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Wenn wir wüssten, was wir tun, würden wir es nicht

Forschung nennen, oder?

[If we knew what it was we were doing, it would not be called research, would it?]

Albert Einstein (1879–1955)
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Abstract

Laminated structures have increasingly gained popularity in engineering applica-

tions owing to their advantageous properties. Particularly in aerospace applica-

tions, laminated components, typically comprising fibre-reinforced composites, have

a soaring demand owing to their high strength to weight ratio. However, owing to

the complex nature of the material, several different failure mechanisms may oc-

cur; amongst them is delamination, i.e. the separation at the interface between two

laminates. This defect is often difficult to detect, yet may significantly reduce a

component’s load carrying capacity and subsequently may severely affect its safe

working conditions. It is therefore of utmost importance to assess the effects of

delaminations on the structural elements carefully. Since components in aerospace

applications often comprise laminated panels, a geometrically nonlinear plate delam-

ination model is derived analytically by extending a previously developed two-layer

strut model. This type of structural component is commonly analysed as an en-

gineering simplification since flat plates are often used as an archetype to simplify

more complex structural forms. Thus, an isotropic plate is currently considered,

which reflects the simplest constitutive behaviour, and it can represent to some ex-

tent the behaviour of a laminated composite that has a uniform or symmetric lay-up

sequence. A rectangular defect is located in the centre of this uniformly compressed,

isotropic rectangular plated panel representing the delamination. Whilst trigono-

metric out-of-plane displacement functions are used in a Rayleigh–Ritz procedure

yielding the governing equations that describe the mechanical behaviour of the plate,

in-plane deformations are obtained via von Kármán’s compatibility equation. An
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indication of the residual capacity of the panel after critical buckling is obtained by

investigating the nonlinear postbuckling range, where delamination propagation is

incorporated by introducing a discrete cohesive zone model at the boundaries of the

delaminated region. Different configurations are investigated in the neighbourhood

of the previously evaluated transitional depth of delamination, which constitutes the

boundary between local and global buckling. Initially, a uniformly spreading defect

is investigated for various different defect sizes and depths. Subsequently, geometric

parameters are linked to the response of the panel to generalize the outcomes with

quantitative comparisons being undertaken against previous results and those ob-

tained with the commercial finite element software ABAQUS. It is found that the

model compares well and several criteria for the initial design of the damaged pan-

els are proposed such that delamination growth may be accommodated safely and

efficiently. Furthermore, uni-directional growth of the delamination is considered in

a pilot study with suggestions being made regarding the growth direction tendency.
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2.3 The delaminated strut model as investigated by Hunt et al. (2004). . 62

2.4 Mode shapes identified by Hunt et al. (2004); (a) closing mode and (b)

opening mode. Note that wi refers to the out-of-plane displacement

of laminate i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 The delaminated plate model after Chai & Babcock (1985). Stages

of the delamination; (i) unstressed state, (ii) uniformly axially com-

pressed state and (iii) buckled configuration. . . . . . . . . . . . . . . 64

2.6 The delaminated plate model by Shivakumar & Whitcomb (1985).

(a) Plan view, (b) section through the buckled panel and (c) free

body diagram of the laminate. . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Model of the contact force between the sublaminate and the plate

after Peck & Springer (1991). . . . . . . . . . . . . . . . . . . . . . . 67

2.8 The delaminated plate model by Short et al. (2001). Geometry of the

(a) isotropic models and (b) of the finite element model. . . . . . . . 69

2.9 Multiple delamination configuration investigated by Hwang & Liu

(2001); Type I delaminations. . . . . . . . . . . . . . . . . . . . . . . 71

15



2.10 Multiple delamination configuration investigated by Hwang & Liu

(2001); Type II delaminations. . . . . . . . . . . . . . . . . . . . . . . 72

2.11 The delaminated plate model by Kim & Kedward (1999); (a) Dis-

cretization study (with ‘r’ indicating the number of rectangles used

to discretize) and (b) case study problem. . . . . . . . . . . . . . . . 77

2.12 The delaminated plate model by Nilsson et al. (1993). (a) Speci-

men geometry for plates and strain gauge layout (solid circles) used

in the experiments and (b) the resulting X-ray radiograph together

with ultrasonic C-scan photo (lower left) and the corresponding finite

element mesh with nodes in contact shown. . . . . . . . . . . . . . . . 78

3.1 Geometry of the delaminated panel model. . . . . . . . . . . . . . . . 85

3.2 The geometry at the ends of the delaminated region. . . . . . . . . . 87

3.3 Out-of-plane displacement functions; (a) delaminated patch, wi, and

(b) intact panel w3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 (a) Pure compressive degree of freedom Q4. (b) Transverse stress σy3

from global buckling in the whole panel over the length of the intact

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Stress σyi
from local buckling over the length of the delaminated

patch; (a) along the xi-axis, (b) along the yi-axis and (c) 3-dimensional

view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 The finite element model of the delaminated plate. . . . . . . . . . . 103

4.1 Normalized critical load ΛC
1 versus delamination size for c = 0.25. . . 112

16



4.2 Normalized critical load ΛC
1 versus delamination size for c = 0.25

compared to results obtained with the finite element model from §3.6

and results from the literature (Kim & Kedward, 1999). . . . . . . . . 113

4.3 Normalized critical loads ΛC
j versus relative delamination depth c for

(a) all three normalized critical loads and (b) lowest two normalized

critical loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Rectangular delamination geometry: (a) long and (b) wide delami-

nation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Normalized critical load ΛC
1 versus delamination ratio φdelam for c =

0.25 for rectangular delaminations. . . . . . . . . . . . . . . . . . . . 116

4.6 Critical modes of buckling: (a) closing mode—First critical load; (b)

opening mode—Second critical load. . . . . . . . . . . . . . . . . . . 117

4.7 Local closing mode at intial buckling for a = 0.5L and b = 0.5B as

evaluated using finite element analysis within ABAQUS (2006). . . . 118

5.1 Principles of the predictor–corrector methods. . . . . . . . . . . . . . 123

5.2 Non-physical eigenvectors; (a) non-physical closing and (b) non-

physical opening mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Postbuckling equilibrium paths for the local mode, case STAT-A.

Graphs show the normalized axial load Λ versus (a) Q1/t (upper

laminate), (b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . 127

5.4 Normalized axial load Λ versus normalized end-shortening EN , case

STAT-A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Transitional depth ct: defined where the local mode transforms into

the global mode through the mixed mode. . . . . . . . . . . . . . . . 130

17



5.6 Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D.

Normalized axial load Λ versus Q1/t. . . . . . . . . . . . . . . . . . . 131

5.7 Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D.

Normalized axial load Λ versus Q2/t. . . . . . . . . . . . . . . . . . . 131

5.8 Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D.

Normalized axial load Λ versus Q3/t. . . . . . . . . . . . . . . . . . . 132

5.9 Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C, and -D. . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.10 Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C, -D and -E. . . . . . . . . . . . . . . . . . . . . . . . 135

5.11 Opening mode; (a) configuration and (b) schematic of moment balance.136

5.12 Finite element model: local opening mode. . . . . . . . . . . . . . . . 137

5.13 Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C and -D; finite element comparison. . . . . . . . . . . 139

5.14 Postbuckling equilibrium paths for the mixed mode, case STAT-B.

Graphs show the normalized degree of freedom of the upper laminate

Q1/t versus (a) Q2/t (lower laminate), (b) Q3/t (intact part); and (c)

Q2/t versus Q3/t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.15 Postbuckling equilibrium paths for buckling mechanism—closing mode.

Graphs show the normalized axial load Λ versus (a) Q1/t (upper lam-

inate) and (b) Q3/t (intact panel). . . . . . . . . . . . . . . . . . . . 142

5.16 Buckling mechanism: closing mode; (a) initial configuration, (b) ini-

tial buckle of the upper laminate, (c) overall buckle initiates and (d)

loss of stiffness due to overall buckling induced by local instability. . . 142

18



6.1 Internal delamination. This photograph from Camanho et al. (2001)

shows an interaction between intralaminar and interlaminar damage. 147

6.2 Crack growth modes taken from Orifici et al. (2007); (a) Mode I—

opening, (b) Mode II—sliding and (c) Mode III—scissoring. . . . . . 149

6.3 Principles of fracture mechanics tests; (a) DCB test – pure Mode I

and (b) ENF test – pure Mode II. . . . . . . . . . . . . . . . . . . . . 149

6.4 Constitutive strain softening relationships within the cohesive zone,

taken from Camanho et al. (2001); with σc being the cohesive surface

stress, δ the relative opening of the laminates and GC ≡ GiC the

critical strain energy release rate. . . . . . . . . . . . . . . . . . . . . 152

6.5 Constitutive relationship used in the cohesive zone model. (a) Co-

hesive zone ahead of delamination tip from Camanho et al. (2001);

(b) piecewise linear constitutive relationship with the area under the

graph equating to GIC, the critical strain energy release rate. . . . . . 153

6.6 Discrete cohesive zone model; location of (a) model and (b) spring. . 154

6.7 Schematic spring displacement δ(P ) at spring location ls; (a) closing

mode, (b) closing mode enlarged and (c) opening mode. . . . . . . . . 156

6.8 Delamination propagation in AUTO; adjustment for δ where the load

needs to be (a) reduced or (b) increased. . . . . . . . . . . . . . . . . 158

6.9 Delamination algorithm schematic. . . . . . . . . . . . . . . . . . . . 159

7.1 Uniform delamination propagation. . . . . . . . . . . . . . . . . . . . 161

7.2 Schematic of notation in Tables 7.4–7.7. . . . . . . . . . . . . . . . . 164

19



7.3 Postbuckling equilibrium paths for local mode: Case 1 (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 167

7.4 Generic examples for force–displacement behaviour caused by delami-

nation growth after Wimmer & Pettermann (2008); (a) stable growth

under force-controlled loading; (b) stable and (c) unstable growth

under displacement controlled loading; (d) and (e) unstable growth

under monotonic loading. . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5 Delamination growth rate: Case 1 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.6 Delamination growth rate: Case 1 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.7 Postbuckling equilibrium paths for mixed mode: Case 1 (C). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 173

7.8 Delamination growth rate: Case 1 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.9 Postbuckling equilibrium paths for global mode: Case 1 (D). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). Note the lack

of path “P1”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

20



7.10 Delamination growth rate: Case 1 (D). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.11 Postbuckling equilibrium paths for local mode: Case 2 (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 183

7.12 Delamination growth rate: Case 2 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.13 Postbuckling equilibrium paths for mixed mode: Case 2 (B). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 186

7.14 Delamination growth rate: Case 2 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.15 Postbuckling equilibrium paths for global mode: Case 2 (C). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 189

7.16 Delamination growth rate: Case 2 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.17 Postbuckling equilibrium paths for global mode: Case 2 (D). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). Note the lack

of path “P1”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

21



7.18 Delamination growth rate: Case 2 (D). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. Note the lack of path “P1”. . . . . . . . . . . . . . . . 193

7.19 Delamination growth rate, case 3 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.20 Delamination growth rate: Case 3 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.21 Delamination growth rate: Case 3 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) dimensions a and b. . . . . 200

7.22 Delamination growth rate: Case 3 (D). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimen-

sions a and b. Note the lack of path “P1”. . . . . . . . . . . . . . . . 201

8.1 Unidirectional delamination propagation originating from an initially

square delamination; (a) growth in the longitudinal direction only –

xi-axis and (b) growth in the transverse direction only – yi-axis. . . . 210

8.2 Postbuckling equilibrium paths for the local mode: case I (A)x.

Graphs show the normalized axial load Λ versus (a) Q1/t (upper

laminate), (b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . 213

8.3 Delamination growth rate: case I (A)x. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

22



8.4 Postbuckling equilibrium paths for the mixed mode: case I (B)x.

Graphs show the normalized axial load Λ versus (a) Q1/t (upper

laminate), (b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . 215

8.5 Delamination growth rate: case I (B)x. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.6 Delamination growth rate: case I (C)x. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension a. Note the lack of path “P1x”. . . . . . . . . . . . . . . . 217

8.7 Postbuckling equilibrium paths for local mode: case I (A)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 219

8.8 Delamination growth rate: case I (A)y. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.9 Postbuckling equilibrium paths for mixed mode: case I (B)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 221

8.10 Delamination growth rate: case I (B)y. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.11 Delamination growth rate: case I (C)y. Normalized axial load Λ

versus (a) normalized end-shortening EN and (b) delaminated patch

dimension b. Note the lack of path “P1y”. . . . . . . . . . . . . . . . 223

23



8.12 Unidirectional delamination propagation originating from an initially

rectangular delamination; initial growth in the transverse direction

– yi-axis – originating from a (a) wide delamination and (b) long

delamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.13 Postbuckling equilibrium paths for local mode: case II (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) normalized end-shortening EN and (c) delaminated patch dimen-

sion a and/or b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.1 Plate dimensions, coordinate axes and loading of Little’s (1987) model.241

A.2 Cases used to apply the procedure developed by Little (1987); (a)

clamped along x = ±a/2 and simply supported along y = ±B/2 and

(b) simply supported along the edges x = ±L/2 and clamped along

y = ±b/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.1 Normalized critical load ΛC
1 versus delamination size for c = 0.125

compared to results obtained with the finite element model from §3.6

and results from the literature (Kim & Kedward, 1999). . . . . . . . . 245

B.2 Postbuckling equilibrium paths for mixed mode: case 1 (B). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). . . . . . . . . . 247

B.3 Postbuckling equilibrium paths for global mode: case I (C)x. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). Note the lack

of path “P1x”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

24



B.4 Postbuckling equilibrium paths for global mode: case I (C)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate),

(b) Q2/t (lower laminate) and (c) Q3/t (intact part). Note the lack

of path “P1y”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

25



Nomenclature

Lower case Roman letters

a length of the delaminated patch in the xi direction

b width of the delaminated patch in the yi direction

c relative depth of delamination

ct transitional depth

i variable corresponding to each part i of the panel

(i = 1, 2 for upper or lower laminate, respectively,

and i = 3 for the intact part of the panel)

i fracture mode

j variable corresponding to each buckling mode j of the panel

k plate buckling coefficient accounting for the boundary conditions

in equation (3.43)

lcz length of the cohesive zone

ls parameter defining the position of the spring in the cohesive zone model

q transverse load

t thickness of the panel

wi out-of-plane displacement functions per part i of the panel

xi ≡ x; longitudinal direction

yi ≡ y; transverse direction

zi ≡ z; out-of-plane direction
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Upper case Roman letters

B overall width of the panel in the yi-direction

Di flexural rigidity per part i of the panel

Ei ≡ Exi
; Young’s Modulus per part i of the panel

Ex, Ey, Ez Young’s Modulus in directions x, y, z respectively

EC end-shortening at the critical load of the undamaged panel

Ei end-shortening per part i of the panel

E total end-shortening

EN normalized end-shortening

GiC critical strain energy release rate corresponding to fracture mode i

GIC critical strain energy release rate corresponding to fracture mode I

G strain energy release rate

Ii second moment of area Iyy,i per part i of the panel

K linear elastic spring stiffness in the cohesive zone model

L overall length of the panel in the xi-direction

Nx, Ny uniformly distributed in-plane force in directions x, y respectively

Nxy uniformly distributed in-plane force in the xy-direction

P ≡ Px

PC critical load of an undamaged panel

Px, Py uniformly distributed load in directions x, y respectively

PC critical load

Qi,mini
amplitude of the out-of-plane displacement wi in the

Fourier Series representation

Qi amplitude of the out-of-plane displacement wi

Q4 end-shortening of the panel in the xi-direction

Ubi strain energy from bending per part i of the panel

Ub total strain energy from bending

Umi
strain energy from membrane stretching per part i of the panel

Um total strain energy from membrane stretching
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V total potential energy

Vij Hessian Matrix with entries Vij

Lower case Greek letters

γxy shear strain in the xy-plane

δc critical separation of the laminates

δx(P ) spring extension along x = a/2− ls
δy(P ) spring extension along y = b/2− ls
δmax maximum separation of the laminates

εx, εy direct strain in directions x, y respectively

θ angle of rotation

λ delamination slenderness

ν Poisson’s ratio

σc(P ) maximum cohesive surface stress

σmax ≡ σc(P )

σxi
, σyi

direct stress per part i of the panel

in directions x, y respectively

τxy shear stress in the xy-plane

φdelam delamination ratio = ab/(BL)

ϕi Airy stress functions per part i of the panel

ψ factor accounting for the shift in neutral axis

Upper case Greek letters

Γ strain energy release rate

Λ normalized load

ΛC
j normalized critical load

Λprop
j normalized load at which propagation begins
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Λmin
j minimum normalized load for a propagating delamination

Λmax
j maximum normalized load for a propagating delamination

Φj eigenvector comprising Qi corresponding to buckling mode j

Notation for postbuckling graphs

PU Postbuckling path of an undamaged panel

FE Path of the finite element model containing a stationary delamination

S1 First physical postbuckling path of a damaged panel

S2 Second physical postbuckling path of a damaged panel

NS1 First non-physical postbuckling path of a damaged panel

NS2 Second non-physical postbuckling path of a damaged panel

P1 First postbuckling path of a damaged panel

containing a uniformly propagating delamination

P2 Second postbuckling path of a damaged panel

containing a uniformly propagating delamination

P1x First postbuckling path of a damaged panel

containing propagating delamination in the xi-direction

P2x Second postbuckling path of a damaged panel

containing a uniformly propagating delamination in the xi-direction

P1y First postbuckling path of a damaged panel

containing propagating delamination in the yi-direction

P2y Second postbuckling path of a damaged panel

containing a uniformly propagating delamination in the yi-direction
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Supplementary notation for Appendix A

a, b, t length, width and thickness of the plate in Figure A.1

a matrix comprising the membrane flexibility coefficients

[equation (3) in Little (1987)]

Ex, Ey Young’s moduli in the x and y directions [equation (A.2)]

F force or stress function

[equation (25) in Little (1987)]

G shear modulus [equation (A.2)]

I integer coefficient of a term in γij

Im, In, Ipq, Ixi, Iyi integers

[equations (30), (32), (34) and (15) in Little (1987)]

mi, ni integers which define the Fourier terms in the series for w

[equation (15) and Table (2) in Little (1987)]

p, q integers which define the Fourier terms in the series

for γij and F

[equations (22), (25) and Table 3 in Little (1987)]

si displacement function in the series for w

[equations (12) and (15) in Little (1987)]

α aspect ratio of the plate (= a/b)

γij trigonometrical part of a term in N ()

[equations (20) and (22) in Little (1987)]

ηpq coefficients in the series of F

[equations (25) and (26) in Little (1987)]

N () nonlinear differential operator

[equation (A18) in Little (1987)]

ψpq coefficient in series for N (w)

[equation (23) in Little (1987)]
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Chapter 1

Introduction

Owing to their high strength to weight ratio and subsequent weight saving (Cutler,

1999), fibre-reinforced composites are used in many engineering applications. “In

the case of carbon fibre and similar advanced composites the prime market was in

aeronautics” (The Design Council, 1989). However, applications can range from

aeronautical, marine and space structures, via vehicle parts, applications in surgery,

such as artificial joints etc., to sports equipment, e.g. skis, tennis racquets and so

on (Berthelot, 1999).

Since there is such a broad spectrum of different structural components, geometries

and applications that this class of material can be utilized for, a limitation for the

current study is made. Hence, this work specifically investigates the behaviour of

fibre-reinforced composite panels. The buckling and failure under buckling-driven

delamination in fibre-reinforced composite panels are the topic of investigation cur-

rently. The buckling and postbuckling responses under uniaxial, in-plane compres-

sion as well as different delamination propagation scenarios are examined that are

crucial for design considerations of such components in service.

In the first part of the current chapter, the principles of composite materials and

specifically fibre-reinforced composites are introduced as well as potential applica-
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Chapter 1. Introduction

tions of the materials and their failure modes, with particular emphasis being placed

on delamination damage. In the second part of this chapter, the underlying the-

oretical background of elastic structural stability theory is presented with one of

the approximation methods that can be employed to investigate the buckling and

postbuckling of structures based on energy minimization being described in detail.

Furthermore, some fundamental examples of stability phenomena are presented.

Subsequently, the detailed aims and objectives of this work are outlined and the

thesis structure is described.

1.1 Composite materials

The word “composite” is derived from the Latin word compositus and essentially

means “made of two or more different parts” (Berthelot, 1999). A composite mate-

rial generally combines one or more solid components in a continuous phase, with

the solid constituent usually being of superior material properties to those of the

compound. The solid, or discontinuous, phase is also called the reinforcement and

the continuous phase is referred to as the matrix, see Figure 1.1; examples of those

and their applications can be found in Table 1.1, which is classified by the nature

of constituents not their form, i.e. fibres or particles.

Figure 1.1: A generic composite material.

The advantages of using composite materials are apparent. Instead of using tradi-

tional materials, such as timber and steel etc., the designer is hereby empowered to

“tailor” the material by changing the physical and mechanical behaviour to suit the
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Constituents Areas of Application

1. Organic Matrix

Composites

Paper, cardboard Resin/fillers/cellulose Printing, packaging

fibres

Particle panels Resin/wood shavings Woodwork

Fibre panels Resin/wood fibres Building

Coated canvas Pliant resins/cloth Sports/buildings

Impervious materials Elastomers/bitumen/ Roofing, earthworks,

textiles etc.

Tyres Rubber/canvas/steel Automotive parts

Laminates Resin/fillers/glass fibres Multiple areas,

carbon fibres, etc. e.g. aerospace,

marine etc.

Reinforced plastics Resins/microspheres Multiple areas,

e.g. aerospace,

marine etc.

2. Mineral Matrix

Composites

Concrete Cement/sand/gravel Civil Engineering

Carbon-carbon composites Carbon/carbon fibres Aerospace, sports,

biomedicine, etc.

Ceramic composites Ceramic/ceramic fibres Thermomechanical

items

3. Metallic Matrix

Composites

Aluminium/boron fibres Aerospace

Aluminium/carbon fibres Aerospace

4. Sandwiches

Skins Metals, laminates, etc. Multiple areas,

e.g. aerospace,

helicopters etc.

Cores Foam, honeycombs, balsa Multiple areas,

reinforced plastics, etc. e.g. sports equipment,

packaging etc.

Table 1.1: Examples of composite materials from Berthelot (1999).

33



Chapter 1. Introduction

performance requirement; a specific material for a specific purpose can then be cre-

ated (Simitses et al., 1985). This is particularly the case for fibre composites where

the fibres can be arranged according to the loading scenario. In particle compos-

ites, e.g. concrete, the reinforcement (not to be confused with reinforced composite)

does not have a distinct direction and may sometimes only be used to reduce the

cost of the material by acting as a filler. However, it also improves certain material

properties, e.g. temperature behaviour, shrinkage, etc.

A vast range of composites can be created depending on the application and de-

sign criteria. However, in the following sections, the discussion is limited to fibre-

reinforced composites which by themselves have a broad range of potential uses,

manufacturing techniques and designs that are only touched upon herein such that

the general principles of these materials are introduced.

1.1.1 Fibre-reinforced composites

The material discussed in the subsequent sections is a composite that constitutes

the matrix, which usually comprises resin, and fibres as the reinforcement, hence

the name. The role of the matrix is to transmit the external loads to the fibres

and protect them; their mechanical properties are usually modest. In contrast, the

reinforcement is responsible for the gain in greater mechanical performance but the

actual capability to develop its full strength in tension, bending and compression is

derived from the resin (The Design Council, 1989).

The material is discussed principally on two levels: at the micro scale level, i.e. fibres

and polymers, and at the meso scale level, i.e. different fibre arrangement architec-

tures; the resulting macroscopic behaviour of the constituents provides the basis of

the material properties employed in the following chapters (Rolfes et al., 2009).

The polymer matrix can generally be grouped into two broad categories; thermoset-

ting resins, which are essentially of low molecular weight that harden by an irre-
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versible process of chemical crosslinking into very high molecular weight products,

and thermoplastics, which are already strong solids with high molecular weight that

can soften when heated and regain their properties when cooled (The Design Coun-

cil, 1989). In the aerospace industries, thermostable resins have been specifically

designed to meet the criteria of the constantly changing environments. However,

the most widely used of all resins in the group of thermosetting resins is the unsat-

urated polyester resin. Its principal advantages include low production costs, good

stiffness due to a high modulus of elasticity as well as good dimensional stability,

i.e. its ability to maintain its original dimensions while being used for its intended

purpose. However, its disadvantages include: sensitivity to cracking, considerable

shrinkage and degradation in ultraviolet light. Epoxide resins are used most com-

monly after unsaturated polyester resins, but account for only about 5% of the

composites market due to their high price (Berthelot, 1999), despite their good me-

chanical properties, low shrinkage during curing and other advantages. Different

types of fillers and additives can be used to manipulate certain behavioural aspects

of the resins or the costs.

In terms of the reinforcement, a broader choice is available. However the most com-

monly used are in forms of fibres and their derivatives that usually make up a volume

fraction between 0.3 and 0.7 of the composite (Berthelot, 1999). Amongst the fibre

types are glass fibres, carbon fibres, aramid fibres, ceramic fibres, thermostable syn-

thetic fibres and other fibres, e.g. fibres of vegetable origin, mineral origin or metal

fibres. Despite its brittle nature in bulk form, glass has good mechanical properties

when made in thin fibres whilst being produced at low cost. It is for this reason

that they are the most common reinforcement used in composites. Carbon fibres,

however, also have a long history because of their good thermal and electrical con-

duction properties. The low specific stiffness of glass is its main disadvantage and

the combination of very high theoretical strengths and stiffnesses whilst maintaining

a low density make carbon fibres very appealing for various industrial applications;

an abundance of developments have been made in different fabrication processes to

obtain the best possible carbon fibre.
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plain weave or taffeta 2 ∞ 2 twill or serge weave 8-shaft satin weave

cross-ply weave uni-directional weave

FIGURE 2.2 The Principle fabric weave styles
Figure 1.2: Different types of weaves taken from Berthelot (1999).

A single fibre, also referred to as a monofilament, can be gathered together into a

bundle which is called a strand or yarn. Those in turn can then be used to produce

surface tissues, such as mats, woven fabrics etc., or multidirectional woven struc-

tures. Whereas mats are essentially just sheets of continuous or discontinuous yarns

arbitrarily distributed on a plane, cloths and woven fabrics are made by interlaced

strands or yarns. Different types of weaves have been developed, ranging from plain

weave, twill weave, satin weave, cross-ply weave to unidirectional weave (Figure 1.2).

The mechanical properties clearly depend on the fibre and the type of weave, with

unidirectional and high modulus weaves giving the best performance, followed by

satin and twill weaves over plain weaves. Multidirectional woven structures are either

achieved using preforms, interlacing the threads helically for cylinders for example,

or multidirectional cloths. These are also called volume weavings where threads are

arranged in multiple directions. The latter type of weave has increasingly become a

topic of recent investigation because of its advantage of better strength properties

and its capability of containing damage within a confined space. With advanced
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numerical methods the behaviour can be simulated on the meso-mechanical level,

considering different aspects of micromechanics, and the weave can be improved

(Verpoest & Lomov, 2009).

layers

laminate

FIGURE 3.22. Constitution of a laminate.
Figure 1.3: Constitution of a laminate taken from Berthelot (1999).

Fibre-reinforced composite materials can be manufactured using various different

moulding techniques with the majority consisting of processes with successive lay-

ers comprising matrix and reinforcement, called lamination. Moulding processes

include, amongst others, contact, vacuum, compression, continuous moulding etc.

The simplest form, which is contact moulding, generally leads to one smooth surface

depending on the surface of the mould whereas the quality of the product depends

on the skill of the moulder. The process of curing can be accelerated by heating and

compression, hence autoclaves are commonly used. With a view to the ease and

advanced automation of manufacturing processes, so called prepregs1 or compounds

are used, which are manufactured using the same technique as moulding processes.

However, fibres in desired arrangements are previously cured to such an extent that

the preimpregnated forms can be cut, handled and then laminated (Berthelot, 1999).

The principal advantage of those products is that high fibre to volume ratios can be

achieved, thus high mechanical performance is ensured whilst improving the working

conditions and automation of the procedure.

1Prepreg stems from preimpregnates.
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Through these processes laminates, sometimes referred to as plies or layers, as il-

lustrated in Figure 1.3, are manufactured and various types can be distinguished

between. For example, there can be laminates with unidirectional strands or cloths,

made up of laminates with positive and negative angles, symmetric laminates or se-

quences, or hybrid laminates, containing different types of fibre materials or weaves

and strands, or even sandwich composites, where a core is coated and two sheet skins

are attached. In unidirectional composites, every type of laminate can essentially be

reduced to a unidirectional layer, which constitutes parallel fibres embedded in the

resin, which is designated a number referring to the angle of orientation between the

fibre direction and the x-reference axis (Berthelot, 1999). If successive layers have a

different angle of orientation, a ‘/’ separates them, otherwise a numerical subscript

denotes their number as illustrated in Figure 1.4a. The layers are assigned from

one face to the other; positive and negative angles can be assigned (Figure 1.4b) as

well as symmetry conditions and repetitions. It is avoided here to go into further

depth regarding the stacking sequence possibilities and notation since the aim is to

provide a general introduction of the possibilities in building composites. The model

in Chapter 3 is developed assuming isotropic material properties in accordance with

the findings in Chapter 2, hence a more detailed review on the notation of composite

lay-ups appears to be superfluous, since the main concern is the macro-mechanical

behaviour once the laminates contain a defect.

1.1.2 Uses of fibre-reinforced composites

As mentioned in the opening of this chapter, fibre-reinforced composites are used

in many engineering applications due to their advantage of being able to tailor the

material to suit a particular loading scenario. In aeronautical applications, for exam-

ple, it was “estimated that replacing 40% of an aluminium alloy structure by carbon

fibre reinforced plastics would result in 12% saving of the total structural weight”

(Megson, 1999). To that date, the use of composite materials in aircraft structures

appeared to have had reached stagnation, in particular for the subsonic civil aircraft
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(a)

(b)

Figure 1.4: Stacking sequences of laminates. (a) Designation (here from bottom to

top) and (b) sign convention, taken from Berthelot (1999).

sector where composites only composed approximately 15% of structural materials

used.

Fibre-reinforced composites are commonly used in constructing unmanned aerial

vehicles used in military applications. However, the pressure is now also on the

commercial sector of the aeronautical industry to conceive innovative designs to

reduce the impact on the environment by producing lighter and more efficient air-

liners. The two main competitors in this sector are Boeing and Airbus and their

most recently conceived aircraft designs comprise 50% composites within the struc-

ture of the Boeing 787 Dreamliner (Bisagni & Walters, 2008), Figure 1.5a, and 52%

of the airframe of the Airbus A350XWB, Figure 1.5b, is to be made of reinforced

plastics (Marsh, 2007; Craven et al., 2010). However, Boeing’s maiden flight of the

39



Chapter 1. Introduction

(a) The Boeing 787 Dreamliner (picture

taken from (Boeing, 2009))

REINFORCEDplastics December 2007 0034-3617/07 ©2007 Elsevier Ltd.  All rights reserved26

When Airbus recently launched its A350XWB (extra widebody) 

competitor to Boeing’s B787 Dreamliner, it indicated that the airframe 

will be 52% reinforced plastic – similar to the B787’s 50%. The new 

airliner will be produced in three sizes, the largest of which can compete 

with the Boeing B777 twin-aisle widebody. George Marsh reports.

T
he A350XWB will have a new carbon 

composite wing and, most nota-

bly, take Airbus into the reinforced 

plastic fuselage territory now being 

occupied by Boeing with the Dreamliner. 

The European company's adoption of a 

predominantly composite fuselage (as well 

as wings and empennage) was partly in 

response to Boeing’s earlier decision to have 

a carbon fibre fuselage wound in several 

barrel sections that are subsequently joined. 

Boeing’s programme partners produce 

the sections by laying composite tape 

onto rotatable mandrels. Fears that an all-

composite fuselage would prove a step too far 

Qatar Airlines has provisionally ordered 80 A350XWBs. (Picture courtesy of Airbus).

Airbus takes on Boeing 
with reinforced plastic 
A350 XWB 

RP5111_p26_29.indd 26RP5111_p26_29.indd   26 06/12/2007 15:27:5506/12/2007   15:27:55

(b) The Airbus A350 XWB (picture taken from

(Marsh, 2007))

Figure 1.5: Different aeroplanes mainly made out of composites.

787 Dreamliner was postponed on several occasions (USA Today, 2009) but then

flew for the first time on 15 December 2009 (BBC, 2009a). Though the company

denied that it was due to the structure being largely manufactured with composites

(BBC, 2009b). The change in the airframe construction method is said to reduce

the amount of fuel required by 20% and subsequently the commensurate amount

in emissions; airline operating costs could thereby be reduced as could potentially

the prices for passengers. Furthermore, the advantages of using fibre-reinforced

composites in this sector are that there is a vastly reduced risk of corrosion, thus

the humidity in the cabin may be increased as could the travelling comfort for the

passenger. In addition, different manufacturing techniques are employed using long

panels that are designed to suit their specific loading scenario. They can be easily

replaced in case of repair and fewer laps are required, again reducing the weight,

emissions and travel time. All these factors are important in an industry that is es-

timated to increase in size of productivity by 5% annually within the next 20 years

(Szodruch, 2008).

1.1.3 Failure of fibre-reinforced composites – Delamination

Owing to the complex nature of the material, various different failure mechanisms

can occur, see Figure 1.6, such as fibre fracture, transverse and longitudinal matrix
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fracture, and fracture of the fibre-matrix interface (Simitses et al., 1985; Garg, 1988;

Whitcomb, 1989; Berthelot, 1999). Since the material is increasingly being used in

aircraft structures, and other structures, it is crucial to simulate and investigate

these failure mechanisms (Linde, 2008) to predict the damage behaviour. The main

focus of this review is on the so-called delamination, which essentially means the

separation at the interface between laminates (Johnson, 1985).

fiber-matrix
debonding

longitudinal fracture
of matrix transverse fracture

of matrix

fiber fracture

delamination

FIGURE 12.12 Fracture mechanisms observed in laminates.
Figure 1.6: Defects observed in laminated materials taken from Berthelot (1999).

The causes of delamination are manifold and the separation can occur during manu-

facturing or in-service scenarios. During the lamination process, thermal and chem-

ical shrinkage can lead to stresses that may result in delamination. Furthermore,

accidental air pockets, adhesion failures or imperfections may also introduce delami-

nation. During service or maintenance an impact, such as a bird strike, from runway

debris or dropping a tool, could be reasons for a newly introduced delamination. In

addition, matrix cracks could also lead to interface cracks as well as interlaminar

stresses at free edges due to the mismatch of material properties (Bottega & Mae-

wal, 1983; Shivakumar & Whitcomb, 1985; Garg, 1988; Kardomateas & Schmueser,

1988; Bolotin, 1996; Bolotin, 2001).
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Delaminations can occur in different shapes. The latter cause in the previous para-

graph may yield so-called free-edge delaminations, which may also be critical at holes

and notches, whereas embedded delaminations usually occur from the other afore-

mentioned causes. Embedded delaminations can occur in different shapes, usually

circular or elliptical, and depths in the laminated material. Often, those delamina-

tions resulting from a low-velocity impact are barely visible, also referred to as barely

visible impact damage (BVID) (Garg, 1988; Kardomateas, 1993; Nilsson et al., 1993;

Melin & Schön, 2001; Butler et al., 2007; Rhead et al., 2008; Wimmer & Pettermann,

2008; Craven et al., 2010). Non-destructive damage detection can be undertaken

optically via microscopic observation, using radiography analysis (X-rays), acoustic

emission analysis using transducers or ultrasonic C-scans, where a short pulse of

ultrasonic energy is incident on a sample and measurement of the transmitted pulse

indicates its attenuation, which is influenced by delaminations, voids, the condition

of the fibre–matrix interface and so on.

Whilst fibre and matrix cracking may be more relevant in tension (Sekine et al.,

2000), delamination can considerably reduce the load carrying capacity of a compo-

nent in compression2 and BVIDs may even lead to a snap-back response (Wimmer &

Pettermann, 2008). The significant strength and stiffness degradation can be crucial

to the stability and integrity of the structural component and results can be catas-

trophic (Shivakumar & Whitcomb, 1985; Garg, 1988; Kardomateas & Schmueser,

1988; Short et al., 2001). It is therefore important to investigate the behaviour of

these structures carefully to ensure their safe application.

1.2 Theoretical background

Before introducing the main body of this thesis, some underlying theoretical prin-

ciples are introduced. This section begins with the fundamentals of elastic stability

2A stiffness and strength reduction under compressive loading of up to 60 % resulting from

delamination damage is quoted by Craven et al. (2010).
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theory, describing the axioms that form the foundation of the procedures that fol-

low later. Since fibre-reinforced composites are usually brittle, material plasticity

is not a significant issue. Hence, material nonlinearities, i.e. material yielding, are

not accounted for in the model developed in Chapter 3, and the following sections

solely deal with elastic buckling theory incorporating geometric nonlinearities. In

the course of the section, distinct buckling phenomena are described and subse-

quently the methodology of modelling the nonlinear postbuckling behaviour with

the energy principles and Rayleigh–Ritz method is established.

1.2.1 Fundamentals of Elastic Stability Theory

Pioneering work in nonlinear bifurcation theory of continuous elastic systems was

conducted by Koiter (1945), which represented the first general approach for mod-

elling postbuckling behaviour. Over the subsequent decades, various other re-

searchers (Roorda, 1965; Supple, 1967; Chilver, 1967; Sewell, 1970; Johns & Chilver,

1971) investigated in the area of elastic stability theory; Koiter’s seminal work, based

on the calculus of variations, was enhanced by introducing generalized coordinates,

assuming that the postbuckling behaviour can be described by a series of modes

(Hutchinson & Koiter, 1970; Croll & Walker, 1972; Thompson & Supple, 1973;

Thompson & Hunt, 1973; Thompson & Hunt, 1984; Hunt, 1986; Hunt, 1989; Hunt,

2006). This type of approach is the basis for the energy approach utilized to in-

vestigate the model in this thesis and its characteristics are therefore discussed in

detail.

The basis of this approach is that an n degree of freedom, conservative mechanical

system can be described by the same number of spatial configurations, specified

through the generalized coordinates Qi, where i is an integer, running from 1 to n.

Hence, a single-valued, continuous and “well-behaved” total potential energy func-

tion V (Thompson & Hunt, 1973), based on the concept that no energy dissipates,

consisting of the internal (strain) energy U minus the work done by the loads PE ,
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can be derived:

V (Qi, P ) = U(Qi)− PE(Qi) , (1.1)

where E is the distance that the load P moves in the load direction. In discrete

mechanical systems, such as a spring and rigid-link model, equation (1.1) may be

derived directly, whereas in continuous systems the buckling shapes may be de-

scribed by employing modal discretization. This will be discussed in more detail

when the Rayleigh–Ritz approach is introduced later in this chapter.

Two axioms are fundamental in the theory of elastic stability using total potential

energy; the first defines the equilibrium of a system and the second describes its

stability (Thompson & Hunt, 1973; Thompson & Hunt, 1984).

Axiom I: A stationary value of the total potential energy with respect to

the generalized coordinates is necessary and sufficient for the equilibrium

of the system.

The first axiom can be summarized as follows:

Vi ≡
∂V

∂Qi

= 0 (for all i) . (1.2)

For the analysis of discrete conservative systems, the second axiom combined with

Axiom I is essential, since the stability of the equilibrium is defined thus.

Axiom II: A complete relative minimum of the total potential energy

with respect to the generalized coordinates is necessary and sufficient for

the stability of an equilibrium state of the system.

