requested, it is satisfied by returning the next esecgi
of n contiguous unallocated bytes, by splitting te chunk which
represents all of the currently available memory. Whérea oc-
curs the freed chunk is added to a free list because chunkware
generally freed in the same order as they are allocatedré-atu
location requests are serviced first by free list chunks failing
that, bump-pointer allocation resumes.

dImalloc segregates its set of free lists irmallbins, that con-
tain blocks capable of servicing allocation requests of u@256
bytes. There are currently 30 smallbins; a maximum of 32 neay b
used depending on the machine architecture and the mininetim p
mitted size of a chunk. Each smallbin contains same-sizedksh
i.e. implementing &trict size segregation policy. Sizes start at 16
bytes, increasing in 8 byte increments up to the 256 byte maxi.

A request for a memory block in the ranfge 256] is rounded up to
the nearest 8-byte multiple. If the corresponding smalibinon-
empty then a chunk is removed from it and returned. If it is gmp
the next largest smallbin is consulted likewise. If that imempty
then an attempt to service the allocation is made usingi¢éhig-
nated victim.

The designated victimjuv, is a pointer to the chunk resulting
from the last split operation of an oversized (treebin) ¢huts
role is to maintain spatial locality of reference which ieases
performance by optimising cache misses. If the size ofdihés
greater than that of the request, theis split and used. If it isn't,
then an allocation attempt is made from the smallbin thataing a
large enough chunk, which is then split if necessary. If gguest
cannot be serviced from the set of smallbirsebin allocation is
attempted.

A treebin is a collection of all chunks larger than 256 bytes
organised into bitwise digital treefries for short) that are keyed
by chunk size. There are 32 such tries and these are segtrégate
power-of-2 ranges, with two equally spaced treebins foh gaever
of two. For each trie, its power-of-2 range is split in halfezich
node level with the strictly smaller value as the left chiBhme
sized chunks reside in a FIFO doubly linked-list within tieelas.

If a request cannot be satisfied by a chunk from a treebin, bump
pointer allocation resumes — thep chunk is split in order to
satisfy the request. If there is insufficient free memoryilate

such as Jikes RVM’'s MMTk memory management toolkit and the
.NET Shared Source Common Language Infrastructure, ROTOR.

The GCspy framework adopts a client-server architectine, t
memory manager being visualised acts astheer and the GCspy
visualisation tool as thelient connecting to it.

The GCspy client is a generic visualiser for incoming server
data. At connection time the client receivbsotstrapping data
which describes the information that the connected serilepro-
vide. The user interface adapts to this bootstrap infoionat dis-
play the data being transmitted from the server. An impaodapect
of the design is that an application can be left largely undied
when a client is not connected to it.

A space represents a component of the memory management
system to be visualised. This could be an area of a heap but may
also represent a free list or some other relevant structu@Cspy
server can advertise any number of spaces. The server gidie-im
mentation of a space, the component that allows commuaitati
between a memory manager and the visualisation framewsrk, i
known as ariver.

A space is partitioned into a number bifocks. Blocks allow
some visual granularity to be adopted for a specific space. Fo
example each block could represent a specific object or a imode
a free list. A contiguous view of memory will typically cossiof
address-ordered blocks representing some arbitrary siagtk of
memory.

At the client, blocks are rendered as small rectanglesd:tlls,
typically coloured according to the intensity of some atite of the
block; example attributes include the number of used/frged)
number of objects, etc, within the block, and are defined fey th
driver implementer. Each block of a space can be associatad w
an arbitrary number of attributes.

A stream represents the values of some attribute for each block
of a space at a point of transmission from the server to tletli
Each space can have any number of streams (and thus each block
any number of attributes) and different spaces can haverdift
streams.

Streams have an associated textual descriptor which therdri
implementer can use to provide extra summary informati@utb
a stream that cannot be derived from the values containddnwit
the stream. To allow the visualiser to represent corretiytiles’
values (e.g. by shading them), the set of permissible at&italues

in thetop chunk, then a request to the operating system is made tois also sent by the server to the client.

expand the user's memory space into tbe chunk.

The structure ofllmalloc has been explained in the context of
servicing a small allocation request. The logic for sengca large
request is broadly similar, although there are some difiege —
see [1] and the associated source code for full details.

In addition to implementing the standatalloc interface, cor-
responding operations are provided for allocation intaegated
user-requested regions knownraspaces. Not only does this pro-
vide regions which effectively have their own loeinalloc allo-
cator, but if compiled correctly, a program can use thes@nsg
for dimalloc based allocation without overriding the native malloc
implementation of the system.

23 GCspy

GCspy [15] was developed for visualising heap memory andemo
specifically, the effect of the garbage collector on heapuiayit has
been used to analyse a number of production garbage colientd
the way in which the collector interacts with an executingleya-
tion. Specific execution environments that have been dudieng
GCspy include Sun’s Java HotSpot and ResearchVM (prewiousl|
known as the ‘Exact VM’) virtual machines. In addition dnige
also exist for systems that serve primarily as researctiopias,

The client generates a representation of the tiles in ancditbe
display window corresponding to a space, with one rectamdudx
per tile (block) rendered according to a currently seleectidbute
associated with the stream.

2.3.1 DataCapture

GCspy does not define a data collection method — this is left to
the system implementer. When visualising a garbage colledta
is typically gathered by sweeping over each collector camepb
(heap space, region, etc.) at specified garbage colleetients.
Stream data is then assembled from scratch and the entiearsis
sent to the client. This constitutesynchronous mode of operation
where the application is essentially “paused” whilst thi®rima-
tion that is to be sent to the client is assembled. For a “ttep-
world” tracing collector, events are typically associateith each
phase of a collection cycle (e.gtart collection, end collection).
In a more complex collector, such as the incremental tralleco
tor [16], events are associated with the start and end ofygen-
eration and each train collection cycles [17]. It is worthing that
although [17] visualises an incremental collector, eadtection
cycle appears instantaneous — a cycle is the finest gratyutsri
heap visualisation.

This synchronous mode of operation is inappropriate when vi
sualising general-purpose allocators where the everfarlloc
andfree) occur at substantially higher frequencies than, for exam-
ple, garbage collection events and result in very small ghario
the heap state. For example, if the naive streaming modskd to
visualise adllmalloc application, where event rates of the order of
100,000 per second are not unusual, the data capture andiccomm
nication overheads invariably render the tool unusable.

As an alternative, the implementer is at liberty to perforatad
captureasynchronoudly, for example using a separate thread to per-
form data capture concurrently with the application. Itlsogpos-
sible to arrange for communication with the client to be perfed
periodically, e.g. after specified intervals of time, in @rdo main-
tain a satisfactory client update rate whilst reducing allerom-
munication.

This “manual” approach to handling asynchronous data cap-
ture has three drawbacks: Firstly, there is no internal stipfpr
it, so the development effort, which is substantial, wousah to
be replicated each time a similar asynchronous mode of tpera
is required. Secondly, the framework does not support thi@mo
of incremental stream updates: only whole streams can be-tra
mitted to the client. This is potentially expensive whenfpening
periodic client updates as only a small proportion of theastr
values may have changed since the previous update. The-imple
menter could choose to partition streams into smaller oneass
to reduce communication costs, but this has to be done nignual
and may lead to a less-than-ideal client-side “model” ofabtial
heap layout. Thirdly, external data capture complicatespoten-
tially hinders the interaction of the server, its drivensgdhe client
when detecting undesirable behaviour and pausing thecapipin
within close proximity. This interaction is heavily utiéd in equip-
ping GCspy with therigger functionality that allows it to be used
as an effective performance debugger.

The first set of enhancements we now describe are designed

to overcome these problems and to provide more control dwer t
coupling between server and client. In Section 4 we docuraent
range of additional features that enhance GCspy's visatais and
performance debugging capabilities.

3. Enhancing GCspy |: Sample-based
Visualisation

Improving GCspy’s ability to visualise dynamic memory abe
tors, in terms of both efficiency and productivity, involvemdi-
fying the server-side architecture and server-client camoation
models, as we now describe. Enhancements to the clientAsiade
alisation features are considered separately in Section 4.

3.1 Stream Control

To provide efficient support for fine-grained high-frequeevent
handling within the GCspy framework, we have modified the
stream control mechanisms in two important ways.

Firstly, we have added a new commaridiR_STREAM) that
enables the server to report incremental updates to a stradmar
than specifying the complete set of block (tile) attributssoci-
ated with the stream. Secondly, we have added supposaifiaple-
driven stream control in which stream updates are reported period-
ically to the client at intervals (thseampling interval) controlled by
a slider in the client GUI. Together these provide an asyorobus
mode of operation that isiternal to the framework.

In order for the client to be updated correctly, incremen-
tal stream updates that occur between client updates nebd to
buffered at the server. One buffer is required for each straad
server-side buffer management code keeps track of whiehrss,
and which blocks within each stream, have been ‘dirtiedsithe

last client communication. At each client update only dittblocks
are flushed to the client.

The sampling interval controls two factors simultaneously
Firstly, it influences the visualisation “frame rate” sinae princi-
ple, the smaller the interval between successive updagdsigher
the frame rate that can be achieved. At the same time it also co
trols the amount of ‘decoupling’ between client and seriére
longer the time between updates the further the applicaéorget
ahead of the client, in terms of the current state of the thte
visualisation.

Notice that the sampling rate also influences the volumewfco
munication required to update the client because incrgatia
time between updates increases the average number of hlatks
will have been dirtied by the application in the interventime.
There is thus a performance tradeoff between update congauni
tion overheads and frame rate which we evaluate in morel dietai
Section 6.

3.2 Server Thread Model

Stream update
buffers

.=

Application

Application
thread

Non-incremental
Commands

Non-incremental
Commands

Network

thread

thread

T

Network (TCP/IP)

Network (TCP/IP)

a. Original GCspy Server b. Enhanced GCspy server

Figure2. Server Architecture

The extensions described above require a number of changes
to the thread model in the existing GCspy server. Curretitly,
server has just two threads: an application thread thatasriro-
gram execution and all server-client communication, anetaork
thread that is responsible for processing commands semt the
client to the server, e.g. connect, disconnect, etc. Thetgsvn in
Figure 2(a).

The enhanced server architecture is shown in Figure 2(b)-Co
mands sent from the client to the server are handled bi¢heork
thread as before and GCspy’s existing (non-incrementaty-co
mands are sent from the server to the client as originallyqileed.

3.21 Events

In the current version of GCspy an event causes the statechf ea
space’s stream to be transmitted to the client. This is ngdothe
case. The default behaviour is that an event causes the-siee
buffers to be updated. These are then flushed to the clietiigat
specified interval, by atUpdate thread. TheUpdate thread keeps

a count of the number of occurrences of each such event, which
it reports to the client at the update instances. The clienhus
able to display event counts that are both accurate andstensi
with respect to the current visualisation, even though thents
themselves are only issued from the server periodically.

Note that events generated by the application thread do-some client and server throughput. A vertical scrollbar has dsen

times need to be reported to the client as they occur. A specifi
example arises when handlingggers, which are the subject of
Section 4.4. We will defer discussion of this event repagrtimech-
anism until then as it requires an understanding of the natio
eventattributes, described later (Section 4.4.1).

3.2.2 Updates

The Update thread periodically locks and flushes the server-side
buffers to the client (by sendinGNCR_STREAM commands) at a
rate specified by the sampling interval. Importantly, thedate
thread waits to receive an acknowledgement from the cliefarb
allowing the application access to the stream buffers, lzasing a
buffer lock. This acknowledgement is sent by the client wihéas
completed the redrawing of the GUI — this ensures that thentli
side visualisation at that point reflects accurately theerurstate

of the heap within the application.

added to address the problem of rendering large numbersoésp
simultaneously. This, together with the ability to collapdrivers
provides an element of user control over the volume of dathish
in view at any time.

Note that when a space is collapsed, updates to the assbciate
stream are not reported to the client. The server-siderstbedfers
described in Section 3.1 naturally support these collépsitivers
as they serve to cache changes to the associated spacelsaygin t
those changes are not being reported to the client. Totteilihis
we have implemented a new stream commad.LAPSE, which
the client uses to notify the server when a space has beeapsed
or uncollapsed. A space is reported as being collapsed diihis
itself collapsed, or if any of its parent groups has beerapsiéd. A
space is reported as being uncollapsed if it is uncollapsddb of
its parent groups are uncollapsed.