Whereas the first axiom can be used to derive Newton’s laws of motion, there is no

entirely general proof for the second axiom. The second axiom can be visualised

by the rolling ball analogy, which depicts the stability of a system (Timoshenko &

Gere, 1961; Croll & Walker, 1972; Thompson & Hunt, 1973; Thompson & Hunt,

1984). Consider Figure 1.7a, since work is required to displace the centre of gravity

44



Chapter 1. Introduction

(a) (b) (c)

Figure 1.7: Rolling ball analogy. (a) Stable, (b) unstable and (c) neutral equilibrium.

of the ball on the concave surface, hence increasing the potential energy of such

system, the equilibrium is called stable. Therefore, the energy of the system is at

a minimum (Vmin : ∂2V/∂Q2
i > 0). The second case in Figure 1.7b, the convex

surface, any perturbation from the equilibrium state decreases the total potential

energy hence this is referred to as unstable with the energy being at a maximum,

(Vmax : ∂2V/∂Q2
i < 0). The third and last case (Figure 1.7c) is where there is no

change in energy during displacement, meaning that the equilibrium is indifferent

or neutral, (Vflat : ∂nV/∂Qn
i = 0). It should be noted, that for each system only the

shape of the supporting surface is relevant for the stability, not the “weight” of the

ball or the absolute magnitude of V (Timoshenko & Gere, 1961).

Having established the principles behind nonlinear buckling theory, a methodol-

ogy that can be used to investigate the stability behaviour of different structural

configurations is discussed in the following section.

1.2.2 Rayleigh–Ritz method

Since most nonlinear structural mechanics problems cannot be solved exactly or

in closed form, the aid of approximate methods is necessary to analyse such prob-

lems. The Rayleigh–Ritz method is an approximate method that can be employed

to investigate structural stability via the calculation of the total potential energy.

This type of method has been covered in many textbooks (Timoshenko & Gere,

1961; Thompson & Hunt, 1973; Thompson & Hunt, 1984; Bažant & Cedolin, 1991)

and has been successfully employed by many research workers for analysing more
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complex types of structures that are similar to the type of problem this work is

concerned about (see §2.5). Owing to its approach in approximating a structure’s

continuous displacement, it is the most convenient technique for a semi-analytical

assessment of the problem and therefore the general concept of the procedure is

discussed herein. It should be noted, however, that the finite element method also

adopts the Rayleigh–Ritz approach but since its method of discretizing a continu-

ous displacement via more arbitrary shape functions results in a large number of

elements and degrees of freedom, this method can be regarded as purely numerical;

for example see Zienkiewicz et al. (2005) for details.

To employ the Rayleigh–Ritz method, an approximate function fn(x, y) describing

the structural displacement that satisfies the geometric boundary conditions of the

two-dimensional structure, in this case, needs to be assumed as follows:

fn(x, y) =
n∑
i=1

Qihi(x, y)

= Q1h1(x, y) +Q2h2(x, y) +Q3h3(x, y) + ...+Qnhn(x, y) ,

(1.3)

where Qi (i = 1 ... n) are the generalized coordinates defining the amplitudes of

hi(x, y), the functions describing the units of postbuckling deflection of the struc-

ture. The underlying theorem states that when n −→ ∞ the exact solution f(x, y)

is obtained for continuous structures; for rigid link and spring models, however, the

mode shapes can be described accurately via a finite number of generalized coordi-

nates. The kinematically admissible functions hi(x, y) are usually of polynomial or

sinusoidal form and are not required to satisfy the static boundary conditions of the

system (Thompson & Hunt, 1973; Bažant & Cedolin, 1991) but the approximations

are better if they do. The assumed function fn(x, y) can subsequently be used to

obtain the strain energy U and the work done PE forming the total potential energy

as given in equation (1.1).

To find the critical loads, linear eigenvalue analysis can be performed. Since only the

second derivatives of V are examined, no information about the system’s behaviour

after buckling is supplied. For a multiple degree of freedom system, the Hessian
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matrix Vij therefore needs to be obtained. Critical equilibrium, the special case of

P = PC, requires a matrix of the second derivatives of V with the following entries:

Vij =
∂2V

∂Qi∂Qj

; (1.4)

this symmetric matrix, which includes cross derivatives, is singular at the critical

states, i.e.:

det(Vij) = 0 , (1.5)

and the critical loads are readily available after solving for PC. The determinant is

also referred to as the stability determinant, because its vanishing indicates a critical

equilibrium state where the system begins to buckle. This holds for diagonalized as

well as for non-diagonalized systems (Thompson & Hunt, 1973). Once the critical

loads are obtained, the potential energy can be expanded about the critical state

PC to examine the behaviour of the system after buckling; this is also called the

perturbation method. Hence, the first derivative of V with respect to each generalized

coordinate Qi is set to zero, equation (1.2), and a set of n simultaneous equations

can be obtained that describe the equilibrium state; if large deflections are assumed

in the formulation these equilibrium equations give the postbuckling paths, since

they contain the relationship between the buckled deformations, i.e. fn(x, y), and

the load P .

With the procedure outlined above a system is readily analysed by employing ap-

proximate analytical, continuous displacement functions fn(x, y). This is one of

the major benefits of this procedure that by simply using integration, to obtain

the energy expressions, and differentiation, to obtain the equilibrium equations, a

relationship between load and deflection can be ascertained in a very straightfor-

ward procedure without having to resort purely to numerical methods. In addition,

structures can be modelled without initial imperfections, such that the principal

behaviour stemming from the perfect case can be established.

Despite the advantages the method offers, it has some drawbacks. Foremost it is

evident, that employing approximate functions for the displacement fn(x, y) yields
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inaccurate results. Depending on the magnitude of the approximation of the actual

displacement field, the procedure potentially leads to an overestimation of the stiff-

ness and buckling load that is remote from the real solution of the actual critical

load due to an incorrect energy expression. This error can however be contained

or minimized if a sufficient number of terms are used when describing the deflec-

tion fn(x, y). However, in some cases this may lead to a high number of degrees

of freedom Qi necessary to be employed which diminishes the convenient simplicity

of the approach. In these cases, using a Rayleigh–Ritz procedure in the classical

sense becomes impractical and numerical methods such as the commonly used finite

element method, based on similar principles, may be preferable.

From the above discussion it should be noted that so long as the deflection of the

structure only requires a reasonably small number of degrees of freedom in fn(x, y)

to be modelled relatively accurately, the method offers the advantage of analytical,

phenomenological and systematic investigation of the buckling and postbuckling

behaviour. In the current work, the displacement and the resulting stresses can be

approximated with sinusoidal functions (§3.4.1 and §3.4.2 respectively) which have

been successfully used in the past to study the buckling and postbuckling behaviour

of plates (Timoshenko & Woinowsky-Krieger, 1959; Timoshenko & Gere, 1961; Szi-

lard, 1974; Williams & Aalami, 1979) and are therefore deemed as appropriate for

the accuracy of the subsequent analyses.

Having introduced the approximate method that will be used to obtain the buckling

and postbuckling behaviour of the structure investigated in this work, a selected

number of buckling phenomena are discussed in the following section to introduce

further terminology that is applicable for the interpretation of the results in Chapters

4–8.
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1.2.3 Nonlinear buckling phenomena

Since the principles behind nonlinear buckling theory, namely the two axioms, as

well as the approximate Rayleigh–Ritz method have been established in the previous

sections, a selected number of buckling phenomena are subsequently discussed in a

very brief review of various seminal publications (Chilver, 1967; Johns & Chilver,

1971; Croll & Walker, 1972; Hutchinson & Koiter, 1970; Thompson & Hunt, 1973;

Thompson & Hunt, 1984; Hunt et al., 1986; Hunt, 1989; Lord et al., 1997; Hunt,

2006; Wadee, 2007). It should be noted that unstable equilibrium paths are indicated

with dashed lines in the following graphs and stable paths with solid lines.
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Figure 23 Energy transformation in the limit point
(a)
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Figure 28 Load versus corresponding deflection in the limit point,

the asymetric and the two symmetric points of bifurcation

(b)

Figure 1.8: Limit point, after Thompson & Hunt (1973). (a) Energy transformation

at the limit point and (b) load versus end-shortening.

The first phenomenon discussed herein is the limit point or fold catastrophe, Figure

1.8, which as Thompson & Hunt (1984) describe “arises right across the spectrum of

sciences, and is the typical mode of failure for a system under a single load control”.

An imperfect, or real, structure will always fail under load at such a point, where the

initially stable equilibrium path from the origin after reaching a local maximum loses

its stability. At the point of the local maximum of the load parameter, the horizontal

point of inflection, Figure 1.8a, there are no local equilibrium states for higher
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values of the load which implies that a physical system would snap dynamically

under dead loading (or load control). In the load versus end-shortening graph,

Figure 1.8b, this can be seen in the unstable, decreasing function after the limit

point. This phenomenon occurs in shallow arches or domes in practical applications.

Furthermore, this limiting point may be a smooth maximum or sometimes be seen

as a sharp cusp depending on the viewpoint in three-dimensional space.
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1

Qi

Figure 25 Energy transformation in the asymmetric point of
bifurcation(a)

P P
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ε ε
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Figure 28 Load versus corresponding deflection in the limit point,

the asymetric and the two symmetric points of bifurcation

(b)

Figure 1.9: Asymmetric point of bifurcation, after Thompson & Hunt (1973). (a)

Energy transformation at the point of bifurcation and (b) load versus end-shortening.

The second phenomenon in the current discussion is that of a bifurcation point or

branching point. In this scenario, an initially stable fundamental equilibrium path is

intersected at the critical point by distinct and continuous postbuckling paths. The

fundamental, pre-buckling path may or may not be trivial, i.e. all degrees of freedom

being equal to zero, until it reaches the critical point. At this point of inflection,

which can be either stable or unstable depending on the system, the system branches

to the postbuckling state. There are several different distinct cases for this type of

buckling, e.g. an asymmetric type of bifurcation (Figure 1.9) or a symmetric bifurca-

tion which can display either a supercritical, i.e. stable (Figure 1.10), or subcritical,

i.e. unstable behaviour (Figure 1.11). In the former, the system is either stable or

unstable depending on the direction of the generalized coordinate Qi (Figure 1.9a);
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if it is unstable, the system would snap dynamically from the critical equilibrium

state if it is under load control. These types of structures are highly imperfection

sensitive and it is well known that unstable asymmetric bifurcations have higher

imperfection sensitivity than unstable symmetric ones (Bažant & Cedolin, 1991).
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Figure 26 Energy transformation in the stable symmetric point of
bifurcation(a)
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Figure 28 Load versus corresponding deflection in the limit point,

the asymetric and the two symmetric points of bifurcation
(b)

Figure 1.10: Stable-symmetric point of bifurcation, after Thompson & Hunt (1973).

(a) Energy transformation at the point of bifurcation and (b) load versus end-

shortening.

In the case of a stable-symmetric bifurcation, Figure 1.10, which in practice can

be observed in the postbuckling behaviour of plates, the load parameter can be

increased along the fundamental path until it reaches the branching point. At this

point, a smooth and stably rising postbuckling path intersects the fundamental path

at the point of zero slope. This point is not unstable, thus no dynamical snap would

occur for a physical structure under slowly increasing loading (Thompson & Hunt,

1984) and the load can be steadily increased resulting in a positive postbuckling

stiffness or reserve capacity, which is usually limited ultimately by the material.

The last configuration examined here is the unstable-symmetric bifurcation, Figure

1.11, which can typically be observed in shells. A subcritical, unstable postbuckling

path intersects the fundamental path here. At the point of intersection, the critical
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Figure 1.11: Unstable-symmetric point of bifurcation, after Thompson & Hunt

(1973). (a) Energy transformation at the point of bifurcation and (b) load versus

end-shortening.

point, the equilibrium is seen to be unstable which means that the load parameter

cannot be increased further along the fundamental path. Thus, a dynamical snap

would occur under dead loading conditions at the critical point in the direction of

the small perturbation.

1.3 Thesis outline

The motivation for this work comes from the serious effects delaminations can have

on the safe working conditions of composites as outlined in §1.1.3. A model contain-

ing an embedded delamination is therefore developed in an analytical form and is

investigated via minimum energy principles employing a Rayleigh–Ritz procedure.

To enable the designer to exploit the full potential of these panels, it is crucial ini-

tially to obtain the loads at which buckling occurs since they may be lower than for

an undamaged panel. Moreover, it is of utmost importance to incorporate delamina-
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tion propagation in the postbuckling stages since this can lead to further structural

instability as the delamination grows. Hence, not only does the load at which growth

occurs have to be determined, but also the growth behaviour of different delami-

nation configurations to establish threshold values for different parameters for the

design of such panels.

Now that the fundamentals of fibre-reinforced composites and the underlying theo-

retical background have been introduced, a brief outline of this thesis is presented.

1.3.1 Buckling and postbuckling of laminated structures

In Chapter 2 a literature review is undertaken that discusses various publications on

modelling the buckling and postbuckling behaviour of delaminated panels and struts.

It begins with different geometric configurations that have been investigated in the

past, in particular plates or struts, which may contain different types of delamination

geometries. Various loading scenarios are discussed as well as modelling techniques

and approaches that have been successfully employed by previous investigators. The

chapter concludes by summarizing the essential findings from this review.

1.3.2 The delaminated panel model

Having established previous results and investigations in Chapter 2 the delaminated

plate model is established in Chapter 3 building on earlier work by, amongst others,

Bottega (1983), Chai & Babcock (1985), Shivakumar & Whitcomb (1985), Peck

& Springer (1991), Hunt et al. (2004). Initially, the structural geometry of the

model is described followed by the assumptions and simplifications used to derive

the displacement and stress functions employed in the Rayleigh–Ritz formulations.

Furthermore, the expressions for the strain energy in bending and membrane stretch-

ing as well as the work done terms are derived to obtain the total potential energy

of the system. Finally, the finite element model that is developed to validate the
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results in the subsequent chapters is described.

1.3.3 Initial buckling of the delaminated panel

With the model developed in Chapter 3 the delaminated plate is initially investi-

gated for critical buckling using only linearized analysis in Chapter 4. The procedure

with which this is undertaken was described in the current chapter and results for

the critical loads for a square and rectangular delamination are parametrically inves-

tigated and conclusions are drawn. Some of these results are furthermore validated

with existing results in the literature as well as the finite element model that is

described and presented in Chapter 3. In addition, the eigenvectors of the corre-

sponding critical loads are identified, namely the closing, opening and transverse

opening modes.

1.3.4 Postbuckling regime of a stationary delamination

Chapter 5 deals with the postbuckling regime of a stationary delamination, i.e. no

delamination propagation is allowed for in the configurations discussed. The numer-

ical code AUTO (Doedel, 2007), employed to solve for the postbuckling solutions

is discussed and the equilibrium paths for different delamination configurations are

presented and validated. The problem of physical and non-physical postbuckling

solutions that may appear in the bifurcation graphs is addressed. Furthermore, the

influence of certain parametric configurations on the magnitude of the outward de-

flection of the laminates are discussed, i.e. local, mixed or global buckling, and the

topic of modal contamination is addressed. In addition, a finite element comparison

is conducted followed by an investigation of mode interaction.
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1.3.5 Delamination propagation modelling

A review of different modelling techniques for delamination propagation is given in

Chapter 6 outlining the principles behind selected approaches, namely basic fracture

mechanics, the virtual crack closure technique and cohesive zone modelling. The

discrete cohesive zone model, which is employed in the current study, is subsequently

described in detail as well as the underlying assumptions and formulation. Finally,

the algorithm that is used in AUTO to incorporate the discrete cohesive zone model

into the formulation from the preceding chapters is described.

1.3.6 Postbuckling regime of a uniformly propagating de-

lamination

In Chapter 7, delamination propagation is included into the model and results orig-

inating from a square delamination are presented and discussed for different para-

metric configurations, mainly around the transitional depth that constitutes the

boundary between local and global buckling. Four different delamination sizes are

investigated and their equilibrium paths are shown and examined in detail. Further-

more, validation of the results is undertaken against results in the literature as well

as finite element results. The chapter concludes with suggestions for design criteria

for the panel to exploit the material beyond the buckling range obtained with linear

analysis.

1.3.7 Postbuckling regime of a unidirectionally propagating

delamination

In this part of the current work a pilot study is conducted on unidirectional de-

lamination propagation. Initially, the growth is assumed to originate from a square

delamination but further cases are studied with propagation from a wide or long
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rectangular defect. This topic is also part of the further work section of the final

chapter since it has the potential to be investigated in much greater detail.

1.3.8 Conclusions and further work

The work concludes by summarizing the findings as well as their implications. Pos-

sible extensions to the current research are then presented.
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Buckling and postbuckling of

laminated structures

2.1 Introduction

Over the past three decades, the modelling of structures with delaminations has

become increasingly a popular topic of investigation by researchers because of the

advantages of using composite materials in various industries, as discussed in the

previous chapter. To obtain a chronological overview, one may start in the 1980s

where pioneering work had been undertaken by Chai & Babcock (1981) with a

simple one-dimensional model of a delaminated strut. Later, Bottega & Maewal

(1983) published their research on delamination modelling of an embedded delami-

nation in a circular plate. These works were followed by Shivakumar & Whitcomb

(1985), Simitses et al. (1985) and Chai & Babcock (1985) and a book by John-

son et al. (1985). Later, towards the end of that decade, Garg (1988), Kachanov

(1988), Kardomateas & Schmueser (1988) and Whitcomb (1989) all published work

on that subject. Shortly after that at the beginning of the next decade, Davidson

(1991), Peck & Springer (1991) and Yin & Jane (1992a; 1992b) published their

investigations and findings using various approaches on the topic of delamination
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modelling. Over the course of the 1990s, fundamental research was conducted by

Nilsson & St̊orakers (1992), Nilsson (1993), Kardomateas (1993), Kardomateas &

Pelegri (1994), Davidson (1995) as well as Bolotin (1996), who reviewed the state

of the art at the time, and Kim & Kedward (1999). After the turn of the century,

Kouchakzadeh & Sekine (2000), Sekine et al. (2000), Bolotin (2001), Hwang & Liu

(2001), Melin (2001), Nilsson (2001a; 2001b) and Short et al. (2001; 2002) under-

pinned and extended previous findings. More recently, Hunt et al. (2004), Hwang

& Huang (2005), Wright (2006a), Rhead et al. (2008) and Wimmer & Petermann

(2008) investigated the behaviour of delaminated structures.

Furthermore, it should be mentioned that extensive investigations have also been

undertaken and are currently being made by various authors to study the buckling

and postbuckling behaviour of sandwich panels suffering from delamination (Somers

et al., 1991; Frostig, 1992; Wadee & Blackmore, 2001; Wadee, 2002; Østergaard,

2008). In sandwich panels, the debond usually occurs between the core material,

e.g. honeycomb core, and the face plate, e.g. aluminium, essentially due to similar or

the same reasons as in laminated composite structures (§1.1.3). However, since the

focus is on laminated composite materials, the papers on delamination in sandwich

panels are mentioned in passing for completeness but are not reviewed in detail.

Within this chapter, most of the above and some additional articles will be re-

viewed, with the most relevant papers in significant depth. The chapter is divided

into several sections within which different structural configurations are discussed,

however the primary investigation currently focuses on research into plates or two-

dimensional structural elements. These structural members containing various de-

lamination geometries, focusing on pre-existing embedded delaminations, are sub-

jected to various different loading scenarios. Furthermore, modelling techniques

and approaches ranging from analytical modelling, numerical modelling and experi-

mental approaches are discussed. Subsequently, models containing a non-stationary

defect are studied, but it should be noted that a more detailed discussion on mod-

elling delamination propagation in terms of the local growth in the delamination
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is undertaken in Chapter 6. Concluding the current chapter, the key findings are

stated that are important for the following chapters.

2.2 Structural configurations

As mentioned before, different structural configurations containing a delamination

defect have been investigated by researchers over past decades, such as delaminated

struts (Chai et al., 1981; Simitses et al., 1985; Kardomateas & Schmueser, 1988;

Hunt et al., 2004; Wright, 2006a), flat circular plates (Bottega & Maewal, 1983),

flat rectangular plates (Chai & Babcock, 1985; Shivakumar & Whitcomb, 1985;

Whitcomb, 1989; Peck & Springer, 1991; Yin & Jane, 1992a; Yin & Jane, 1992b;

Kardomateas, 1993; Nilsson et al., 1993; Gaudenzi, 1997; Kim & Kedward, 1999;

Sekine et al., 2000; Rhead et al., 2008), curved plates (Short et al., 2002) and

cylindrical shells (Bolotin, 2001). Furthermore, the debonding of stringers in stiff-

ened panels have been investigated (Orifici et al., 2007; Orifici et al., 2008) as well

as delamination occurring in stiffeners of curved panels (Wimmer & Pettermann,

2008). Since the main aim of the current work is to develop an analytical model of

a delaminated flat plate, the latter two cases are mentioned for completeness but

will not be discussed further since they comprise an entirely different subdomain of

delamination modelling.

2.2.1 Struts

For the works on struts, three different articles are herein reviewed in detail namely,

Chai & Babcock (1981), Simitses et al. (1985) and Hunt et al. (2004). The one-

dimensional model Chai & Babcock developed in their groundbreaking work was

essentially a homogeneous, isotropic and linearly elastic beam-column approach with

a pre-existing delamination under axial compression. The single delamination split

the beam into two parts and was located in the centre of the strut. Furthermore,
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it was assumed that the dimension of the damage length was small compared to

the strut size but large compared to the laminate thickness. First a “thin-film”

case was discussed followed by the development of the general case model. Growth

of the damaged region was incorporated via a fracture mechanics approach and

the conditions for this were derived by examining the change in stored fracture

energy of the system as the delamination propagates. Furthermore, a distinction

was made between: (a) the case where the delamination existed prior to loading

the strut or (b) the case where the strut was loaded first and the defect occurs

in the loaded structure. For case (a), it was established that the growth of the

delamination may be stable, unstable or restabilizing depending on the parameters

and thus “could form the base for an experimental study of the applicability” of

their proposed analytical model. For case (b), the model was deemed to be unable

to withstand the process of growth or a dynamic snap, since an excess of energy was

released when the structure goes from the unbuckled to the buckled configuration.

However, the magnitude of the excess energy released could be captured, which

resulted in a lower load for the initiation of growth. The findings were consistent

with previous experimental evidence despite the fact that “quantitative comparison

(...) with impact experiments” was deemed as not meaningful because the complex

nature of the dynamic delamination process was beyond the capabilities of the model

according to the authors.

Figure 2.1: The delaminated strut model as investigated by Simitses et al. (1985).

Simitses et al. (1985) developed their simple model, Figure 2.1, based on the same as-

60



Chapter 2. Buckling and postbuckling of laminated structures

(a) (b)

(c)

Figure 2.2: Different cases of the delaminated plate model investigated by Simitses

et al. (1985); threshold for clamped end conditions: (a) ā 6 h̄ for h̄ 6 0.2, (b) ā 6 h̄

for h̄ > 0.2 and (c) ā > h̄.

sumptions to investigate the effect of size, location and thickness of the delamination

on the buckling load. In their case it was assumed, moreover, that the delamina-

tion existed prior to loading, rather than allowing both scenarios as above, and the

overall strut was investigated with either clamped or simply supported edges. The

buckling equations were investigated using a perturbation approach which funda-

mentally stated that an adjacent equilibrium position exists at a bifurcation point

or limit point; as outlined in §1.2. During their studies they concluded that for

clamped conditions of the strut, provided that the delamination thickness itself was

relatively small (h̄ 6 0.2), where ā = a/L and h̄ = h/t, the effect of the delamination

on the buckling load was not significant as long as the length of the delamination

was smaller than or equal to the depth of the delamination (ā 6 h̄), Figure 2.2a.

However, under the same condition that ā 6 h̄, the buckling load was increasingly

affected once the delamination moved deeper into the panel and approached mid-

depth (i.e. for cases 0.2 < h̄ 6 0.5), Figure 2.2b. Furthermore, the buckling load
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decreased significantly for thinner delaminations, where the delamination thickness

was smaller than the length of the delamination, i.e. (ā ≥ h̄), Figure 2.2c. It was

also understood that this scenario may potentially lead to delamination growth if

the load was further increased, since thin-film buckling occurred where only the up-

per laminate experienced buckling while the rest of the structure remained basically

undeflected. For simply supported conditions the same trends could be observed,

but the described threshold shifted to ā 6 2h̄. In other words, thin film behaviour

occurred later. In addition, they investigated the effect of a delamination that was

located unsymmetrically with respect to the midpoint of the strut, i.e. l1 6= b. In

both support cases, simply supported or clamped, it was concluded that the sym-

metrical delamination was the most critical case.

S L S L

t

L

thickness at thickness (1 - a)t

P P

Figure 2.3: The delaminated strut model as investigated by Hunt et al. (2004).

The final paper within this detailed review dealing with delaminated struts is

the nonlinear four degree of freedom Rayleigh–Ritz model developed by Hunt et

al. (2004), Figure 2.3. This model was the original inspiration for the current work

and is, amongst others, one of the principal bases for the model developed in Chap-

ter 3. Again, a pre-existing delamination was assumed within this approach, but

no delamination propagation was considered. The model geometry is reminiscent

of the ones described above, though owing to the Rayleigh–Ritz procedure pursued,

the formulations were different, i.e. trigonometric displacement functions were as-

sumed to model the behaviour of the intact and delaminated parts, yielding the

basis for the energy formulation. Strain energy stored in bending, stretching and
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the work done were derived and accumulated to evaluate the total potential energy.

A linear eigenvalue analysis was performed to obtain critical loads and associated

mode shapes that could be compared to finite element results for validation pur-

poses. With the energy approach, several distinct critical loads were obtained via

parametric investigations. In the course of the studies it was found that the criti-

cal loads changed with the depth of the delamination and the corresponding mode

shapes were referred to as closing, Figure 2.4a, and opening modes, Figure 2.4b, for

the first and second critical load, respectively. The postbuckling analysis was per-
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Variations of the lowest two critical loads with delamination depth
parameter a are shown in Fig. 3, normalized against the Euler load

PE = π2 E I/L2(1 + 2S)2 (7)

of the corresponding undelaminated strut of length L(1 + 2S).
Figure 3a shows the lowest two critical loads for a full length de-
lamination and Fig. 3b the equivalent for a centrally positioned half-
length delamination. Mode shapes over the delaminated part in each
case are shown in Fig. 4. The shape of Fig. 4b, with the midpoints
of the two laminates moving in opposite directions as the buckling
develops, will be referred to as the “opening” mode; by analogy, the
shape of Fig. 4a will be called the “closing” mode shape, although
this is strictly speaking a misnomer because although the layers
move in the same direction, they do in fact separate. The closing
mode always occurs at a lowest critical load, although the opening
configuration is found to play a significant role in the postbuckling,
as will be seen later.

a)

b)

Fig. 4 Mode shapes for a full-length delamination (S = 0): a) first mode
(closing) and b) second mode (opening).

Fig. 5 Critical load ABAQUS results for pin-ended and clamped struts (cf. Fig. 3b).

In Fig. 3b, a change is seen to take place about a = 0.25. If a
is less than this value the response is largely dominated by thin-
film buckling in the thinner laminate; if a is greater and we move
into the flat central region, the Euler load (7) is almost reached
and the delamination is apparently less important. However, this
may be at the cost of highly unstable postbuckling, as will be
seen later.

B. Comparisons with FEA
For comparison purposes we also present the results based on

critical load ABAQUS runs.15 Here, the delaminated strut has been
modeled using 88 Euler–Bernoulli beam elements (B23) with two
nodes and three active degrees of freedom per node (two transla-
tions and a rotation). Interface elements, as used, for example, by
Remmers and de Borst,16 were not required, the possibility for prop-
agation being omitted at this stage; however, the extension to prop-
agating delamination is considered in a conpanion contribution.9

The delaminated region was connected to the undelaminated re-
gions by rigid arms, and the strut was given a thickness-to-length
ratio t/L(2S + 1) = 0.1. The critical buckling results are shown in
Fig. 5. It can be seen that the lower curve, representing the pin-ended
strut, compares well with the lower curve of Fig. 3b. The upper curve,
however, gives the critical load of a strut with clamped ends. The
comparisons underline that, where thin-film buckling is concerned,
critical loads for pinned and clamped-end conditions are effectively
the same. For higher values of a, the clamped results increase to a
maximum at a = 0.5, which is well below the undelaminated value
of PC = 4PE .

IV. Postbuckling Analysis
Optimization schemes are usually geared toward finding minima

of objective functions, saddles and maxima being seen as of less
interest. Here, however, we are interested in equilibrium states that
are saddle points in V , unstable under dead loading conditions but
likely to be stable when end shortening is controlled. To find such
states numerically, we replace the search in V by a search in F ,
where

F = V 2
1 + V 2

2 + V 2
3 (8)

subscripts denoting partial differentiation with respect to the corre-
sponding degree of freedom as before. It can readily be demonstrated

(a)
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Figure 2.4: Mode shapes identified by Hunt et al. (2004); (a) closing mode and (b)

opening mode. Note that wi refers to the out-of-plane displacement of laminate i.

formed via an optimization scheme to find minimum energy solutions and distinct

equilibrium solutions were found. Physical and non-physical postbuckling solutions

were detected, as well as stable and unstable postbuckling equilibrium solutions

depending on the parametric configuration. Non-physical solutions were essentially

when the laminates intersected; please refer to §5.2.1 for further discussion of this

topic. Furthermore, either “thin-film”, or local, buckling, mixed mode or global

buckling could be observed. The local case was identified to be stable or plate-like

over the initial postbuckling range whereas the mixed mode case was understood to

be unstable or shell-like (as seen in §1.2.3). The advantage of this approach was that

due to the nature of the formulations, based on the total potential energy concept,

the stability behaviour could be readily classified.

63



Chapter 2. Buckling and postbuckling of laminated structures

2.2.2 Plates

71

delaminated structure (Case a) and delaminating an already loaded structure
(Case b). Consider then the three stages in the thin layer delamination and
buckling from Figure 3. Stage i represents the unstressed body while stage ii
denotes the uniform axially compressed body which contains an elliptic
delamination. Stage iii differs from ii in that the disbond has buckled.
Assuming the state of stresses in the parent medium to remain unaltered dur-
ing this transition, and further assuming a clamp type boundary support’, the
following displacement constraints apply on the elliptic boundary defined by

where u, v, and w are the displacement components in the x, y, and z direc-
tion, respectively, v is the Poisson’s ratio of the parent medium, and ro is the
far-field compression strain (&dquo;load&dquo;) in the y-direction.
The issue of disbond growth after buckling leads to two sub-problems,

namely the elastic stability problem and the fracture problem. The former is
analyzed using the Rayleigh-Ritz method whereas a simple energy balance
criterion governs the latter.

3. THE ELASTIC STABILITY PROBLEM

Only two buckling analyses of elliptic plates seem to exist [19,20]. Both
these works determined buckling loads for isotropic, uniformly compressed

Figure 3. Stages in the delamlnatlon and buckling of a thin orthotropic layer (cover layer) at-
tached to a thick isotropic plate (parent medIUm). Layer material axes comcide with ellipse axis.
The structure Is subjected to axial compression m the y direction.

’These assumptions are identical with those for the &dquo;thin film&dquo; model m [8]
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Figure 2.5: The delaminated plate model after Chai & Babcock (1985). Stages of

the delamination; (i) unstressed state, (ii) uniformly axially compressed state and

(iii) buckled configuration.

Some years after their pioneering one-dimensional model, Chai & Babcock (1985)

published their investigations on their two-dimensional, analytical model. The

model contained a single, near-surface delamination that was elliptic in shape which

separated a thin orthotropic layer from a thick isotropic plate. The Rayleigh–Ritz

method was employed to find the postbuckling solutions and a fracture mechan-

ics based energy criterion determined the self-similar propagation behaviour under

quasi-static growth conditions. Again, a distinction was made between a structure

that was loaded prior to the delamination occurring and a pre-existing delamina-

tion before loading begins. Three stages were considered, the first one being an

unstressed state, Figure 2.5(i), followed by a uniaxially compressed state with an

elliptical delamination, Figure 2.5(ii). The final state differs from the previous state

only in the buckled configuration of the delamination, Figure 2.5(iii), where the

stresses in the parent medium remained unchanged.

Polynomial displacement functions were assumed to describe the out-of-plane be-
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haviour of the delamination. The buckling loads were determined with the Rayleigh–

Ritz procedure, and the postbuckling response was obtained numerically using the

Newton–Raphson method. The delamination then grew in the postbuckling range

when the strain energy release rate of the structure reached the value required to

create a new unit of interlaminar surface. With emphasis placed on initially circular

defects, a distinction was made between cases where the delamination grew in the

load direction or transverse to it either in an isotropic or orthotropic case. In the for-

mer configuration, it was found that for very thick or small delaminations, i.e. where

the radius of the delamination was approximately the same or less than the depth

of the delamination, propagation followed immediately after buckling. As in the

one-dimensional case, a “snap out” behaviour was observed from the unbuckled to

the buckled configuration when the delamination was introduced into a pre-loaded

structure. This means that the system buckled locally at the applied load level and

part of the energy released in this transition could transfer into the propagation of

the delamination, i.e. increasing the radius, and subsequently lowering the applied

load. Furthermore, a tendency to grow unstably in the perpendicular direction to

the load was found for an initially circular delamination until the aspect ratio of the

delamination becomes sufficiently large, then growth in the loading direction was

also observed.

For the elliptical delamination, investigations were made regarding the aspect ratio

of the delamination. Here, a distinction was made between stable and unstable

growth. In the orthotropic case, the fibre alignments parallel and perpendicular

to the loading direction were investigated. In the former case, the buckling load

was found to decrease the propagation strain with growth being observed primarily

in the loading axis, except for large defects where the radius was more than twice

the depth of the delamination. In cases where the fibres were orientated normal

to the load, the buckling load and delamination growth initiation strain could be

increased. The growth behaviour was predominantly perpendicular to the loading

direction and a circular delamination was observed not to buckle or grow in most

applications.
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Figure 2. Nomenclature for a buckled sublammate.

laminate loading direction. The laminate is loaded to a strain Ex in the
x-direction. (A positive value of ~ refers to tensile strain.) The associated
strain in the y-direction is -v,,,- Ex, where Vlam is the base laminate Poisson’s
ratio.
The plan view of an assumed elliptic delamination is shown in Figure 2(a).

The set of intact laminae delaminated from the laminate is referred to as the
&dquo;sublaminate;&dquo; the remaining laminate is referred to as the base laminate.
The principal axes of the sublaminate are x’ and y’; the corresponding
semiaxes lengths are a and b. The angle between the axes x ’ and x is 0, which
is referred to herein as the sublaminate angle. The sublaminate is assumed to
be made up of N laminae; a is the fiber angle of a lamina measured relative to
the x-axis (see Figure 2(a)). The sublaminate thickness h is assumed to
be small compared to the base laminate thickness. The inplane displacements
around the sublaminate boundary can be calculated from the base laminate
inplane deformations. Furthermore, the sublaminate lateral dimensions (a
and b) are assumed to be relatively large compared to h, and, hence, thin
plate linear buckling theory is assumed to be valid.
The buckled shape of a sublaminate is shown in Figure 2(b). The transverse

deflection w is measured from the sublaminate mid-plane. The transverse
displacement and slopes are zero along the sublaminate boundary. The pres-
ent analyses assume that the sublaminate buckles outward from the base
laminate, as shown in Figure 2(b). Furthermore, effects of higher modes and
inward buckling of the sublaminate are neglected. The in-plane forces acting
on the sublaminate due to the laminate strain Ex were calculated from lamina-
tion theory [ 10] and are shown, schematically, in Figure 2(c). Even though the
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Figure 2.6: The delaminated plate model by Shivakumar & Whitcomb (1985). (a)

Plan view, (b) section through the buckled panel and (c) free body diagram of the

laminate.

In the same year as Chai & Babcock’s paper, Shivakumar & Whitcomb (1985)

published their work on the buckling of a quasi-isotropic composite plate containing

a single embedded near-surface delamination, Figure 2.6. Again, Rayleigh–Ritz

formulations were employed forming the basis of the energy method used for the

parametric investigation. Polynomial displacement functions were used to obtain the

total potential energy for the studies considering the effect of the shape and material

orientation on the buckling behaviour. In addition, a finite element formulation was

employed based on the same model. Inward buckling was neglected as it would result

in a nonlinear contact problem and it was also pointed out that the sublaminate

may buckle when the base or parent medium was in tension due to the mismatch of

Poisson’s ratio. In all cases, good agreement was found between the Rayleigh–Ritz

method and the finite element approach. Concluding, they found that despite the

base plate being in a state of uniaxial compression, the sublaminate was generally

under biaxial loading. In unidirectional lay-ups, this stress state might result in
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what the authors refer to as “tensile buckling” of the sublaminate. This occurs

when the fibres were almost perpendicular to the load direction and the delamination

was elongated in the loading direction leading to buckling of the delamination due

to Poisson’s ratio. Furthermore, it was found that the compressive buckling load

increased with increasing angle between the load and fibre direction and the direction

of the elongation of the sublaminate; the lowest buckling strain correlated with the

initial growth direction of a circular delamination.9 14 S c m  0. PECK AND GEORGE S. SPRINGER 

Sublaminate 

Plate 

Figure 2. Model of the confact force between the sublaminate and fhe plate. 

The functions in Table 2 arc similar to those presented in thc literature, but are 
more complete. Previous investigators [ 16,18,19] have either omitted terms from 
a series or truncated a series prematurely, which can affect the accuracy of the 
results. In particular. this work has retained: (a) crossproduct terms, e.g., 
r,X,.Yl, to account for arbitrary delamination orientations; (b) p+j and q+, to at 
least one order higher than '+j for accurate postbuckling calculation of in-plane 
strains; and (c) '+j and '9, to the same order as (al l3/a.r i )  for accurate rcprcsenta- 
tion of transverse shear rotations. 

Contact forces may exist between the sublaminate and the balance of the plate 
for a number of reasons. First, if the delaminated region is sealed from the am- 
bient pressure, a partial vacuuni may form inside the delamination. The resulting 
pressure difference across the sublaminate creates a lateral force on the sub- 
laminate, forcing the sublaminate towards the plate. The resulting "inward" mo- 
tion of the sublaminate is resisted by the plate, imposing a contact force on the 
sublaminate Over portions of the delaniinated surface [42] (Figun: 2). Second, the 
generally unsymmetric nature of the sublaminate layup may cause the sublami- 
natc to tend to deflect in an asymmetric fashion. Asymmetric buckling modes are, 
however, prevented by the balance of the plate. Contact is modeled by consider- 
ing the sublaminate to be resting on an elastic foundation. The restoring force is 
assumed to vary linearly with the sublaminate transverse displacement 113 for pos- 
itive displacements, and to vanish for negative displacements. Hence. thc force 
pcr unit area acting on the sublaminate at a given point is 

where Kis the foundation modulus and AP is the uniform pressure acting on the 
sublaminate surfice. 

All of the constituents of the sublaminate total potential energy II [Equation 
(I)] have now been defined. Integrating Il over the thickness of the sublaminate 

 at TU Berlin on January 5, 2010 http://jcm.sagepub.comDownloaded from 

Figure 2.7: Model of the contact force between the sublaminate and the plate after

Peck & Springer (1991).