Note that a separate semaphore ensures that client updates a 42 Ranges

not issued until there is at least one item within the strepdate
buffers. Thus, the actual update rate may also be affectetidoy
application event rate in extreme cases (tipdate thread may have
to wait for the next event). When the sampling interval iozeach
update may report as little as one block attribute to thentlie

An important feature of the enhanced server is that syncusn
non-incremental event handling is identical to that of therent
GCspy. Therefore, the performance of the new frameworlediff
almost insignificantly from that of GCspy when used to vigeal
garbage collectors in the conventional manner. The newdwark
can thus straightforwardly replace the current GCspy wittsuif-
fering a performance hit, even though the additional festumay
not be required or exploited.

3.3 Space Management

In the current version of GCspy, the number of blocks in a epac
can be modified at runtime. However, this requires the aatexti
driver to be re-serialised, which results in its entire ogunfation

to be re-sent to the client, even though only the number e# til
has changed. On the client side, the associated space,tits da
structures and its widgets are discarded, which creatémgarand
regenerates objects unnecessarily.

Our experience witklimalloc (Section 5) shows that tile addi-
tion and removal are very frequent operations in dynamic mem
ory allocators. In particular, the number of nodes in a fisenhay
change at every allocation/deallocation.

To remove the need to re-serialise the drivers on each space

modification, we have implemented commands for addibg (TILES)
and removing KEMOVE_TILES) a specified number of tiles from a
space. For sample-driven streams these commands are issued
the Update thread (see above) and have the effect of modifying
the structure of the stream update buffers (Figure 2). Wheset
buffers are flushed during a client update the change intsteic
must also be related to the client in order that the assatteam
can be rendered correctly in the GUI.

4. Enhancing GCspy I1: Client Functionality
4.1 Driver Grouping

When modelling an allocator it is intuitive to map each fres |
to its own individual GCspy space and also highly desirable t
group related spaces. We have therefore added the capabilit
group drivers/spaces hierarchically, so that the visatiia reflects
accurately the conceptual components of a system. For dgamp
free lists can be grouped into smallbin and treebin sets. o a
spaces to be collapsed so that uninteresting ones maybenhidd
from display, thus eliminating ‘visual overload’ and inasingboth

We have added a feature that allows relationships betwessesp
to be expressed through titanges, which define the start and end
“addresses” of the items contained in the associated blidukad-
dresses are simply identifiers associated with the smakstunits
(e.g. bytes, table entries, etc.) of interest. This feaall@vs the
GUI to highlight tiles rendered in different spaces thatespond
to the same block of memory. As an example, an allocator may be
visualised with a space displaying a contiguous memory \aed/
separate spaces for each free list — the free list displayagtn
memory blocks that also reside in the contiguous memorytalisp

To support these inter-space relationships we have intextia
tilerange streamto carry range update information from the server
to the client. The tile range stream and GCspy's existiogirol
stream are actually implemented as instances of a gersggiem
stream, which has also been added to the framework. Such streams
(optionally) capitalise on the performance benefits of damp
driven stream transmission, incremental updates and rdciok
lapsing, as for user-defined streams.

4.3 Zooming

A visualised heap maybe on the order of 4GB in size, and with a
limited number of tiles that can be displayed on the clieathetile
must represent blocks of many (hundreds of) kilobytes. fitenk
sity of the colour of the tile is a general indicator of its pdgtion.
However, at this grain of resolution it is practically imgdse to
resolve fine-grained aspects of the heap structure, suchgmmén-
tation. We have therefore incorporated a facility that@tiahe user
to zoom in on specified regions of memory, enabling more ketai
analysis of such characteristics to be explored.

To support zooming we maintain the addreasge and block-
ing factor of a space. The blocking factor determines how many ad-
dressable data units each block (on the server) and eac¢brtite
client) represents. The associated driver uses the blgdaator to
determine the range of data that needs to be streamed tdehe cl
Thus, although zooming is controlled at the client side unegl
changes to the data transmission are handled by the sencees
sive zoom operations are stacked so that it is possible tmzmd
to the previous zoom level.

4.4 A Heuristics-based Trigger Engine

GCspy was conceived purely as a visualisation tool. However
it is often invaluable to be able to focus visualisation ©ffim
response to particular phenomena observed within thecapialn.

For example, the user may be interested in tracking unysuall
large allocations or in identifying points during execuativwhere
fragmentation starts to occur.

To facilitate this we have introduced taigger mechanism,
which has the effect of pausing program execution and sgndin
aFIRE_TRIGGER command to the client when a specific activity is
observed at the server. These commands are processed liithe ¢
by invoking code specific to the trigger that has fired.

441 Event Attributes

The triggering mechanism works by associatattributes with
each event type. Event attributes are simply named integjees
that are registered by the server, in a similar manner to thg w
events are registered in the current framework. For exgniple
the case ofilmalloc the server-side application may associate the
attributes “Location” and “Size” (new block location ande) with

a memory allocation event. Information about the variousnev
and event attributes are registered at the server and avdedio
the client during initialisation.

Note that in the original GCspy framework the “elapsed time”
and the “compensation time” [15] were transmitted exgiaitith
each event. These are now simply event attributes; an exaofipl
how they can be used is given below.

442 Triggers

Triggers are specified by the user on the client. A triggermises
five components: an eveatan attributex, a comparison operation
op, an integer threshol and an actiomct. Informally this means:
If, at the server, evertoccurs and op t then pause the application
and perform actiomct on the client. In practice, if both the event
and attribute tests succeed #ERE_TRIGGER command is sent to
the client and the client-side action is performed as a bépct
of processing that command. Currently, the comparisonadiosis
supported are>,= and <. Thus, for exampleg=Allocation,
a=Size, op=<, t=2048 causes a trigger to fire whenever an alloca-
tion of less than 2048 bytes occurs. Furthermore, attribca@ be
associated with parameterised callbacks that delivertthiewtes’
value at the server. It is therefore possible for the atteibas spec-
ified at the client, to have additional parameters that aee wghen
computing the attribute value. An example is given in thet isex-
tion.

4.4.3 Actionsand Plugins

Plugins are part of the current GCspy framework and we have
used this mechanism to define the client-side trigger astioleed
actions and plugins are synonymous in the new frameworknwhe
you specify a trigger action you are actually identifyingigkh
plugin to invoke.

Trigger action plugins are composed of both server- anatlie
side execution logic that extend the GCspy framework. Sesicke,
plugins provide the functionality to extract attributewas$ from the
host application, such as the size of an allocation or theetds
of arbitrary memory locations. On the client-side, plugbesitain
the logic that executes as a result of processin@fIRE_TRIGGER
command.

We have defined three trigger action plugins:

Backtrace Plugin The backtrace plugin opens a window on the
client, in which it displays a summary of all events genetaig
the application since the trigger fired. Associated withheaent
is a summary of the state of the stack at that execution poire.
number of stack frames included in the backtrace is a pammet
of the plugin. An example is illustrated in Figure 3 showing s
frames per backtrace. We now provide details of how the plugi
mechanism works, using the backtrace as an example.

Recall from Section 3.2.1 that events generated by theappli
tion are not, by default, sent to the client. So, how did thenty
shown in Figure 3 reach the client? The answer is that theracti

© -w GCspy: Backtrace <2>

Allocation at QxE112a70 (size: 32)
rmallacd
¥OffsetRegiond
¥aubtractRegiong
Hawasciisawed
Hawasciisaved
_dtMatchatom

Free at OxE199110 (size: 72)
free)
¥OffsetRegiond)
¥SubtractRegiand
HamaAscivaved
Hawhsciisawad
_¥ihatchAtom

Free at Ox8199188 (size: 40)
freaf
internal_reallocg
¥ahrinkREegiong
¥OffsetRegiond)
¥SubtractRegiand
HamaAscivaved

LAllocation at Ox8 193238 (size: 72)
rmalloc
internal _reallacd)
HehrinkRegion(

Figure 3. The backtrace plugin

plugin associated with the trigger registers an “inter@stdne or
more event attributes. The complete list of attributes isvwkm by

the server, as explained in Section 4.4.1 above. Typictdgy,in-

terest list contains those attributes that the plugin nézg@erform
some client-side activity, for example populating a cliefridow.

In the case of the backtrace plugin of Figure 3, the attribate the
location of each allocation/free, the size of each all@catand the
set of six function address strings summarising the calleece
defined by the six frames at the top of the stack.

Before a trigger fires, its associated plugin (trigger attiis
disabled. Plugins can however be enabled manually (se&)elo
Although the server is aware of the interest list of eactysiglu-
gin, these interests are essentially disabled at the sefosrse-
quently, events are not sent to the client. As soon as thgetriiyes,
the associated client-side plugin is enabled, and its plagndow
opened, by virtue of receiving the correspondfRE_TRIGGER
command. Opening a plugin window causes its attributegefést
to be enabled at the serveAll subsequent events are then reported
to the client together with the values of the attributes téiiest to
the plugin. Closing the plugin window has the opposite éffec

As an example, Figure 4 shows the interface through which
new triggers are defined. It illustrates four triggers, ohevbich
is set to fire when an allocation of less than 128 bytes occurs;
one when an allocation greater than 64KB occurs; one when the
memory at heap location 0x5E800000 is modified; and the last
when fragmentation thresholds are exceeded (see Sectidxil 7)
are enabled, as indicated by the checkboxes. The backthagie p
illustrated in Figure 3 shows botfllocation andFree events,
even though the backtrace trigger itself was fired by thecation
at location 0x8112a70 (this fired the trigger as less thankl2&s
were allocated).

At the server, the backtrace information is collected ushey
portable open-source librarpunwind [19]. To limit the perfor-
mance hit in gathering this information and the size of theada
streamed to the client, the symbols and addresses of fuisctio

1 Actually, the plugin increments a counter for each suctibatie and the
client automatically reports non-zero counter attributethe server.

Mo trigger has fired

Event Aftribute Comparison Threshold Flugin Enabled
Allocation Size < 128 Backirace v]
Allacation Size = 55 26| Backirace [w]
Allocation Location > 15854465912 |Backirace [v]
Allocation Fragmentation (512, S24288) - 2000|Backirace v

Add trigger || Close

Figure4. The trigger interface

within the host application, and its shared libraries, athgred
by the server-side plugin at initialisation. The pluginates a hash
table mapping call site addresses to their function namésands
it to the client. Backtrace attributes simply specify thel@ds of
the function that generated the associated event and the ckes
the hash table to resolve the function name.

Note that when a backtrace window is open a substantial per-
formance penalty is incurred with each event, primarily assalt
of the required calls tGbunwind. It is possible to open the plugin
window independently of any trigger, but this is only recoemded
when the client is in single-step mode. This is, of course,dlise
when the plugin is enabled via a trigger as the server is pauken
a trigger fires (Section 4.4.2).

Memory Display Plugin In a similar vein to the display of back-
trace information, the memory display plugin displays thetents
of user-specified memory locations on occurrence of an event
is worth noting that this event may itself be a watchpoint loa t
contents of a memory location specified during trigger didini

Memory Fragmentation Plugin Triggers can be specified that
fire when ann byte contiguous piece of memory, is segmented
in to x chunks of which the largest chunk is at mgsbytes in
size. This provides a rudimentary mechanism for the mainigor
and diagnosis of excessive fragmentation — Wilson et al] [20
discuss the difficulty in defining a metric that accuratelyutifies
the amount of fragmentation.

In practice (Section 7) we find that the functionality pradcby
the trigger-based heuristics engine to be both flexible #edte/e
in achieving our stated goals of performance analysis aoblg@m
diagnosis. We define events that “watch” for specific uneesar
uncharacteristic behaviour. We use the displayed evemttcioce
the program started as a checkpoint and then replay exacatio
a point several hundred events before the start of this helvav
We then advance using single-step execution and the baeldral
memory display plugins to assist in more detailed analysis.

45 Hisories

An important feature of GCspy is the ability to display theletion
of an attribute over time. Theseistory graphs are maintained

applies when a driver is collapsed. If a history of one of thieail's
attributes is being displayed when the driver is collapsesimilar
pause in the history is seen. There is actually no reason hdy t
server could not optionaffycontinue to report attribute values after
the driver has been collapsed, but this is currently not stipd.

5. Visualising dimalloc

We have, where necessary, described and motivated mang of th
features and enhancements we have added, with passingnader
to allocator visualisation. In the following section we qalete the
picture by summarising our integration of GCspy witlmalloc.