At the beginning of the 1990s, Peck & Springer (1991) published their analytical

results, again employing a Rayleigh–Ritz procedure and experimental investigations

of the plate model containing an embedded, elliptical delamination subject to in-

plane, shear and thermal loads. The authors specifically built upon the work of

the two plate models previously described, their geometry and assumptions, and ex-

tended them by incorporating transverse shear deformations, postbuckling deforma-

tions, contact effects, thermal loads and unsymmetrical sublaminates. Furthermore

with their experimental investigations, they obtained extensive data in particular

by measuring the entire load–strain history of the sublaminate far into the post-

buckling regime. With the Rayleigh–Ritz formulations, allowing for higher order

shear deformations and the contact problem described essentially as a plate on an

elastic foundation, critical loads and loads at which growth initiated were derived

through minimization of the total potential energy. A fracture energy approach
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was employed for the investigations on the delamination propagation. In the exper-

iments, thin teflon discs were inserted between selected plies before curing in the

autoclave to simulate the delaminations. Their analytical and measured results gen-

erally agreed reasonably for the buckling loads, whereas for growth only fairly poor

agreement was observed. They found that it was important to include the higher

order polynomial terms when describing the in-plane behaviour of the sublaminates

since their omission made the sublaminate too stiff. Furthermore, inclusion of the

contact problem, Figure 2.7, was important because otherwise the analyses at times

would predict physically unfeasible deflections. Also, residual thermal stresses af-

fected the predicted buckling load depending on the degree of mismatch between

the plate and laminate lay-up sequence.

2.3 Delamination geometries

As discussed in §1.1.3, delaminations can occur in different ways depending on the

reason, i.e. open or closed delaminations. In this section, only closed, or embedded,

delaminations are reviewed with regards to the model that is developed in Chapter

3. Embedded delaminations have been investigated in different geometric configu-

rations; elliptical or circular in shape (Bottega & Maewal, 1983; Chai & Babcock,

1985; Shivakumar & Whitcomb, 1985; Whitcomb, 1989; Davidson, 1991; Peck &

Springer, 1991; Kim & Kedward, 1999; Sekine et al., 2000; Butler et al., 2007), rect-

angular (Short et al., 2001; Short et al., 2002; Li et al., 2005), through-the-width

configurations (Kardomateas & Schmueser, 1988; Hunt et al., 2004) and multiple

delaminations (Kim & Kedward, 1999; Hwang & Liu, 2001; Hwang & Huang, 2005;

Cappello & Tumino, 2006).

The buckling and growth of a pre-existing concentric circular delamination was the

subject of investigation by Bottega & Maewal (1983) who developed a two-layer cir-

cular plate model with clamped edges subject to a uniform compressive force. Ow-

ing to the circumferential symmetry, the system was treated as a one-dimensional

68



Chapter 2. Buckling and postbuckling of laminated structures

problem. The delamination was assumed to be large enough for buckling, and subse-

quent propagation resulting from the displacement, to occur prior to overall buckling

and the growth being governed by the aforementioned fracture mechanics approach.

In their assessment, they described the response under force-controlled loading, in

which case the delamination grew until the layers were completely separated. For

a smaller delamination, and displacement controlled loading, it initially grew in

an unstable fashion until it restabilized. For a larger delamination, both loading

scenarios yielded stable growth. In addition, the influence of imperfections on the

delamination growth was investigated, but it was concluded that they only have a

minor effect on the behaviour.

better agreement with experimental failure loads for
specimens containing delaminations.

4. Isotropic modelling

4.1. Methodology

The experimental and finite-element work described
above has related specifically to a multidirectional
laminate laid up with 8 plies of GRP pre-preg. It was

considered of interest to investigate in a more general
manner the effects of delamination geometry on com-
pressive behaviour. Therefore a programme of analy-
tical and finite-element modelling was carried out using
isotropic material properties. This modelling work con-
sidered a square delaminated plate, simply-supported
around its edges and subjected to compressive loading
in one direction. The geometry of the plate is shown in
Fig. 10. The delamination geometry is defined by the
ratio of delamination size to plate size a/b and the ratio
of delamination depth to plate thickness t/T.

4.2. Prediction of buckling mode

The first study carried out using the isotropic model
was involved with the prediction of buckling mode. The
delaminated plate geometry is considered to be formed
of two laminates, one to represent the sub-laminate
above the delamination, the other to represent the
remainder of the plate. The model uses the analytical
expression [18] which allows the critical buckling stress
scr for a rectangular plate to be evaluated for different
boundary conditions.

�cr ¼ K
�2E
� �

12 1� v2ð Þ

t2

b2
ð1Þ

Fig. 9. Comparison of experimental and finite-element predicted fail-

ure loads versus through thickness delamination position for 25 mm

square and 15 mm square delaminations.

Fig. 8. Finite-element predictions of maximum fibre direction com-

pressive stress versus applied compressive load for specimens contain-

ing 25 mm square delaminations in the ‘A’, ‘C’ and ‘D’ positions.

Fig. 10. Delamination geometry for isotopic models.

2082 G.J. Short et al. / Composites Science and Technology 61 (2001) 2075–2086

(a)

Layered material properties were applied to the ele-
ments according to the unidirectional linear elastic
material properties shown in Table 2, rotated accord-
ingly for the off-axis plies. Models were constrained to
represent the boundary conditions provided by the anti-
buckling guide with the unloaded edges of the model
constrained in the out of plane direction over a 5 mm
wide strip along each edge and the loaded edges simply
supported. Compressive load was applied to the model
as a pressure over the two faces normal to the loading
direction, as shown in Fig. 5. A static non-linear analy-
sis was then conducted, including the effects of large
deflections, to predict post buckling behaviour of the
specimens.

3.2. Finite-element results

Fig. 6 shows the out of plane displacement results at
the centre of the upper and lower sub-laminates com-
pared with the LVDT results from experiment. Fig. 6(a)
shows typical results for a geometry giving a local mode

of buckling: a specimen containing a 25 mm square
delamination in the ‘A’ position. Agreement is generally
good once sub-laminate separation occurs. The finite-
element model does not predict the behaviour of the
panel before this point since it takes no account of the
residual adhesion between the sub-laminates existing in
the experiments. Fig. 6(b) shows results for a 15 mm
square delamination in the ‘C’ position, a geometry
resulting in a global mode of buckling. Agreement is
excellent.
Predictions of the specimen failure loads are made by

assuming the maximum fibre direction stress reaches a
limiting value at failure. In this work, a value for the
limiting fibre direction compressive stress of the com-
posite was derived by measurement. Five uni-directional
test specimens were manufactured and tested according
to the CRAG specification [17]. The specimens were 110
mm long by 10 mm wide and 2 mm thick with 50 mm �

10 mm aluminium end tabs bonded to the specimen so
as to leave a gauge length of 10 mm. Testing was con-
ducted using an Instron 8501 servo-hydraulic machine
with hydraulic grips. The compressive fibre direction
strengths for the five specimens varied from 665 to 686
MPa and gave an average of 674 MPa.
For all models, the stress distribution in the laminate

was examined to determine the maximum value of fibre
direction stress in the most heavily loaded ply. The
position of the maximum value of stress was typically
near the centre of the specimen, either on the upper or
lower most zero degree ply, depending on the direction
of the out of plane deflection. Fig. 7(a) shows predicted
contours of fibre direction stress for the most heavily
loaded zero degree ply for the case of a 25 mm square
delamination in the ‘A’ position where a local mode of
buckling occurs. The maximum stress occurs in two

Fig. 5. Geometry of the finite-element mesh.

Table 2

Material properties of B glass/epoxy

Property

E11 46.0 GPa

E22 13.0 GPa

E33 13.0 GPa

V23 0.42

V31 0.3

V12 0.3

G23 4.6 GPa

G31 5.0 GPa

G12 5.0 GPa

2080 G.J. Short et al. / Composites Science and Technology 61 (2001) 2075–2086

(b)

Figure 2.8: The delaminated plate model by Short et al. (2001). Geometry of the

(a) isotropic models and (b) of the finite element model.

An embedded rectangular delamination was investigated by Short et al. (2001) with

finite element models (Figure 2.8) and experiments on plates containing artificial

delaminations implemented by inlaying teflon films during the lay-up. Parametric

studies were undertaken to investigate the impact of size and through thickness

position of the delamination. No growth occurred in the specimens they tested and

failure was preceded by overall buckling of the panel. A local or global buckling

mode depending on the geometry was observed. The former implying that only the

sublaminate buckled, whereas in the second case both sublaminates buckled. With
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this in mind, a buckling mode map was developed that predicted the buckling mode,

whether it was local or global, for delaminated plates of different delamination size

and through thickness location.

A through-the-width delamination was considered by Kardomateas & Schmueser

(1988) in their one-dimensional plate model consisting of an upper and lower part

and base plate, which was investigated using the perturbation technique. Three

instability modes were observed; global, mixed and local, or thin-film, buckling. It

was concluded that for short delaminations, global buckling dominated, whereas for

larger lengths, local buckling of the delaminated layer occurred first. Furthermore,

material parameters did not seem to affect the range of instability modes and the

range of mixed mode buckling was smaller the closer the delamination was located

to the surface. The model was additionally enhanced by including transverse shear

effects which appeared to cause a reduction in the critical loads. Growth was incor-

porated via a fracture mechanics approach and the transverse shear effects seemed

to increase the strain energy release rate. Also, if the fracture energy was relatively

small, the delamination propagation under a constant applied force was typically

a catastrophic process, i.e. the load corresponding to a constant fracture energy

decreased with delamination propagation and hence unstable growth was observed.

However, for larger values of the critical strain energy the load could be increased

substantially beyond its critical value before the defect started to increase in size.

The final article reviewed in this section is by Hwang & Liu (2001) on the buckling

of plates under uniaxial compression containing multiple delaminations. The non-

linear analysis was undertaken by employing the finite element method and contact

elements were utilized to prevent the laminates from passing through each other.

Different multiple delamination scenarios were considered, all containing four de-

laminations arranged evenly from the middle to the top interface; one delamination

being longer than the others and was highlighted. In the first type, also referred to

by the authors as “Type I”, the longest delamination was above the shorter ones

(Figure 2.9) whereas in the second case, “Type II”, the position of the longest de-
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Figure 2.9: Multiple delamination configuration investigated by Hwang & Liu

(2001); Type I delaminations.
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Figure 2.10: Multiple delamination configuration investigated by Hwang & Liu

(2001); Type II delaminations.
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Chapter 2. Buckling and postbuckling of laminated structures

lamination could be between or beneath the other delaminations (Figure 2.10). It

was concluded that for the first configuration, Type I delaminations, the buckling

behaviour was very much similar to a single delamination with the delaminations

beneath imposing no significant effect on the buckling loads. For Type II delamina-

tions, it was found that since the longer delamination was closer to the surface the

effect of the shorter delamination reduced. This was not the case, however, when the

long delamination was close to the midplane and the buckling behaviour changed

from global to mixed to local buckling when increasing the length ratio between the

laminates.

2.4 Loading scenarios

Different loading scenarios have been considered by various researchers ranging from

cyclic loading or fatigue loads (Melin & Schön, 2001; Butler et al., 2007) to static

or quasi-static loading conditions (Chai et al., 1981; Bottega & Maewal, 1983; Chai

& Babcock, 1985; Simitses et al., 1985; Whitcomb, 1989; Peck & Springer, 1991;

Hunt et al., 2004). The former is more relevant with respect to delamination prop-

agation which will be discussed as part of the further work in §9.2. The latter

scenario is relevant with regards to the development of the plate model in Chap-

ter 3. The loading conditions found in the literature comprise transversely loaded

plates (Whitcomb, 1989), plates under shear and thermal loads (Peck & Springer,

1991), and axial compression (Chai et al., 1981; Bottega & Maewal, 1983; Chai &

Babcock, 1985; Shivakumar & Whitcomb, 1985; Simitses et al., 1985; Yin & Jane,

1992a; Sekine et al., 2000; Hwang & Liu, 2001; Short et al., 2001; Hunt et al., 2004;

Rhead et al., 2008). Furthermore, Bottega & Maewal (1983) distinguished between

force-controlled and displacement-controlled loading as discussed in the previous

section.

The work reviewed in the current section is by Davidson (1991) who developed

a single, elliptically shaped, delaminated plate model that was investigated under
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Chapter 2. Buckling and postbuckling of laminated structures

uniaxial and biaxial compression by utilizing the Rayleigh–Ritz method with higher

order polynomial functions. The results were compared to experiments and seven

different cases were considered depending on the relative angle of orientation of the

lay-up sequence of the sublaminate to the base plate. Again, teflon inlays were

inserted during the manufacturing of the specimens to allow for the defects. The

analysis was used to predict the onset of delamination buckling and for moderately

sized delaminations the accuracy of the theory was deemed as “quite good”. Both

assessments showed that sublaminate buckling, when the overall buckling stress is

higher than that of the delaminate, may lead to “subregion” buckling for large

delaminations, with buckling only occurring over a certain region of the defect since

the desired mode shapes were prevented from developing by contact constraints.

For “moderately” sized delaminations, the assumed mode shape occurred, and the

transition to the aforementioned phenomena was deemed to be influenced not only by

the size of the delamination, but also by the material properties and the magnitude

of global plate bending. Thus it was concluded, that what defines the size of the

delamination, i.e. “large” or “moderately” sized, depends on the problem considered

but their predictions were deemed as conservative by the authors. However, it

was concluded, that a more refined analysis might be necessary in cases with large

delaminations to capture the true behaviour, as the critical buckling stress was

predicted to be “significantly below the design stress”.

2.5 Modelling techniques and approaches

Modelling techniques are manifold when assessing the buckling and postbuckling

behaviour of delaminated structures. Analytical methods have been successfully

employed by various authors by minimization of the total potential energy; either

utilizing the calculus of variations (Bottega & Maewal, 1983), a perturbation tech-

nique (Simitses et al., 1985; Kardomateas & Schmueser, 1988; Kardomateas, 1993),

a Rayleigh–Ritz procedure (Chai et al., 1981; Chai & Babcock, 1985; Shivakumar &
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Whitcomb, 1985; Davidson, 1991; Peck & Springer, 1991; Yin & Jane, 1992a; Kim

& Kedward, 1999; Hunt et al., 2004) or a Newton–Raphson procedure (Whitcomb,

1989). Some of these authors solved the resulting equations from the Rayleigh–Ritz

procedure with the aid of computer software, e.g. bespoke routines in FORTRAN

(Nyhoff & Leestma, 1997), or their own developed or commercial finite element codes

(Shivakumar & Whitcomb, 1985; Whitcomb, 1989; Nilsson et al., 1993; Sekine et al.,

2000; Hwang & Liu, 2001; Short et al., 2001; Short et al., 2002; Hwang & Huang,

2005; Cappello & Tumino, 2006; Wimmer & Pettermann, 2008; Craven et al., 2010).

These results were obtained to validate the analytically obtained results (Hunt et al.,

2004) or to compare against experimental data. Experimental investigations into

the buckling behaviour had been conducted by Peck & Schmueser (1991), Yin &

Jane (1992b), Nilsson et al. (1993), Short et al. (2001; 2002), Melin et al. (2002)

and others.

The first paper reviewed in this section is by Whitcomb (1989) who developed the

geometrically nonlinear three-dimensional finite element program NONLIN3D based

on minimum energy principles employing a Newton–Raphson procedure. Substruc-

turing into linear and nonlinear regions was facilitated to reduce the amount of

iterations required for the solution procedure. The linear parts were also referred

to as the “superelement” with a reduced stiffness matrix. Once this part was de-

veloped, the nonlinear substructure could be obtained which was relevant only in

the postbuckled regions. The virtual crack closure technique was employed for the

delamination propagation analysis, where by finding the displacements at certain

nodes, the relative displacement could be obtained1. The laminates were described

via homogeneous quasi-isotropic material properties to correlate with the objective

of the investigations “to consider only the effect of geometric parameters” for the

strain energy release rates. Results from a previously developed nonlinear closed

form analytical solution and their finite element code for a transversely loaded plate

were discussed and compared for a small, thin circular defect. The closed form was

stated to be exact for linear deflections yet “approximate for large deflections of

1Different approaches of delamination growth modelling will be discussed in Chapter 6.
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plates according to Kirchhoff–Love plate theory”. A discrepancy in the highest load

level was indicated only, which was established for results from the aforementioned

inaccuracy of the closed form solution in this range. Systematic convergency studies

were performed, subdividing the coarse two-dimensional mesh into a refined mesh

and with the values of the strain energy release rates used as a measurement for

adequacy. In all cases, the fracture Mode III was negligible and even a crude model

appeared sufficient for the other modes2. It was concluded that the fracture problem

was a mixed-mode problem that if only Mode I was considered perpendicular growth

to the loading direction would be expected. On the other hand, if only Mode II was

considered, the delamination would grow parallel to the load. In addition, it was

noted that parts of the delamination would overlap and contact elements would be

required to account for this effect.

Kim & Kedward (1999) developed an analytical model based on the Rayleigh–Ritz

method employing polynomial functions describing the out-of-plane displacement

behaviour of the sublaminates whilst trigonometric functions were used for the over-

all plate. In-plane deformations were assumed to behave linearly prior to buckling.

The method was used to formulate the eigenvalue problem to predict the initial crit-

ical loads and eigenvectors via matrix manipulation; postbuckling and delamination

growth being beyond the scope of the article. Global and local buckling analysis

was performed, with an assumed stiffness reduction for the delaminated zone in the

former and the presupposition that only the near-surface laminate would deform

in the local mode. Initially, a discretization study was undertaken with up to nine

terms in the Fourier series of the displacement to investigate the convergency rate

of the formulations with respect to the shape of the delamination (Figure 2.11a).

The results were compared to those obtained via finite element solutions and it was

concluded that a single rectangular representation of the circular delamination can

be deemed as appropriate for the global analysis, so far as the delamination areas

matched (Figure 2.11b). In the local analysis, this type of representation did not ap-

pear to be a good choice, therefore local buckling analysis was performed separately

2Please refer to Figure 6.2 in §6.2 for fracture mode types and further discussion on that topic.
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Note that in all cases, each of the sublaminates are un- 

k a------d symmetric. For the cases depicted in Fig. 7(a), (c), and 
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(e), the global behavior of the delamination zone as a 

circular delamination located at center; cross section A-A shown in 
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Fig. 7. laminate having the same in-plane stiffness as the intact 
laminate, but with greatly reduced bending stiffness and 
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are composed of 9-node shell elements with multiple bility of the method for non-square plates. For all plates 
shells collocated in the delamination zone to represent the length in the loaded direction a is maintained at 
the sublaminates. Identical in construction to the FEM 304.8 mm. Thus for plates of aspect ratios other than a/ 
model described in the previous section, they are con- b = 1, the width dimension b changes. 
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Fig. 7. Cross sections of eight and 16 ply plates showing the various delamination cases investigated; cross section A-A location shown in Fig. 6. 

(b)

Figure 2.11: The delaminated plate model by Kim & Kedward (1999); (a) Dis-

cretization study (with ‘r’ indicating the number of rectangles used to discretize)

and (b) case study problem.

using a circular plate, and all results were compared to the finite element model.

Different aspect ratios of plates and delaminations were investigated, demonstrating

that the method is applicable to non-square plates. Furthermore, the effect of the

location of the delamination with respect to the plate thickness was studied and the

mode behaviour, i.e. local, mixed or global, was captured.

The final paper reviewed within this section is the work by Nilsson et al. (1993) who

presented numerical and experimental investigations into the buckling and growth

behaviour of initially circular, embedded delaminations under uniaxial compression.

The contact behaviour resulting from the local buckling of the sublaminate was

evaluated using a predictor–corrector numerical scheme that was formulated as an

optimization problem, which assessed nodes of interpenetration and subsequently

imposing constraints. Once the applied load was sufficiently high, delamination
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A 

150 mm 

Buckling induced delamination 

to) 300 mm 
4 4 

FIG. 5(a). Specimen geometry for plates and strain gauge layout used in the experiments. Gauges on front 
face 0 and gauge on back face +. 

l-axis The nominal plate thickness was determined to be 6.48 mm with occasional 
deviations less than 0.20 mm. 

The geometry of the specimen was selected to meet several criteria and to fit into 
an existing anti-buckling frame which preserves the global stability of the plate (LEVIN, 

1991). The frame supports the boundary edges of the plate while leaving an 80 mm 
square central area of the plate exposed. The assumption that the buckled delami- 
nation lies within a plate approaching an infinite elastic sheet dictates that the diameter 
of the delamination (= 20 mm) be sufficiently small relative to the width of the plate 
(= 150 mm). As the so called thin film assumption is adopted it is demanded that the 
thickness of the buckling sublaminate be at most one-tenth of the global plate thickness 
to assure that the substrate does not bend substantially. In this case, the thin film was 
at most one-fifteenth of the plate thickness. With these dimensions, global buckling 
within the 80 mm window frame was prevented. The final criterion for the specimen 
design was the restriction on the maximum load for buckling of the thin film to be 
within the range of the test machine, i.e. < 1000 kN. A simple approximation of the 
buckling strain, based on results from an isotropic delamination, together with an 
estimate of the plate stiffness showed that boundary displacements of the order 0.3 
mm, or loads of 50 kN, should be sufficient to induce thin film buckling. 

3.2. Exprimental Set-UQ and test method 

Uniformity of uniaxial in-plane loading leading to buckling is difficult to achieve 
experimentally for polymer composite plates. Therefore each of the finished plates 
was instrumented with six strain gauges to examine the magnitude and homogeneity 

(a)

9. The resulting X-ray radiograph together with the C-scan photo (lower left) and the correspondir 
FE-mesh (.i?.h”& growth) with nodes IZI co~~tact also showtt. 
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(b)

Figure 2.12: The delaminated plate model by Nilsson et al. (1993). (a) Specimen

geometry for plates and strain gauge layout (solid circles) used in the experiments

and (b) the resulting X-ray radiograph together with ultrasonic C-scan photo (lower

left) and the corresponding finite element mesh with nodes in contact shown.
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growth would occur under the assumption that the delamination front was smooth

at all times. A fracture energy approach was utilized, computing the growth param-

eters discretely along the delamination front until the governing criteria was reached

and an algorithm was employed to incorporate this method into the numerical inves-

tigations with an automatic mesh generator. Experimental studies were undertaken

on large cross-ply specimens where 0.025 mm thick, circular teflon films were placed,

periodically spaced, under one sublaminate to simulate the embedded debond. The

panel was then sectioned into discrete specimens such that the “defect was centrally

located in the panel of each specimen” (Figure 2.12a). An anti-buckling frame,

which essentially preserved the global stability of the plates, was placed leaving a

square area exposed. Six strain gauges and transducers were used to measure the

strain field within the frame and additionally, acoustic emissions were measured via

another transducer to capture the initiation of each increment in delamination evo-

lution. With the aid of ultrasonic C-scans, where a short pulse of ultrasonic energy

is imposed on a sample with the measurement of the transmitted pulse indicating

the sample’s attenuation of the incident pulse, and X-rays, the size and shape of the

internally growing delamination was measured with high precision (Figure 2.12b).

Three different plates were tested with several load cases, initially up to the first

buckling case and then subsequent loadings for the growth cases. In a microscopic

examination it was observed that a small initial imperfection was introduced by the

teflon films used for the simulation of the defect. It was concluded that the theo-

retical and numerical method simulated the growth determined experimentally very

well and the authors were confident in their approach to simulate interface cracks.

2.6 Summary of known results

A review of various pertinent groundbreaking and seminal publications has been

presented. A summary of the essential findings with respect to the buckling loads

and modes from the review is presented in the bullet points below.
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• The critical buckling loads decrease with the increasing size of the delamination

(Simitses et al., 1985; Kim & Kedward, 1999).

• The critical loads change with the depth of the delamination (Kim & Kedward,

1999; Hunt et al., 2004).

• Different buckling modes, i.e. closing or opening, can be identified depending

on the parametric configuration (Kim & Kedward, 1999; Short et al., 2001;

Hunt et al., 2004).

• Different modal magnitudes, i.e. giving local, mixed or global responses, are

observed depending on the parametric configuration (Simitses et al., 1985;

Kim & Kedward, 1999; Hunt et al., 2004).

• Material parameters do not seem to affect the range of instability modes and

the likelihood of mixed mode buckling occurring is smaller the closer the de-

lamination is located to the surface (Kardomateas & Schmueser, 1988).

• Non-physical buckling modes may result from the analysis (Whitcomb, 1989;

Davidson, 1991; Peck & Springer, 1991; Hunt et al., 2004) and the introduction

of constraint criteria may be necessary to capture the true behaviour.

• Thin-film buckling is observed as stable buckling (plate-like) and mixed mode

buckling is observed as unstable buckling (shell-like) for the strut model in-

vestigated by Hunt et al. (2004).

• After initial buckling, the laminates may reverse direction (Hunt et al., 2004).

• Buckling under tension may occur in the sublaminate due to the mismatch of

Possion’s ratio (Shivakumar & Whitcomb, 1985).

• For multiple delaminations, see Figure 2.9, where the longest delamination is

closer to the surface than the shorter delamination, the buckling behaviour is

similar to a single delamination with the delaminations beneath imposing no

significant effect on the buckling loads (Hwang & Liu, 2001).
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• For multiple delaminations, see Figure 2.10, where the long delamination is

located towards the midplane and shorter delaminations are present above

the longer one, the buckling behaviour becomes increasingly influenced by the

presence of the shorter delaminations. The buckling behaviour subsequently

changes from global to mixed to local buckling when increasing the length

ratio between the laminates (Hwang & Liu, 2001).

Finally, for investigations into the propagation behaviour of the delaminations, the

following summary points are as follows.

• Thin-film buckling is understood to lead to delamination growth (Chai et al.,

1981; Simitses et al., 1985; Kim & Kedward, 1999; Hunt et al., 2004).

• For isotropic plates, it was found that for very deep or small delaminations,

i.e. the radius of the delamination being approximately the same or less than

the depth of the delamination, propagation followed immediately after buck-

ling (Chai & Babcock, 1985).

• The growth direction is predominantly in the direction normal to the load

(Chai & Babcock, 1985).

• Force-controlled, or so-called dead, loading may lead to catastrophic debonding

of the laminates (Bottega & Maewal, 1983).

• In displacement controlled, or rigid, loading the system may restabilize after

an initially unstable growth behaviour; however, for a larger delamination,

both loading scenarios may yield stable growth. (Bottega & Maewal, 1983).

• The influence of imperfections on the delamination growth is only of minor

significance (Bottega & Maewal, 1983).

• For orthotropic cases: placing the fibres in the direction of the load decreases

the buckling strength and growth initiation load; growth is parallel to the

loading axis except for large delaminations. For fibres aligned perpendicular
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to the loading direction an increase in both buckling load and growth initiation

load is observed and propagation occurs normal to loading direction, i.e. in

the fibre direction, and for most cases a circular delamination does not buckle

or grow (Chai & Babcock, 1985).

• Residual thermal stresses affect the predicted buckling load depending on the

degree of mismatch between the plate and layup sequence of the delaminated

region (Peck & Springer, 1991).

• If the magnitude of the fracture energy, defined as the energy required to pro-

duce a new unit of delamination, is relatively small, the delamination prop-

agation under a constant applied force is typically a catastrophic process; a

decreasing load corresponds to a constant fracture energy during the growth

process, i.e. unstable growth occurs (Kardomateas & Schmueser, 1988).

• The fracture Mode III is in all cases almost negligible (Whitcomb, 1989; Nils-

son et al., 1993)

• Even a crudely discretized formulation appears sufficient for the growth criteria

to be modelled accurately (Whitcomb, 1989).

• In the early stages of local buckling, when overall buckling of the panel does

not dominate the behaviour, a pure fracture Mode I dominates the growth

behaviour (Chai & Babcock, 1985; Melin & Schön, 2001).

• The fracture problem is a mixed-mode problem in that if only Mode I was

considered, growth perpendicular to the loading direction would be expected.

On the other hand, if only Mode II was considered, the delamination would

grow parallel to the load (Whitcomb, 1989).
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The delaminated panel model

3.1 Introduction

As extensively discussed in the previous chapter many researchers have investigated

and are currently working on the topic of delamination modelling through vari-

ous different methodologies and approaches, incorporating various configurations

and conditions. Since many applications in structures, particularly in aircraft struc-

tures, contain thin rectangular plated panels which are subjected to in-plane stresses

(Bisagni & Walters, 2008) a model for a composite plate is developed herein.

The chapter opens by introducing the elements of the analytical delaminated plate

model and concerns itself primarily with the plate geometry, stating the assumptions

and simplifications applied to the structure; these affect the choice of displacement

functions wi that are subsequently used to obtain expressions for the Airy stress

functions ϕi needed to develop the total potential energy. Thereafter the governing

expressions for a uniaxially compressed plate are formulated in conjunction with the

Rayleigh–Ritz method to obtain the total potential energy of the system which com-

prises strain energy in bending, membrane or stretching energy and the work done

by the compressive loads. The total potential energy is subsequently used to find
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the buckling and postbuckling solutions in Chapters 4–8 using the procedure out-

lined in §1.2.2. Finally, the finite element model used for validation and comparison

purposes is described.

3.2 Structural geometry

The geometrically nonlinear analytical delaminated plate model is developed in the

style of the two-layer strut model presented by Hunt et al. (2004) and Wright (2006a;

2006b) which had some features reminiscent of the strut models derived by Chai &

Babcock (1981), Simitses et al. (1985) and Kardomateas & Schmueser (1988). By

extending the one-dimensional model, a rectangular plate is developed that is remi-

niscent of the plate models shown by previous authors, that include: Bottega (1983),

Chai & Babcock (1985), Shivakumar & Whitcomb (1985), Peck & Springer (1991).

However, instead of incorporating an embedded elliptical or circular delamination,

a rectangular delaminated patch is introduced (Short et al., 2001; Short et al., 2002;

Li et al., 2005), as illustrated in Figure 3.1a. The overall dimensions of the plate

are L and B in the x- and y-directions respectively and the plate has a uniform

thickness t. The pre-existing defect of dimensions a and b is centrally located to

capture the case with the most severe stress concentrations (Simitses et al., 1985;

Nilsson et al., 1993; Short et al., 2002) and is surrounded by the intact parts of

the plate. The delaminated patch contains two distinct laminates, referred to as

upper and lower (Kardomateas & Schmueser, 1988; Sekine et al., 2000) or top and

bottom laminate (Short et al., 2001), which are also modelled as plates. The depth

of the delamination is described with the ratio c, as depicted in Figure 3.1b; lami-

nate thicknesses are therefore ct for the upper laminate and (1 − c)t for the lower

laminate. The panel is under quasi-static uniaxial uniformly distributed in-plane

compression P (Rhead et al., 2008).
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(a) Panel plan view

(b) Panel cross-section

Figure 3.1: Geometry of the delaminated panel model.

3.3 Assumptions and simplifications

The plate and sublaminates are assumed to be homogeneous and isotropic through-

out the whole specimen and no stacking sequence effects or variations on material

properties are taken into account for the sake of simplicity (Bottega & Maewal, 1983;

Shivakumar & Whitcomb, 1985; Whitcomb, 1989; Yin & Jane, 1992a). The intact

parts and the delaminated patch are assumed to behave linearly elastically (Chai

et al., 1981; Simitses et al., 1985; Peck & Springer, 1991; Kardomateas, 1993) which

is true if the plate is assumed to be sufficiently thin relative to its span (Bažant &

Cedolin, 1991). This, in addition, means that buckling occurs, rather than com-

pressive failure and that through-thickness shear deformation may be neglected. In

accordance with Peck & Springer (1991) the delamination is assumed to occur be-
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tween two adjacent plies and perfect bonding exists between the adjacent layers.

Furthermore the deformation of the sublaminate does not influence the strains and

stresses of the intact panel. However, as will be seen in §3.4.2, the influence of the

intact panel on the delaminated patch is taken into account. In addition, transverse

normal stresses are assumed to be zero in all parts of the plate, i.e. plane stress,

which results in the requirement for an alternative approach when incorporating de-

lamination growth, as will be discussed in Chapter 6. The intact plate is modelled as

simply supported on all four edges (Short et al., 2001) and is restrained from in-plane

movement along the edges y = ±B/2, i.e. no pull-in is allowed along those edges.

However, the panel can move freely in the x-direction with the edges x = ±L/2

remaining straight in-plane after deformation (Timoshenko & Woinowsky-Krieger,

1959). The edges of the delaminated patch are assumed to be clamped locally due

to the constraint of the intact panel (Nilsson et al., 1993; Hunt et al., 2004; Wright,

2006b) with edge rotations occurring only from the overall panel. Two modelling

constraints therefore apply at the intersection between the intact and delaminated

layers:

1. The rotations and displacements of the intact and delaminated parts must be

the same.

2. No relative shearing movement must occur between the laminates at the in-

terface.

In the strut model presented by Hunt et al. (2004), these restrictions are enforced

by introducing a single degree of freedom (DOF) at the interface and introducing a

further DOF to link the amount of axial stretching. However, applying this approach

in the current model is much more difficult due to the extra dimension of the current

system. Instead, the transverse displacement functions in §3.4.1 are chosen such that

they comply with the constraints above; the displacement (Peck & Springer, 1991)

and the slope at the interface are therefore equal (Shivakumar & Whitcomb, 1985;

Simitses et al., 1985; Nilsson et al., 1993).
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Figure 3.2: The geometry at the ends of the delaminated region.

3.4 Geometrically nonlinear Rayleigh–Ritz for-

mulation

Since plates possess a postcritical reserve capacity, meaning that they are capable

of resisting loads higher than the critical loads, nonlinear theory has to be applied

to exploit their full potential. In this work, nonlinear theory for moderately large

deflections is incorporated, where linearized expressions for the curvature are still

valid (Bažant & Cedolin, 1991), e.g. see equations (3.20) and (A.1), since rotations

tend to be small, c.f. Wadee (1998) pages 56–57. However, the redistribution of

the in-plane forces due to the deflections are taken into account using Airy’s stress

function, which are developed in §3.4.2. The two governing equations after Föppl and

von Kármán (Timoshenko & Woinowsky-Krieger, 1959; Bažant & Cedolin, 1991) are

the compatibility equation:

∇4ϕ = E

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]
, (3.1)

and the equilibrium equation:

∇4w =
t

D

(
q

t
+
∂2ϕ

∂y2

∂2w

∂x2
+
∂2ϕ

∂x2

∂2w

∂y2
− 2

∂2ϕ

∂x∂y

∂2w

∂x∂y

)
, (3.2)

where the biharmonic operator ∇4 is defined as

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
. (3.3)
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Equations (3.1) and (3.2) form a system of two coupled nonlinear fourth order

partial differential equations, where w is the out-of-plane deflection, ϕ is the Airy

stress function, q is the transverse load, D is the plate flexural rigidity and t is

the plate thickness. Those equations are rather complicated to solve analytically,

however, approximate solutions are discussed in the literature, e.g. Timoshenko &

Woinowsky-Krieger (1959). The equations above form the basis for deriving w and

ϕ.

3.4.1 Out-of-plane displacement functions

In the present section, the selection of the kinematically admissible transverse dis-

placement functions is described. These are required to satisfy the geometric bound-

ary conditions of the problem, namely the simply supported or clamped edge con-

straints for the intact or delaminated parts respectively, whereas satisfaction of the

static boundary conditions is not essential when utilizing a Rayleigh–Ritz proce-

dure (Thompson & Hunt, 1973). The governing equation for a plate in bending

under transverse and in-plane loading dates back to St Venant in 1883 (Timoshenko

& Woinowsky-Krieger, 1959; Timoshenko & Gere, 1961; Szilard, 1974; Williams

& Aalami, 1979). Reducing the governing differential equation (3.2) according to

the assumptions in §3.3, by eliminating q, the transverse load, as well as ∂2ϕ/∂x2

and ∂2ϕ/(∂y∂x), the in-plane stress in the y-direction and shear stress respectively,

and substituting P for t∂2ϕ/∂y2, the uniformly distributed compression force1, the

following equation is obtained:

∇4w =
P

D

(∂2w

∂x2

)
. (3.4)

The classical methods available for solving equation (3.4) include: (a) Navier’s

method, applicable only to simply supported rectangular plates which reduces the

equation to the solution of algebraic equations by employing double Fourier se-

ries for both deflection and loading or (b) Levy–Nádai’s technique (Timoshenko &

1The effects of the out-of-plane deflection on the stresses in the panel are incorporated utilizing

the stress functions derived in §3.4.2.
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Woinowsky-Krieger, 1959). The latter technique only requires two opposite edges

to be simply supported while the remaining two edges admit arbitrary boundary

conditions. Solutions are obtained by means of single trigonometric series and su-

perimposing the particular and homogeneous solution of equation (3.4). However,

the desire is to employ a conventional Rayleigh–Ritz procedure, as outlined in §1.2.2,

which has been successfully employed in previous investigations on the behaviour of

delaminated structures (Chapter 2), and the aim is to keep the model simple and

straightforward. The Fourier series is therefore truncated later when describing the

displacements. However, it is understood that this subsequently leads to an approxi-

mation of the actual behaviour, since it restricts the behaviour of the plate to either

positive or negative single sine waves, particularly if only one DOF is chosen for

the displacement. Various authors have employed polynomial functions to describe

the out-of-plane behaviour of the panels due to buckling (Chai & Babcock, 1985;

Shivakumar & Whitcomb, 1985; Peck & Springer, 1991; Yin & Jane, 1992a; Kim &

Kedward, 1999). However these functions usually require more terms in the series

and subsequently more DOFs to describe the deflection accurately. Hence, trigono-

metric displacement functions are utilized currently and a sinusoidal clamped-end

mode (Figure 3.3a) is employed to describe the buckling displacement of each of

the delaminated plates; this introduces DOFs accounting for the amplitude of the

upper and lower lamina, Q1,mini
and Q2,mini

, respectively. Moreover, the second

term is added to comply with the overall buckling mode and the requirement to ob-

tain matching slopes at the interface between the delaminated area and the intact

panel as discussed above, i.e. the local displacement is superimposed on the overall

displacement. With xi and yi being measured along the centre-line of each laminate

i, the lateral displacement of each of the laminates (Figure 3.3), may be expressed

as follows:

wi =
∑
mi

∑
ni

Qi,mini
cos2 miπxi

a
cos2 niπyi

b
(3.5)

+
∑
m3

∑
n3

Q3,m3n3 cos
m3πx3

L
cos

n3πy3

B
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where i = 1 or 2 for the top or bottom laminate respectively. The summation nota-

tion indicates that further terms in the series can be used. However, in §4.3.1 it will

be shown that employing the first term in each series is sufficient when modelling the

buckling behaviour (Shivakumar & Whitcomb, 1985). This minimizes the number

of DOFs within the model.

-0.5a

0.5a

-0.5b

0.5b

0

0

Q
i

(a)

0.5L

-0.5L

0

-0.5B

0.5B

0

Q
3

(b)

Figure 3.3: Out-of-plane displacement functions; (a) delaminated patch, wi, and (b)

intact panel w3.

Since the plate edges of the intact panel are pinned, the lateral displacement of this

part, w3, shown in Figure 3.3b, can be expressed with the commonly used double

Fourier series (Timoshenko & Woinowsky-Krieger, 1959):

w3 =
∑
m3

∑
n3

Q3,m3n3 cos
m3πx3

L
cos

n3πy3

B
, (3.6)

where the DOFs describing the amplitude of the overall mode, Q3,m3n3 are defined

with x3 and x3 originating from the centre of the panel. This shape function satisfies

both static and kinematic boundary conditions for the simple supports on the four

edges of the panel.