The public set of allocation and deallocation routines laal-
loc (e.g.malloc() andfree()) have been augmented with GC-
spy instrumentation. The events are streamed to the chdontg
with attributes for the size of the (de)allocation request the ad-
dress of the block (de)allocated. All streams employ ineetal,
sample-driven data transmission. The majority of the remgiat-
tributes are defined and managed by the trigger action Eufmt
have already been discussed.

The GCspy server must initialise (at least under the various
versions of Unix) when thelmalloc shared library is loaded into
memory. This is achieved using the library’snit section, which
is invoked by the dynamic linker after all shared librariesébeen
loaded into memory and before the host application is aktbtee
run. Prior to this point, it is possible, though unlikelyr fbe . init
sections of other libraries to catk1loc(). It is therefore neces-
sary for our drivers to initially traverseéimalloc’s data structures
in order to accurately reflect the true state of the heap.

The GCspy driver/server framework, uses the dynamic alloca
tion routinesmalloc andfree for the allocation of its internal data
structures. This is a problem if it is the allocator that pdes
these functions that is also undergoing visualisation —athe
cation events from GCspy will be registered as if they caroenfr
the host application. We have therefore modified the senittr w
gespy _allocator hooks that allow registration ofraalloc style al-
locator that services GCspy's own allocation requests —dthe
malloc integration uses a segregated mspace allocator fogthis
spy_allocator.

Figure 1 depicts the hierarchical compositiondbdialloc and

by the client and are updated each time an attribute update isthe (collapsible) GCspy group and space mappings we apigly. F

reported to the client. In the original GCspy framework sehevere
controlled by event commands; in the new framework thesatgsd
are reported periodically, at a rate controlled by the ¢tlgtider.

Note that if the client is disconnected from the server tlséany
trace is interrupted for the duration. We do not log the histo
within the server as this would require an unbounded amofint o
memory at the server. Note that, at the time of writing, theea

ure 5 shows how this group hierarchy is represented on thateli
side user interface. Note that we have configudédalloc with
only three smallbins and three treebins in order to be abdadwv
the mapping of each of the various entities in a confined space

2 A space may be collapsed for reasons of performance — to eeeucler
times and increase throughput.

GCspy Windows FPlugins

| summary [Legend [cotors [zoom our [C1ear markers |

B Gy LN
History

key
[group

QO space

Current Ewent
1406 Allocation; 1393 Free
Tile Info

Drivers
dimalloc
Heap

Mspace [Mspaces] View: mspace

Heap [Contiguous Memory] View: Memon

Wiew Chooser Heap 0%804b000:0:889ce84 (87241 bjt)

mspace |v‘

Smallbins

dimalloc
space

(with zoom capability)

indexed space

smallbins

treebins
s
.
s

g
el

/ ‘
4 treebinn }
.

sampling 16 byte chunks [Smallbins] View:
Sample rate 500 ms
24 byte chunks [Smallbins]
32 byte chunks [Smallbins]
Treehins
256 - 384 byte chunks [Treehins] View: Chunks
Magnification 384 - 512 byte chunks [Treehins] Wiew: Chunks

512 byte chunks and greater [Treehins] View: Chunks

-

[mn]+ [0] connecred 1o tocaihost 6050 [dimalioc]

| Connect | Disconnect

Figure5. Mapping ofdImalloc’s GCspy group hierarchy to client-side user interface widg

Like previous integrations of GCspy with garbage collected
environments, the main space provides a contiguous vieweof t
heap. This facilitates a view of both allocated and free &buf
memory and the zoom capability (Section 4.2) allows us taigoc
on both densely populated areas and also highly fragmented a
of memory. In addition to this contiguous view, we provideotw
groups and one further summary space:

Smallbin group A set of spaces, one for each free list, where each
(same sized) free chunk on the list is represented by a tdetsn
order of the listis displayed in the ordering of the tileseHifect of
each smallbin allocation and free event is reflected in ttuitiad

and removal of tiles.

Treebin group A set of spaces, one for each trie, where each tile
represents a node in the tree and its colour intensity andnsuyn
information reflect the size of the block and the length offtee

list (of same-sized chunks) at the associated node. Theisitvat

of a flattened tree — the reasons for the choice of this visatitin

as opposed to one that shows the complete structure of the tre
is explained in Section 8.1. We believe that the most immorta
information is the number different sized blocks in the tree and
the number ofame sized blocks at each node, and this is clearly
visualised. The effect of each treebin allocation and fremneis
reflected in the addition or removal of tiles, or by a changéha
tiles’ colour intensity.

Mspace summary A single space where each tile represents each
individual segregated mspace. Selecting a tile displagsstim-
mary information about the mspace. Recall that each mspace e
fectively has its own localdimalloc allocator. While it is cer-
tainly possible to recursively display contiguous, smialltreebin,

etc. spaces for each mspace, we have left this unimplemented
mspaces are seldom used in practice, are used for spetialise
location tasks and their characteristics should be bettgéerstood

in comparison to the heap. Furthermore, we feel that addimat w
amounts to an individual GCspy server and client to each ogspa

merely adds to ‘visual clutter’. The correct way to perforrdex
tailed mspace visualisation is to substitute the mspae# ftw the
main dimalloc heap while the remaining allocations use the na-
tive malloc implementation. The allocation or deallocation of an
mspace results in the addition or removal of a tile from thizce.

Section 4.4.3 has already introduced the additional pkjgind
in particular, the memory fragmentation plugin which iswably
one of the most important plugins for the tuning of dynamiamme
ory allocators. In addition, we have added trigger condgithat
can be used to “watch” a change in the rate at which events are
generated. In the context dfmalloc, this is most useful in trapping
sharp changes in the rate of (de)allocation. The backtradten@m-
ory display plugins can then be employed to help determinergvh
and why the rate has changed so sharply and whether or not it is
acceptable behaviour. The history graphing plugin pravigiaphs
of how the spaces change over time, most usefully reflectieg t
bin lengths throughout execution.

Finally, all the spaces make use of the tile range streams dis
cussed in Section 4.2, in order to relate, via highlightsalfisim
and treebin free blocks and mspace regions to the contiggpace
and to facilitate zooming.