As mentioned above, the condition of equal slopes at the intersection between the

delaminated and intact parts has to be satisfied. With the above displacement
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functions this is achieved, since:

∂wi
∂xi

∣∣∣∣
xi=±a/2

=
∂w3

∂x3

∣∣∣∣
xi=±a/2

(3.7)

and

∂wi
∂yi

∣∣∣∣
yi=±b/2

=
∂w3

∂y3

∣∣∣∣
yi=±b/2

. (3.8)

3.4.2 Stress functions

It is understood that the middle surface of a plate undergoes stretching when the

plate is bent into a nondevelopable surface, (Timoshenko & Woinowsky-Krieger,

1959). Hence, assuming a state of bending without membrane action is not accurate

beyond critical buckling, because significant membrane strains are developed in the

middle surface which influence the subsequent postbuckling stiffness and therefore

cannot be neglected (Yin & Jane, 1992a). To account for these effects, Airy stress

functions ϕi (Timoshenko & Woinowsky-Krieger, 1959; Everall & Hunt, 1999) for

the delaminated and intact parts have been derived. This has been achieved by

substituting the expressions for wi into the von Kármán compatibility equation

(3.1) and integrating directly to obtain ϕi. The coefficient comprising the Young’s

modulus E acting on the right-hand side expression of equation (3.1) has been

deliberately dropped when deriving the stress functions, such that the procedure is

in accordance with Everall (1999). However, it is included later for each laminate

when the stresses, equation (3.10)–(3.12), are substituted into the strain energy—the

detailed derivation being described in §3.5.2.

Moreover, this approach is employed since it prevents further freedoms from being

introduced into the model when describing the in-plane stretching behaviour of the

plates. The stress function for the undelaminated plate with simple supports can

be subsequently expressed as follows:

ϕ3 =
1

2

Q4

L
y2

3 −
Q2

3

32L2B2

(
L4 cos

2πx3

L
+B4 cos

2πy3

B

)
, (3.9)
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where the first term in the expression is added to allow for uniform compression

before buckling occurs, whereby Q4 is introduced as the generalized coordinate for

overall end-shortening, see Figure 3.4a. With the usual definition of the stresses

being related to the second partial derivative of ϕi (Timoshenko & Woinowsky-

Krieger, 1959):

σxi
= Ei

∂2ϕi
∂y2

i

, (3.10)

σyi
= Ei

∂2ϕi
∂x2

i

, (3.11)

τxiyi
= Gi

∂2ϕi
∂xi∂yi

, (3.12)

the derived stress functions can be verified, see Figures 3.4b and 3.5 for σy3 and

σyi
for the intact or delaminated parts respectively2. The stress functions show

tension in the centre of the panel and compression on the edges as expected from

the qualitative postbuckling behaviour of plates and are hence adopted.

(a)

-1

-0.5L

-0,5

x

1

0.5L

0,5

σy
3

3

(b)

Figure 3.4: (a) Pure compressive degree of freedom Q4. (b) Transverse stress σy3

from global buckling in the whole panel over the length of the intact panel.

However, for the delaminated part of the plate the process of solving the fourth order

partial differential equation (3.1) for the stress function is cumbersome owing to the

2The stress functions are symmetric, hence only components of σyi
are shown for illustrative

purposes.
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nature of the out-of-plane displacement function given in equation (3.5). Hence, an

approximation is introduced, which is derived as follows. Initially, the right hand

side of equation (3.1) is evaluated with the known expressions for the displacement

functions, equation (3.5), using the local term only, i.e. the first term with Q1

or Q2. Then the evaluated parts are split into three, each part belonging to the

corresponding terms on the left hand side of the compatibility equation (3.1). Those

parts associated with xi are integrated four times with respect to xi, those associated

with yi are integrated four times with respect to yi and the mixed term twice with

respect to xi and then twice with respect to yi. With this procedure, the effects of

the local out-of-plane deflection on the stress function for the delaminated parts are

derived. However, the expressions are lengthy and are subsequently reduced to a

more compact form resulting in those terms that can be seen as the parts associated

with Q2
i in equations (3.16) and (3.17). These shortened expressions are verified

by applying the conditions for straight-edged, clamped plates as given by Everall

(1999), where the first condition is given by symmetry:

∂2ϕi
∂x2

i

∣∣∣
xi=a/2

− ∂2ϕi
∂x2

i

∣∣∣
xi=−a/2

= 0, (3.13)

the second condition is that the buckling pattern for two plates placed end-to-end is

antisymmetric and hence the corresponding stress distribution must be symmetric:

∂σyi

∂xi
= 0⇒ ∂3ϕi

∂x3
i

= 0 at xi = ±a/2, (3.14)

finally, the third condition is that ϕ accounts for the change from the uniformly

applied load, thus:∫ b/2

−b/2
σxi

dyi =

∫ b/2

−b/2
Ei
∂2ϕi
∂y2

i

dyi = 0 at xi = ±a/2. (3.15)

Moreover, mixed terms QiQ3, containing the local and global out-of-plane general-

ized coordinates—Q1 and Q2 being local and Q3 being global—are added in equa-

tions (3.16) and (3.17) to allow for mixed mode effects resulting from the simulta-

neous buckling of the delaminated patch and the overall panel. These terms are

derived using a procedure developed by Little (1987) taking into consideration the

different boundary conditions of the clamped edges of the delaminated patch and
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simply-supported edges of the overall panel. The method is applied twice, once for

clamped edges in the xi direction with length a and simply-supported edges in the yi

direction with length B and vice versa. The resulting expressions are added together

and then halved such that the effects are not included twice; a more detailed de-

scription on this derivation can be found in Appendix A. The last term in equations

(3.16) and (3.17) are added to allow for the effects of the overall plate buckling on

the local patch and hence the expression for ϕ3 in equation (3.9) is superimposed.
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Figure 3.5: Stress σyi
from local buckling over the length of the delaminated patch;

(a) along the xi-axis, (b) along the yi-axis and (c) 3-dimensional view.

94



Chapter 3. The delaminated panel model

The expressions for the stress functions for the delaminated patch can be derived:

ϕ1 =
1

2

Q4

L
y2

1 +
B2

aπ2
[(1− c)t− 2ψ]

∂w1

∂x1

∣∣∣∣
x1=−a/2

+
L2

bπ2
[(1− c)t− 2ψ]

∂w1

∂y1

∣∣∣∣
y1=−b/2

− Q2
1

32a2b2

(
a4 cos4 πx1

a
cos2 πy1

b
+ b4 cos2 πx1

a
cos4 πy1

b

)
+

1

2

Q1Q3

128

(
a2

2B2
cos

4πx1

a
+

8B2

a2
cos

2πy1

B

+
8

(B/a+ a/B)2
cos

2πx1

a
cos

2πy1

B
+

8a2

B2
cos

2πx1

a
+

b2

2L2
cos

4πy1

b

+
8L2

b2
cos

2πx1

L
+

8

(L/b+ b/L)2
cos

2πx1

L
cos

2πy1

b
+

8b2

L2
cos

2πy1

b

)
− Q2

3

32L2B2

(
L4 cos

2πx1

L
+B4 cos

2πy1

B

)
(3.16)

and

ϕ2 =
1

2

Q4

L
y2

2 −
B2

aπ2
(ct+ 2ψ)

∂w2

∂x2

∣∣∣∣
x2=−a/2

− L2

bπ2
(ct+ 2ψ)

∂w2

∂y2

∣∣∣∣
y2=−b/2

− Q2
2

32a2b2

(
a4 cos4 πx2

a
cos2 πy2

b
+ b4 cos2 πx2

a
cos4 πy2

b

)
+

1

2

Q2Q3

128

(
a2

2B2
cos

4πx2

a
+

8B2

a2
cos

2πy2

B

+
8

(B/a+ a/B)2
cos

2πx2

a
cos

2πy2

B
+

8a2

B2
cos

2πx2

a
+

b2

2L2
cos

4πy2

b

+
8L2

b2
cos

2πx2

L
+

8

(L/b+ b/L)2
cos

2πx2

L
cos

2πy2

b
+

8b2

L2
cos

2πy2

b

)
− Q2

3

32L2B2

(
L4 cos

2πx2

L
+B4 cos

2πy2

B

)
,

(3.17)

with

ψ =
c(1− c)(E1 − E2)t

2[E1c+ E2(1− c)]
, (3.18)

where the quantity ψ accounts for the shift in the neutral axis when using different

material properties (Hunt et al., 2004; Wright, 2006a; Wright, 2006b) (see Figure

3.2); again with i = 1, 2 for the top and bottom laminate respectively. In equations

(3.16) and (3.17) the first term again accounts for the in-plane compression before

buckling, while the second and third terms are included to account for either the

biaxial compressive (Shivakumar & Whitcomb, 1985) or the tensile effects from
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overall buckling in the laminates (Hunt et al., 2004; Wright, 2006a). The subsequent

terms incorporate the membrane stretching according to large deflection plate theory

(Williams & Aalami, 1979).

3.5 Governing equations

The thin elastic plates in the structure develop their strength by transferring loads

with a combination of bending and membrane actions (Williams & Aalami, 1979),

both of which are derived below. Furthermore, to apply the procedure of minimizing

the total potential energy, to evaluate the buckling and postbuckling behaviour of

the structure, the work done by the external load needs to be evaluated.

3.5.1 Strain energy from bending

To account for the effects of bending on the strain energy, the plate is regarded

as being deflected by distributed bending moments only such that the mid-plane

undergoes out-of-plane deformations (wi in the zi-direction only). Hence, the strain

energy stored due to flexural actions alone can be calculated (Williams & Aalami,

1979). The incremental contribution of strain energy stored by the moments can

be obtained by taking half the product of the moment and the angle between cor-

responding sides after bending dθ (Timoshenko & Woinowsky-Krieger, 1959). This

can also basically be described by a series of rotational springs, where the incremen-

tal strain energy can be formulated as:

dU =
1

2
Mdθ , (3.19)

where M = Mx dy and dθ can be related to the curvature as follows

dθ = −∂
2w

∂x2
dx . (3.20)

This can also be done accordingly for My and the twisting moments Mxy and Myx;

substituting equation (3.20) into equation (3.19) and adding all the contributions
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together, the strain energy in bending Ubi can be derived thus (Timoshenko &

Woinowsky-Krieger, 1959):

Ubi =
Di

2

∫ ∫ {(∂2wi
∂x2

i

+
∂2wi
∂y2

i

)2

−2(1−ν)
[∂2wi
∂x2

i

∂2wi
∂y2

i

−
( ∂2wi
∂xi∂yi

)2]}
dyi dxi, (3.21)

with the plate flexural rigidity Di being:

Di =
(EI)i
1− ν2

, (3.22)

where:

(EI)1 = E1
(ct)3

12
, (EI)2 = E2

[(1− c)t]3

12
,

(EI)3 = E1

{
(ct)3

12
+ ct

[
(1− c)t

2
− ψ

]2
}

+ E2

{
(1− c)3t3

12
+ (1− c)t

[
ct

2
+ ψ

]2
}
.

(3.23)

Also, if Ci is defined thus:

Ci =

(
∂2wi
∂x2

i

+
∂2wi
∂y2

i

)2

− 2(1− ν)

[
∂2wi
∂x2

i

∂2wi
∂y2

i

−
(
∂2wi
∂xi∂yi

)2
]

(3.24)

then the components for the delaminated parts would be:

Ubi =
Di

2

∫ a/2

−a/2

∫ b/2

−b/2
Ci dyi dxi, (3.25)

where i = 1 or 2; for the undelaminated part:

Ub3 =
D3

2

[∫ B/2

−B/2

∫ L/2

−L/2
C3 dy3 dx3 −

∫ b/2

−b/2

∫ a/2

−a/2
C3 dy3 dx3

]
. (3.26)

Thus the total strain energy in bending is:

Ub =
3∑
i=1

Ubi . (3.27)

3.5.2 Strain energy from membrane action

Having established the strain energy accumulated by flexure, the strain energy from

membrane behaviour needs to be derived to allow for the effects in the plane of the
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plates; owing to moderately large deflections, this can be several times the plate

thickness (Williams & Aalami, 1979). In the previous subsection, it was assumed

that the plate is bent by moments only. In addition, there are forces acting on the

middle planes of the plates, assuming plane stress conditions as established in §3.3,

a two dimensional elasticity problem is obtained (Timoshenko & Gere, 1961). To

solve this, the uniformly distributed in-plane forces Nxi
= tiσxi

, Nyi
= tiσyi

and

Nxiyi
= tiτxiyi

need to be determined as well as the components of strain εxi
, εyi

and

γxiyi
, where the latter can be obtained from Hooke’s law, thus:

εxi
=

1

Eiti
(Nxi

− νNyi
) (3.28)

εyi
=

1

Eiti
(Nyi

− νNxi
) (3.29)

γxyi
=

Nxyi

Giti
. (3.30)

Since the membrane energy stored in a plate is defined as:

Um =
1

2

∫ ∫ (
Nxεx +Nyεy +Nxyγxy

)
dx dy , (3.31)

and it is known that the stresses are related to Airy’s stress function via equations

(3.10)–(3.12), substituting these expressions into equations (3.28)–(3.30) and the

resulting expressions into (3.31), the strain energy stored within the plate “mem-

branes” Umi
, is developed. First, defining Si, where:

Si = (∇2ϕi)
2 − 2(1 + ν)

[
∂2ϕi
∂x2

i

∂2ϕi
∂y2

i

−
( ∂2ϕi
∂xi∂yi

)2
]
, (3.32)

the expression for the individual laminates is:

Umi
=
Eit [(i− 1)− (−1)ic]

2(1− ν2)

∫ b/2

−b/2

∫ a/2

−a/2
Si dyi dxi, (3.33)

where i = 1 and 2 and Eit
[
(i− 1)− (−1)ic

]
/(1− ν2) is the in-plane stiffness of the

sublaminates. The overall panel membrane energy Um3 is:

Um3 =
[E1c+ E2(1− c)] t

2(1− ν2)

[∫ B/2

−B/2

∫ L/2

−L/2
S3 dy3 dx3 −

∫ b/2

−b/2

∫ a/2

−a/2
S3 dy3 dx3

]
,

(3.34)

with the total strain energy from membrane action being:

Um =
3∑
i=1

Umi
. (3.35)
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3.5.3 Work done

To complete the required total potential energy components, the work done by the

external loads needs to be obtained. To derive the work done by the load for a plate

under uniaxial compression, the end-shortening of the plate needs to be obtained

(Thompson & Hunt, 1984). This can be done similarly to the Euler strut regarding

the plate as inextensional but double integration is required when accounting for

the end-shortening E due to the out-of-plane displacements wi, thus:

E =
1

2

∫ ∫ (
∂wi
∂xi

)2

dyi dxi . (3.36)

The general expression for the work done by the uniformly distributed load is sub-

sequently PE where P = Px = σxti, with c or (1− c) in the work done expressions

for each laminate of the delaminated part. Therefore, for the undelaminated part:

(PE)3 =
1

2
P

[∫ B/2

−B/2

∫ L/2

−L/2

(
∂w3

∂x3

)2

dy3 dx3 −
∫ b/2

−b/2

∫ a/2

−a/2

(
∂w3

∂x3

)2

dy3 dx3

]
, (3.37)

with the delaminated parts being:

(PE)1 =
1

2
Pc

∫ b/2

−b/2

∫ a/2

−a/2

(
∂w1

∂x1

)2

dy1 dx1, (3.38)

and

(PE)2 =
1

2
P (1− c)

∫ b/2

−b/2

∫ a/2

−a/2

(
∂w2

∂x2

)2

dy2 dx2. (3.39)

Including the term from pure squashing, described by Q4, the expression for the

total work done by load becomes:

PE = P

[
3∑
i=1

Ei +BQ4

]
. (3.40)

3.5.4 Total potential energy

Having established the strain energy terms from bending and membrane action as

well as the work done by the external load, the total potential energy V of the
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plate system can be formulated, with the evaluation of the displacement and stress

functions wi and ϕi respectively, thus:

V = Ub + Um − PE , (3.41)

where the full expressions for the individual components are given in the preceding

sections.

3.5.5 Normalization

In the following chapters all equilibrium loads presented in the tables and graphs are

normalized with respect to the critical load PC for an undamaged panel (Timoshenko

& Woinowsky-Krieger, 1959), where:

PC =
kπ2(EI)3

(1− ν2)B2
(3.42)

and

k =

(
n3B

m3L
+
m3L

n3B

)2

(3.43)

where m3 and n3 are odd numbers describing the wave lengths in the displacement

of the overall panel w3 in equation (3.6) resulting in k = 4 for a simply-supported

plate of square dimensions. The normalized load Λ can subsequently be defined

thus:

Λ = P/PC. (3.44)

The total end-shortening E , given from equation (3.40) after dividing by the load

P , is also normalized with respect to the end-shortening of an undamaged panel EC

when P = PC (Hunt et al., 2004), where:

EC =
PCL

E3t
. (3.45)

Hence, the normalized end-shortening EN is defined thus:

EN = E/EC. (3.46)
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3.6 Finite element model

The finite element analysis of delaminated isotropic plates was conducted to ver-

ify the validity of the proposed analytical formulation, using the commercial finite

element analysis package ABAQUS (2006). The model was developed under my

supervision by my colleague Marios Theofanous by adhering to the previously dis-

cussed assumptions in §3.3 that were involved in the derivation of the analytical

model. Hence, a linear elastic isotropic material response is assumed and a single

delamination located at various depths of the plate is considered. Owing to the

large span to thickness ratio, the 4-noded doubly curved reduced integration shell

element S4R was employed to discretize the structure. To maintain consistency

with the analytical model, shear deformations were suppressed by specifying high

stiffness values for out-of-plane shear deformations and zero stiffness for in-plane

shear deformations. In accordance with the analytical model described in §3.2, the

rectangular delamination area was centrally positioned.

Mesh convergence studies were carried out to specify an adequate mesh density.

Hence, the critical load corresponding to the first mode shape of the intact plate,

obtained numerically for various mesh densities, was compared to the analytical

solution and it was concluded that a global element size equal to the shell thickness

was adequate for the purpose of this study. A finer mesh, equal to the thickness of

the thinnest sublaminate was employed in the delaminated region to capture more

accurately the local plate modes.

Symmetry of the panels was exploited by analysing half the panel and applying

suitable boundary conditions along the mid-surface of the shell elements. Modelling

a quarter of the panel was another alternative, but since higher modes, which are not

accounted for by the analytical model later on during the studies, may be of potential

interest, suppressing them by additional symmetry boundary conditions was not

enforced. It should be noted that either symmetric or antisymmetric modes can be

extracted by modelling a symmetric structure depending on whether symmetric or
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antisymmetric boundary conditions are applied along the axis of symmetry; mixed

buckling modes, including coupled symmetric and antisymmetric buckling modes on

the local and global level can also be captured. This would necessitate four different

analyses to be run for each quarter panel model to extract all combinations of either

the symmetric or antisymmetric boundary conditions along the axis of symmetry

for each of the two sublaminates.

The edges of the panels were simply supported and kinematic coupling was applied

to the loaded edges which forced them to remain straight. The delaminated region

was modelled by simulating two separate plates that were tied along their edges

to the intact plate using the TIE constraint (Craven et al., 2010). The modelled

reference surface of all shell elements coincided with their mid-surfaces; hence no

eccentricities were present in the model. Owing to the adopted modelling approach,

i.e. modelling two separate plates in the delaminated region, there is a possibility

of the laminates passing through each other. However, it was decided to forego the

complicated definition of contact between the laminate layers and check the validity

and physical possibility of the derived mode shapes by inspection, in order not to

compromise the simplicity and computational efficiency of the numerical model.

The basic panel model was square with a width and length of 100 mm and had

an overall thickness of t = 2 mm, see Figure 3.6. Eigenvalue buckling analysis

was carried out, using subspace iteration as the eigenvalue extraction method and

the derived eigenvalues were compared to the analytical predictions for the cases

considered in due course. Various delamination sizes and depths were modelled as

will be seen when validating the results in the following chapters.

After the validation of the analytical model with respect to critical loads and mode

shapes using linear eigenvalue analysis, as will be shown in Chapter 4, geometric

nonlinearity was subsequently incorporated in the finite element models to capture

the postbuckling response of a plate with a stationary delamination, as presented

in Chapter 5. The focus was on the postbuckling response corresponding to the

first, or lowest, buckling mode shape. It is well known that the introduction of a
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U, Magnitude

+0.000e+00
+8.333e−02
+1.667e−01
+2.500e−01
+3.333e−01
+4.167e−01
+5.000e−01
+5.833e−01
+6.667e−01
+7.500e−01
+8.333e−01
+9.167e−01
+1.000e+00

Step: Step−1
Mode   2: EigenValue =   19.349
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+01

ODB: Job−1.odb    Abaqus/Standard Version 6.7−1    Mon Mar 30 17:04:30 GMT Standard Time 2009

X
Y

Z

Figure 3.6: The finite element model of the delaminated plate.

small perturbation is necessary for postbuckling analysis with a finite element code

(Belytschko et al., 2000). Therefore a geometric imperfection in the form of the

relevant buckling mode shape was introduced with an imperfection amplitude equal

to L/10000. This imperfection amplitude was sufficient to trigger the instability

but was deemed small enough to give results sufficiently close to the perfect case. A

general static analysis including geometric nonlinearity was adopted for the imper-

fect system and the postbuckling response was then traced up to a load level equal

to twice the critical buckling load of the intact plate.
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Initial buckling of the delaminated

panel

4.1 Introduction

In this chapter, the methodology for predicting the critical buckling load using

linear analysis is presented. The Rayleigh–Ritz method, as described in §1.2.2, is

implemented in conjunction with the analytical formulation derived in the previous

chapter. This type of approach has been successfully employed in previous studies

(Yin & Jane, 1992a; Kim & Kedward, 1999; Hunt et al., 2004).

The critical loads are obtained for different delamination geometries, namely square

or rectangular, and related to the size and depth of the delamination. Further-

more, the corresponding eigenvectors are determined that correspond to the critical

loads. Conclusions are drawn regarding dimensional constraints and the results are

compared with data from the literature, as well as results obtained with the finite

element model developed in the previous chapter.
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4.2 Linear Analysis

To determine the critical loads, a linear eigenvalue analysis is performed by ex-

amining the second derivatives of the total potential energy V in the fundamental

state with respect to the generalized coordinates (Thompson & Hunt, 1984), as dis-

cussed in §1.2.2. However, this type of analysis provides no information about the

system’s behaviour after initial buckling. Postbuckling behaviour is controlled by

higher order terms of V about the critical state, which is covered in later chapters.

Substituting the admissible transverse displacement functions from §3.4.1 into the

expressions for bending energy Ub, membrane energy Um and work done PE , as de-

scribed in §3.5, produces the following four degree of freedom total potential energy

function V (Q1, Q2, Q3, Q4, P ), equation (4.1), which is for simplicity, presented as a

power series in general theory form as defined by Thompson and Hunt (1973; 1984):

V (Qi, P ) =
1

2
V11Q

2
1 +

1

2
V22Q

2
2 +

1

2
V33Q

2
3 +

1

2
V44Q

2
4

+V13Q1Q3 + V23Q2Q3

+V134Q1Q3Q4 + V234Q2Q3Q4

+
1

2
V113Q

2
1Q3 +

1

2
V114Q

2
1Q4 +

1

2
V133Q1Q

2
3

+
1

2
V223Q

2
2Q3 +

1

2
V224Q

2
2Q4 +

1

2
V233Q2Q

2
3

+
1

2
V334Q

2
3Q4

+
1

24
V1111Q

4
1 +

1

24
V2222Q

4
2 +

1

24
V3333Q

4
3

+
1

4
V1133Q

2
1Q

2
3 + V2233Q

2
2Q

2
3

+
1

6
V1113Q

3
1Q3 +

1

6
V1333Q1Q

3
3

+
1

6
V2223Q

3
2Q3 +

1

6
V2333Q2Q

3
3

−P
(
V ′4Q4 +

1

2
V ′11Q

2
1 +

1

2
V ′22Q

2
2 +

1

2
V ′33Q

2
3

+V13Q1Q3 + V23Q2Q3

)
(4.1)

where the subscript i (= 1 . . . 4) represents a partial derivative with respect to Qi

and the prime denotes a partial derivative with respect to P .
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It turns out that V can be reduced through elimination of the generalized coordinate

Q4 (Hunt et al., 2004). This reduction is carried out by solving the equilibrium

equation with respect to Q4:
∂V

∂Q4

= 0 , (4.2)

and substituting the resulting expression for Q4 back into V , equation (4.1). This

results in a three degree of freedom form for the total potential energy which is

presented below again in general theory form, with P 2 terms being dropped since

they vanish on differentiation with respect to Qi:

V (Q1, Q2, Q3, P ) =
1

2
V11Q

2
1 +

1

2
V22Q

2
2 +

1

2
V33Q

2
3

+V13Q1Q3 + V23Q2Q3

+
1

2
V113Q

2
1Q3 +

1

2
V133Q1Q

2
3

+
1

2
V223Q

2
2Q3 +

1

2
V233Q2Q

2
3

+
1

24
V1111Q

4
1 +

1

24
V2222Q

4
2 +

1

24
V3333Q

4
3

+
1

4
V1122Q

2
1Q

2
2 +

1

4
V1133Q

2
1Q

2
3 +

1

4
V2233Q

2
2Q

2
3

+
1

6
V1113Q

3
1Q3 +

1

6
V1333Q1Q

3
3

+
1

6
V2223Q

3
2Q3 +

1

6
V2333Q2Q

3
3

+
1

2
V1123Q

2
1Q2Q3 +

1

2
V1223Q1Q

2
2Q3 +

1

2
V1233Q1Q2Q

2
3

−P
(1

2
V ′11Q

2
1 +

1

2
V ′22Q

2
2 +

1

2
V ′33Q

2
3

+V ′13Q1Q3 + V ′23Q2Q3

)
. (4.3)

Since the quadratic cross-terms QiQj are present the system is termed as non-

diagonalized. The requirement for critical equilibrium therefore becomes a singular

matrix of the second derivatives for multiple degrees of freedom systems. This is

termed the Hessian matrix, Vij, with the following entries:

Vij =
∂2V

∂Qi∂Qj

, (4.4)

which also includes cross derivatives where i 6= j and is symmetric, (Croll & Walker,
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1972; Thompson & Hunt, 1973; Thompson & Hunt, 1984). Since the generalized

coordinate Q4 is eliminated, an easily solvable 3× 3 matrix is derived:

Vij =


V11 V12 V13

V21 V22 V23

V31 V32 V33

 .

Along the trivial fundamental path, denoted by the superscript F, all Qi-terms are

zero, since the panel is flat before the point of buckling (Shivakumar & Whitcomb,

1985). Hence, for linear analysis, the higher derivatives are zero and the elements

of the matrix can be determined:

V F
11 =

∂2V

∂Q2
1

= V11 − PFV ′11 (4.5)

V F
22 =

∂2V

∂Q2
2

= V22 − PFV ′22 (4.6)

V F
33 =

∂2V

∂Q2
3

= V33 − PFV ′33 (4.7)

V F
12 =

∂2V

∂Q1∂Q2

= 0 (4.8)

V F
13 =

∂2V

∂Q1∂Q3

= V13 − PFV ′13 (4.9)

V F
23 =

∂2V

∂Q2∂Q3

= V23 − PFV ′23 . (4.10)

Having determined the matrix of second derivatives, the following method is used

to find the critical buckling loads of the system. The determinant of the matrix

is non-zero everywhere along the fundamental path and is often referred to as the

stability determinant. The matrix becomes singular at the critical states which holds

for diagonalized as well as non-diagonalized systems (Thompson & Hunt, 1973).

Since along the trivial fundamental path all generalized coordinates Q1, Q2 and Q3

are zero, i.e. no deformation, the determinant of the Hessian matrix at the critical

point coincides with the determinant of the Hessian matrix along the fundamental

path, V C
ij = V F

ij . Consequently, the determinant can be determined as follows:

det(VC
ij) = V C

11V
C

22V
C

33 − [ (V C
13)2V C

22 + (V C
23)2V C

11 ] . (4.11)
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Setting the determinant to zero yields the three critical loads, PC
1 , PC

2 and PC
3 :

det(VC
ij) = 0 . (4.12)

The resulting critical loads depend on dimensional parameters such as the delami-

nation depth, area, aspect ratios and material properties. An analytical result is too

lengthy to present here, but in §4.3 results for different parameters, i.e. delamination

depth c, length a and area ab, are presented for a fixed set of material parameters

shown in Table 4.1.

Furthermore, it is worth reiterating that results obtained with this energy method

are always approximate since the transverse displacement modes wi are assumed

(for more detail see §1.2.2). Hence, this can always be regarded as an upper bound

since the actual minima of the potential energy for the “true” solution will be less

than, or in the best case, equal to the case when employing trial functions.

4.2.1 Eigenvectors

Having determined the critical loads in the previous section, the relative mode shape

amplitudes corresponding to these eigenvalues from the linearized analysis can be

established, namely the relationship between Q1, Q2 and Q3 at the critical loads.

To establish the eigenvectors Φj corresponding to the eigenvalues, the critical loads

PC
1 , P

C
2 and PC

3 are substituted into the Hessian matrix VC
ij . Subsequently, the

following set of linear equations need to be solved:

VC
ij Φj = 0 , (4.13)

or with Φj containing Qi


V C

11 0 V C
13

0 V C
22 V C

23

V C
13 V C

23 V C
33



Q1

Q2

Q3

 =


0

0

0

 .
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From this, the following set of eigenvectors are obtained:

Q1

Q3

= −V
C

13

V C
11

(4.14)

and
Q2

Q3

= −V
C

23

V C
22

. (4.15)

Three distinct sets of eigenvectors corresponding to each critical load PC
j can be

subsequently obtained and are discussed in §4.3.2.

4.3 Results and validation

With the linear eigenvalue analysis outlined above, parametric investigations are

undertaken regarding the influence of geometric parameters on the critical buckling

loads. Furthermore, the corresponding eigenvectors are obtained and the results are

discussed in the following sections.

The panels investigated are square of overall dimensions L = B = 100 mm (Chen &

Sun, 1999; Melin & Schön, 2001; Melin et al., 2002), and thickness t = 2 mm with the

delamination size and depth being stated in each example. The material properties

are taken from Kim & Kedward (1999) for an eight ply plate [0/45/90/ − 45]s

quasi-isotropic carbon-fibre-reinforced composite1, as given in Table 4.1. However,

Ex Ey ν Ply thickness

(kN/mm2) (kN/mm2) (mm)

71.7 69.5 0.04 0.304

Table 4.1: Lamina properties of AS4/8552 eight harness satin fabric, taken from

Kim & Kedward (1999), used to obtain the smeared isotropic material properties.

smeared material properties are used for the analysis and the results are normalized

with the critical load for an undamaged panel as described in §3.5.5; hence the

1For lay-up designation and definitions please refer to Chapter 1, §1.1.1, Figure 1.4.
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dimensions of the panel, the thickness as well as the Young’s modulus are only

stated for completeness here. Furthermore, it should be noted that the values in the

table are smeared properties and the model established in the previous chapter uses

Ex only, since isotropic material behaviour is incorporated only in the current study.

All manipulation in the linear buckling range was carried out using the symbolic

computation package Maple (Heck, 1996).

4.3.1 Critical buckling loads

Several different parametric studies using linearized analysis have been conducted

to assess the panel behaviour with changing parameters and to validate the model.

Results for c = 0.25 are presented herein; results for c = 0.125 can be found in

Appendix B.1. The results are compared to existing findings in the literature as

well as results obtained with the finite element model described in §3.6.

Initially, convergency studies were undertaken to reduce the number of degrees of

freedom used in the analysis and to make the model computationally more efficient.

The results obtained using more degrees of freedom in the trigonometric expressions

for the displacements yielded no significant deviation. Hence, equations (3.5) and

(3.6) with Q1,mini
, Q2,mini

and Q3,m3n3 respectively were reduced to only one degree

of freedom per series; only Q1,11, Q2,11 and Q3,11 are used and are referred henceforth

as Q1, Q2 and Q3 for simplicity. The reduced displacement functions can be derived

thus:

wi = Qi cos2 πxi
a

cos2 πyi
b

+Q3 cos
πx3

L
cos

πy3

B
, (4.16)

for the two laminates, with i = 1, 2 for the upper and lower laminate respectively,

and for the overall panel:

w3 = Q3 cos
πx3

L
cos

πy3

B
. (4.17)

The linear eigenvalue analysis outlined in §4.3 clearly also holds for more degrees

of freedom. However, the matrix transformations obviously change and may not be
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as straightforward as for a 3 × 3 matrix, but the system is nevertheless solvable.

Nonetheless, it is possible to reduce the system to a three degree of freedom system,

as discussed at the beginning of this chapter, and thus the linear analysis is described

using the reduced system.

4.3.1.1 Square delamination

The first investigations undertaken regard the influence of the size of the delamina-

tion on the first critical load (Simitses et al., 1985; Kim & Kedward, 1999; Tsutsui

et al., 2004) for a square delamination. With the developed model, the decrease

of the first critical load with the size of the delamination can be shown (Gaudenzi,

1997; Chen & Sun, 1999; Sekine et al., 2000; Gaudenzi et al., 2001; Short et al.,

2001; Cappello & Tumino, 2006; Craven et al., 2010) and is here compared to the

results by Kim and Kedward (1999) for their analysis of a circular delamination

as discussed in §2.5. The comparison is graphically illustrated in Figure 4.1 for a

delamination located at one-quarter of the depth, i.e. c = 0.25.

In Figure 4.1, the thickest line, denoted as “Analytical Model 1 Term RR”, illustrates

the behaviour of the model developed within the current work using only one term

per series as outlined above. The critical loads are compared to values obtained by

Kim & Kedward (1999) for their one term (“1 Term RR”) and also their four term

(“4 Term RR”) Rayleigh–Ritz discretization. Additionally, their results for purely

local buckling (“sublaminate”) and from their finite element model (“FEM”) are

included in the graph. In all cases the length ratio a/L was adjusted, such that

is corresponds to the same delaminated area, since Kim & Kedward use a circular

delamination. It can be seen that the analytical model developed within this work

yields a very good comparison with the findings of Kim & Kedward particularly for

small delaminations up to the size of a = 0.4L and b = 0.4B for the case of c = 0.25.

In fact, the current analytical model compares even better with their finite element

model and their four term Rayleigh–Ritz model rather than their analytical model

and always resides below their values, thus delivers safe results, assuming that the
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Figure 4.1: Normalized critical load ΛC
1 versus delamination size for c = 0.25.

finite element results are taken as the benchmark. Once the delamination becomes

larger and sublaminate buckling becomes dominant, the discrepancy between the

results grows. However, the results obtained with the analytical model developed

within this study remain below the results from the literature and can therefore

also be deemed as safe for the same reasons as above as well as the fact that the

Rayleigh–Ritz method applied yields an upper bound when compared to the “true”

solution of the structure as previously discussed. When identifying the eigenvector

corresponding to the first critical load, it can be seen that local buckling initiates

slightly earlier in the present model. This explains the deviation in the results,

Figure 4.2, where local buckling becomes dominant since the current model displays

lower load levels for this buckling case. With a view to buckling driven delamination

growth, this can again be deemed as safe since the model therefore initiates growth

at slightly lower load levels.

In Figure 4.2, the analytical results are compared to the values obtained with the
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Figure 4.2: Normalized critical load ΛC
1 versus delamination size for c = 0.25 com-

pared to results obtained with the finite element model from §3.6 and results from

the literature (Kim & Kedward, 1999).

finite element model described in the previous chapter. Additionally, the results by

Kim & Kedward are still shown in the graph. It can be seen that the finite element

model compares very well with the analytical solution for very small delaminations

up to a size of a = 0.1L and b = 0.1B. Thereafter, the finite element results are

slightly higher than the analytical results and the results from the literature, thus

the analytical model can still be regarded as safe, as outlined before. This can also

be observed for a delamination at relative depth c = 0.125 which is presented in

Appendix B in Figure B.1.

Moreover, in Figure 4.3, it can be seen that the critical loads vary with the relative

depth of the delamination c, where the first two critical loads are plotted for a fixed

delamination size of a = 0.4L and b = 0.4B; this compares directly with the findings

in Hunt et al. (2004) and Wright (2006a) for the two-layer delaminated strut. This

behaviour is commonly observed for different delamination sizes, where a plateau is

observed for the first critical load when the delamination is located deeper within
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Figure 4.3: Normalized critical loads ΛC
j versus relative delamination depth c for (a)

all three normalized critical loads and (b) lowest two normalized critical loads.

the panel. For a delamination closer to the surface, the first and second critical

loads drop considerably, which emphasizes the importance of investigating so-called

thin-film buckling (Yu, 2003; Hunt et al., 2004; Mei et al., 2007) that can promote

delamination propagation depending on the relative opening between the laminates

as will be discussed further in later chapters. It should also be noted in Figure 4.3a

that the second and third critical load are very close when the delamination is at

half depth, i.e. c = 0.5. The potential of coincident branching points (Chilver, 1967;

Johns & Chilver, 1971) may be found here. H

4.3.1.2 Rectangular delamination

In addition to the investigations into the influence of geometric parameters for square

delaminations, rectangular delaminations are also studied. Rectangular delamina-

tions with an aspect ratio a/b 6= 1 can be either long, i.e. a/b > 1, Figure 4.4a, or

wide, i.e. a/b < 1, Figure 4.4b. In the course of the investigations, four different

configurations are studied in addition to the square delaminations; two long delam-

inations with a/b = 1.5 and 2 as well as two wide delaminations with b/a = 1.5 and
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(a) (b)

Figure 4.4: Rectangular delamination geometry: (a) long and (b) wide delamination.

2 (or a/b = 2/3 and 1/2 respectively). The results again for c = 0.25 are presented

in Figure 4.5; the load decrease with increasing delamination size can again be ob-

served. It should be noted that the graphs show the normalized critical load ΛC
1

versus the delamination ratio φdelam = ab/(BL) since otherwise a comparison in a

single graph would not give meaningful results. Further to the decrease in load value

it should be noted that for a long delamination the load reduction is not as pro-

nounced. This again ties in with findings for long delaminations by Kim & Kedward

(1999). Sekine et al. (2000) and Tafreshi & Oswald (2003) also studied the effects

of the delamination patch shape and found that enlarging the delamination in the

loading direction has a very small effect on the buckling loads whereas increasing

the delamination size in the other direction has a greater effect; note also that the

authors studied an elliptical delamination and additionally considered the effect of

fibre orientation in their investigation.

Moreover, from Figure 4.5 it can be seen that the results for a wide delamination are

closer to the critical load for a square delamination. In addition, it is emphasized

currently that for a long delamination of aspect ratio a/b = 2, the model may yield

a critical load that is too high because of the limitation of the shape function. This

is because with a four degree of freedom model only the first plate mode for the
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Figure 4.5: Normalized critical load ΛC
1 versus delamination ratio φdelam for c = 0.25

for rectangular delaminations.

laminates is captured and hence may be the reason why the critical loads for the

long delaminations show a larger discrepancy.

4.3.2 Eigenvectors

As outlined in §4.2.1, the eigenvectors or mode shapes corresponding to the critical

loads can be identified. Three mode shapes can be obtained when out of plane

displacements are truncated to equations (4.16) and (4.17) for the first, second and

third critical load.

A closing mode is always observed for the first critical load, which means that both

laminates deflect in the same direction, (Figure 4.6a). This kind of behaviour was

also previously observed by Hunt et al. (2004). Moreover, for the second critical load,

an opening mode, can be detected where the laminates split open and displace in

opposite directions (Figure 4.6b). The latter case is potentially more dangerous when
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it comes to delamination propagation, which will be discussed in the subsequent

chapters, since the peeling stresses are generally greater. However, whether and at

what load level propagation occurs depends on the extent of the deflection, since the

growth criteria is governed by the relative opening of the laminates, which will be

described in detail in §6.3. Moreover, it can be detected that the magnitude of the

deflection of each laminate changes with the relative delamination depth c, which

will be presented in §5.2.2. The third mode, corresponding to the third critical

load, is denoted as the reverse mode; here, both laminates essentially buckle in

the opposite direction to the overall panel. However, since the third critical load is

triggered at such high load levels, this mode is unlikely to occur in a natural loading

sequence and is not pursued further.