6. PerformanceEvaluation

We compared the original and enhanced GCspy performance whe
visualising the Jikes RVM's MMTk garbage collector, reflstin
the experiment reported in [15]. We considered a range oli-app
cations from the DaCapo benchmark suite [21]. All applmagi
were run with a 30MB heap with the client and server connected
throughout. The client-side visualisation was the sambdth GC-
spy platforms, modulo small differences in the screen layou

In all benchmarks the client machine was a 2.6 GHz Pentium IV
with 1GB RAM, a 4-way set associative 512KB level-2 cachenwit
64-byte lines, and an 8KB level-1 data and 12KB level-1 instion
cache. The system ran Mandrake Linux 10.2 with a 2.6.13 kerne
in single-user mode. Similarly, the server machine was &GH&

Pentium IV with 1GB RAM, a 4-way set associative 512KB legel-
cache with 64-byte lines, and an 8KB level-1 data and 12KBlev
1 instruction cache. The system ran Mandrake Linux 10.2 with
2.6.13 kernel in single-user mode.

In each case the execution times differed negligibly (Ilbssit
2% for each) confirming that the enhanced server architedtas
little or no impact on performance when the framework is used
duplicate “traditional” GCspy visualisations.

6.1 Stream Control

We now consider performance aspects of the sample-basgal-vis
isation. Recall that the slider in the client GUI enablesuker to
control the length of the sampling interval between cligdates,
as described in Section 3.1.

The sampling interval in part influences the “frame rate"haf t
visualisation. For example, if the slider is set at 100mspbak
frame rate achievable will be 10 frames per second. Of cotheee
is a cost associated with issuing an update to the clienirtblaides
the communication cost associated with flushing the sesier-
update buffers to the client, the time taken to render thetgsdon
the client and the time taken to acknowledge the server.dctipe,
therefore, the achieved frame rate will be less than thagestgd
by the slider, often substantially.

Increasing the sampling interval allows the server-sidsica-
tion to get ahead of the client-side visualisation. The twa be
brought into lock-step, at the event level, by setting theang
interval to zero. In this case the application will pausesatheevent
for the time it takes to update the client. Although the voduaf
communication will be very small (typically only one tile iwbe
affected) a full cycle of communication, rendering and awki
edgement must be incurred. As the sampling interval is hemgd,
the relative cost of communication and rendering decreddes
average communication volume will increase because thgelon
the time between updates, the more blocks will have beeedlirt
the intervening time. However, the trend will not be liness,sev-
eral events may affect the same tile. The communicationmelu
will also be affected by the rate at which the applicationegates
events.

In order to evaluate the performance of the enhanced frankewo
we have developed a custom benchmark that allows us to ¢ontro
the event rate, event mixture, etc. straightforwardly bgyivey a
small number of benchmark parameters. The benchmark pesduc
events (calls tamalloc () andfree()) in a tight loop, optionally
delaying between each event. At each allocatiomaitlocs a
random-sized block of memory up to some specified maximum.

100,000/s foKonqueror); typically the event rate peaks at start-up
(e.g. to around 300,000/s f&ébnqueror) before settling.

The results for 2000 and 8000 tiles are shown in Table 1. It
should be noted that the 8000 tile experiment is essentibfy
same as that for 2000 tiles except that the tiles have efdgtbeen
split into four. The heap size in each case was 512MB. Anahiti
delay was introduced before commencing instrumentatiatdov
the client to be bootstrapped by the server and for the Jauzali
machine, etc. to initialise itself.

Within each table and for each tile set we consider sampling
intervals of 100, 200 and 500 ms and we explore inter-evdayde
of 0, 50 and 10Qus. In each experiment we measured the average
number of tiles that were dirtied between updates and tts tot
time taken to communicate those updates to the client. We als
measured the effective frame rate achieved, which is comopas
the reciprocal of the average time between successiveniagdef
the client GUI.

The sampling rates represent an upper bound on the frame rate
that can be achieved in each case and thus vary from 2 to 10fps.
course, these rates could only be achieved in practice ifipdate
costs were zero.

The figures show that, for these parameterisations, themperf
mance of the framework is dominated by the GUI renderingsime
Currently, the rendering cost is dominated by the total nemb
of tiles, rather than the number that have been dirtied. P02
tiles, the rendering time is approximately 270ms acrospathm-
eterisations; for 8000 tiles it is around 2s, although thsrsome
variability—the minimum time was around 1.8s. Thus, thekpea
frame rate achievable is around 2.7fp8(0/(270 + 100), assum-
ing zero communication cost) for 2000 tiles and 0.52 for 80i@8.

In the experiments performed, the peak rates achieved w68 2
and 0.52 respectively, both with the shortest samplingrateof
100ms, as would be expected.

Although we are achieving acceptable performance in tefms o
frame rate, the figures show that we could do substantialfieibe
if the rendering could be performed incrementally. For egkmnin
the experiment with 8000 tiles, a sampling interval of 10@Gmd a
mean of 5@s between events, the number of tiles the¢d to be
updated is 1601 on average — approximately one fifth of tha. ot
the GUI could be rendered in approximately one fifth of the-euir
time the frame rate could be increased to around 1.9fps fham t
current value of 0.49 (the mean rendering time in this expenit
was around 1.9s). Incremental rendering is thus a priavitjuture
work.

6.2 Driver Collapsing

The benchmark is parameterised by a random number seed thaRecall from Section 4.1 that the effect of collapsing a drigeto

enables the same random sequenceadfiocs to be reproduced
over different runs. The various results presented werergésd
using the same random seed.

We vary three parameters during the benchmarking exetbise:
sampling interval, the length of the delay between suceessio-
cation/deallocation events in the application and the remobtiles
in the client-side visualisation. In each case the maximomuant
of memory allocated at each (random) allocation was 50KBeNo
that with this parameterisation a tight loop (no delay) eégsiao a
sustained average request rate of around 116,000 eventss,
executed independently of GCspy; with58.s delay between
requests the rate drops to around 24,000 events/s. We aafuld,
course, achieve higher rates by reducing the average sizacbf
malloc request.

Note that in real applications (we explored selected stahda
KDE applications) the allocation/deallocation rates vaignifi-
cantly from the order of a few hundred per second (e.g. around
400/s forxcalc) to a few hundred thousand per second (e.g. around

eliminate the need to report updates to tiles that are hitgeirtue

of being part of a collapsed space. More significantly, peshas
we have just seen, is the fact that the components of a celfaps
driver do not need to be rendered on the client GUI. As theawrerd
constitutes the bottleneck in many cases, collapsingdrigpaces)
will invariably serve to boost the frame rate.