(a)

(b)

Figure 4.6: Critical modes of buckling: (a) closing mode—First critical load; (b)

opening mode—Second critical load.

Comparing the eigenvectors to the results obtained with the finite element model

described in §3.6 yields a very good comparison. For example, for a delamination

of dimensions a = 0.5L and b = 0.5B, a local closing mode is observed using the

finite element model, see Figure 4.7. Comparing this with the eigenvectors obtained

via linearized analysis where Q1 = 4.12, Q2 = 0.04 and Q3 = 1, a local closing

mode can also be observed. However, the magnitudes of the displacements will be

discussed in greater detail in the following chapter when the postbuckling behaviour

is investigated for a stationary delamination.
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Step: Step−1
Mode   1: EigenValue =   11.473

Deformed Var: U   Deformation Scale Factor: +2.000e+01

ODB: Job−1.odb    Abaqus/Standard Version 6.7−1    Mon Mar 30 21:10:50 GMT Standard Time 2009

XY

Z

Figure 4.7: Local closing mode at intial buckling for a = 0.5L and b = 0.5B as

evaluated using finite element analysis within ABAQUS (2006).

4.4 Concluding remarks

From the discussions and results in this chapter it can be seen that the model

developed in Chapter 3 yields a good comparison using linearized analysis with

existing results in the literature as well as the finite element model. It can also be

seen that smaller delaminations have little or no influence on the buckling load when

only linearized analysis is employed.

It can be concluded that the critical loads decrease with the size of the delamination

as expected. A long rectangular delamination is not as critical as a square delam-

ination, but a wide delamination yields slightly lower critical loads than a square

delamination with the difference being to a lesser extent than for the long delam-

ination. Furthermore, the critical loads vary with the depth of the delamination

c, where a plateau can be observed for the first critical load for delaminations at

mid-depth. However, once the delamination is located closer to the surface of the

panel, a rapid decline in load level can be observed for both the first and second

critical load. This will be discussed in further detail when the postbuckling regime

is examined in detail in Chapter 5.
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Three distinct mode shapes can also be identified corresponding to the critical loads.

For the first critical load, a closing mode is seen where both laminates as well

as the intact parts of the panel deflect in the same direction. An opening mode

corresponds to the second critical load, where the upper laminate deflects in the

opposite direction to the lower laminate and the intact panel. This may potentially

be the most dangerous case with respect to delamination growth due to the nature

of the eigenvector, which will be discussed in detail in Chapter 6. Since the third

critical load would be triggered at such a high load level, the eigenvector is deemed

to be of limited interest. However, for completeness it is identified as a reverse mode

where both upper and lower laminates deflect in the opposite direction to the overall

panel.

In the next chapter, the postbuckling regime for a stationary delamination will be

discussed where the relative mode intensity for different delamination configurations

will be investigated. This study will form the basis of the delamination propagation

model in Chapter 6.
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Chapter 5

Postbuckling regime of a

stationary delamination

5.1 Introduction

In the current chapter, the postbuckling behaviour of the analytical panel with

a stationary delamination is investigated. Since the system is non-diagonalized a

closed form analytical solution could not be obtained. Hence, a numerical study is

conducted using the powerful continuation software AUTO (Doedel, 2007) to solve

the equilibrium equations simultaneously. The software also allows path following

and detection of branching points and subsequent equilibrium paths. The proce-

dure for solving the system of equilibrium equations is outlined, various studies are

conducted and discussed in detail.

Initially, the issue of physical and non-physical solutions yielding from this type of

analysis are addressed; different delamination configurations, i.e. depths and sizes,

are then investigated via a parametric study in the postbuckling range, focusing on

panels with so-called barely visible impact damage (BVID). Furthermore, a com-

parison with the finite element model is presented with the buckling mechanism and
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mode interaction being described in detail.

5.1.1 Numerical experimentation

As mentioned in the previous chapter, the total potential energy function V is com-

plicated due to the nature of the model. Thus, there is little hope of solving the

system in closed form in the postbuckling range and numerical methods are neces-

sary. To employ such approaches, the total potential energy function V , equation

(4.1), has to be differentiated with respect to the generalized coordinates to obtain

the four equilibrium equations, i.e. utilizing Axiom I, §1.2.1, thus:

Vi =
∂V

∂Qi

= 0 . (5.1)

These equations describe the equilibrium surface of the system and have to be solved

simultaneously for such a multiple degree of freedom system. To perform this,

AUTO (Doedel, 2007) is employed, because of its capability of following paths as

outlined below. However, before the software can be implemented, the equations

first had to be converted into a FORTRAN compatible format (Nyhoff & Leestma,

1997) since AUTO requires such input files. The code generation is undertaken in

MAPLE (Heck, 1996) employing the in-built codegen package, using the command

Fortran(Vi) for each equilibrium equation above. Hence, a set of nonlinear algebraic

equations is obtained that is inserted into the FORTRAN file required by AUTO

based on the example "ab"—refer to the AUTO manual for details (Doedel, 2007).

All four equilibrium equations depend on the following parameters: Young’s Moduli

Ei for each part of the panel (where i = 1, 2 for top or bottom part and i = 3 for the

intact part), thickness ti, length and width of the panel (L and B respectively), size

of the delaminations (a and b), relative depth of the delamination c. Furthermore,

all equations contain the entire set of generalized coordinates Qi (i = 1...4) as well

as the load P .
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5.1.1.1 Numerical code AUTO

The numerical code AUTO is a very powerful piece of software capable of detecting

various different types of bifurcation points outlined in §1.2.3 as well as performing

numerical continuation whilst varying model parameters in the equations (Seydel,

1994). In the code, the principal algorithms are aimed at the continuation of solu-

tions of systems of equations, be they algebraic of differential equations, subject to

boundary conditions and integral constraints of the form:

u′(t) = f(u(t), p), f(·, ·), u(·) ∈ Rn , (5.2)

where p denotes one or more free parameters. Furthermore, AUTO can undertake

a limited bifurcation analysis of algebraic systems of the form:

f(u, p) = 0, f(·, ·) ∈ Rn . (5.3)

For the type of problem discussed in the current work, the latter is the case and

rewriting equation (5.3) in a vectorial form yields:

f(u, p) = 0 , (5.4)

where f and u denote n-dimensional vectors. The free parameter remains p, which

is varied to observe how an initial solution of f evolves (Wadee, 1998).

Since AUTO is a well established and tested code (Doedel, 1984; Seydel, 1994;

Doedel, 1997; Seydel, 1997), an outline of the solution procedure is described because

the software was employed as a tool to solve the system of equations developed

currently.

Essentially, the code uses the method of orthogonal collocation (de Boor & Schwartz,

1973) to discretize the problem whilst automatically adapting its mesh to dis-

tribute evenly the error from local discretization (Russell & Christiansen, 1978).

Then predictor–corrector methods such as the Newton–Raphson method (Bažant &

Cedolin, 1991) are employed in the continuation routines, with which, as the name
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u

p

(u0, p0)

(u1, p1)

(u1, p1)

Iterations

Prediction

Correction

Figure 5.1: Principles of the predictor–corrector methods.

indicates, the problem is solved in two parts. Initially a solution f(ū1, p̄1) originat-

ing from the starting values f(u0, p0) is “predicted” with an increment of the free

parameter p. The solution is then “corrected” using iteration from the initial guess,

see Figure 5.1, to the actual solution f(u1, p1). Since this method becomes unstable

at limit points or folds, this procedure is combined with pseudo-arclength continu-

ation (Riks, 1972); even when folds are detected on the solution path computations

can be continued. Further details can be found in the review by Doedel (1997) on

the advantages and limitations of the numerical bifurcation analysis.

For the purpose of the numerical investigations in this thesis, AUTO is employed

to detect folds and bifurcations, since it can detect various different types of critical

points using the Jacobian and Hessian matrices of the system of equations (Wadee,

1998) whilst varying model parameters. In the current chapter, only one model

parameter is varied, namely the load P ; however, in Chapter 6 when delamination

growth is incorporated, further parameters need to be varied which will be explained

with the discussion of the algorithm in §6.3.1.
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5.2 Results and validation

In the following sections results obtained with the numerical continuation package

AUTO, as described in the preceding section, are discussed. All panels investigated

are square with overall dimensions L = B = 100 mm (Chen & Sun, 1999; Melin &

Schön, 2001; Melin et al., 2002) and thickness t = 2 mm. Since the critical loads are

again normalized as outlined before, the thickness of the panel is of less relevance

as long as the panel is thin compared to its span (Shivakumar & Whitcomb, 1985;

Nilsson et al., 1993), which is the case with the slenderness being L/t = 50 as in

Bottega (1983). The material properties are taken from Turon et al. (2007) for a

carbon-fibre-reinforced epoxy laminate T300/977-2, as given in Table 5.1.

Ex (kN/mm2) Ey = Ez (kN/mm2) GIC (N/mm) ν σmax (N/mm2)

140.0 11.0 0.352 0.25 60

Table 5.1: Material and interface properties of panel T300/977-2 from Turon et al.

(2007). Note that Ex, Ey and Ez are the respective Young’s moduli for the axial (x),

transverse (y) and out-of-plane (z) directions. Moreover, since the current model

deals with isotropic plates, the relevant values taken for the numerical study are

only Ex, ν and GIC, with Ez only being used to evaluate the length of the cohesive

zone lcz in the following chapter.

Since the problem of barely visible impact damage (BVID) is a major concern in

composite construction, the postbuckling investigation focuses on this type of defect.

Hence, a delamination size of a = 0.15L and b = 0.15B is chosen in accordance with

previous studies (Whitcomb, 1989; Melin & Schön, 2001; Mitrevski et al., 2006).

As shown with linearized analysis in Chapter 4 the critical loads compare well with

the literature as well as the finite element model for these small delamination sizes.

Table 5.2 summarizes the cases presented for a stationary delamination where the

delamination depth is varied to examine the change in behaviour for different values

of c. The value of c being 0.05 is chosen to be the smallest value since it corresponds
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to a sublaminate thickness of t1 = 0.1 mm which approximately corresponds to

values found in the literature for laminate thicknesses (The Design Council, 1989;

Nilsson et al., 1993; Melin et al., 2002).

Case a b % delaminated area c ΛC
1 ΛC

2

STAT-A 0.15L 0.15B 2.25 0.050 0.295 0.979

STAT-B 0.15L 0.15B 2.25 0.085 0.801 1.045

STAT-C 0.15L 0.15B 2.25 0.120 0.939 1.783

STAT-D 0.15L 0.15B 2.25 0.500 0.950 29.629

STAT-E 0.40L 0.40B 16.00 0.500 0.749 4.166

Table 5.2: Example cases for the postbuckling investigation with a stationary de-

lamination.

For the cases in Table 5.2, the general postbuckling behaviour and subsequent im-

plications when incorporating delamination propagation (Chapter 6) are discussed.

Furthermore, a validation of the analytical postbuckling model with the finite ele-

ment model described in §3.6 is carried out.

The abbreviations presented in Table 5.3 will be applied to the notation in all

subsequent graphs in the current chapter; a label will denote each case depicted

where more than one case is plotted.

Label Description

PU Postbuckling path of an undamaged panel

S1 First physical postbuckling path of a damaged panel

S2 Second physical postbuckling path of a damaged panel

NS1 First non-physical postbuckling path of a damaged panel

NS2 Second non-physical postbuckling path of a damaged panel

FE Path of the finite element model containing a stationary delamination

Table 5.3: Abbreviations for the graph labels describing the postbuckling behaviour

of a panel containing a stationary delamination.
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The first two normalized critical buckling loads are denoted as ΛC
1 and ΛC

2 respec-

tively and the behaviour after initial buckling is investigated herein. Chai & Bab-

cock (1985) identified that the first or second critical load and mode can be triggered

by changing the loading sequence, whether the panel contains a delamination that

is then loaded, or whether a delamination occurs during loading of the panel as

outlined in Chapter 2; this is a key point because it highlights the importance of

investigating the postbuckling equilibrium paths originating from both the first and

second critical loads.

5.2.1 Physical and non-physical solutions

In the current section the equilibrium paths of case STAT-A are presented purely

to address the topic of non-physical postbuckling solutions (Figure 5.2); their post-

buckling implications are discussed later. The graphs in Figure 5.3 present the

buckling behaviour of the laminates, i.e. Λ versus Qi, and the absolute values of Qi

are non-dimensionalized with the total panel thickness t.

(a)

(b)

Figure 5.2: Non-physical eigenvectors; (a) non-physical closing and (b) non-physical

opening mode.

It should be noted that the postbuckling analysis yields physical and non-physical

equilibrium branches (Sekine et al., 2000; Hunt et al., 2004). Non-physical branches

are those that essentially show two laminates deflecting such that they would pen-

etrate. This can occur at both the first and second critical loads, see Figure 5.2.
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Figure 5.3: Postbuckling equilibrium paths for the local mode, case STAT-A. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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This theoretical phenomenon, stemming from the analysis procedure, has also been

observed by Hunt et al. (2004) in their delaminated strut model. Since they cannot

exist in practice, the non-physical branches are discarded in later analysis (Nilsson

et al., 1993). However, it is worth noting that this behaviour could, in principle, be

prevented by introducing a penalty function for the contact problem that naturally

arises from such eigenvectors (Nilsson, 2001b). The non-physical branches are pre-

sented with dashed lines in Figure 5.3, with paths NS1 and NS2 for the first and

second equilibrium paths, respectively. A general asymmetry in the branches can

furthermore be observed. This asymmetry yields from the second and third part of

the stress functions for the delaminated parts—equations (3.16) and (3.17)—which

account for the effect of the overall panel on the undelaminated parts, i.e. either

biaxial, uniform compression or tension which is imposed on the delaminated layers

due to the displacement of the overall panel. However, once Q3 becomes larger,

Figure 5.3c, the overall panel buckle dominates and the local branches of Q1 and Q2

diminish for the closing mode, as shown in the curving back of the paths in Figure

5.3a and 5.3b respectively. This phenomenon will be explained in further detail in

§5.2.4.

Λ

Λ

E

2

Λ
1

c

c

N

S2/NS2

S1/NS1

Figure 5.4: Normalized axial load Λ versus normalized end-shortening EN , case

STAT-A.
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In Figure 5.4, the normalized load Λ versus normalized end-shortening EN is pre-

sented. For physical and non-physical branches the results are almost identical. It

should also be noted that the stiffness decrease is more pronounced at the first crit-

ical load, i.e. paths S1 and NS1. However, this reduction in residual capacity is

only present once the overall degree of freedom Q3 dominates the behaviour. The

stiffness decrease at the second critical load is negligible at a delamination of such

small dimensions, i.e. for paths S2 and NS2.

5.2.2 Equilibrium solutions and mode behaviour

In this section, the postbuckling equilibrium solutions are discussed for various differ-

ent delamination depths as denoted in Table 5.2. The first three cases, STAT-A, -B

and -C, all of dimensions a = 0.15L and b = 0.15B, are in the neighbourhood of the

transitional delamination depth ct where the modal behaviour essentially changes

from local to mixed to global. This depth is observed to be situated in the range

of 10–20% of the overall depth by Melin and Schön (2001) for their investigations

on small delaminations; a finding that will also be demonstrated. In Figure 5.5 this

region of the parameter space is magnified and ct for the present configuration can

be observed to be at around one-tenth of the depth from the surface of the panel,

as will be demonstrated in the subsequent discussion.

It is noted that the postbuckling behaviour differs regarding the order of magnitude

of the buckles; i.e. local, mixed or global modes can be identified, see Figures 5.6–

5.8 (Kardomateas, 1993; Kim & Hong, 1997; Sekine et al., 2000; Tafreshi, 2003).

A sharp transition from global to local buckling usually takes place (Yin & Jane,

1992a).

For the first and second critical loads, local mode behaviour is observed when the

delamination is located very close to the surface of the panel, i.e. case STAT-A and

-B, which is also known as thin-film buckling (Chai et al., 1981; Simitses et al., 1985;

Yu, 2003; Hunt et al., 2004; Mei et al., 2007). This means that the upper laminate
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Figure 5.5: Transitional depth ct: defined where the local mode transforms into the

global mode through the mixed mode.

deflects in a more exaggerated fashion than the lower laminate, i.e. Q1 � Q2,

see Figures 5.6 and 5.7. Even though it is the closing mode in the case of the

first critical load, paths S1, where both laminates essentially deflect in the same

direction (§4.3.2), the magnitude of the deflection of the thinner laminate completely

dominates the behaviour which is particularly relevant for cases with small or barely

visible delaminations that are often difficult to detect (Melin & Schön, 2001).

When the delamination is at a certain depth, the mode behaviour immediately after

the first critical load changes from the local mode (case STAT-A) via a mixed mode

(case STAT-B), i.e. Q1 ≈ Q3, to effectively global buckling (case STAT-C and -D)

mode where Q3 � Q1, Q2, implying that overall buckling of the panel governs the

behaviour once the critical load is triggered, see paths S1 in Figures 5.6–5.8.

The postbuckling equilibrium paths are shown subsequently where all cases are

combined in one plot to show the difference in magnitude of the deflections, which

is particularly visible for Q1.
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Figure 5.6: Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D. Nor-

malized axial load Λ versus Q1/t.
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Figure 5.7: Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D. Nor-

malized axial load Λ versus Q2/t.
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Figure 5.8: Postbuckling equilibrium paths for cases STAT-A, -B, -C and -D. Nor-

malized axial load Λ versus Q3/t.

As outlined above, the upper laminate displacement measure Q1 is much larger than

that of the lower laminate Q2 for the thin-film buckle. This behaviour, however, does

not persist for very long as the displacement measure for the overall panel Q3 also

begins to grow significantly. As shown in Figure 5.9 and also observed by Hunt

et al. (2004) the decrease in stiffness is more dramatic after the first critical load,

i.e. path S1, than after the second critical load, path S2, after an initially higher

stiffness. This implies that a high reserve of stiffness is still present within the panel

when only a local buckle occurs, but this instability soon influences the overall

degree of freedom (Sekine et al., 2000) which, in turn, causes a loss in stiffness once

Q3 dominates the behaviour. At the second critical load, the reduction in residual

capacity is less pronounced. Bearing in mind that delamination propagation is not

yet included, the expectation may be that the stiffness reduction would be more

severe when this is incorporated, particularly when it is known to be the opening

mode.

The second example case STAT-B presented is a mixed mode; typical mixed mode
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behaviour is observed where Q1 > Q2, but Q3 is large immediately after buckling

occurs at the first critical load. Furthermore, the first and second critical buckling

loads are relatively close together (Chilver, 1967; Johns & Chilver, 1971) for a

delamination roughly at the transitional depth ct which confirms the findings using

linearized analysis shown in Figure 5.5. The decrease in stiffness is again more

pronounced at the first critical load; this time, however, without the initially stiffer

part (Figure 5.9) as in the earlier case. The relative difference between Q1 and Q2

is however still present, see both Figures 5.6 and 5.7, and could potentially promote

delamination propagation if such a criterion depends on the relative opening between

the laminates.

Λ

Λ

E

2

Λ
1

c

c

N

S1--

STAT-A, -B, -C and -D

S2--

STAT-A, -B and -C

PU

Figure 5.9: Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C, and -D.

The third and fourth examples, cases STAT-C and -D, presented are global modes.

Comparing case STAT-C with STAT-A and -B in Figures 5.6–5.8, it can clearly

be noted that now the degree of freedom Q3 governs the behaviour. However, the

stiffness decrease remains the same, as can be seen in Figure 5.9.
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In case STAT-D where c = 0.5, i.e. a delamination located at half-depth, it should

be noted that the two laminates (degrees of freedom: Q1 and Q2) buckle with the

same intensity in the same direction at the first critical load, which is the expected

response (Short et al., 2001). The overall buckle, however, dominates the behaviour

immediately at the first critical load and in the postbuckling path S1, as seen in

Figure 5.8. The decrease in stiffness being ultimately the same as in the other cases,

just initiating from a higher critical load, as seen in Figure 5.9. However, with

Q1 ≈ Q2 and assuming only Mode I fracture occurs, there is no cause for undue

concern of further stiffness reductions caused by delamination propagation in the

case of the first critical load because of the closing mode behaviour, particularly if

the growth criteria is governed by the relative opening between the laminates1.

Finally, it should be noted that although various delamination sizes and depths

are investigated, all panels exhibit stable postbuckling behaviour within the elastic

range. Furthermore, the load versus end-shortening graph yields the same results in

terms of the ultimate loss of stiffness for the same delamination size regardless of the

initial depth of the delamination; the only difference is the reduction in the initial

critical load when the delamination is located closer to the surface (see Table 5.2).

It can be seen that the end-shortening for thinner delaminations is asymptotic to

the end-shortening curve of the delamination at half-depth; hence the value of the

critical load and the end-shortening can be deemed as a useful and quick estimate

for a particular delamination size.

This can also be seen in Figure 5.10, where case STAT-E is included which has a

larger delamination at mid-depth (see Table 5.2). As in the case of STAT-D, where c

is also 0.5, the loss in stiffness occurs immediately after the critical load is triggered.

However, the critical load is now already lower than that for a smaller delamination

(cases STAT-A–D), as previously established in Chapter 4. The total reserve capac-

ity is subsequently less than that for a smaller delamination and the postbuckling

1However, once Mode II fracture may be considered, growth may also occur in this scenario;

this will be discussed in the further works section of the last chapter.
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path for half-depth delaminations appears to be a reasonable benchmark for the

residual capacity for a stationary delamination. Thus, the size of the delamination

is of crucial importance and needs to be contained to guarantee a certain reserve

capacity of the panel, since a larger delamination would lead to a lower initial crit-

ical load and subsequently lower reserve capacity in the postbuckling range when

compared to an undamaged panel. The result is that in all cases the reserve capac-

ity is less than one-half of the stiffness, which is the case for an undamaged simply

supported panel with restrained edges (Bulson, 1969).

Λ
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Figure 5.10: Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C, -D and -E.

However, the mode behaviour in the postbuckling range changes with the depth and

becomes a local mode with smaller values of c, which is understood to be crucial when

considering delamination propagation (Hunt et al., 2004) if the relative opening of

the laminates is used for the growth criterion. Despite the fact that the load can still

be increased, as seen in Figures 5.9 and 5.10, it is therefore essential to incorporate a

growth criterion to establish a safe design scenario; this will be covered in Chapters
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6–8.

Finally, the stiffness decrease for the second critical load, paths S2, is less than for

the first critical load. This can be explained by the nature of the modes, i.e. closing

or opening. In the former case, where buckling is triggered at the first critical load,

the panel loses stability due to the defect since both laminates buckle in the same

direction (recall Figure 4.6a). In the second case, the opening mode, the laminates

deflect in opposite directions and therefore essentially “re-stabilize” the system,

Figure 5.11, and hence a global instability is not triggered. Furthermore, the net

second moment of area is slightly higher. This restabilization effect is reduced when

propagation is considered.

(a)

(b)

Figure 5.11: Opening mode; (a) configuration and (b) schematic of moment balance.

5.2.3 Finite element comparison

To validate the model, cases STAT-A, STAT-B and STAT-C were also investigated

using the finite element model. The critical loads obtained with the analytical model

are compared with the finite element model and the results are presented in Table

5.4. Furthermore, the model is validated in the postbuckling range for those three

cases as shown in Figure 5.13.

It should be noted that the finite element model slightly underestimates the first

critical load and overestimates the second critical load for c = 0.05 and c = 0.085,

136



Chapter 5. Postbuckling regime of a stationary delamination

Case ΛC
1 ΛFE

1 error (%) ΛC
2 ΛFE

2 Error (%)

STAT-A 0.295 0.292 -1.01 0.979 0.998 1.90

STAT-B 0.801 0.818 2.07 1.045 1.076 2.88

STAT-C 0.939 0.998 5.91 1.783 1.710 -4.27

Average error 2.99 3.01

Table 5.4: Normalized critical buckling loads comparison with finite element results.

Step: Step−1
Mode   2: EigenValue =   19.349

Deformed Var: U   Deformation Scale Factor: +1.000e+01

ODB: Job−1.odb    Abaqus/Standard Version 6.7−1    Mon Mar 30 17:04:30 GMT Standard Time 2009

X
Y

Z

Figure 5.12: Finite element model: local opening mode.
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cases STAT-A and -B, respectively. However, the error is very small in both in-

stances. Once the delamination is located slightly deeper into the panel and mixed

mode buckling is initiated, the error increases and now the first critical load is also

overestimated. However, the average error is approximately 3% with the critical

loads from the analytical model being almost matching or lower than the finite

element solution and hence the results from the analytical model are deemed as sat-

isfactory. It should also be noted, however, that the finite element model outputs an

additional critical load between the first and second critical load from the analytical

model as mentioned before in §3.6. This is partly due to the limitation in the avail-

able mode shapes since the analytical model is formulated with only the first terms

in the series describing the out-of-plane displacement functions in equations (4.16)

and (4.17). The simplicity of the model outweighs the fact that the mode in be-

tween is not picked up since the critical loads and modes are those that are relevant

in the subsequent analysis when considering delamination propagation (Chapters

6–8). This will be explained in greater detail in following sections. Furthermore,

the mode is only initially feasible since, with increasing load, the laminates pene-

trate and hence a contact problem would need to be formulated in the finite element

procedure (Nilsson et al., 1993), which would in itself stiffen the response.

The modal behaviour, i.e. closing and opening modes as well as local and global

modes, was also identified with the finite element model and agrees with the analyt-

ical model. In Figure 5.12, the local opening mode for a small and thin delamination

is shown which corresponds to the second critical load. The upper laminate deflects

in the opposite direction to the lower laminate and the overall panel is only deflected

marginally downwards, since this is a local mode. Hence, the deflection of the upper

laminate dominates, as can be seen in the figure, and only a small overall panel

deflection is be observed, as expected for such a small delamination.

In the postbuckling range, it can be established that the finite element model closely

matches the analytical solutions for a stationary delamination, see Figure 5.13. The

finite element solution, denoted by “FE” in the figure, is however higher than the
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Figure 5.13: Normalized axial load Λ versus normalized end-shortening EN , cases

STAT-A, -B, -C and -D; finite element comparison.

results obtained by the current model for all cases and therefore the analytical model

can be deemed as safe.

5.2.4 Mode interaction

An investigation has been undertaken to determine potential mode jumping in the

panels (Everall, 1999; Everall, 2000; Chen & Yu, 2006). Recalling Figure 5.6 one

can clearly see that the equilibrium paths for the upper laminate from the first and

second critical loads cross. This may indicate that mode jumping occurs, i.e. the

closing mode would become an opening mode or vice versa when the load is in-

creased. This had been observed previously by various other authors, in particular

in the delaminated strut model developed by Wright (2006b). However, currently

this type of mode jumping behaviour appears to not have been picked up by the

model since the paths for the other degrees of freedoms in Figure 5.7 and 5.8 do
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not coincide. This can also be seen in Figure 5.14 where essentially the equilibrium

diagrams for the generalized coordinates Qi are viewed from “above” with the Λ

axis coming out of the plane. It appears that each postbuckling path has its dis-

tinct branch such that mode jumping occurs. Potentially, it may occur if higher

modes are allowed in the formulations of the out-of-plane displacements, which is

not the case in the present model. Furthermore, it should be noted that the paths

are in fact very close such that AUTO may have not detected the jump but with a

sufficient perturbation the mode jump could potentially occur which remains to be

investigated.

Nonetheless, modal contamination or mode interaction (Chilver, 1967; Croll &

Walker, 1972; Thompson & Hunt, 1973; Thompson & Hunt, 1984; Hunt et al., 1986;

Hunt, 1989; Falzon & Aliabadi, 2008) can be observed. This type of phenomena is

found in compressed stringer stiffened panels (Koiter & Pignataro, 1976a; Koiter &

Pignataro, 1976b), sandwich struts (Hunt et al., 1988; Hunt & Wadee, 1998; Wadee

et al., 2010), built-up or reticulated columns (Thompson & Hunt, 1973) and pre-

stressed stayed columns (Saito & Wadee, 2009) where an interaction between modes

of local and global buckling may occur. In the present case, the mode interaction

results in the loss in stiffness and is explained below. Furthermore, the physical

behaviour of the panels in the closing mode is clarified; the example used is case

STAT-B, a mixed mode type of buckling as described in §5.2.2.

The detected buckling mechanism, illustrated in Figure 5.16, has also been previ-

ously identified in a similar fashion by Gaudenzi et al. (2001). Figures 5.16a–5.16d

can be described as follows corresponding to the notation in Figures 5.15, showing

the bifurcation diagrams of the upper laminate (Figure 5.15a) and the intact panel

(Figure 5.15b).

(i) The delaminated panel is loaded and initially straight (Figure 5.16a).

(ii) The first bifurcation point is triggered and the right-hand, thinner, laminate

buckles only (Q1) (Figure 5.16b).
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Figure 5.14: Postbuckling equilibrium paths for the mixed mode, case STAT-B.

Graphs show the normalized degree of freedom of the upper laminate Q1/t versus

(a) Q2/t (lower laminate), (b) Q3/t (intact part); and (c) Q2/t versus Q3/t.
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Figure 5.15: Postbuckling equilibrium paths for buckling mechanism—closing mode.

Graphs show the normalized axial load Λ versus (a) Q1/t (upper laminate) and (b)

Q3/t (intact panel).
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Figure 5.16: Buckling mechanism: closing mode; (a) initial configuration, (b) initial

buckle of the upper laminate, (c) overall buckle initiates and (d) loss of stiffness due

to overall buckling induced by local instability.

142



Chapter 5. Postbuckling regime of a stationary delamination

(iii) With increasing load, the local buckle also increases and the panel starts to

buckle in the overall mode (Q3) (Figure 5.16c).

(iv) Finally, the overall panel buckles severely (Figure 5.16d), which is induced by

the local instability of the laminates and the stiffness decreases (see Figure

5.9); hence global buckling occurs. Once Q3 is large, the local buckling resta-

bilizes and the right-hand laminate buckle reduces due to the stretching effect

on the outer fibres caused by the curvature of the overall panel. However, the

left-hand laminate (Q2) buckles marginally more due to the increase in com-

pression in the inner fibres arising from the overall buckle. If the load is in-

creased further, the deflection of the upper laminate becomes negative from the

excessive curvature of the overall panel and a non-physical mode theoretically

occurs. In practice, the thinner laminate would touch the thicker laminate

and possibly slightly restabilize the buckle of the thicker laminate. Wadee and

Blackmore (2001) modelled such behaviour for the one-dimensional problem of

a sandwich strut undergoing face–core delamination. For the two-dimensional

problem, however, this needs to be the subject of a separate investigation

which is beyond the scope of the current study.

5.3 Concluding remarks

From the postbuckling analysis presented in this chapter for a stationary delami-

nation, the following conclusions can be drawn. As already noted in the previous

chapter, the critical load reduces with increasing delamination size, which can also

be shown with the postbuckling analysis. However, the postbuckling analysis gives

rise to the physical buckling behaviour after the critical load and must not be ig-

nored if the panels are to be designed efficiently. In this chapter, the topic of physical

and non-physical branches in the postbuckling equilibrium paths has been addressed

first only for a qualitative discussion without allowing for any contact formulations;

the non-physical branches are subsequently discarded.
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Furthermore, the critical load reduces when the delamination is located closer to the

surface of the panel. A transitional depth ct can be determined, which is located

at approximately 10%–20% of the thickness of this particular panel for smaller de-

laminations, where the modal behaviour changes from a local buckle, for thinner

delaminations, via a mixed mode buckle to a global buckle of the overall panel.

It can also be seen that despite the fact that for small and thin delaminations, the

critical load is very low, the postbuckling stiffness has a high reserve capacity until

the overall panel starts to buckle. The stiffness reduction is then more pronounced

and can be related directly to the instability introduced by the defect. For delami-

nations of the same dimensions but located closer to the mid-thickness of the panel,

the overall buckling commences almost immediately after the critical load. Further-

more, it can be observed that the postbuckling paths of the thinner delaminations

ultimately follow the path almost asymptotically. It is suggested, therefore, if the

reserve capacity of a panel with a given defect is to be estimated, the postbuck-

ling path of a delamination located at mid-depth may give a reasonable benchmark.

However, delamination propagation is not yet incorporated into the model and it

is identified that a dominant local buckle occurs in the cases where delaminations

are relatively close to the surface (thin-films). The dominant local buckle of the

sublaminate could potentially lead to the growth of the delamination which has to

be investigated in depth.

Even for small delaminations, a stiffness reduction compared to an undamaged panel

can be observed and the panels investigated never attain the residual capacity of one-

half of the pre-buckling stiffness, as is the case for a simply supported panel without

any defect. This clearly is a very important aspect when designing these types

of structural elements, because the residual strength is reduced. Combining this

finding with the potential of delamination spreading in cases of thin-film buckling,

it is apparent that growth criteria need to be incorporated to make a safe estimate

of the postbuckling capacity of the panels in-service.

A finite element comparison was undertaken as part of these investigations and
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the numerical model yields an error of approximately 3%. The analytical model

however, yields either approximately identical, for very thin delaminations, or lower

loads compared to the finite element results and thus can be regarded as safe for

the assumptions used so far. Furthermore, the mode behaviour corresponding to

the matching critical loads is identical and hence the analytical model is shown to

be valid. However, the finite element model may also lead to higher order local

plate modes that are not captured by the analytical model due to the nature of the

assumed out-of-plane displacement functions. Nevertheless, this turns out to be of

less concern since these modes would rapidly lead to non-physical modes as discussed

earlier. Furthermore, it can be established in the postbuckling range, that the finite

element model’s postbuckling stiffness closely matches the analytical solutions for

a stationary delamination. The residual capacity is also marginally higher than

the results obtained by the analytical model for all cases and subsequently can be

deemed as basically giving a safe estimate for strength in the nonlinear range.
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Delamination propagation

modelling

6.1 Introduction

Having established the elastic buckling and postbuckling behaviour of the delami-

nated plate model in Chapters 4 and 5 respectively, the irreversible damage mecha-

nism of delamination propagation is now incorporated into the model. This mecha-

nism can lead to significant structural weakening, particularly in compression (Orifici

et al., 2008). Internal delamination, see Figure 6.1, is the only mechanism in the

inelastic range that is incorporated; no matrix cracks, fibre fracture or plasticity ef-

fects are considered. However, plasticity or fibre fracture from the effects of buckling

could potentially be checked at the outermost fibres by evaluating the local strains,

as will be discussed in §9.2.

From the previous chapter it is understood that, in particular, thinner delaminations

may lead to delamination growth due to the dominant sublaminate buckling. The

spread of the defect may lead to a structural instability (Shivakumar & Whitcomb,

1985) and may potentially reduce the residual capacity of the panel significantly
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1

Abstract

The use of decohesion elements for the simulation of delamination in composite materials
is reviewed. The test methods available to measure the interfacial fracture toughness
used in the formulation of decohesion elements are described initially. After a brief
presentation of the virtual crack closure technique, the technique most widely used to
simulate delamination growth, the formulation of interfacial decohesion elements is
described. Problems related with decohesion element constitutive equations, mixed-mode
crack growth, element numerical integration and solution procedures are discussed.
Based on these investigations, it is concluded that the use of interfacial decohesion
elements is a promising technique that avoids the need for a pre-existing crack and pre-
defined crack paths, and that these elements can be used to simulate both delamination
onset and growth.

Introduction
The fracture process of high performance composite laminates is quite complex, involving both

intralaminar damage mechanisms (e.g. matrix cracking, fiber fracture) and interlaminar damage
(delamination). An example of a failure with interactive modes is illustrated in Figure 1. Although some
progress has been made lately in the development of accurate analytical tools for the prediction of
intralaminar damage growth, similar tools for delamination are still not available, and thus delamination is
generally not considered in damage growth analyses. Without the delamination failure mode, the
predictive capabilities of progressive failure analyses will remain limited.

Figure 1. Interaction between intralaminar and interlaminar damage mechanisms [1].

Matrix
cracking Internal

delamination

-45o

+45o

Figure 6.1: Internal delamination. This photograph from Camanho et al. (2001)

shows an interaction between intralaminar and interlaminar damage.

and this subsequently has to be investigated carefully to predict safely the residual

strength of the panels.

The problem of modelling delamination growth and introducing different growth cri-

teria and models is a vast research field on its own (Pinho, 2005). Since the original

aim of this work was to develop a relatively simple model to investigate the effects

of different delaminations on the panel’s capacity, rather than developing a sophis-

ticated propagation model anew, it was decided purely to incorporate and apply

such a model to allow the defect to spread. It is beyond the scope of this work to

pursue the different approaches in every meticulous detail. However, a short review

of delamination propagation modelling is presented currently, followed by a more

detailed description of the discrete cohesive zone model that is adopted in the cur-

rent work. The algorithm used to incorporate the growth criteria in AUTO (Doedel,

2007) is presented and numerical results for uniform delamination propagation will

be discussed in the following chapters. Furthermore, this part of the current work

has potential to be advanced in the future, as will be discussed in §9.2.

6.2 Delamination propagation modelling

Various different publications have addressed the topic of delamination propagation

using different kinds or combinations of approaches, such as fracture mechanics
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approaches (Griffith, 1921; Chai et al., 1981; Wilkins et al., 1982; Chai & Babcock,

1985; Kardomateas & Pelegri, 1994; Sheinman et al., 1998), finite element modelling

(Nilsson & St̊orakers, 1992; Davidson, 1995; Alfano & Crisfield, 2001; Jensen &

Sheinman, 2002; Camanho et al., 2003; Østergaard, 2008), cohesive zone modelling

or interface elements (Allix et al., 1998; Mi et al., 1998; Alfano & Crisfield, 2001;

Elices et al., 2002; Xie & Biggers, 2006; Xie et al., 2006; Xie & Waas, 2006; Turon

et al., 2007), and experimental investigations (Davidson, 1995; Allix et al., 1998;

Wilkins et al., 1982; Elices et al., 2002). Different loading conditions have moreover

been considered, ranging from dynamic or cyclic loading (Wilkins et al., 1982; Allix

et al., 1998) to quasi-static or monotonic loading (Kardomateas & Pelegri, 1994;

Bolotin, 1996; Jensen & Sheinman, 2002; Camanho et al., 2003).

Possibly one of the earliest investigations on the growth of embedded delaminations

close to the surface was undertaken by Chai and Babcock (1981; 1985). However,

the closed form fracture mechanics approach utilized in those works, which is based

on Griffith’s (1921) groundbreaking findings, is only indirectly applied in the type

of model presented later in §6.3 (Alfano & Crisfield, 2001).

In basic fracture mechanics, or linear elastic fracture mechanics—LEFM (Griffith,

1921; Bažant & Cedolin, 1991), the threshold maximum value of the interlaminar

fracture toughness GiC is compared to the strain energy G required to produce a new

unit of interlaminar surface (Chai & Babcock, 1985). Once the strain energy released

reaches the threshold value, the crack propagates. One method of calculating G per

unit length a∗ of crack width uses the total potential energy Π of the system thus:

tG = −
[
∂Π

∂a∗

]
u

, (6.1)

with t being the thickness of the structure, u being the displacement, and Π(a∗, u)

being the total potential energy of the system, (Bažant & Cedolin, 1991). Other

ways of determining G include, for example, stress intensity factors, J-integral or

compliance changes and others, see Bažant & Cedolin (1991) for details.