7. Enhanced GCspy in Practice
7.1 Deferring dlmalloc’s Coalescing Policy

In order to evaluate qualitatively the usability of GCspy fuer-
formance analysis we have synthesised an experiment thattai
explore two possible coalescing strategiedlinalloc. dImalloc at-
tempts to coalesce all freed blocks as soon as they are daigitb
by inspecting théoundary tags [22] of the block’s predecessor and
successor. This “eager” strategy enables coalescing terf@med
in constant-time.

Update 2000 tiles 8000 tiles
interval | Measurement Mean inter-event timei(s) | Mean inter-event timey(s)
(ms) 0 [50 | 100 0 | 50 | 100

Mean no. of dirty tiles 1347 | 566 354 4932 1601 978
100 Mean communication time (ms)) 14.62 | 5.04 | 3.33 151.09 | 39.87 | 24.01
Effective frame rate 259 | 2.65 | 2.63 0.43 0.49 0.52
Mean no. of dirty tiles 1585 | 938 629 6953 2897 1836
200 Mean communication time (ms)) 22.62 | 9.14 | 5.89 200.81 | 78.03 | 44.42
Effective frame rate 2.07 | 2.08 | 2.10 0.40 0.42 0.47
Mean no. of dirty tiles 1893 | 1643 | 1229 7784 5770 3926
500 Mean communication time (ms)) 38.17 | 17.74 | 10.81 292.20 | 153.45| 102.30
Effective frame rate 1.32 | 1.28 | 1.29 0.35 0.42 0.39

Tablel. Enhanced GCspy performance

Another approach is to defer coalescing, instead returtting
block to a free list of the appropriate size. It might then bal+
located from that free list, thus saving on the coalescingtithe
time to seek a suitable block and most likely split it. Thesideto
perform coalescing later, according to some heuristic —e hee
choose the proportion of contiguous free space. Coaleszihgn
performed by iterating over all smallbin and treebin stuoes.

Which strategy is best for a given benchmark? We would expect
dImalloc to get this right, of course. The objective is not so much
to prove or disprove this here (a big task!), but rather toashow
our framework might be useful in analysing the two competing
strategies.

Heap [Contiguous Memory]

L

Figure 6. Deferred coalescing results in greater fragmentation

View: Memory

usage

[Contiguous Memory]

i

I u
Figure 7. Eager coalescing minimises fragmentation

Yiew: Memory usage

Figures 6 and 7 show GCspy visualising a benchmark running
dImalloc with and without deferred coalescing.

We use the trigger provided by the memory fragmentation plu-
gin to trigger a transition to single-step mode (displaybagktrace
information) whenever a 512KB contiguous block of memory is
segmented into strictly more than 2000 chunks of which trgelst
is at most 512 bytes in size (see Section 4.4.3 to recall tingirpl
parameters). Figure 4 displays this. We find that the tridges
soon after execution begins, confirming the presence oéat e
highly fragmented block. We record the event count at whih t
trigger fired. Figure 6 shows a visualisation of this blockendwe
see graphically a high proportion of unused tiles.

We then repeat the experiment with the origidiahalloc (eager
coalescing), placing a watchpoint on the previous evenintou
Figure 7 shows a visualisation of the same block of memory at
the same point in the program, as determined by the event,coun
where we see graphically a much higher proportion of used.til
Rather unsurprisingly, perhaps, the fragmentation trigiges not

fire at all during execution. Deferred coalescing may notawe
a bad strategy but for this benchmark it is seen to exhibitgaese
of fragmentation that eager coalescing appears to avoid.

8. Conclusionsand Future Work

We have demonstrated that the original GCspy framework ean b
adapted to visualise the behaviour of a general-purposeadtir
and have detailed the important enhancements to the GCspy cl
and server that facilitate this.

The event rates generated bglenalloc application can be sev-
eral orders of magnitude higher than those generated bybaggar
collector. Tracking heap updates in anything approacteagitrme
is therefore predicated on the use of incremental samplerdup-
dates from server to client and on providing client-sidaualsa-
tion facilities that help reduce communication. We havecdbsd
an enhanced server architecture which supports such a coimmu
cation model by locally caching stream updates and reggptiiam
in batches via a difference list, to the client at a user+aiable
rate. We have found that this provides satisfactory and tghio
visualisations with little loss of precision.

Performance evaluation studies have shown that the enthance
framework runs equivalently to the original GCspy when used
to visualise a garbage collector in the manner initiallyeimted.
Furthermore, using a contrived benchmark, we have expltred
effect of sample-driven streams on server-client comnaiitn
and visualisation frame rate. These experiments have shivain
for a realistic number of tiles, the performance of the freuomk is
limited by the GUI rendering times.

We believe that this work furthers GCspy’s promise as a frame
work for visualisingany memory management system — a claim
made in the original GCspy paper [15] but arguably not fullp-s
stantiated at the time. Indeed, other potential applicatiof the
framework hinted at in [3], for example, may now be practical

8.1 FutureWork

At the inception of this work we set out to integrate GCspymiito
declarative programming environments: the ECLiIPSe Caimtr
Logic Programming System and GHC, the Glasgow Haskell Com-
piler. Both these systems have relatively complex allasatmd
advanced (incremental) garbage collectors. We now beliest
GCspy has the necessary functionality required to perfaromn s
integrations and, furthermore, to provide useful insighte both
memory subsystem and application behaviour.