The strain energy which is released G, sometimes denoted in the literature as Γ,
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age mechanisms leading to structural collapse is detachment of the skin and stiffener, typically occurring at a stiffener flange

edge. In co-cured stiffened panels, this detachment is caused by delamination growth at or near the skin-stiffener interface, and

in secondary bonded panels it usually involves the adhesive disbonding between the skin and stiffener in addition to

delamination. In order to include the effects of skin-stiffener separation in numerical analyses, it is necessary to capture both

the initiation and propagation of this type of damage. This paper is focused on the growth of an existing skin-stiffener

separation, with the prediction of damage initiation from an intact structure to be the subject of future work.

In structures manufactured from laminated composite materials, the phenomenon of skin-stiffener separation can be

considered analogous to that of interlaminar cracking, for which the use of fracture mechanics to predict crack growth has be-

come common practice over the past two decades [3-4]. This analogy is directly applicable between lamina in co-cured stiff-

ened panels and is an approximation in the case of an adhesive layer in secondary bonded panels. In a fracture mechanics analy-

sis, the strain energy released in crack growth is compared to a threshold maximum of strain energy release rate, called the

interlaminar fracture toughness Gc . The strain energy release rate G is typically split into three components according to the

separate mechanisms of crack growth: opening (I), sliding (II), and scissoring (III), as shown in Fig. 1. The strain energy re-

lease rates and fracture toughnesses in all the three modes are usually used in single-mode criteria or combined in a

mixed-mode criterion to determine the onset of crack propagation, and these generally require curve-fitting parameters taken

from experimental tests.

The virtual crack closure technique (VCCT) is one of the most commonly applied methods for determining the com-

ponents of the strain energy release rate along a crack front. The VCCT approach was proposed by Rybicki and Kanninen [5]

and is based on two assumptions: 1) Irwin’s assumption that the energy released in crack growth is equal to the work required to

close the crack to its original length, and 2) that crack growth does not significantly alter the state at the crack tip. The use of

VCCT is advantageous as it allows the strain energy release rates to be determined with simple equations from a single fi-

nite-element (FE) analysis. Numerous researchers have applied the VCCT to analyse the crack growth properties of a pre-exist-

ing interlaminar damage in a range of structures, including fracture mechanics test specimens [6-7], bonded joints [8-9], and

both co-cured and secondary bonded skin-stiffener interfaces [10-12].

Predicting the collapse of a structure with account of skin-stiffener separation also requires the disbonded area to be

grown during the analysis. To date, the VCCT has been limited in this respect due to the requirement of a fine mesh of the order

of the ply thickness [13] and the need for complicated algorithms to monitor the shape of the crack front. An alternative ap-

proach for modelling the skin-stiffener separation is with the so-called cohesive elements, which are used to control the rela-

tionship between opening stresses and displacements in an interface [14-15]. Cohesive elements offer the advantages of incor-

porating both initiation and propagation of disbonding in such a way that the damage is initiated by using strength criteria and

the final separation is governed by fracture mechanics. However, like the VCCT approach, the cohesive elements require a fine

mesh to remain accurate and can become prohibitively inaccurate when larger mesh sizes are used, which makes their applica-

tion to large structures problematic. Also, the standard cohesive-element formulation cannot account for an arbitrary crack

front shape; therefore, it does not differentiate between mode II and III directions, and in general, the exact location of the crack

10

à b c

Fig. 1. Crack growth modes: I-opening (a), II-sliding (b), and III-scissoring (c).(a)
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Figure 6.2: Crack growth modes taken from Orifici et al. (2007); (a) Mode I—

opening, (b) Mode II—sliding and (c) Mode III—scissoring.

is, according to the separate mechanisms of crack growth, typically split into three

components: namely Mode I—opening, Mode II—sliding or forward-shearing, and

Mode III—scissoring or parallel-shearing, as shown in Figures 6.2a, 6.2b and 6.2c

respectively, (Wilkins et al., 1982; Bažant & Cedolin, 1991; Davidson, 1995; Allix

et al., 1998; Camanho et al., 2003). However, as will be discussed later, a pure Mode

I peeling mode is assumed in the current model.

The critical fracture toughness, GiC corresponding to each crack growth mode i, can

be determined for materials via specific tests; e.g. for Mode I, the opening mode,

a double cantilever beam (DCB) test can be performed, Figure 6.3a, and for Mode

II an end-notched flexure test can be performed, Figure 6.3b (Allix et al., 1998).

Similar tests can be conducted for mixed mode and Mode III fracture (Pinho, 2005).

(a) (b)

Figure 6.3: Principles of fracture mechanics tests; (a) DCB test – pure Mode I and

(b) ENF test – pure Mode II.
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Another common approach to modelling crack propagation is the virtual crack clo-

sure technique—VCCT (Rybicki & Kanninen, 1977; Shivakumar et al., 1988), where

the components of the strain energy release rate are determined along the crack front

based on two assumptions. Firstly, Irwin’s assumption that the work necessary to

close the crack to its original length is equal to the energy released in crack growth,

and secondly that the crack growth does not significantly change the state of the

crack tip (Camanho et al., 2001; Orifici et al., 2007). The nodal forces and displace-

ments are used to compute the energy release rate and can be formulated in a simple

form. Hence, this technique is often employed in finite element analysis due to its

numerical advantage of capturing the crack development from a discrete approach.

The last approach reviewed forms the basis of the growth criteria incorporated in the

current model and is based on cohesive elements, often employed in finite element

models as an alternative approach to the approaches outlined above (Allix et al.,

1998; Mi et al., 1998; Chen et al., 1999; Alfano & Crisfield, 2001; Xie et al., 2006;

Turon et al., 2007). These elements control the stresses and displacements at the

delamination interface and have the advantage of allowing the determination of

initiation as well as propagation of the defect; whereas the former is governed by a

stress-based criteria, the latter is governed by fracture mechanics. However, it should

be noted, that in the model discussed currently, a delamination already pre-exists,

hence an initiation from an originally undamaged structure is not incorporated.

Owing to the nature of the model, with the current plane stress assumption, see

§3.3, stresses σz are not present and subsequently cannot be evaluated to employ

a damage initiation criterion. However, the fracture mechanics type of damage

modelling can be allowed for and will be subject of the following section.

6.3 The discrete cohesive zone model

The cohesive zone model or the interlaminar interface model in the spirit of finite

elements is employed for the growth criteria to be incorporated into the formulation
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developed in Chapter 3. This type of model has been successfully utilized by various

authors to account for damage propagation (Allix et al., 1998; Mi et al., 1998;

Alfano & Crisfield, 2001; Elices et al., 2002; Xie et al., 2006; Xie & Waas, 2006;

Turon et al., 2007; Benzerga et al., 2008; Østergaard, 2008). Decohesion models

can be divided into two principal categories: point or discrete cohesive elements or

continuous decohesion elements (Xie et al., 2006); the focus will be on the former

since this is the approach implemented in the current model.

The current cohesive zone model type is based on the Dugdale–Barenblatt approach

(Bažant & Cedolin, 1991; Camanho et al., 2001) assuming that a fictitious crack

extends to the beginning of the inelastic zone. One of the fundamentals of the

approach is that the critical strain energy release rates GiC corresponding to each

fracture mode i, Figure 6.2, are inherent properties of the material interface and are

independent of the load and geometry (Alfano & Crisfield, 2001). It is necessary

to emphasize currently that, despite the capability of the approach to model mixed

mode fracture processes, a pure Mode I type of fracture is assumed and incorporated

into the model primarily for simplicity (Butler et al., 2007; Rhead & Butler, 2009).

However, because the growth is also conjectured to be critical in the thin-film closing

buckling mode or opening mode delaminations, as demonstrated in the previous

chapter, i.e. for small delaminations, the peeling mode dominates (Chai & Babcock,

1985; Melin & Schön, 2001). Mode II fracture is therefore insignificant due to the

displacements at the interface of the defect to the intact panel (recall Figure 3.2),

because overall buckling of the panel does not dominate the behaviour for the defect

dimensions investigated. In addition, it has been shown by Rhead & Butler (2009)

that assuming pure Mode I fracture gives a relatively safe lower bound despite the

fact that in reality the propagation process would be of a mixed nature. Furthermore,

the fracture Mode III is in all cases almost negligible (Whitcomb, 1989; Nilsson et al.,

1993). Hence, the following discussion will focus on a pure Mode I type of discrete

cohesive zone model.

Before describing the method in detail, a few assumptions are made and discussed.
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As mentioned before, the delamination is assumed to be pre-existing and growth

occurs along a plane parallel to the reference plane (Chai et al., 1981; Simitses

et al., 1985). The propagation occurs at the interfaces since their fracture toughness

is lower than that of the plies (Wimmer & Pettermann, 2008) with a unidirectional

lay-up yielding the worst case, i.e. the lowest, critical strain energy (Allix et al.,

1998). Furthermore, the propagation of delamination is considered to be buckling

driven (Shivakumar & Whitcomb, 1985; Peck & Springer, 1991; Hutchinson et al.,

2000; Jensen & Sheinman, 2002) utilizing the steady-state nature of the buckle

where deflections of the laminates provide the relevant criteria to determine the

growth, since no interlaminar stresses occur until the delaminated region buckles

(Shivakumar & Whitcomb, 1985). Propagation under quasi-static loading conditions

is allowed for only (Bottega & Maewal, 1983; Bolotin, 1996; Kardomateas & Pelegri,

1994; Jensen & Sheinman, 2002; Camanho et al., 2003), although it is understood

that the discrete cohesive zone model is capable of capturing growth for cyclic loading

conditions (Camanho et al., 2001; Balzani & Wagner, 2008). Furthermore, for

simplicity, the growth is assumed to be self-similar (Chai & Babcock, 1985; Peck &

Springer, 1991) and rectilinear (Allix et al., 1998) in both directions x and y in this

chapter. Chapter 8 will address the topic of non-uniform delamination propagation.

10

Figure 11. Delamination propagation for a (0º4/90º4) CFRP laminated composite under compression-
after-impact loading [35].

The following issues must be addressed in order to obtain accurate results for the simulation of
delamination using interfacial decohesion elements.

Constitutive Equations

The need for an appropriate constitutive equation in the formulation of the decohesion element is
fundamental for an accurate simulation of the interlaminar cracking process. In addition to Needleman's
[28-30] interfacial behavior represented in Figure 8, other constitutive equations proposed are [43]: linear
elastic-perfectly plastic, linear elastic-linear softening, linear elastic-progressive softening, linear elastic-
regressive softening (Figure 12).

Perfectly plastic (pp)

Linear softening (lin)

Progressive softening (pro)

Regressive softening (reg)

G

σ

pro lin reg

c

σ

Needleman (Ne)

Nepp
0

c

Figure 12. Constitutive strain softening equations [43].

In order to simulate the cohesive zone process ahead of the crack tip represented in Figure 9, a linear
elastic-linear softening behavior is usually implemented [33-39, 44-46]. A high initial stiffness is used to
hold the top and bottom faces of the decohesion element together in the linear elastic range. For pure
Mode I, II or III loading, after the interfacial normal or shear tractions attain their respective interlaminar
tensile or shear strengths, the stiffnesses are gradually reduced to zero. The area under the stress-relative
displacement curves is the respective (Mode I, II or III) fracture energy (see equation 6 and Figure 13).

Figure 6.4: Constitutive strain softening relationships within the cohesive zone,

taken from Camanho et al. (2001); with σc being the cohesive surface stress, δ the

relative opening of the laminates and GC ≡ GiC the critical strain energy release

rate.

In cohesive zone modelling, the cohesive surface stress σc is related to the relative
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opening of the laminates δ at the interface (Alfano & Crisfield, 2001; Camanho et al.,

2001; Elices et al., 2002; Turon et al., 2007) using a local energy balance, essentially

based on the Griffith criteria (Griffith, 1921). Both σc and δ depend on the external

load P and the interface is modelled with discrete springs of a certain stiffness K

with both damage and fracture mechanics defining the response.

Different constitutive models can easily be adopted for this type of approach, as

shown in Figure 6.4. However, for brittle materials, the bilinear cohesive zone mate-

rial model is most commonly implemented, Figure 6.5 (Camanho et al., 2001; Elices

et al., 2002; Camanho et al., 2003; Xie et al., 2006; Turon et al., 2007), and will be

utilized herein.

The relationship is characterized by the high initial stiffness K, holding the upper

and lower laminates together in the linear elastic range until the stress reaches the

tensile strength σc, sometimes also denoted as σmax . Subsequently, softening occurs
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Figure 9. Cohesive zone ahead of delamination tip.

The concept of decohesion zones to simulate delamination growth in composites is usually
implemented by means of decohesion elements connecting the individual plies of a composite laminate.
These elements can model the discontinuity introduced by the growth of delaminations. Decohesion
elements use a high penalty stiffness before delamination onset to prevent additional deformations (see
point 1 in Figure 9).

Decohesion elements can be divided into two main groups: continuous decohesion elements and point
decohesion elements. Several types of continuous decohesion elements have been proposed, ranging from
plane decohesion elements with zero thickness connecting solid elements [33-36]; plane decohesion
elements with finite thickness connecting shell elements [37]; and line decohesion elements [38-40]. Point
decohesion elements are identical to spring elements connecting nodes [41, 42].

The concept of decohesion elements has been used in different types of problems: compression-after-
impact [33, 35], stiffener-flange debonding [36], damage growth from discontinuous plies [40],
diametrical compression of composite cylinders [37]. The use of decohesion elements in the simulation of
delamination growth in compression-after-impact problems is illustrated in Figures 10 and 11. Figure 10
shows the deformed shape of a CFRP laminate containing a delamination. Figure 11 shows the initial
delamination due to the impact load and its predicted propagation. Figure 11 indicates that decohesion
elements can capture non-self-similar crack growth.

Figure 10. Global buckling in a [0º4/90º4] CFRP laminate under compression-after-impact loading
[35].

(a) (b)

Figure 6.5: Constitutive relationship used in the cohesive zone model. (a) Cohesive

zone ahead of delamination tip from Camanho et al. (2001); (b) piecewise linear

constitutive relationship with the area under the graph equating to GIC, the critical

strain energy release rate.

(Elices et al., 2002) until the area under the curve reaches the critical strain energy

release rate GIC and the crack propagates. Thus, a complete debond of the interface

occurs (Point 5 in Figure 6.5a) and the zone needs to be moved along usually by the

153



Chapter 6. Delamination propagation modelling

use of an algorithm (Whitcomb, 1989; Xie et al., 2006). The work of separation per

unit area can be calculated as the area under the curve with the following expression

of Γ, (Alfano & Crisfield, 2001; Camanho et al., 2001; Turon et al., 2007):

Γ =

∫ δmax

0

σ(P ) dδ , (6.2)

which for the bilinear constitutive relationship is given as:

Γ =
1

2
σmax δmax = GIC . (6.3)

Hence, once Γ equals GIC, the critical strain energy release rate is reached; since

GIC and σmax are taken as known material properties of the interface, the maximum

separation δmax can be readily obtained by simple rearrangement of equation (6.3)

(Alfano & Crisfield, 2001):

δmax =
2GIC

σmax

. (6.4)

The advantage of using this approach is that the delamination initiation, at the

critical opening δc, as well as the damage growth—once the critical strain energy

release rate at δmax is reached—can be predicted and analysed.

(a) (b)

Figure 6.6: Discrete cohesive zone model; location of (a) model and (b) spring.

To incorporate this type of model an interface layer of zero thickness consisting of

springs is positioned between the two layers of the delamination at the transition of

the delaminated patch to the intact area, see Figure 6.6a.

The spring that contributes to the gain in the energy release rate is positioned in

the delaminated part, at a distance ls = a/10 or ls = b/10 away from the intact
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part, see Figure 6.6b. The length ls is chosen because it is always conveniently

located approximately in the middle of the outward bending moment region that

would cause crack opening. It is furthermore understood that the positioning of

the spring needs to be linked to the mode shapes and subsequently the overall

dimensions of the delamination, rather than having a fixed value. This is because

the displacements wi of the laminates describe the clamped behaviour of the defect

and hence the crack. The distance ls is chosen at the point where the displacement of

the laminate is approximately 10% of the overall amplitude of the laminas. Beyond

this point, i.e. for ls > a/10 or ls > b/10, the displacements wi increase dramatically,

as shown for both closing and opening mode configurations in Figure 6.7. Hence,

up to this point, δ(P ) is small and reflects the virtual crack, resulting from the

clamped conditions of the out-of-plane displacement functions. Furthermore, as will

be observed in Chapter 7, the positioning of the spring at this location yields good

comparison with existing growth predictions in the literature.

Since the postbuckling solutions of the panels are determined, the growth criteria

can be calculated, (Kardomateas & Pelegri, 1994), via the extension of the spring,

δx or δy, thus:

δx(P ) =
1

b

[∫ b/2

−b/2
w1 (x1 = a/2− ls, y1) dy1−

∫ b/2

−b/2
w2 (x2 = a/2− ls, y2) dy2

]
(6.5)

and similarly for δy

δy(P ) =
1

a

[∫ a/2

−a/2
w1 (y1 = b/2− ls, x1) dx1−

∫ a/2

−a/2
w2 (y2 = b/2− ls, x2) dx2

]
. (6.6)

The value is the same in both x and y directions due to the averaging over the

width, thus δ(P ) is subsequently used for simplicity. The values arising from the

integration are averaged to model the cohesive zone as a unit width when evaluating

the energy (Turon et al., 2007).

The length of the cohesive zone, lcz, i.e. the size of the step the springs are moved

once the total debond occurs, is determined as a material property according to

Hillerborg’s model (Bažant & Cedolin, 1991; Elices et al., 2002; Sun & Jin, 2006;
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Figure 6.7: Schematic spring displacement δ(P ) at spring location ls; (a) closing

mode, (b) closing mode enlarged and (c) opening mode.
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Turon et al., 2007) with:

lcz =
EzGIC

σ2
max

, (6.7)

where Ez is the Young’s modulus in the out-of-plane direction and σmax is the

maximum cohesive strength of the interface. Note that lcz 6= ls (Figure 6.6b), since lcz

is the largest step, the springs can be moved once the first spring is fully delaminated

and ls is the parameter determining the position of that particular spring. This,

however, requires a fine mesh (Orifici et al., 2008) and usually a minimum of three

finite elements are used in the cohesive zone (Turon et al., 2007). To find a smooth

solution that converges, the step size is adjusted during the procedure to find the

postbuckling solution for a propagating delamination that is described below.

6.3.1 Algorithm for delamination propagation

The algorithm developed and incorporated into AUTO (Doedel, 2007) to allow for

delamination growth is as follows:

1. The analysis in AUTO is started as usual and the critical loads are obtained,

Point 1, Figure 6.8.

2. The equilibrium paths are traced and analysis is halted when δ is equal to δmax,

Point 2, Figure 6.8. At this point, the critical strain energy release rate GIC is

reached—equation (6.4)—and the cohesive zone has completely delaminated.

The stress at which δ = δc, i.e. delamination propagation initiates, is of little

interest in this static propagation model and therefore not included in the

discussion.

3. The lengths a and b are increased by the amount of the cohesive length lcz

or by a smaller step size, if a smooth solution cannot be obtained by using

lcz, and the new equilibrium solution for this set of parameters is determined,

Point 3, Figure 6.8. However, δ could be now larger or smaller than δmax.
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4. In the case that the δ > δmax, Point 4, Figure 6.8a, the load needs to be reduced

to find the new equilibrium position corresponding to the maximum opening

of the laminates, i.e. the solution releasing the maximum strain energy. In the

other case, where δ < δmax, the load can be increased and new equilibrium

position for the new set of parameters is found, Point 4, Figure 6.8b.

5. This procedure is continued until the propagation stops or sufficient prop-

agation has occurred such that the algorithm is halted and the results are

processed.

Λ
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4
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3
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Figure 6.8: Delamination propagation in AUTO; adjustment for δ where the load

needs to be (a) reduced or (b) increased.

The algorithm is presented in a further schematic in Figure 6.9 where the adjust-

ment of the position of the cohesive zone is shown in detail. The incorporation of

the irreversible damage mechanism has been established within this chapter and

the following chapters will present the results obtained with the developed model.

Initially, uniform damage growth will be incorporated for different defects of barely

visible impact dimensions in the following chapter whereas Chapter 8 will discuss

non-uniform delamination propagation as a pilot study.
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Figure 6.9: Delamination algorithm schematic.
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Chapter 7

Postbuckling regime of a uniformly

propagating delamination

Having described and outlined the algorithm employed when delamination propaga-

tion is incorporated using a discrete cohesive zone model in the previous chapter, nu-

merical results for delaminated panels are presented. In the current chapter, results

including uniform delamination propagation are presented and discussed. Various

cases in the barely visible impact damage range have been extensively investigated

and are presented herein.

Initially, the results for the different cases are described individually with a sum-

mary for each case. The results are then compared and related to parameters and

conclusions are drawn regarding the damage behaviour and its importance.

7.1 Numerical experimentation and results

The investigations incorporate the delamination algorithm for uniform growth in

both dimensions, i.e. xi and yi, see Figure 7.1; for different initial delamination

sizes, see Table 7.1 and for the depths of delamination in each case, see Table 7.2.
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However, the model has the potential of incorporating non-uniform delamination

propagation as will be discussed Chapter 8 and further as part of the future work

in §9.2.

Figure 7.1: Uniform delamination propagation.

Material properties are again as summarized in Table 5.1 in §5.2. Uniform delami-

nation is investigated for panels containing four different cases of a small or barely

visible pre-existing delamination of dimensions as presented in Table 7.1; similar to

values found in the literature (Whitcomb, 1989; Nilsson et al., 1993; Short et al.,

2001; Craven et al., 2010), and in accordance with the cases in Chapter 5. These

types of delaminations are of primary concern owing to the difficulty in detecting

this type of damage (Melin & Schön, 2001) whilst drastically reducing the strength

of the panels. It was seen in §4.3.1.1 that the analytical model yields a good compari-

son with the finite element model around the transitional depth ct where the critical

buckling mode behaviour changes from local via mixed mode to global buckling.

Subsequently, a range of depths is investigated for each case in the neighbourhood

of the transitional depth ct, where the parameters are chosen such that sublaminate

buckling precedes overall buckling since otherwise the delamination cannot spread

(Bottega & Maewal, 1983). This local buckling can promote the growth of the de-

lamination away from its original location (Rhead & Butler, 2009) as will be seen in

the subsequent examples. As in these articles, the critical delamination is assumed

to lie within 20% of the plies closest to the surface, hence only these depths are

investigated, as summarized in Table 7.2.
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Case a b % delaminated area

0 0.12L 0.12B 1.44

1 0.15L 0.15B 2.25

2 0.20L 0.20B 4.00

3 0.25L 0.25B 6.25

Table 7.1: Examples of postbuckling with uniform delamination propagation. The

overall plate has dimensions L = B = 100 mm.

The convention for the abbreviations in the graphs are as described in Table 5.3,

however cases now include uniform delamination propagation, see Table 7.3, these

are denoted as paths “P1” and “P2”. Again, the postbuckling equilibrium paths are

compared to the perfect behaviour of the undamaged panel. It is worth emphasizing

that non-physical branches are neglected for reasons outlined in Chapter 5.

As before, the first two normalized buckling paths are discussed (Chai & Bab-

cock, 1985) and the postbuckling and growth characteristics are investigated herein.

Furthermore, these characteristics are distinguished between force-controlled and

displacement-controlled loading and their impact on the growth stability (Wimmer

& Pettermann, 2008).

Case (A) (B) (C) (D) (E)

0 0.05 0.065 0.075 0.10 –

1 0.03 0.05 0.085 0.12 0.20

2 0.05 0.085 0.11 0.15 –

3 0.05 0.11 0.15 0.20 –

Table 7.2: Values of delamination depth parameter c for postbuckling cases in-

vestigated with uniform delamination propagation. Thin-film buckling cases are

indicated in bold, mixed mode cases in italics and global buckling in Roman font.
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Label Description

PU Postbuckling path of an undamaged panel

S1 First physical postbuckling path of a damaged panel

containing a stationary delamination

S2 Second physical postbuckling path of a damaged panel

containing a stationary delamination

P1 First postbuckling path of a damaged panel

containing a uniformly propagating delamination

P2 Second postbuckling path of a damaged panel

containing a uniformly propagating delamination

FE Path of the finite element model containing a stationary delamination

Table 7.3: Abbreviations for the graph labels describing the postbuckling behaviour

of a panel containing a uniformly propagating delamination.

7.1.1 Results and discussion: Case 0

Initially, the model was compared with the literature in case 0, i.e. a = b = 12 mm.

The results for this case are presented only in tabulated form and the focus is on

the other three cases in this chapter.

The critical loads ΛC
j , the loads at which propagation commences Λprop

j and the min-

imum loads reached during propagation Λmin
j for each buckling mode j are presented

in Tables 7.4–7.7; the notation that is used is shown schematically in Figure 7.2.

Furthermore, it is stated for each case whether the growth is stationary when the

algorithm, discussed in the previous chapter, is halted at Λmax
j and to what extent

the delamination has grown.

Melin and Schön (2001) stated in their literature review, Reference [17], that for a

BVID, growth was observed to occur from 11 mm to 19 mm. Despite the differ-

ent modelling approaches, this compares well quantitatively with the values found

with the current model for case 0, Table 7.4, where the delamination grows from
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Figure 7.2: Schematic of notation in Tables 7.4–7.7.

12 mm to either 22 mm or 20 mm in case 0 (A) or (B) respectively. Thereafter

the propagation is stationary and no further growth occurs since overall buckling

governs the behaviour. This occurs at values Λmax
1 = 0.884 and Λmax

2 = 0.901 which

is marginally lower than the value of ΛC
1,c=0.5 = 0.967 for a delamination of this size

at half depth, i.e. c = 0.5 (Table 7.8). This benchmark value had been established

in §5.2.2 for the quick estimation of a panel’s capacity. However, it can already be

seen that even for small delaminations, a reduction in capacity due to the growth

occurs. Moreover, the delamination growth rate reduces with the depth of the de-

lamination (Melin et al., 2002) for the first critical load, which will be discussed in

greater detail in the subsequent examples.

Only in case 0 (B), the mixed mode case, a load drop is initially observed for the

first critical load, before the system restabilizes. This unstable, shell-like behaviour

was also previously identified by Hunt et al. (2004) for the mixed mode buckling

case of the strut. However, the maximum load, if growth is permitted, before the

system experiences an overall loss of stability, can be determined to be around 88%
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Case 0 (A) (B) (C) (D)

ΛC
1 0.459 0.755 0.905 0.959

Λprop
1 0.722 0.953 – –

Λmin
1 – 0.862 – –

a and b at Λmin
1 (mm) – 16.5 – –

Λmax
1 0.884 0.901 – –

a and b at Λmax
1 (mm) 22 20 – –

growth stationary at Λmax
1 ? yes yes – –

ΛC
2 0.994 1.024 1.139 1.915

Λprop
2 1.046 1.237 1.384 2.1938

Λmin
2 1.044 1.111 1.196 1.513

a and b at Λmin
2 (mm) 12.5 15.5 17 20

Λmax
2 3.195 2.535 2.461 2.610

a and b at Λmax
2 (mm) 41 36 35 35

growth stationary at Λmax
2 ? no no no no

Table 7.4: Results summary: Case 0.

of an undamaged panel’s capacity, see Λmax
1 case 0 (A). In cases (C) and (D) no

growth is observed for the first critical load. This is because overall buckling of the

panel governs the behaviour.

In all cases, unstable growth was observed for the second critical load. However,

there was no load drop below Λ = 1 observed in any of the cases. Hence, assuming

a panel is not designed to withstand loads higher than the critical load for an

undamaged panel, i.e. the panel is not designed using the postbuckling capacity,

then a reduction due to the defect is of no concern and can be disregarded.

The following sections will, however, discuss this in more detail for the other cases

investigated. Case 0 is the smallest of the BVIDs examined and was deemed not to

be of critical nature since the growth is not significant and the load carrying capacity

is not significantly affected. Hence, the focus in this chapter is on the other cases
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with slightly larger delamination sizes.

7.1.2 Results and discussion: Case 1

In this section, a selection of the results varying relative delamination depths c for

case 1, a = b = 15 mm, as summarized in Table 7.2, are presented and discussed.

Currently, a value of c = 0.03, case 1 (A), is also included to investigate the impact

when the delamination is even thinner than c = 0.05, which was studied in §5.2. In

addition, a value of c = 0.20—case 1 (E)—is examined to allow for slightly deeper

delaminations, beyond the transitional depth ct established in Chapter 5, Figure

5.5, established in Chapter 5.

7.1.2.1 Case 1 (A)

The critical loads for case 1 (A) are triggered at ΛC
1 = 0.107 and ΛC

2 = 0.975. As

shown in Figure 7.3, local upper laminate buckling occurs, with Q1 dominating the

behaviour in both equilibrium paths, at least initially. As established before, in the

closing mode configuration, a global instability is soon triggered where Q3 governs

the buckling behaviour.

For the first critical load, delamination propagation occurs at a value of Λprop
1 =

0.281, i.e. the load can be increased by approximately 18% of the overall capacity

of the undamaged panel until propagation occurs. The growth is stable under load-

control in the spirit of the discussion by other authors (Bottega & Maewal, 1983;

Kardomateas & Pelegri, 1994; Wimmer & Pettermann, 2008), Figure 7.4, which can

furthermore be seen for the present case in Figure 7.5, where the load is plotted

versus the growth. The delamination grows up to a size of a = b = 39 mm until the

growth is arrested at Λmax
1 = 0.874, which is lower than the value ΛC

1,c=0.5 = 0.950

for a delamination at half depth, Table 7.8. It can be seen, comparing to case 0 that

even a marginally larger delamination already leads to significantly higher growth
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Figure 7.3: Postbuckling equilibrium paths for local mode: Case 1 (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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and a further load reduction. However, this will be discussed in detail in the final

part of this chapter.

mix at each delamination front, ma1
and ma2

, does not need
to be equal, the individual values of the critical energy
release rate at each front, Gc;a1

and Gc;a2
, have to be consid-

ered. From Eq. (6) and (9), the load (force or displacement)
required to propagate the delamination can be computed
for each delamination front. The delamination will grow
at the higher loaded delamination front, printed symboli-
cally as

oC
�oai

Gc;ai

>

oC
�oaj

Gc;aj

) Delamination growth in direction ai;

i; j ¼ 1; 2: ð14Þ

2.4. Numerical evaluation of the compliance and the mode

mix

The analytical equations presented above allow to deter-
mine the delamination growth direction, to compute the
load required to propagate the delamination, and to pre-
dict the growth stability. In order to perform these compu-
tations the compliance and the mode mix at each
delamination front, ma1

and ma2
, need to be provided for

the current loading scenario as functions of a1 and a2.
For general cases, an analytical solution for these functions
cannot be given, thus, an approximation is used. Discrete
values of a1 and a2 are chosen in a range that covers all
delamination configurations of interest. For each combina-
tion of a1 and a2 the compliance and the mode mix at each
delamination front are evaluated numerically. The results
of the numerical evaluation allow for a pointwise descrip-
tion of the compliance and the mode mix as functions of
a1 and a2. From these results, the difference quotients are
computed instead of the derivatives (oC

oa ) DC
Da). Due to this

approximation, only incremental delamination growth
can be simulated, the size of the increment being equal to
the incrementation in a1 or a2.

The compliance is a monotonic and continuous function
of the parameters a1 and a2. Their discretization has to be
chosen fine enough to allow for a proper approximation of
the compliance as well as its first and second derivatives.
Visual inspection of the functions shows whether or not
the approximation is proper in the entire range of a1 and
a2. If not, a finer discretization has to be used around the
corresponding values.

In the present study, the FEM package ABAQUS/Stan-

dard/V6.6 (ABAQUS Inc., RI, USA) is used for the numer-
ical evaluation. An FEM analysis procedure is set up,
parameterized in a1 and a2. All combination of a1 and a2

are analyzed in a fully automated procedure. The structure
is loaded with a unit load and the compliance as well as the
mode mix at each delamination front are computed within
a linear elastic analysis. For the computation of the mode
mix the VCCT is employed. An implementation is provided
by ABAQUS as an add on tool [15]. The VCCT is based on
the assumption that the energy released during the delam-
ination growth of Da is equal to the energy required to

close the delamination over the length of �Da. According
to [8], the energy released at delamination growth can be
computed within the FEM from the nodal forces at the
delamination front and the relative nodal displacement
behind the delamination front. This assumption hold true
if the stress and displacements fields with respect to the
delamination front change only slightly during delamina-
tion growth, i.e. self-similar delamination growth takes
place. This means that the increase in the delaminated area
needs to be small compared to the total delaminated area
and that the shape of the delamination does not change
during delamination growth (i.e. no crack kinking) [4].
From the consideration of the relative normal and shear
forces and displacements, contributions of mode I and
mode II energy release rates as well as the mode mix are
computed for both delamination fronts.

From the results of the FEM procedure, the compliance
and its difference quotients up to the second order are com-
puted. Furthermore, the critical energy release rate and its
difference quotient are evaluated at each delamination
front. Based on these data, growth of any delamination
can be treated, which is described by the considered range
of a1 and a2.

2.5. Capabilities of the proposed approach

Once the functions of the compliance and the mode mix
are obtained, the further computational effort for the pre-
diction of delamination growth is extremely low. The load
required to propagate the delamination and the corre-
sponding delamination growth (Da1 or Da2) are accessible.
The latter leads to an increase in the delaminated area and
a change in the compliance. For the new delamination size,
again, the load required to propagate it and the change in
a1 or a2 are computed. Repeating these considerations
allows a pointwise description of the delamination growth
process and the corresponding force–displacement curve.

Force–displacement curves as shown in Fig. 2 can be
handled with the proposed approach. Curves a and b show

Displacement

Fo
rc

e

a

b

d

c

e

Fig. 2. Generic examples for the force–displacement behavior caused by
delamination growth; (a) stable growth under force controlled loading; (b)
stable growth under displacement controlled loading; (c) unstable growth
under non-monotonous loading; (d) and (e) unstable growth under
monotonous loading.

G. Wimmer, H.E. Pettermann / Composites Science and Technology 68 (2008) 2332–2339 2335

(a)

Figure 7.4: Generic examples for force–displacement behaviour caused by delami-

nation growth after Wimmer & Pettermann (2008); (a) stable growth under force-

controlled loading; (b) stable and (c) unstable growth under displacement controlled

loading; (d) and (e) unstable growth under monotonic loading.

For the second postbuckling solution incorporating delamination propagation, path

“P2”, initiating from the second critical load, the increase in load until delamination

propagation occurs is small after which the load drops, again insignificantly, to

almost the original value of ΛC
2 indicated by the dashed horizontal line. At this

point however, the delamination has grown to a = b = 27.5 mm, Figure 7.5b, thus a

fast, but only marginally unstable, growth behaviour can be observed. After this, the

propagation restabilizes and the load can be increased with growing delamination

and the algorithm is halted once the load level exceeds Λ = 2.0.

Figure 7.5a shows the load versus end-shortening for case 1 (A) and it can be seen

that for the first postbuckling path P1 the residual capacity reduces further when

incorporating delamination propagation, compared to the stationary case. This is

due to the fact that the local defect increases and thereby promotes the overall
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Figure 7.5: Delamination growth rate: Case 1 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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instability to occur at a lower load level. This is of importance since the system

would then snap at a load level higher than the reduced critical load of 87.4% of

the undamaged panel, thus if it were designed without accounting for the defect to

spread, it could potentially have catastrophic consequences. That is, if the panel

was located between two stringers, the instability of the panel may lead to stringer

instability and so on. It is already apparent that it is of crucial importance to

account for delamination propagation.

Furthermore, it should be noted, that even the reduced residual capacity in the

postbuckling range of the damaged panel without delamination growth, path “S1”,

is no longer achievable since the reserve strength of the panels is significantly re-

duced by the presence of a propagating delamination, Figure 7.5a. For the opening

mode configuration, no significant stiffness reduction can be observed, regardless of

whether the defect grows or is stationary.

7.1.2.2 Case 1 (B)

The investigations for case 1 (B), i.e. c = 0.05, yielded no significant difference in

terms of the mode behaviour compared to the previous case since the scenario is

still in the thin-film buckling range. Thus, the postbuckling paths for the laminates

and the overall panel are omitted here, but can be reviewed in the appendix §B.2.1,

Figure B.2.

The critical loads are higher than for the previous case, again as expected, and are

determined as ΛC
1 = 0.295 and ΛC

2 = 0.979; those values are indicated in the plots by

dashed horizontal lines. Increasing the load after the first critical load monotonically,

the delamination propagation is initiated at a load level of Λprop
1 = 0.467; a value

that could also be confirmed with the finite element model. The ratio between

Λprop
1 and ΛC

1 is subsequently 1.58. Once the delamination propagates, a slight load

drop is observed of approximately 2% of the undamaged panel’s strength, where

the delamination has propagated to a size of a = b = 18 mm; however, the overall
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behaviour can still be regarded as plate-like or stable (Hunt et al., 2004). Beyond

this point, the load can be increased again until Λmax
1 reaches a value of 87.0% of

the undamaged panel’s capacity and a = b = 39 mm, Figure 7.6b, similar to case

1 (A), when the overall panel becomes unstable and henceforth Q3 dominates the

behaviour.
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Figure 7.6: Delamination growth rate: Case 1 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.

In Figure 7.6a, it should be noted that the residual capacity of a stationary de-

lamination of the original size cannot be obtained when delamination growth is

incorporated; the postbuckling response initially follows path “S1” until the relative

displacement between the laminates becomes too great, i.e. δ(P ) = δmax, at which
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point it passes to path “P1”. Moreover, it was found by Nilsson et al. (1993), who

studied a pre-existing delamination at depth c = 0.05, that for a similar starting

size of delamination the ratio of the load at which propagation commences Λprop
1 to

the buckling load ΛC
1 for the closing mode ranged from 1.55, from their numerical

study, to 1.60 from their experimental study. This compares extremely favourably

to the same ratio in the current study which is determined to be 1.58.

The reduction in stiffness at the first postbuckling solution including delamination

propagation, path “P1”, is as observed in case 1 (A), thus the residual capacity of

a stationary delamination of the same original size cannot be obtained, as shown in

Figure 7.6a.

For the second postbuckling solution, path “P2”, a fast, marginally unstable growth

occurs again at a load level around 100% of an undamaged panel’s capacity, Figure

7.6b, and the system restabilizes at a slightly smaller delamination size than in the

previous case, at a = b = 22.5 mm. The load can then be increased again with

growing delamination size. However, owing to the nature of the opening mode, an

overall instability is again not triggered and the residual capacity remains virtually

unaffected, as shown in Figure 7.6a.

7.1.2.3 Case 1 (C)

The third case with a delamination of dimensions a = b = 15 mm, case 1 (C),

contains a delamination located at c = 0.085, hence mixed mode buckling occurs

according to Chapter 5, and Q1 is now significantly smaller, as seen in Figure 7.7.