GCspy could benefit from further enhancement in two specific
areas. We struggled for sometime over how to usefully visaal
dImalloc’s treebins. Ideally GCspy should visualise each individ-
ual trie structure and its internal nodes, and track itscstnal
changes due to each allocation and free event, and rotadenk-

ing from tree re-balancing operations. Not only is the viisasion

of such tree structures challenging, especially in confisagen
real-estate, but the degradation in client-server perdoca and
event throughput is also an issue. Many different types ()

data-structure may be employed by an allocator in its figtedip-
resentation. GCspy could benefit from generalised graplalita-
tion and layout capabilities for the visualisation of sutiustures.
However, this is a complex problem, indeed it has its ownachdi

research area and while such projects as AT&T’s Graphvi [23

attempt to address many of the issues, it is still not clearetk
tent to which it is successful. Our experience with Graphaizes
concerns over its scalability and capability in handlindiren al-
gorithms and incrementally updating graph structures. dtir be-
lief, that treemaps, H-trees andbubble trees, as discussed in [24],
provide promising tree visualisation techniques — all fatito-
rily perform the visualisation in restricted space. Forragée, a
treemap is contained within a rectangular drawing areae Vigu-
alisation is performed by cutting the tree at each node ddjta
drawing area is then partitioned into rectangles, wherantimber

of rectangles is equal to the number of nodes at that depth, an

the area of each rectangle is proportional to the numberitafren
the associated node has. Each rectangle in turn is thersieslyr
partitioned by applying the same method at each individodlen
The downside to such approaches is that they are less vwettlitan
standard two dimensional tree representations — the steuctf
the tree is not so immediately obvious.

GCspy'’s heuristics engine is a candidate for significaneblev
opment. It is obvious that it can benefit from the addition afren
complex trigger rules and composition primitives than weehai-
tially provided. Furthermore, over time, it could be backsda
database of past characteristics that have led to, or harediag-
nosed as, performance bottlenecks, thus enabling the fiomaf
a primitive expert system.

We have shown here that the critical performance bottleneck

in many situations is the client-side renderer. Any improeats in
this respect, e.g. by incremental redrawing, would helpiigantly
for very large tile sets. At the same time, however, we rentiaak
driver collapsing goes some way toward alleviating theselems.

Acknowledgments

The authors are grateful to the anonymous reviewers for toen-
ments during the review process.

References

[1] Doug Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html.

[2] Richard E. Jones.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Chichester, July 1996. With a
chapter on Distributed Garbage Collection by R. Lins.

[3] GCspy Team. Enhanced GCspy source code.
http://www.experimentalstuff.com/Technologies/GUspy

[4] Emery D. Berger and Robert D. Blumofe. Hoard: A fast, abéd,
and memory-efficient allocator for shared-memory muliiessors.
Technical Report UTCS TR99-22, University of Texas at Austi
November 1999.

[5] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinle
Composing high-performance memory allocators.Ptoceedings of
S GPLAN 2001 Conference on Programming Languages Design and
Implementation, ACM SIGPLAN Notices, Snowbird, Utah, June 2001.
ACM Press.

[6] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinle
Reconsidering custom memory allocation. In OOPSLA [25].

[7] Henry Lieberman and Carl E. Hewitt. A real-time garbagélector
based on the lifetimes of objects. Al Memo 569a, MIT, ApriB19

[8] David M. Ungar. Generation scavenging: A non-disruptivigh
performance storage reclamation algorithrACM SIGPLAN No-
tices, 19(5):157-167, April 1984. Also published as ACM Soft-
ware Engineering Notes 9, 3 (May 1984) — Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium oadr
tical Software Development Environments, 157-167, Af9B4.

[9] Martin Hirzel, Amer Diwan, and Matthew Hertz. Connedtyvbased
garbage collection. IOOPS.A'03 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM SIGPLAN
Notices, Anaheim, CA, November 2003. ACM Press.

[10] John McCarthy. Recursive functions of symbolic express and
their computation by machineCommunications of the ACM, 3:184—
195, 1960.

[11] C. J. Cheney. A non-recursive list compacting algonithiCommuni-
cations of the ACM, 13(11):677-8, November 1970.

[12] Henry G. Baker. List processing in real-time on a sec@inputer.
Communications of the ACM, 21(4):280-94, 1978. Also Al Laboratory
Working Paper 139, 1977.

[13] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-tigagbage
collector with low overhead and consistent utilization. Qonference
Record of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices, New Orleans, LA,
January 2003. ACM Press.

[14] Andrew M. Cheadle, Anthony J. Field, Marlow Simon, Simb.
Peyton-Jones, and Lyndon While. Exploring the barrier tryen-
incremental generational garbage collection for HaskelAmer Diwan,
editor, ISVIM’ 04 Proceedings of the Third International Symposium on
Memory Management, ACM SIGPLAN Notices, Vancouver, October
2004. ACM Press.

[15] Tony Printezis and Richard Jones. GCspy: An adaptablph
visualisation framework. In OOPSLA [25], pages 343-358.

[16] Richard L. Hudson and J. Eliot B. Moss. Incremental gagbcol-
lection for mature objects. In Yves Bekkers and Jacques iGaddi-
tors, Proceedings of International Workshop on Memory Management,
volume 637 oflecture Notes in Computer Science, University of Mas-
sachusetts, USA, 16-18 September 1992. Springer-Verlag.

[17] Tony Printezis and Alex Garthwaite. Visualising theaifr garbage
collector. In David Detlefs, editotSMM’02 Proceedings of the Third
International Symposium on Memory Management, ACM SIGPLAN
Notices, pages 100-105, Berlin, June 2002. ACM Press.

[18] Imperial College GCspy Tean.Spy with my GCspy.
http://www.doc.ic.ac.uk/ajf/Research/publications.html

[19] HP Labs. The libunwind project.
http://iwww.hpl.hp.com/research/linux/libunwind/.

[20] Paul R. Wilson, Mark S. Johnstone, Michael Neely, andi@8oles.
Dynamic storage allocation: A survey and critical reviem Henry
Baker, editor,Proceedings of International Workshop on Memory
Management, volume 986 ofLecture Notes in Computer Science,
Kinross, Scotland, September 1995. Springer-Verlag.

[21] DaCapo Project. The DaCapo benchmark suite (versita06&009).
http://osl-www.cs.umass.edu/DaCapo/gcbm.html.

[22] Donald E. Knuth. The Art of Computer Programming, volume I:
Fundamental Algorithms, chapter 2. Addison-Wesley, séaition,
1973.

[23] AT&T Research. Graphviz - graph visualization softeiar
http://www.graphviz.org/.
[24] Herman, G. Melancon, and M. S. Marshall. Graph visagion and

navigation in information visualization: A surveyEEE Transactions
on Misualization and Computer Graphics, 6(1):24—43, /2000.

[25] OOPSLA 02 ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, ACM SIGPLAN Notices, Seattle, WA,
November 2002. ACM Press.