The first and second critical loads are triggered at ΛC
1 = 0.801 and ΛC

2 = 1.045,

respectively, hence the second critical load is now triggered above the critical load

of the undamaged case. The load can be increased from the first critical point up

to a value of Λ = 0.915 until the delamination starts to grow. The growth occurs

initially in an unstable manner, i.e. a load drop is observed down to a value of 0.721

of the undamaged capacity, to a delamination size of a = b = 23.5 mm, Figure

172



Chapter 7. Postbuckling regime of a uniformly propagating delamination

Λ

Λ

1
Q /t

2

Λ
1

c

c

P1

P2

S1

S2

(a)

Λ

2
Q /t

Λ
2

Λ
1

c

c

P1

P2

S2

S1

(b)

Λ

3
Q /t

Λ
2

Λ
1

c

c

P1

P2

S1

S2

PU

(c)

Figure 7.7: Postbuckling equilibrium paths for mixed mode: Case 1 (C). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 7.8: Delamination growth rate: Case 1 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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7.8b. Beyond this point, the system restabilizes and the load can be increased again

up to a load of 0.849 of the undamaged capacity when the overall panel becomes

unstable. It should be noted that the drop in load is below the initial critical buckling

load, hence if the system is loaded by force-controlled loading a snap would occur

and the delamination would grow dynamically from the initial a = b = 15 mm to

a = b = 39 mm. Furthermore, the load at which global instability occurs is now

approximately 2% lower than for the previous two cases (A) and (B).

At the second critical load, the system can be subjected to further load until the

delamination starts to propagate at 116.2% of the undamaged capacity in an unsta-

ble manner. The growth stabilizes, as before, at a load level around 100% and the

delamination grows to an extent of a = b = 21.5 mm, Figure 7.8b. This, again, is

slightly less than in the previous two cases, but again the delamination growth rate

decreases with increasing delamination size (Bottega & Maewal, 1983).

It can again be observed that the reserve capacity of the panel containing a stationary

defect cannot be attained and the end-shortening curve is as in the previous two

cases. Furthermore, the propagation has a minor effect on the residual capacity when

the opening mode is triggered, paths “P1” and “P2” in Figure 7.8a respectively.

7.1.2.4 Case 1 (D)

Case 1 (D) considers a delamination that is located at depth c = 0.12, and global

buckling governs the behaviour according to §5.2.2. This can be seen in the post-

buckling equilibrium paths in Figure 7.9. It is evident that because of overall buck-

ling dominating the behaviour of the panel, no delamination propagation occurs at

the first critical load, path “S1”. This is because in the closing mode configuration,

no relative opening occurs between the laminate to promote delamination growth.

Thus, clearly no further reduction in residual capacity occurs when growth is al-

lowed for, Figure 7.10a, and the reduction in stiffness is as shown in Chapter 5 for

a delamination of these parameters.
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Figure 7.9: Postbuckling equilibrium paths for global mode: Case 1 (D). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part). Note the lack of path “P1”.
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The second critical load is triggered at a load level of ΛC
2 = 1.783 with the propaga-

tion initiating at Λprop
2 = 1.965. The growth characteristic is highly unstable, as can

be seen in Figure 7.10b, and the delamination grows to a size of a = b = 25.5 mm

at 127.1% capacity of an undamaged panel. Then the system restabilizes again and

the load can be increased with increasing delamination size. Despite the unstable

nature of the growth and the enlargement of the defect, the overall residual stability

remains unchanged, Figure 7.10a, as in the previous cases, which can be explained

by the opening configuration of this mode. Additionally, the load drop is never be-

low 100% of a panel’s capacity, thus the second postbuckling mode can be regarded

as not critical.

7.1.2.5 Case 1 (E)

The last case considered with a delamination of dimensions a = b = 15 mm contains

a delamination at depth c = 0.20. This case was investigated to eliminate out

potential instabilities arising from the opening mode at higher load levels. The

postbuckling equilibrium paths do not significantly differ from the previous case

and hence are not shown herein.

As in the previous case, no growth occurs after the first critical load is triggered

since sublaminate buckling does not govern the behaviour, path “S1”. However,

at the second critical load, ΛC
2 = 4.941, after initial increase to Λprop

2 = 5.128, a

highly unstable load drop with increasing delamination occurs. Nonetheless, the

load never drops below Λ = 2.0 and can therefore be deemed as uncritical since this

panel would not be designed to withstand such high load levels. Hence, under the

condition that a panel would not be designed to withstand loads higher than 100%

of the undamaged panel, growth would not occur.
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Figure 7.10: Delamination growth rate: Case 1 (D). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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Case 1 (A) (B) (C) (D) (E)

ΛC
1 0.107 0.295 0.801 0.939 0.949

Λprop
1 0.281 0.467 0.915 – –

Λmin
1 – 0.447 0.721 – –

a and b at Λmin
1 (mm) – 18 23.5 – –

Λmax
1 0.874 0.870 0.849 – –

a and b at Λmax
1 (mm) 39 39 35 – –

growth stationary at Λmax
1 ? yes yes yes – –

ΛC
2 0.975 0.979 1.045 1.783 4.941

Λprop
2 0.995 1.012 1.162 1.965 5.128

Λmin
2 0.976 1.005 1.073 1.271 2.039

a and b at Λmin
2 (mm) 27.5 22.5 21.5 25.5 33

Λmax
2 2.08 2.366 2.515 2.660 3.0976

a and b at Λmax
2 (mm) 52 54.5 54.5 54.5 64

growth stationary at Λmax
2 ? no no no no no

Table 7.5: Results summary: Case 1.

7.1.2.6 Summary: Case 1

The findings for case 1 illustrated in the graphs in the preceding sections are summa-

rized in Table 7.5. Concluding, it should be noted that for the case of a delamination

of dimensions a = b = 15 mm, delamination growth occurs when the defect is nearer

the surface or precisely at the transitional depth ct.

For the first critical load, in the thin-film case, case (A), the growth is stable.

This is also almost true for case (B), another thin-film configuration, where only

a very slight load-drop is observed with small growth. The ratio between the load

at which propagation occurs and the critical load in this configuration compares

quantitatively and phenomenologically with values in the literature (Nilsson et al.,

1993). Furthermore, finite element analysis for this case gave the same results in
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terms of the propagation load level. However, finite element modelling incorporating

growth criteria is immensely time-consuming1 and was therefore ceased after the

propagation load level due to time constraints. For the mixed mode buckling case,

i.e. case (B), the growth is unstable and a load drop below the initial buckling load is

observed. This means that if the load was applied monotonically, a snap instability

would occur. For case (C) and (D) no growth was observed at the first postbuckling

path. The FE model confirms that the choice in generalized coordinates and the

approximation for the stress functions was indeed appropriate since the comparisons

with the static delamination model are excellent, as had been established in Chapter

5.

Only in case 1 (A) does the load drop below 100% of the undamaged panel for the

second postbuckling path “P2” and a fast and unstable growth is observed. In case

(B), similar behaviour is observed, where the delamination grows unstably at an

almost constant load level of 100%, i.e. in both cases a snap would occur until the

panel and growth restabilizes again.

7.1.3 Results and discussion: Case 2

In this section, a selection of the results is presented and discussed while varying

relative delamination depths c for case 2, where a = b = 20 mm, as summarized

in Table 7.2. Postbuckling paths are plotted for each case and then summarized in

§7.1.3.5.

Four different delamination depths are investigated currently, again in the neigh-

bourhood of the transitional depth ct, where case (A) triggers thin-film buckling,

(B) and (C) both trigger mixed mode buckling and (D) triggers global buckling.

1Pinho (2005) required approximately 5 hours for the simulation of growth of a simple double

cantilever model for fracture Mode I, Figure 6.3a.
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7.1.3.1 Case 2 (A)

In case 2 (A), the delamination is again located at c = 0.05 and the postbuckling

equilibrium paths for the upper, lower and intact parts are shown in Figure 7.11. As

in cases 1 (A) and (B), the buckling of the upper laminate dominates the behaviour in

both the first and second postbuckling paths. In Figure 7.11a, it can clearly be seen

that the buckling of the upper laminate, i.e. defined by Q1, is the dominating mode

and the order of magnitude of the buckle is far more pronounced than in case 1 (A),

Figure 7.3a. In addition, the lower laminate buckling displacement also increases

significantly for this initially larger, propagating delamination when compared to the

previous case, as can be seen if Figures 7.3b and 7.11b are compared. Furthermore,

it should be noted that since the system fully delaminates, as will be discussed

subsequently, the overall panel never dominates the buckling behaviour, as seen in

Figure 7.11.

After the first critical load, ΛC
1 = 0.166, the load can be increased until delamina-

tion propagation is initiated at Λprop
1 = 0.265. An insignificant load drop occurs

with a slight uniform growth of approximately 3 mm of the delamination, path

“P1”, but the system quickly recovers and the load can be monotonically increased

with a growing delamination. Thus, as observed before, a largely stable growth

behaviour, i.e. the defect only grows with increasing load, can be identified for the

local buckling mode. The maximum load that can be achieved is at 86.9% of the

undamaged panel’s capacity. However, it should be noted that the system is now

fully delaminated, i.e. a = b = 100 mm and hence the postbuckling stiffness as

seen in Figure 7.12a may be overestimated. This is because the clamped edge con-

ditions which governed the boundary conditions for the out-of-plane displacement

functions would not be present any more. This, in turn, results in the probable

invalidity of the displacement functions and subsequently the energy formulation

using the Rayleigh–Ritz procedure. Nonetheless, a fully delaminated panel cannot

be desired in any design scenario due to various other implications this would have

on the integrity of the structural element, and hence must be avoided.
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This delamination configuration compares well quantitatively as well as phenomeno-

logically with investigations on buckling induced delamination growth by Nilsson et

al. (1993). That particular article was part of the review in Chapter 2 and the

comparison for this case is presented herewith. In their experimental investigations

on an artificially introduced delamination of diameter 20 mm in a depth translating

to approximately c = 0.05 it was also seen that delamination growth initiated at a

load level 1.6 times higher than the initial buckling load. This is also the case in the

present model, where Λprop
1 /ΛC

1 = 0.265/0.166 = 1.596 ≈ 1.6. Therefore, the current

model yields an excellent comparison with their findings. Furthermore, the authors

validated their findings with a finite element investigation where they found a ratio

of 1.55 between the strain initiating delamination and the critical buckling strain,

again in the same range as their experimental investigations and the findings with

the current model employed in this study.

For the second critical load, which is triggered below that for an undamaged panel,

where ΛC
2 = 0.955 the load can only be increased slightly until delamination prop-

agation is initiated at Λprop
2 = 0.979, i.e. as in the above thin-film configuration in

case 1 at a load level below 100% of the undamaged panel’s capacity. The load

then drops to a value of 92.5% with delamination growth occurring up to lengths

a = b = 41.5 mm, see Figure 7.12b path “P2”. This is quite a substantial growth at

a relatively small load drop and the propagation can therefore be regarded as fast

and unstably propagating in the opening mode configuration. The system eventually

restabilizes and the load can be increased again. The stiffness decrease is slightly

more pronounced than in case 1, c.f. Figures 7.6a and Figure 7.12a, however it can

still be deemed as insignificant compared to the stiffness decrease at the first critical

load.

7.1.3.2 Case 2 (B)

Case 2 (B) has a delamination located at depth c = 0.085 and mixed mode buckling

is triggered. The postbuckling equilibrium paths for the upper, lower and intact
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Figure 7.11: Postbuckling equilibrium paths for local mode: Case 2 (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 7.12: Delamination growth rate: Case 2 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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parts of the panel are shown in Figure 7.13, whereas the load versus end-shortening

and growth rate graphs are shown in Figure 7.14.

The first critical load is triggered at ΛC
1 = 0.475 and can be increased up to Λ = 0.567

when propagation occurs. However, as in the earlier mixed mode buckling example

in case 1 (C), the load then drops below the initial critical load, in this configuration

to a value of Λmin
1 = 0.417, and the associated delamination size is a = b = 36.5 mm

in the case of non-monotonic loading. The system then restabilizes and the load can

be increased to Λmax
1 = 0.818. However, again the panel is then fully delaminated,

i.e. a = b = 100 mm, and the reserve stiffness in Figure 7.14a may be mislead-

ing due to the incorrect displacement functions employed, as explained previously.

It should furthermore be noted that if monotonic loading, either displacement or

force-controlled, is employed a dynamic snap would occur. Furthermore, since full

delamination occurs, Q3, i.e. the buckling of the intact part, never dominates the

behaviour as could be seen in smaller delaminations discussed previously.

The second critical load is again triggered marginally below 100% at ΛC
2 = 0.968

and can be increased up to Λ = 1.007 until the delamination starts to spread.

With a fast increasing delamination, a small load drop is again observed to a value

slightly smaller than the initial critical load to Λmin
2 = 0.965 corresponding to a =

b = 36.5 mm. The system then restabilizes and the load can be increased with

increasing delamination, see path “P2” in Figure 7.14. It should again be noted

that despite the large delamination, the stiffness decrease in the load versus end-

shortening graph, Figure 7.14a, is not as pronounced for the opening mode as for

the closing mode.

7.1.3.3 Case 2 (C)

The third case for a delamination of dimensions a = b = 20 mm contains a delam-

ination at depth c = 0.11; this is a mixed mode case bordering on global buckling,

i.e. little opening of the laminates. It should be noted that compared to case 2 (B),
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Figure 7.13: Postbuckling equilibrium paths for mixed mode: Case 2 (B). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 7.14: Delamination growth rate: Case 2 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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the deflection of the upper laminate Q1 still dominates the behaviour, but it is not

as pronounced as before, as can be seen by comparing Figure 7.15 with Figure 7.13.

The first critical load is triggered at ΛC
1 = 0.750 and propagation starts at 82% of

the undamaged panel’s capacity. A significant load drop occurs to a load level of

Λmin
1 = 0.520, again below the initial critical load, path “P1” Figure 7.15a, where the

delamination has grown to dimensions a = b = 36.5 mm, Figure 7.16b. With mono-

tonic loading conditions the load can be increased with growing delamination up to

a value of 79.1%, however, again, this load level corresponds to a fully delaminated

panel, see Figure 7.16b. Hence the load level at which delamination propagation

initiates can never be attained again which means that catastrophic failure would

occur if force-controlled loading was employed.

The second critical load is just above 100% at ΛC
2 = 1.026 and delamination prop-

agation starts at Λprop
2 = 1.098, hence only a marginal increase in load is possible.

The delamination is again fast growing and the system slowly restabilizes after the

load reaches Λmin
2 = 0.997 with a = b = 34.5 mm via non-monotonic loading con-

ditions, see path “P2” in Figure 7.16b. Otherwise a dynamic snap would occur for

monotonic loading conditions, as described before. The load can then be increased

with increasing delamination size, however, the stiffness decrease is again not as

pronounced as for the closing mode condition, Figure 7.16a.

7.1.3.4 Case 2 (D)

Case 2 (D) is the global buckling mode case for a delamination of dimensions a =

b = 20 mm and c = 0.15 where the equilibrium graphs are shown in Figures 7.17

and 7.18. The postbuckling graphs are quite similar to the global buckling case for

a delamination with a = b = 15 mm, as given in case 1 (D), §7.1.2.4.

As found in the cases for smaller delaminations, no growth occurs in the closing

mode, i.e. the buckling mode corresponding to the first critical load. This is due to

the minimal opening of the two sublaminates, Figures 7.17a and 7.17b, an insufficient
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Figure 7.15: Postbuckling equilibrium paths for global mode: Case 2 (C). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 7.16: Delamination growth rate: Case 2 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.
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amount of strain energy is released to promote delamination growth. The first

critical load is at ΛC
1 = 0.897, and the load can be increased in the postbuckling

range with a slight stiffness reduction compared to the undamaged panel, path “S1”.

The second critical load occurs at ΛC
2 = 1.597 thus higher than 100% and can be

increased up to 170.5% until delamination growth occurs. The growth is highly

unstable, as seen in path “P2” in Figure 7.18b, until Λmin
2 = 1.093 is reached. The

delamination has then grown to dimensions a = b = 36 mm and the system resta-

bilizes, and the load can be increased again with a growing delamination. However,

it should be noted here, that the minimum load is close to 100% of an undamaged

panel’s strength, thus if a panel was designed to 100% strength without allowing for

the defect, a dynamic growth would occur if the panel is loaded and a delamination

of this size would appear. A through-the-width delamination of similar dimensions,

but with a larger relative delamination depth was investigated by Whang & Zhang

(2009) and their numerical results also showed an unstable growth behaviour for a

delamination at one-third of the overall depth.

7.1.3.5 Summary: Case 2

In the case of a delamination of dimensions a = b = 20 mm, the following conclusions

can be drawn. The results for case 2 are summarized in Table 7.6. In all cases

where growth occurs for the first critical load, the plate will fully delaminate before

reaching the capacity of 100% of the undamaged panel. The reserve stiffness in the

postbuckling graphs, path “P1” in Figures 7.12a, 7.14a and 7.16a, is subsequently

overestimated since the clamped boundary conditions would not be present any more

and the two separate laminates that comprise the plated panel would buckle. Hence,

compared to the previous case of a delaminated patch where a = b = 15 mm, it can

be seen that a marginal increase in the initial delamination size leads to a significant

reduction in postbuckling capacity and the growth is far more pronounced. However,

the growth characteristics, i.e. the stability of the growth, when compared with the
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Figure 7.17: Postbuckling equilibrium paths for global mode: Case 2 (D). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower
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(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.

Note the lack of path “P1”.
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previous case, are identical. This means that stable growth occurs from a thin-film

delamination and unstable growth from a mixed mode buckling configuration where

the minimum load is below the initial critical load. This could potentially be very

dangerous if the panel was under monotonic loading conditions since a dynamic snap

would occur as described in Figure 7.4.

Case 2 (A) (B) (C) (D)

ΛC
1 0.166 0.475 0.750 0.897

Λprop
1 0.265 0.567 0.820 –

Λmin
1 0.252 0.417 0.520 –

a and b at Λmin
1 (mm) 23 30.5 36.5 –

Λmax
1 0.869 0.818 0.791 –

a and b at Λmax
1 (mm) 100 100 100 –

growth stationary at Λmax
1 ? n/a n/a n/a –

ΛC
2 0.955 0.968 1.026 1.597

Λprop
2 0.979 1.007 1.098 1.705

Λmin
2 0.925 0.965 0.997 1.093

a and b at Λmin
2 (mm) 41.5 36.5 34.5 36

Λmax
2 2.063 2.051 2.014 1.802

a and b at Λmax
2 (mm) 90 90 85 100

growth stationary at Λmax
2 ? no no no n/a

Table 7.6: Results summary: Case 2.

In addition, the growth initiation of case 2 (A) compares well with previous findings

by Nilsson et al. (1993), hence the model has been validated to a large extent with

their experimental and numerical investigations.

The second critical loads for thin delaminations, (A), (B) and (C), are triggered

below or around 100% of the capacity of an undamaged panel. All of these cases

feature fast and unstable growth. This means that under monotonic loading, a

dynamic snap would occur until the system restabilizes. The delamination would
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snap to approximately a = b = 50 mm for 100% loading in all cases, as seen in

Figures 7.12b, 7.14b and 7.16b, which is a significant increase in the defect’s size.

In the global buckling case (D), the second critical load is well above 100% of an

undamaged panel. However, unstable growth occurs again and the lowest load is

around Λ = 1 which means even in this case, a dynamic snap could occur when the

panel is loaded up to the full undamaged panel’s capacity.

7.1.4 Results and discussion: Case 3

In this section, a selection of the results varying the delamination depth c for case

3, a = b = 25 mm, as summarized in Table 7.2, are presented and discussed.

Again, these are first detailed with the postbuckling plots for each case and then

summarized in §7.1.4.5. However, the load versus laminate displacement Qi plots

are not presented for this delamination size since they do not yield any new results in

terms of the findings for local, mixed or global buckling. The relevant plots are the

load versus end-shortening and delamination growth figures, which will be presented

and discussed.

Four different delamination depths are investigated currently, again in the neigh-

bourhood of the transitional depth ct, where case (A) features thin-film buckling,

(B) and (C) feature mixed mode buckling and (D) features global buckling.

7.1.4.1 Case 3 (A)

The thin-film case for this delamination size contains a delamination at depth

c = 0.05 as before. The first critical load is triggered at ΛC
1 = 0.107 and can

be increased to Λprop
1 = 0.169 until delamination growth occurs. The ratio of

Λprop
1 /ΛC

1 = 1.57 again corresponds well to the values found by Nilsson et al. (1993)

for a similar delamination configuration. There is then a significant load drop once

the delamination propagates which also ties in with the findings for the other thin-
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film configurations discussed previously. With increasing load the delamination

spreads and the maximum load that can be reached for the first equilibrium path

“P1” is now only 51% of an undamaged panel, Figure 7.19b, which represents a

significant difference to the configurations discussed above. At this load level, the

plate has fully delaminated, i.e. a = b = 100 mm and the reserve capacity shown in

Figure 7.19a is understood to be overestimated for the same reasons as previously

discussed.

The second critical load is also triggered below 100% of an undamaged panel’s

capacity at ΛC
2 = 0.929 and a fast, unstable growth, shown in path “P2”, occurs

after propagation is initiated at Λprop
2 = 0.947. The system eventually restabilizes,

Figure 7.19b, but even for the second postbuckling solution now full delamination

occurs below 200% of the load capacity of an undamaged panel.

Again, the stiffness decrease is more pronounced for the first postbuckling solution,

see Figure 7.19a, but in both the first and second buckling modes, the system now

fully delaminates meaning that for an initial delamination of this size, catastrophic

growth is predicted.

7.1.4.2 Case 3 (B)

Case 3 (B) represents the mixed mode buckling case for a delamination of dimensions

a = b = 25 mm with depth of c = 0.11. Again, the displacement characteristics

of the upper, lower and intact parts are not significantly different to previously

discussed mixed mode configurations and are therefore not presented here.

The first critical load is triggered at ΛC
1 = 0.504 and can be increased to a value of

Λprop
1 = 0.562 until delamination propagation occurs. Again, the growth is highly

unstable, as in the previously discussed mixed mode cases, and the system resta-

bilizes under monotonic loading at Λmin
1 = 0.338 where a = b = 44.5 mm, Figure

7.20b. This is significantly lower than the initial critical load, and if force-controlled

loading was employed, a dynamic snap would again occur. The most important
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Figure 7.19: Delamination growth rate, case 3 (A). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.

197



Chapter 7. Postbuckling regime of a uniformly propagating delamination

aspect to identify currently, is that with growing delamination, the maximum pos-

sible load achievable would be 44.9% of the undamaged panel’s buckling capacity,

i.e. lower than the initial critical load. At this load, the panel would have fully

delaminated. Hence, a delamination of these dimensions is even more dangerous

than the previously discussed, slightly smaller delamination, configurations in case

2 and should be avoided, since not even 50% of the undamaged panel’s capacity can

be attained.
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Figure 7.20: Delamination growth rate: Case 3 (B). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.

The second critical load occurs at ΛC
2 = 0.948 and can be increased slightly until

propagation occurs. The delamination again grows in a fast and unstable manner,
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path “P2” in Figure 7.20b, until the system restabilizes at Λmin
2 = 0.909. However,

the system also fully delaminates under a monotonic loading increase before Λ =

2.0 is reached. Furthermore, the postbuckling reserve capacity, Figure 7.20a, is

overestimated in both, first and second equilibrium cases since a = b = 100 mm

and hence the assumed boundary conditions in the Rayleigh–Ritz procedure are no

longer an accurate representation.

7.1.4.3 Case 3 (C)

Case 3 (C) is another mixed mode that borders on a global mode configuration with

a delamination located at c = 0.15. As in the previously described case of this char-

acteristic, case 2 (C) in §7.1.3.3, the growth for the first and second critical load is

highly unstable and fast once triggered, Figure 7.21b. In the first postbuckling path,

full delamination occurs again at a value well below the full capacity of an undam-

aged panel, at Λmax
2 = 0.427 which is even lower than for the thinner delaminations

of the same size, i.e. case 3 (A) and (B). The reserve capacity shown in Figure 7.21a

can again be regarded as an overestimation for both postbuckling solutions.

The second critical load is in this case at ΛC
2 = 1.113 and can be increased marginally

until the delamination propagates. Again, a highly unstable and fast growth occurs

and the load drops below 100%, i.e. depending on the loading scenario this could

lead to a dynamic snap as outlined before.

7.1.4.4 Case 3 (D)

The final case contains a delamination patch of dimensions a = b = 25 mm at

depth c = 0.20 and is the global buckling case. Hence, no growth occurs at the first

postbuckling solution, Figure 7.22b, but does in the second postbuckling configura-

tion, path “P2”. The load at which propagation initiates can again, in the latter

case, never be attained, see the relevant values in Table 7.7, and the system fully
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Figure 7.21: Delamination growth rate: Case 3 (C). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) dimensions a and b.
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Figure 7.22: Delamination growth rate: Case 3 (D). Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimensions a and b.

Note the lack of path “P1”.
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delaminates before reaching 200% of an undamaged panel. The reserve stiffnesses

that could be taken from the load versus end-shortening graphs in Figure 7.22a are

inaccurate as explained above.

Interestingly, the postbuckling behaviour in the opening mode configuration recovers

after the minimum load and the load can be increased again. However, at a = b =

88 mm the load begins to drop again with growing delamination, hence a limit point

is reached which is below the initial critical load and the load at which delamination

growth occurs, see Figure 7.22.

7.1.4.5 Summary: Case 3

The final delamination size investigated and reviewed currently contained a initial

delamination patch of dimensions a = b = 25 mm. It can be seen that even for a rel-

atively small delamination of these dimensions, the incorporation of the irreversible

damage mechanism can lead to global failure of the structural component.

In all cases where delamination propagation occurs in the closing mode configura-

tion, i.e. thin-film and mixed mode buckling, the system fully delaminates at low

load levels around 50% or less of an undamaged panel. This means that even if

a panel was designed only up to that load level, catastrophic consequences could

potentially occur due to the presence of the delamination that could have not been

predicted without allowing for the growth of the localized defect.

Even for the second postbuckling solution, the opening mode, significant growth

occurs at load levels below 100% of an undamaged panel and the stiffness decrease

is more pronounced than in previous, smaller delamination configurations. Hence it

can be concluded that delaminations of these dimensions should not be allowed to

occur since they would lead to structural failure in all cases.
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Case 3 (A) (B) (C) (D)

ΛC
1 0.107 0.504 0.790 0.861

Λprop
1 0.169 0.562 0.835 –

Λmin
1 0.162 0.338 0.419 –

a and b at Λmin
1 (mm) 37 44.5 62 –

Λmax
1 0.510 0.449 0.427 –

a and b at Λmax
1 (mm) 100 100 100 –

growth stationary at Λmax
1 ? n/a n/a n/a –

ΛC
2 0.929 0.948 1.113 1.832

Λprop
2 0.947 0.986 1.182 1.906

Λmin
2 0.869 0.909 0.949 1.049

a and b at Λmin
2 (mm) 52.5 47 45 48

Λmax
2 1.705 1.518 1.518 1.446

a and b at Λmax
2 (mm) 100 100 100 100

growth stationary at Λmax
2 ? n/a n/a n/a n/a

Table 7.7: Results summary: Case 3.

7.2 Concluding remarks

In this chapter, parametric investigations were presented that incorporated the de-

lamination propagation model established in Chapter 6. Different delamination

sizes and depths were studied, principally in the neighbourhood of the transitional

depth ct (Melin & Schön, 2001) where the buckling behaviour changes from local

via mixed mode to global buckling. The postbuckling behaviour and growth char-

acteristics were identified and discussed. Moreover, the model was quantitatively

compared to existing experimental and numerical results from the literature (Melin

& Schön, 2001; Nilsson et al., 1993) for different dimensions and found to be in very

good phenomenological agreement.

With the model developed it can be shown that thin-film and mixed mode buckling
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lead to delamination growth (Chai et al., 1981; Simitses et al., 1985; Hunt et al.,

2004) and potentially due to progressive failure, i.e. extensive growth, to premature

overall structural instability (Shivakumar & Whitcomb, 1985; Rolfes et al., 2009).

Hence, the first conclusion can be established in agreement with Melin & Schön

(2001):

(I) The transitional depth ct is located at between 10–20% of the depth of this

panel. Buckling-driven delamination growth only occurs where the pre-existing

delaminations are closer to the surface than ct or precisely located at depth ct.

Furthermore, it should be noted that force-controlled or dead loading may lead to

catastrophic debonding of the laminates (Bottega & Maewal, 1983), as seen partic-

ularly in the examples for marginally larger delaminations, i.e. in cases 2 and 3, of

dimensions a = b = 20 mm and 25 mm respectively. In addition, if monotonic load-

ing conditions are employed, dynamic effects such as snap-backs may occur during

delamination growth and loading (Bolotin, 1996; Wimmer & Pettermann, 2008). In

all cases it can be seen that the load carrying capacity is considerably reduced when

delamination propagation is incorporated, as also found by Suemasu et al. (2008),

and cannot reach the reserve capacity of an undamaged panel in the postbuckling

range (Bisagni & Walters, 2008) nor the capacity of the non-propagating cases dis-

cussed in Chapter 5. Moreover, in agreement with Chen & Sun (1999) it was shown

that the midpoint deflections of the laminates are larger with delamination prop-

agation than without and that the postbuckling behaviour is strongly affected by

delamination growth, a feature also found by Sheinman et al. (1998).

Since the current design criteria in aircraft construction do not allow for growth

to occur (Melin et al., 2002) the structure may not be exhausted to its possible

limits due to the low admissible design forces when only the critical buckling loads

are established. Hence, it may be desirable to find threshold parameters for a safe

design scenario, such as the largest, admissible defect diameter and threshold strain

for delamination initiation (Rhead & Butler, 2009), and an attempt to identify

204



Chapter 7. Postbuckling regime of a uniformly propagating delamination

Case 0(A) 0(B) 1(A) 1(B) 1(C)

Λmax
1 0.884 0.902 0.874 0.870 0.849

ΛC
1,c=0.5 0.967 0.967 0.950 0.950 0.950

ΛC
1,c=0.5 - Λmax

1 [%] 8.4 6.6 7.6 8.0 10.1

Table 7.8: Critical loads for c = 0.5 and maximum capacity of panel with propagat-

ing delamination.

critical parameters will be undertaken herein.

The investigations showed that for the smaller BVIDs, cases 0 and 1 with a = b =

12 mm and 15 mm respectively, delamination growth occurs up to a certain de-

lamination size but is then arrested and overall buckling occurs2. However, once

the delamination is equal to or larger than a = b = 20 mm the growth spreads

over the entire panel dimensions, thus a defect of that size should be avoided or

repaired when detected. Potential measurements on containing damage within safe

boundaries would include a three-dimensional mesh or weave geometry of the lami-

nates and transverse reinforcement such that the delamination could be kept in safe

dimensional boundaries, recall Figure 1.2 and the discussion in §1.1.1. This may

require more detailed investigations in the mesh geometries employable for the de-

sign scenarios in the spirit of Verpoest & Lomov (2009). However, from the current

small-scale investigation for a particular panel it can be concluded that a maximum

permissible delamination size must be smaller than a = b = 20 mm or contained

within these boundaries, i.e. conclusion (II) reads:

(II) The maximum permissible delamination size for the panel considered in the

current study: a = b 6 20 mm to avoid complete debonding of the layers due

to progressive damage.

If the growth can be contained to these dimensions, it can be observed that the

maximum load for these panels is no lower than 10% of the critical load for an

2For the actual values please refer to each section in this chapter.
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undamaged panel with a delamination at c = 0.5 before global buckling occurs, see

Table 7.8. A third conclusion reads:

(III) If a = b 6 20 mm then the maximum permissible design load is approximately

10% lower than the critical load derived with linearized analysis for a panel of

the same delamination configuration, containing a delamination at c = 0.5.

Sheinman et al. (1998) identified that the length to thickness ratio of the delam-

ination mostly affects the growth. In their assessment, it was found that growth

may commence when the ratio of the delamination length to the overall length of

the panel is larger than or equal to ratio of the delamination depth to the overall

thickness. Defining this using the parameters in the current model yields the next

conclusion for the panel investigated:

(IV)
a

L
> c⇒ delamination growth .

This is true for the current model for the first critical load and the statement is in

fact conservative, since in cases 0 (C) and (D); 1 (D); 2 (D) and 3 (E) no propagation

occurs, see the summary in Table 7.9.

Furthermore, when defining the so-called slenderness of the sublaminate as λ =

a/(ct), it can be concluded that growth, after the first critical load is triggered

(refer to Table 7.9), only occurs for delaminations which initially also agree with

conclusion (IV):

(V) λ =
a

ct
> 80⇒ delamination growth .

The next conclusions that can be established, are that thin-film delamination leads

to stable growth and mixed mode buckling to unstable growth in all cases, thus:

(VI) thin-film buckling ⇒ stable delamination growth.
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Case a (mm) a/L c λ = a/(ct) growth

0(A) 12 0.12 0.05 120 yes

0(B) 12 0.12 0.065 92 yes

0(C) 12 0.12 0.075 80 no

0(D) 12 0.12 0.10 60 no

1(A) 15 0.15 0.03 250 yes

1(B) 15 0.15 0.05 150 yes

1(C) 15 0.15 0.085 88 yes

1(D) 15 0.15 0.12 62 no

1(E) 15 0.15 0.20 37 no

2(A) 20 0.20 0.05 200 yes

2(B) 20 0.20 0.085 117 yes

2(C) 20 0.20 0.11 91 yes

2(D) 20 0.20 0.15 67 no

3(A) 25 0.25 0.05 250 yes

3(B) 25 0.25 0.11 113 yes

3(C) 25 0.25 0.15 83 yes

3(D) 25 0.25 0.20 63 no

Table 7.9: Propagation conclusions summary for the first critical load for all cases

of the panel with dimensions L = B = 100 mm and t = 2 mm.
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(VII) mixed mode buckling ⇒ unstable delamination growth.

The drop in the load is, however, dependent on the physical parameters. Whether

thin-film or mixed mode buckling occurs can easily be identified via the transitional

depth ct using linear eigenvalue analysis as shown in Chapter 5 §5.2.2 when plotting

Λ versus c.

Finally, it should be noted that for the second critical load, for thin-film as well as

mixed mode buckling, the load may drop below 100% capacity of an undamaged

panel, hence:

(VIII) thin-film and mixed mode buckling ⇒ unstable delamination growth for the

second postbuckling path at load levels around or below 100%.

However, this only occurs for delaminations in the current study where a = b >

20 mm which is to be avoided or restricted when applying conclusion (II).

With these conclusions in mind, a panel can be designed to operate safely in service

under in-plane loading conditions, assuming that the delamination patch remains

the same basic shape; scaling and the generic effects of changing size would of

course become important (Bažant & Cedolin, 1991). Obviously, for a specific panel

of different materials and geometries similar studies would need to be conducted as

presented in this chapter to ascertain the specific values of the size of the delaminated

patch a× b given in conclusion (II) and (III). In the next chapter, this assumption

will be loosened and differing shaped delamination patches and their potential effect

on the mechanical response will be discussed.
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Chapter 8

Postbuckling regime of a

unidirectionally propagating

delamination

8.1 Introduction

In this part of the current work a pilot study on unidirectionally delamination prop-

agation is presented where a general trend of the behaviour is identified. However,

it should be noted that this part of the research has the potential to be considerably

expanded in future investigations, particularly in light of enhancing the model’s ma-

terial properties to incorporate orthotropy, as will be discussed in the next chapter.

Unidirectional delamination growth occurs essentially when the delamination prop-

agates predominantly in one direction, i.e. either in the same direction as (Figure

8.1a) or transverse (Figure 8.1b) to the load. This type of growth has been observed

to occur principally in the direction perpendicular to the loading direction by other

researchers (Bottega & Maewal, 1983; Chai & Babcock, 1985; Peck & Springer,

1991; Yin & Jane, 1992a; Nilsson et al., 1993). However, this is not always the case
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as investigations by Nilsson et al. (2001b) have shown where the growth direction

was observed to be linked to the depth of the delamination; shallow delaminations

yielded growth perpendicular to the loading direction and deep defects resulted in

propagation in the loading direction in this investigation. Different cases will be

discussed in the following sections where propagation is permitted to occur in one

direction only and the algorithm developed in Chapter 6 is changed accordingly.

(a) (b)

Figure 8.1: Unidirectional delamination propagation originating from an initially

square delamination; (a) growth in the longitudinal direction only – xi-axis and (b)

growth in the transverse direction only – yi-axis.

8.2 Numerical experimentation and results

During the course of this pilot study, different growth scenarios are investigated.

Firstly, unidirectional growth is assumed to occur originating from a square delam-

ination as investigated in the previous chapter. Thereafter, propagation is inves-

tigated for panels containing a rectangular delamination, either initially wide or

long.
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8.2.1 Unidirectional delamination propagation originating

from an initially square delamination

Having established in the previous chapter that once the pre-existing delamina-

tion is marginally larger, delamination growth can cause complete debonding of the

interface, an initial defect of square dimensions a = b = 15 mm is investigated. Fur-

thermore, these dimensions are consistent with the investigations in the preceding

chapter.

In the following sections, the cases summarized in Table 8.1 are presented and

discussed for unidirectional delamination propagation originating from an initially

square delamination for growth in either the longitudinal direction, i.e. in the xi-

direction, Figure 8.1a and §8.2.1.1, or the transverse direction, i.e. in the yi-direction,

Figure 8.1b and §8.2.1.2. It should be made clear that this initial study does not

say whether non-uniform or uniform growth would occur, but investigates which

direction growth would occur if it were to be constrained into one direction.

Case I (A) (B) (C)

c 0.05 0.085 0.12

Table 8.1: Examples of postbuckling with unidirectional delamination propagation

originating from an initially square delamination. Thin-film buckling cases are in-

dicated in bold, mixed mode cases in italics and global buckling in Roman font

An index for each case indicates the propagation direction, i.e. x for growth in the xi-

direction and y for growth in the yi-direction. The convention for the abbreviations

in the graphs are as described in Table 7.3. However the additional cases including

unidirectional delamination propagation are as denoted in Table 8.2.
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Label Description

S1 First physical postbuckling path of a damaged panel

containing a stationary delamination

S2 Second physical postbuckling path of a damaged panel

containing a stationary delamination

P1x First postbuckling path of a damaged panel

containing non-uniformly propagating delamination in the xi-direction

P2x Second postbuckling path of a damaged panel

containing non-uniformly propagating delamination in the xi-direction

P1y First postbuckling path of a damaged panel

containing non-uniformly propagating delamination in the yi-direction

P2y Second postbuckling path of a damaged panel

containing non-uniformly propagating delamination in the yi-direction

Table 8.2: Abbreviations for the graph labels describing the postbuckling behaviour

of a panel containing a unidirectionally propagating delamination.

8.2.1.1 Growth in the longitudinal direction only – xi-axis

Only the local, case I (A)x, and the mixed buckling mode, case I (B)x, are presented

with all postbuckling paths in this chapter since the other case essentially yields

the same conclusions regarding the propagation behaviour. For global buckling,

case (C)x, only the normalized load versus normalized end-shortening as well as the

growth plots are shown in Figure 8.6. Further results can be found in Appendix B

in graphical form in Figure B.3 and listed in Table B.1. In the current chapter, only

the graphs are shown and a summarizing discussion of growth in the longitudinal

and transverse direction can be found in §8.2.2.
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Figure 8.2: Postbuckling equilibrium paths for the local mode: case I (A)x. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 8.3: Delamination growth rate: case I (A)x. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension a.
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Figure 8.4: Postbuckling equilibrium paths for the mixed mode: case I (B)x. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).

215



Chapter 8. Postbuckling regime of a unidirectionally propagating delamination

Λ

Λ

E

2

Λ
1

c

c

N

S1,

S2, P2x

P1x

(a)

Λ

 a

P2x

P1x

Λ2

c

Λ1

c

(b)

Figure 8.5: Delamination growth rate: case I (B)x. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension a.
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Figure 8.6: Delamination growth rate: case I (C)x. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension a. Note the

lack of path “P1x”.
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8.2.1.2 Growth in the transverse direction only – yi-axis

Again, only the local mode and mixed buckling mode, case I (A)y and I (B)y, are

presented with all postbuckling paths and further graphs can be found in Appendix

B.2.2.2. Case I (C)y, the global mode, is only included herein with the normalized

load versus end-shortening graph, Figure 8.11, for completeness.

8.2.2 Remarks

Case I (A)x (A)y

ΛC
1 0.295 0.295

Λprop
1 0.467 0.467

Λmin
1 – 0.457

a or b at Λmin
1 (mm) – 16

Λmax
1 1.087 0.853

a or b at Λmax
1 (mm) 22 (a) 22.5 (b)

growth stationary at Λmax
1 ? yes yes

ΛC
2 0.979 0.979

Λprop
2 1.012 1.012

Λmin
2 1.011 –

a or b at Λmin
2 (mm) 15.5 (a) –

Λmax
2 5.675 2.425

a or b at Λmax
2 (mm) 26 27

growth stationary at Λmax
2 ? no no

Table 8.3: Results summary: case I (A). Growth in the longitudinal (x) and trans-

verse (y) direction.

In agreement with previous investigations (Bottega & Maewal, 1983; Chai & Bab-

cock, 1985; Peck & Springer, 1991; Yin & Jane, 1992a; Nilsson et al., 1993) it can be

observed that, within the scope of this pilot study, growth occurs predominantly in
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Figure 8.7: Postbuckling equilibrium paths for local mode: case I (A)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 8.8: Delamination growth rate: case I (A)y. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension b.
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Figure 8.9: Postbuckling equilibrium paths for mixed mode: case I (B)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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Figure 8.10: Delamination growth rate: case I (B)y. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension b.
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Figure 8.11: Delamination growth rate: case I (C)y. Normalized axial load Λ versus

(a) normalized end-shortening EN and (b) delaminated patch dimension b. Note the

lack of path “P1y”.
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the direction transverse to the loading direction for the cases investigated. However,

this strongly depends on the fibres in the sublaminate as well as the fibre orientation

and subsequently needs to be pursued further when an anisotropic material model

is to be allowed for. Nonetheless, the growth behaviour can be observed in the

postbuckling graphs when comparing e.g. Figure 8.2a and 8.7a for case I (A)x and

(A)y, respectively, since the deflection of the dominant sublaminate buckle (Q1) is

furthermore pronounced when growth occurs in the y-direction. This can also be

observed for the other cases investigated, see for example Figures 8.4 and 8.9 for

case I (B)x and (B)y. However, when propagation is permitted in the x-direction

only, the sublaminate buckle reduces and less growth occurs. This means the panel

would rather propagate in the transverse direction since it requires less energy, if

growth was constrained in one direction only. However, when comparing the uni-

directionally propagating cases, e.g. the local mode case (I) (A)x and (A)y, Figures

8.2 and 8.7 respectively, with the corresponding uniformly propagating case 1 (B)

discussed in Chapter 7 (Figure B.2), it should be noted that growth is most likely

to occur uniformly currently. This is because the magnitude of the upper laminate

buckle, and subsequently the relative displacement δ between the laminates, is more

pronounced and therefore would lead to more excessive growth. This can also be

seen in the other cases when comparing non-uniform delamination growth with a

uniformly propagating delamination.

Furthermore, as listed in Table 8.3, a barely noticeable load drop is observed for

transverse growth for the first postbuckling path including growth, as shown with

path “P1x”. In addition, the maximum load, Λmax
1 is below 100% of an undamaged

panel’s capacity, whereas this value is shown to be above that threshold for longi-

tudinal propagation. A similar trend is observed for the other cases in Appendix B

and furthermore for a delamination of dimensions a = b = 20 mm which, however,

is not included in this work.

Since deeper delaminations are not investigated within this preliminary assessment,

it can not be ascertained whether this configuration may lead to growth in the
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longitudinal direction (Nilsson, 2001b).

8.2.3 Unidirectional delamination propagation originating

from an initially rectangular delamination

Since it was established in §4.3.1.2, Figure 4.5, that for the current isotropic model,

wide delaminations yield lower critical loads than long delaminations, the former is

subsequently pursued further to ascertain the effects of non-uniform delamination

propagation. Nonetheless, a few cases listed in Table 8.4 are investigated to study

the effects of non-uniform growth originating from a long delamination geometry.

However, only propagation in the transverse direction is investigated for those cases,

since it was ascertained to be more critical in the previous section.

(a) (b)

Figure 8.12: Unidirectional delamination propagation originating from an initially

rectangular delamination; initial growth in the transverse direction – yi-axis – orig-

inating from a (a) wide delamination and (b) long delamination.

Although the propagation is initiated in one direction in the beginning, the de-

lamination is eventually of square shape, which is the case when the delamination

grows in the longitudinal direction when originating from a wide defect, as in cases

II (A), (B) and (C), or vice versa, as in cases III (A) and (B), see Figure 8.12b.

Once a square shape is reached and further delamination occurs, both uniform, as

illustrated in Figure 7.1 and investigated in Chapter 7, or continuing non-uniform
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Case II (a = 0.10L, b = 0.15B) (A) (B) (C)

c 0.05 0.085 0.12

Case III (a = 0.20L, b = 0.15B) (A) (B) –

c 0.05 0.085 –

Table 8.4: Cases investigated with unidirectional delamination propagation in either

the xi- and yi-direction originating from an initially wide rectangular delamination—

case II—and unidirectional and uniform delamination propagation in the yi-direction

originating from an initially long rectangular delamination—case III. Thin-film buck-

ling cases are indicated in bold, mixed mode cases in italics and global buckling in

Roman font

delamination, i.e. either longitudinal or transverse to the loading direction (Figure

8.1a or 8.1b respectively), are investigated to determine the worse case.

To maintain consistency with the previous investigations, the studies are undertaken

in the BVID range with one delamination dimension being 15 mm. Investigations

into initially smaller rectangular geometries, i.e. one dimension being a or b = 5 mm

or 7.5 mm and various values of parameter c, resulted in no significant delamination

propagation and were therefore not pursued further. The geometries discussed herein

are listed in Table 8.4 for an initially wide defect of dimensions a = 0.10L and

b = 0.15B (case II, see Figure 8.12a) and for a long delamination of size a = 0.20L

and b = 0.15B (case III).

As before, the index for each case indicates the propagation direction, i.e. x for initial

growth in the xi-direction and y for initial growth in the yi-direction. Cases where

the delamination was of dimensions a = 0.20L and b < 0.15B were investigated but

no delamination growth occurred.
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8.2.3.1 Initial growth in the longitudinal direction – xi-axis

Since case II (A)x is a panel that contains a wide delamination with propagation

permitted in the longitudinal direction initially, at a certain load level, where Λ =

Λsquare
2 , the delamination becomes square, i.e. a = b = 15 mm. Hence, to cover

the worse case, the delamination is studied to continue either propagating in the

xi-direction only, Table B.2, or in the yi-direction only as well as uniformly in both

directions, Table B.3. The same behaviour is exhibited for case II (B)x but at such

a high load level that it is not pursued further.

8.2.3.2 Initial growth in the transverse direction – yi-axis

Since in §8.2.2, transverse delamination growth was established to be more severe for

a delamination of square shape, it is furthermore investigated to originate from an

initially rectangular delamination shape. Results are presented herein in tabulated

form only in Table 8.5. Since in case III (A) and III (B) the initial delamination is

long and growth is initiated in the yi-direction, the delamination could potentially

be of square shape when propagation occurs as discussed previously. However, in

accordance with the findings in §8.2.2 it should be noted that propagation in the

xi-direction is not critical once the delamination is of square dimension, as shown in

case II (A) (Figure 8.13 and Table B.3). Hence this type of growth is subsequently

neglected in the following investigations and only uniform or propagation transverse

to the loading direction is pursued further. This is summarized for cases III (A)

and III (B) in Tables B.4 and B.5, respectively, in Appendix B. In case III (A) this

happens at both the first and second critical load. However, once the delamination is

located deeper into the panel—mixed mode buckling, case III (B)—the delamination

only reaches square dimensions at the second critical load.
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Figure 8.13: Postbuckling equilibrium paths for local mode: case II (A). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) normalized

end-shortening EN and (c) delaminated patch dimension a and/or b.
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Case II (A)y II (B)y II (C)y III (A)y III (B)y

ΛC
1 0.366 0.868 0.942 0.333

Λprop
1 0.700 – – 0.582 0.891

Λmin
1 – – – 0.457 –

b at Λmin
1 (mm) – – – 19 –

Λmax
1 0.824 – – 0.882 –

b at Λmax
1 (mm) 17 – – 27.5 –

growth stationary at Λmax
1 ? yes – – yes –

ΛC
2 1.004 1.249 2.318 0.964 1.042

Λprop
2 1.084 1.579 – 0.991 1.259

Λmin
2 – – – 0.991 1.068

b at Λmin
2 (mm) – – – 15.5 18.5

Λmax
2 2.380 2.295 2.894 2.463 2.700

b at Λmax
2 (mm) 20 18.5 17 33 33

growth stationary at Λmax
2 ? no no no no no

Table 8.5: Results summary: growth in the transverse direction only: y-axis origi-

nating from a wide (case II) or long (case III) defect.

8.2.4 Remarks

In accordance with the findings in §8.2.2, it should be noted that growth is less likely

to occur in the longitudinal direction and more critical in the direction perpendicular

to the loading direction for cases of a rectangular defect shape. This is regardless of

whether the delamination is long or wide initially. Once the delamination is square,

uniform growth is also permitted and it is found that uniform growth yields more

critical growth than in one direction only.
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8.3 Remarks

This part of the current work was a pilot study only and requires further work as

will be discussed in the next chapter. However, with these preliminary studies it can

already be observed that if growth was constrained to one direction it is more likely

to occur perpendicular to the loading direction, which is in agreement with previous

research (Bottega & Maewal, 1983; Chai & Babcock, 1985; Peck & Springer, 1991;

Yin & Jane, 1992a; Nilsson et al., 1993). This conclusion reached made because in

the postbuckling range it was found that the load dropped and more growth at a

lower load level occurred when propagating in the transverse direction. Owing to

the more pronounced local buckle of the upper laminate, growth continued further

due to the higher local energy stored in the spring in the cohesive zone. This is the

case for all configurations investigated, thus only a few cases are presented within

this chapter and further results can be found in Appendix B. It should also be stated

that once the initially rectangular defect patches become square, it was found that

uniform growth was found to govern henceforth.

However, it should be noted that deeper delaminations are not investigated within

this preliminary assessment, since they would require a change in the local energy

model to incorporate Mode II fracture since sliding is understood to become the

governing growth criteria, as will be discussed in the following chapter. Therefore

currently it cannot be ascertained whether this configuration may lead to growth in

the longitudinal direction as found by Nilsson et al. (2001b).
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Chapter 9

Conclusions and further work

9.1 Concluding remarks

This thesis has presented an analytical, nonlinear model for an isotropic panel with

a pre-existing, embedded delamination that is loaded under in-plane compression.

Since composites are increasingly being used in aircraft, as well as other types of

structures, it is of utmost importance to simulate and investigate their failure mech-

anisms (Linde, 2008) to predict their behaviour when damaged. Since delaminations

can reduce the load carrying capacity of a component considerably, it is crucial to

investigate the behaviour carefully to enable the structural component’s safe appli-

cation. This is because significant strength and stiffness degradation may result from

the defect. The stability and integrity of the structural component can be adversely

affected by the presence of the delamination and results can be catastrophic (Shiv-

akumar & Whitcomb, 1985; Garg, 1988; Kardomateas & Schmueser, 1988; Short

et al., 2001).

The model developed in Chapter 3 primarily builds upon the two-layer strut model

presented by Hunt et al. (2004) with the underlying assumptions and development

of the model being extensively discussed. The model was formulated via minimum
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energy principles employing a Rayleigh–Ritz procedure, where initially only linear

eigenvalue analysis was employed to obtain the critical loads and corresponding

eigenvectors in Chapter 4. However, to exploit fully the potential of the panel, it

was crucial to investigate the panel in the postbuckling range, first for a stationary

delamination (Chapter 5). Delamination propagation, moreover, can potentially

lead to further instabilities of the panel, hence a formulation for the inclusion of

growth of the defect in the form of a discrete cohesive zone model was developed

in Chapter 6. This type of model was then incorporated into the model and a

uniformly propagating delamination was extensively investigated in Chapter 7 for

different model parameters. In addition, a pilot study on non-uniform delamination

growth was conducted in Chapter 8.

This section summarizes the essential findings from the current work and makes some

general concluding remarks. However, a more detailed discussion of the findings can

be found at the end of each of the aforementioned chapters.

With the isotropic model developed in Chapter 3, the critical buckling loads for dif-

ferent delamination geometries were obtained using the Rayleigh–Ritz method. Fur-

thermore, the corresponding eigenvectors were identified via linear analysis. Com-

parisons with the isotropic finite element model described in §3.6, as well as results

from the literature, compared well phenomenologically and therefore manifested the

underlying assumptions within the model and justified the general formulation. It

was also concluded that smaller delaminations only have a marginal influence on

the buckling load when linearized analysis was employed and that the critical loads

decreased with the size of the delamination. Moreover, a long rectangular delam-

ination was ascertained to be not as critical as a square delamination. However,

investigations on wide, pre-existing delaminations resulted in slightly lower critical

loads than a square configuration. In accordance with Hunt et al. (2004), the critical

loads varied with the depth of the delamination c with a rapid reduction in load

level observed for both the first and second critical loads once the delamination was

located closer to the surface. Furthermore, three distinct eigenvectors were identified
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corresponding to the critical loads—namely the closing mode for the first critical

load, the opening mode corresponding to the second critical load and the reverse

closing mode for the third critical load.

In Chapter 5 the nonlinear system was analysed numerically in the postbuckling

range using the powerful continuation software AUTO (Doedel, 2007) which solved

the equilibrium equations simultaneously to detect branching points and equilibrium

paths. This gave rise to the key information that described the physical behaviour

beyond the critical loads, obtained in the previous chapter. The topic of physical

and non-physical branches was addressed first, with the latter being subsequently

discarded. It was already established that the critical loads decreased when located

closer to the surface of the panel; the transitional depth ct was therefore introduced,

which is located at approximately 10–20% of the thickness of the panel for smaller

delaminations. This depth constituted the boundary between local, i.e. excessive

sublaminate buckling, and global buckling, where the overall panel buckling domi-

nated. Despite the critical loads being very low for small and thin delaminations,

it could be established that the postbuckling stiffness had a high reserve capacity

until the overall panel started to buckle. Nonetheless, compared to an undamaged

panel, the panels investigated never attained the residual capacity of one-half of the

pre-buckling stiffness, which is the case for a fully restrained, simply supported panel

without any defect. However, the postbuckling paths of the thinner delaminations

followed the path almost asymptotically and results were validated in the postbuck-

ling range by comparison with the finite element model. Moreover, the analytical

model was shown to give a safe estimate of the postbuckling behaviour since the de-

rived postbuckling paths from the model were lower than the finite element results,

assuming that they were used as a benchmark. Furthermore, it was established that

for delaminations of the same dimensions but located closer to the mid-thickness of

the panel, overall buckling commenced almost immediately after the critical load.

This resulted in the consequence that thereafter it was crucial to incorporate delam-

ination propagation since this could potentially lead to a further reduction of the

postbuckling capacity of the panels. This meant that a postbuckling analysis of the
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panel without incorporating a growth criterion might overestimate the strength of

the structural component, and hence compromise its safe working condition.

Since the elastic buckling and postbuckling behaviour of the delaminated plate model

had been established, it was a logical consequence subsequently to incorporate the

irreversible damage mechanism of delamination propagation into the model. The

model of choice was the discrete cohesive zone model established in Chapter 6 which

assumed that a fictitious crack extended to the beginning of the inelastic zone based

on the Dugdale–Barenblatt approach (Bažant & Cedolin, 1991; Camanho et al.,

2001). The critical strain energy release rate GiC, an inherent property of the ma-

terial interface, corresponding to the fracture Mode i, which in the current work

is assumed to be a pure peeling mode for simplicity, i.e. Mode I fracture (Figure

6.2), was linked to the energy released in the cohesive surface. To capture the en-

ergy released during the fracture process, a virtual interface layer of zero thickness

consisting of springs was positioned between the two laminates in the delaminated

patch. An algorithm was developed to incorporate the damage mechanism into the

numerical investigations.

Extensive parametric investigations were subsequently undertaken in Chapter 7 for

a uniformly propagating delamination focusing on defect dimensions in the barely

visible impact damage range, principally in the neighbourhood of the transitional

depth ct (Melin & Schön, 2001). Quantitative comparisons of the results were un-

dertaken against existing experimental and numerical results in the literature (Melin

& Schön, 2001; Nilsson et al., 1993) as well as finite element results. It was shown,

in particular, that thin-film and mixed mode buckling lead to delamination growth

(Chai et al., 1981; Simitses et al., 1985; Hunt et al., 2004) and potentially to pre-

mature overall structural instability (Shivakumar & Whitcomb, 1985; Rolfes et al.,

2009). Current design criteria in aircraft construction do not allow for such growth

to occur (Melin et al., 2002), hence a structure may not be exhausted to its possible

limits. Therefore, various criteria were suggested and presented for the design of

this particular panel to operate safely in service under in-plane loading conditions,
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assuming that the delamination patch remained the same basic shape.

In the penultimate chapter, the assumption of uniform delamination growth was

loosened and a pilot study on non-uniform delamination growth was conducted.

Different shaped delaminations and their effect on the mechanical response were

outlined and it was concluded that if propagation was constrained to one direction,

it was more likely to occur perpendicular to the loading direction. This was also

the case in various other studies by previous researchers (Bottega & Maewal, 1983;

Chai & Babcock, 1985; Peck & Springer, 1991; Yin & Jane, 1992a; Nilsson et al.,

1993). However, this part of the current work has the potential to be expanded in

future investigations as will be, amongst other possible extensions to the current

investigations, discussed in the subsequent section.

9.2 Further work

As mentioned above, the work could potentially be extended in the non-uniform

growth investigations since so far only preliminary studies have been conducted. A

series of parametric studies could therefore be performed to strengthen the conclu-

sions that propagation appears to occur predominantly in the direction transverse

to the load. As research by Nilsson et al. (2001b) has shown, the growth behaviour

is linked to the depth of the delamination, therefore it would be worthwhile to

investigate the spread of the defect for delaminations outside the thin-film range.

However, before this could be implemented in the current model, the growth criteria

established in Chapter 6 require the incorporation of further fracture modes. Cur-

rently, only Mode I fracture is considered to maintain model simplicity. However, it

is understood that even in the thin-film configuration and particularly once overall

buckling dominates the behaviour, Mode II fracture, i.e. the sliding mode (Figure

6.2b), will produce a gain in strain energy that could potentially cause further de-

lamination growth (Pinho, 2005). With the current cohesive zone model, mixed
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mode fracture could relatively easily be incorporated (Whitcomb, 1989; Hutchinson

& Suo, 1992; Kardomateas, 1993; Davidson, 1995) e.g. by introducing a penaliza-

tion function of the relative sliding of the layers once the defect grows by a certain

length; such approaches have borne fruit in the modelling of kink bands (Wadee

et al., 2004).

Furthermore, it may be interesting to extend the model such that the onset of

the formation of a delamination originating from an undamaged panel is predicted

(Wimmer et al., 2009). This could be undertaken by incorporating a strength based

criterion as suggested by those researchers. However, as described in §3.3, plane

stress is assumed in the current model, hence an incorporation of a strength based

criterion cannot easily be accommodated with the current formulations since trans-

verse normal stresses are zero; an alternative approach would be necessary.

In addition to delamination and subsequent propagation, further failure mechanisms

might be worthwhile investigating and simulating (Linde, 2008). Since composites

are materials of a complex nature, other stiffness and strength reducing defects

may occur, such as fibre fracture, transverse and longitudinal matrix fracture and

fracture of the fibre–matrix interface (Simitses et al., 1985; Garg, 1988; Whitcomb,

1989; Berthelot, 1999; Nilsson, 2001b; Craven et al., 2010). For example, fibre or

matrix fracture could easily be ascertained by determining the stresses in the fibres

or matrix due to the buckling of the structure. This stress could then be compared

to the ultimate stresses of the constituents of the material and a conclusion can be

drawn whether material failure will occur.

Another beneficial development would be to formulate an automation of the growth

algorithm described in Chapter 6. This could be achieved by implementing a user-

defined subroutine in the software that automatically changes the parameters once

the delamination grows. Wadee & Blackmore (2001) employed a modified Heaviside

function within AUTO in their investigations on the effects of a delamination on

sandwich panels. This function accounts for the changes in the formulations due to

the propagation of the defect.
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Furthermore, only uniaxially compressive and static loading conditions were investi-

gated within the current model formulations. However, it is understood that fatigue

loading may yield further delamination and subsequently a reduction in the reserve

strength of the panels (Melin & Schön, 2001; Melin et al., 2002; Butler et al., 2007).

Additionally, combined loading such as shear and compression may be of interest in

future investigations (Bisagni & Walters, 2008).

In terms of the model geometry and properties, quasi-homogeneous material assump-

tions were currently considered. However, owing to the complex nature of composite

materials, anisotropic material properties (Shivakumar & Whitcomb, 1985) as well

as different lay-up angles and orientations (Bottega & Maewal, 1983; Whitcomb,

1989; Kardomateas & Pelegri, 1994; Sekine et al., 2000) may be worthwhile investi-

gating by incorporating different material properties and surface energy parameters.

The current model already has the potential to allow for different materials of the

sublaminates by introducing the quantity ψ, which accounts for the shift in the neu-

tral axis when using different material properties c.f. equation (3.18) (Hunt et al.,

2004; Wright, 2006a). However, the introduction of anisotropic material properties

would furthermore lead to more complicated formulations in the energy expressions

and would therefore infringe with the desired simplicity of the model. Thus, studies

so far were only conducted assuming smeared, isotropic material properties resulting

in the same Young’s Modulus for the sublaminates as well as the intact parts of the

panel. Investigations into the behaviour of the panels when changing the interface

properties could be easily undertaken by changing the parameters in another study.

Investigations into different shaped delamination geometries could be extended,

e.g. elliptical or circular delaminations (Bottega & Maewal, 1983; Chai & Bab-

cock, 1985; Craven et al., 2010), as well as allowing for curved panels (Short et al.,

2002). However, when formulating the assumptions of the current model, as can

be reviewed in §3.3, the model was deliberately developed such that a rectangular

defect is allowed for to keep the model as simple as possible for the coordinate sys-

tem used. In addition, curved panels could be easily adopted by incorporating an
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initial imperfection in the formulations of the out-of-plane displacement functions

wi described in §3.4.1. However, this is not deemed to take priority in future in-

vestigations since previous research conducted by Bottega et al. (1983) concluded

that imperfections had no noticeable effect on the delamination process and yielded

asymptotic results to the perfect case as would be expected.

The introduction of a penalty function or some form of other criteria to allow for the

contact behaviour between the sublaminates once buckling occurs may be worthwhile

(Shivakumar & Whitcomb, 1985). This could be simulated by very stiff springs that

account for the effect when the laminates would theoretically interpenetrate (Nilsson

et al., 1993).

Since the current small scale investigations have been conducted for specific param-

eters only, i.e. plate dimensions and material properties, size effects on the failure

loads may be expected (Bažant & Cedolin, 1991; Bažant & Grassl, 2007). Scal-

ing laws have increasingly become an important topic of investigations and the size

effect of linear elastic fracture mechanics can be generally defined as:

σN =
constant√

X
, (9.1)

where σN is the nominal strength of the structure at failure and X the characteristic

dimension of the structure or specimen (Bažant & Cedolin, 1991). Thus size effects

may be expected to occur for the plate parameters such as the delamination patch

dimensions a and b as well as the depth of the delamination ct. Furthermore, the

overall dimensions of the plate L and B and the overall thickness t might influence

the results, therefore investigations into scaling laws would be an important aspect of

future investigations. Investigations into those effects in sandwich skin delamination

has been undertaken by Bažant & Grassl (2007) where it was found that up-scaling

of the problem led to a significant reduction in the nominal strength of the structure

when imperfections were introduced. Subsequently, size effects would be important

to include in future investigations to generalize and extend the findings of the current

model. The following works that deal with the problem of scaling laws are, amongst

others, to be consulted in detail in future investigations: Bažant & Planas (1998),
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Bažant (1991; 2002; 2004), Bažant & Grassl (2007).

Finally, it would clearly be beneficial, if experiments were conducted to investigate

and to validate further the buckling and subsequent growth behaviour of the delam-

ination determined with the current model. As mentioned in Chapter 2, previous

researchers, to name a few: Peck & Springer (1991), Yin & Jane (1992b), Nilsson et

al. (1993), Short et al. (2001; 2002), Melin et al. (2002) have successfully employed

experimental methods to study the behaviour of delaminations which, however, re-

quire the facilities as well as the funding to conduct these investigations. Problems

of detection and visualization of the delamination growth during loading would be

of course the main issues after the panels are manufactured to a given standard.
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Stress functions

In this part of the Appendix, the derivation of the mixed mode terms ϕi(mixed)

comprising QiQ3 in the stress functions shown in Chapter 3, §3.4.2, equations (3.16)

and (3.17), is presented, following the procedure developed by Little (1987). These

mixed mode terms are required in the stress functions to allow for the mixed effects

stemming from interactive buckling of the intact and delaminated parts. The direct

strains are based on von Kármán’s large deflection theory, for example for εx, can

be expressed in terms of displacements as (Timoshenko & Goodier, 1987):

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

. (A.1)

With the nature of the superimposed out-of-plane displacement functions wi, equa-

tion (3.5), defined in Chapter 3, this leads to QiQ3 terms in the stress function

due to the quadratic slope term in equation (A.1); hence, these terms must not be

ignored when describing the in-plane behaviour of the plates after buckling.

In the article by Little (1987), the elastic behaviour of a typical rectangular, or-

thotropic plate which undergoes a deflection that is of the same order as the plate

thickness, i.e. moderately large but small compared to the overall plate dimensions,

is considered, as shown in Figure A.1. The overall dimensions of the plate are lengths

a and b with uniform thickness t and a uniform compressive force is applied on the
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872 G. H LIYTLE 

single summation for all i values [eqn (13)] 

double summation for all I and j values 
feqn WI 

double summation for all p and q values 
[eqn (24)1 

1. ~RODU~ON 

thence expressions are developed for the total poten- 
tial energy of the system comprising the plate plus 
loading arrangement. These expressions are stated in 
a form suitable for inclusion in a general computer 
program, in which the equilibrium de5ected shape is 
determined by direct minimisation of the total poten- 
tial energy. In view of the increasing importance of 
~bre-~info~ composite materials, orthotropic 
plate properties are catered for. 

The problem considered is the elastic behaviour of 
orthotropic plates undergoing moderately large 
deflections, i.e. deflections that are of the same order 
as the plau: thickness, but small compared to the 
in-plane plate dimensions. Attention is restricted to 
thin plates, for which classical theory is valid (the 
Love-Kirchhoff Hyannis). The problem is gov- 
erned by non-linear equations for which no accurate 
closed-form analytical solution is available. If accu- 
rate results are required, it is necessary to use a 
numerical type of solution procedure via a digital 
computer, although there is, of course, a degree of 
approximation present in every solution so obtained. 
Various such procedures have been developed for this 
problem, e.g. the finite element and finite strip meth- 
ods, finite difference methods, etc. The% techniques 
are basically intended for general application and 
require a considerable number of numerical oper- 
ations to solve any particular problem. 

The present method is shown to reproduce the 
results of Levy and Yamaki for isotropic plates of 
Type A (all edges held straight). Comparison with 
Coan’s results will be given in a future paper. More- 
over, the efficiency of the method is such that those 
results are all calculated using less than 1 set of CPU 
time on a CDCXOO computer. The method is also 
contirmed by comparison with some available results 
for orthotropic plates. 

In this section details are given of plate geometry 
and loading, stiffness coefficients, and boundary con- 
ditions. The basic equations gove~ng the plate 
behaviour are not given here but are summa&d in 
the Appendix. In the remainder of the paper, num- 
bers (Al), (AZ), (A3) etc. refer to equations in the 
Appendix. 

In I910 von Karman[t] devised a particularly 
compact form for the governing equations for iso- 
tropic plates, expressing them as two simultaneous, 
fourth order, differential equations in terms of the 
lateral deflection and Airy’s stress function. These 
formed the basis of a solution procedure devised by 
Levy [2] in 1942. At that time the number of numer- 
ical operations possible was, for course, severely 
limited by comparison with today, and so it was 
essential to reduce to a minimum tbe amount of 
computation necessary for an accurate solution. This 
was achieved by expressing both the lateral displace- 
ment and the Airy stress function in terms of infinite 
double Fourier series. The method will be described 
in more detail in Sec. 3. Its versatility is, under- 
standably, less than that of modem computer meth- 
ods such as the finite element method. Nevertheless 
Levy obtained results for vatious isotropic square 
and rectangular plates, under in-plane compression 
and under lateral pressure, with symmetry about 
both axes. To the author’s knowledge these results 
are still regarded today as the most accurate available 
for those cases-an impressive achievement. 

21 Geometry and loading 

A typical rectangular plate as considered in the 
analysis is illustrated in Fig. 1. Each plate is of length 
a, width b, and uniform thickness I. The x, y and z 
axes are longitudinal, transverse and lateral re- 
spectively and z is zero at mid-thickness. An in-plane 
compressive force per unit length P,(y) is applied in 
the x direction to the sides of length b, and a similar 
force per unit length P,(x) is applied in the y 
direction to the sides of length a. In addition there is 
a lateral pressure loading p,(x, y). At any position 

Levy’s method was developed to cover more types 
of boundary condition, and to account for initial 
unflatness, Srstly by Coan [3] in 1951, and then by 
Yamaki[4] in 1959. Both these developments are 
discussed further in !Sec. 3. In 1952, Yussef [a showed 
that the basic method could also be used to analyse 
orthotropic plates. 

X L 

In the present paper, the basic method of Levy, 
Coan and Yamaki is taken as the starting point, and 

I o/z I al2 

Fig. 1. Plate dimensions, coordinate axes and loading. 

2. GENEXAL DETAUS OF THE PROBLEM 

Figure A.1: Plate dimensions, coordinate axes and loading of Little’s (1987) model.

edges, namely Px(y) and Py(x) as illustrated in the figure. As in the model developed

in Chapter 3, plane stress is assumed, however, an imperfection w0 is furthermore

included by Little, which is not accounted for in the current model and is therefore

not incorporated in the procedure discussed below. The general, orthotropic case

Little considers can be reduced to homogeneous and isotropic material properties,

where after equation (8) in Little (1987):

Ex = Ey = E; νxy = νyx = ν; G =
E

2(1 + ν)
(A.2)

and the a matrix, which comprises the membrane flexibility coefficients, follows:

a =
1

t



1

E

−ν
E

0

−ν
E

1

E
0

0 0
1

G


.

Note that a separate part of the nomenclature at the beginning of this thesis specifi-

241



Appendix A. Stress functions

cally denotes the abbreviations and notations used within this part of the appendix.

The boundary conditions are restricted in the publication to so-called “Type A”

plates only, which means that the longitudinal as well as the transverse edges are

held straight in the same manner and the prescribed forces are mean values. To

apply the procedure: in one case, the plate is treated as clamped along x = ±a/2

and simply supported (ss) along y = ±B/2, Figure A.2b (Little: Case III), and in

the other case the plate is treated as simply supported along the edges x = ±L/2

and clamped along y = ±b/2, Figure A.2a (Little: Case II).

(a) (b)

Figure A.2: Cases used to apply the procedure developed by Little (1987); (a)

clamped along x = ±a/2 and simply supported along y = ±B/2 and (b) simply

supported along the edges x = ±L/2 and clamped along y = ±b/2.

The out-of-plane displacement functions si are subsequently described, applying

Little’s notation in the reference’s equation (15), as:

s1 =
QiQ3

2

{
1 + cos

(2πxi
a

)}
cos
(πyi
B

)
(A.3)

for the first case (Little: Case III) and

s2 =
QiQ3

2
cos
(πxi
L

){
1 + cos

(2πyi
b

)}
(A.4)

for the second case (Little: Case II).
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The procedure is now discussed below for the first case only to avoid repetition

since the other case can be solved in an identical procedure. Thus, for the second

case, with mi = 2, nj = 1 and Ixi = 1 as in Little (1987), the values M1 = 4 and

M2 = 4 follow. Table 3 in the publication can then be derived as follows (Table A.1

currently): the factor in equation (26) in the reference can be summarized, using

J 2p 2q I

1 4 1 0

2 0 1 -8

3 0 2 -8

4 0 0 0

5 2 1 0

6 4 1 0

7 0 1 0

8 2 2 -8

9 2 0 -8

Table A.1: Values for p, q and I for applying Little’s (1987) procedure.

algebraic manipulation and with ψpq = 1/4 I and a from above, to the following

expression:

ηpq =
1

2
Iψpq

1
1
Et

(p2B
a

+ a
B
q2)2

. (A.5)

With the stress function F , omitting the terms stemming from uniform squashing,

being defined as

F =
∑
pq

ηpq cos
(2pπx

a

)
cos
(2qπy

b

)
(A.6)

the mixed mode terms in ϕi for Little’s Case II can be derived, with b = B, thus:

ϕm1 = −Q1Q3

128

(
8a2

B2
cos

2πx1

a
+

a2

2B2
cos

4πx1

a
+

8B2

a2
cos

2πy1

B

+
8

(B/a+ a/B)2
cos

2πx1

a
cos

2πy1

B

)
(A.7)
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and for Case III accordingly:

ϕm2 = −Q1Q3

128

(
b2

2L2
cos

4πy1

b
+

8L2

b2
cos

2πx1

L
+

8b2

L2
cos

2πy1

b

+
8

(L/b+ b/L)2
cos

2πx1

L
cos

2πy1

b

)
. (A.8)

These are then incorporated into the expressions for the stress functions shown in

equations (3.16) and (3.17), where a factor of 1/2 is furthermore employed to avoid

accounting for the effects twice, thus:

ϕi(mixed) =
ϕm1 + ϕm2

2
. (A.9)
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Further results

B.1 Critical loads

0
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(Kim & Kedward, 1999) FEM
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Λ
1

c

Figure B.1: Normalized critical load ΛC
1 versus delamination size for c = 0.125

compared to results obtained with the finite element model from §3.6 and results

from the literature (Kim & Kedward, 1999).
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Normalized critical loads corresponding to the linearized analysis presented in Chap-

ter 4 are presented in Figure B.1 for a square delamination at relative depth c =

0.125.

B.2 Supplementary postbuckling graphs

Supplementary postbuckling graphs corresponding to the discussions on growing

defects in Chapters 7 and 8 for uniformly and unidirectional propagating delam-

inations, respectively, are provided in this part of the Appendix. Note that the

results have already been discussed in the main chapters and are presented herein

for reference only.

B.2.1 Postbuckling graphs with uniform delamination prop-

agation

Supplementary graphs illustrating the postbuckling behaviour for the mixed mode

case 1 (B) containing a uniformly propagating delamination of dimensions a = b =

15 mm at depth c = 0.085, as discussed in Chapter 7, are presented in Figure B.2.

The standard notations defined in Table 7.3 apply.
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Figure B.2: Postbuckling equilibrium paths for mixed mode: case 1 (B). Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part).
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B.2.2 Postbuckling regime of a unidirectionally propagating

delamination

Postbuckling for a unidirectionally propagating delamination was discussed in a pilot

study in Chapter 8. Supplementary graphs as well as tabulated values can be found

currently. The notation for the graphs remains as summarized in Table 8.2. Initially,

unidirectional delamination propagation is presented originating from a square de-

fect of dimensions a = b = 15 mm, but further results for growing delaminations

originating from a wide or long delamination are presented subsequently.

B.2.2.1 Growth in the longitudinal direction only originating from a

square delamination

Figure B.3 shows the buckling behaviour of the global mode case for growth in the

longitudinal direction originating from a square delamination.

B.2.2.2 Growth in the transverse direction only – originating from a

square delamination

Figure B.4 shows the buckling behaviour of the global mode case for growth in the

transverse direction originating from a square delamination.

B.2.2.3 Comparison for growth originating from a square delamination

Table B.1 compares the values found during the pilot study discussed in Chapter 8

for unidirectional growth originating from a square panel for the mixed mode—case

I (B)—and global—case (C)—buckling.
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Figure B.3: Postbuckling equilibrium paths for global mode: case I (C)x. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part). Note the lack of path “P1x”.
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Figure B.4: Postbuckling equilibrium paths for global mode: case I (C)y. Graphs

show the normalized axial load Λ versus (a) Q1/t (upper laminate), (b) Q2/t (lower

laminate) and (c) Q3/t (intact part). Note the lack of path “P1y”.

250



Appendix B. Further results

Case I (B)x (B)y (C)x (C)y

ΛC
1 0.801 0.801 0.932 0.932

Λprop
1 0.915 0.915 – –

Λmin
1 – 0.829 – –

a or b at Λmin
1 (mm) – 18 – –

Λmax
1 1.39 0.881 – –

a or b at Λmax
1 (mm) 16.5 (a) 21 (b) – –

growth stationary at Λmax
1 ? yes yes – –

ΛC
2 1.045 1.045 1.783 1.783

Λprop
2 1.162 1.162 1.965 1.965

Λmin
2 – 1.118 – 1.647

a or b at Λmin
2 (mm) – 17 – 19

Λmax
2 2.546 2.317 2.740 2.189

a or b at Λmax
2 (mm) 22 (a) 26 (b) 20 (a) 24 (b)

growth stationary at Λmax
2 ? no no no no

Table B.1: Results summary: case I (B) and (C). Growth in the longitudinal – x-

and transverse – y-direction.

B.2.3 Unidirectional delamination propagation originating

from an initially rectangular delamination

Unidirectional delamination propagation results originating from a rectangular de-

lamination are presented in tabulated form; they relate to the discussion presented

in §8.2.3.

B.2.3.1 Initial growth in the longitudinal direction – xi-axis

Table B.2 corresponds to case II (a = 0.10L, b = 0.15B), an initially wide defect

propagating in the x-direction only, whereas Table B.3 presents this particular case

in detail for growth in the x- and y-direction as well as uniform growth once the
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defect is square, as described in the main part of the thesis.

Case II (A)x (B)x (C)x

ΛC
1 0.366 0.868 0.942

Λprop
1 0.700 – –

Λmin
1 0.696 – –

a at Λmin
1 (mm) 10.5 – –

Λmax
1 0.906 – –

a at Λmax
1 (mm) 15 – –

growth stationary at Λmax
1 ? yes – –

ΛC
2 1.004 1.249 2.318

Λprop
2 1.084 1.579 2.698

Λmin
2 1.080 1.489 2.411

a at Λmin
2 (mm) 11 12 12.5

Λmax
2 2.371 2.432 3.337

a at Λmax
2 (mm) 18 17 17

growth stationary at Λmax
2 ? no no no

Table B.2: Results summary: growth in the longitudinal direction only – x-axis

originating from a wide (case II) defect.

Case II (A)x (A)y (A) uniform

Λsquare
2 1.237 1.237 1.237

a and b at Λsquare
2 (mm) 15 15 15

Λmax
2 2.371 2.410 2.154

a and/or b at Λmax
2 (mm) 18 (a) 20 (b) 23 (a and b)

growth stationary at Λmax
2 ? no no no

Table B.3: Results summary extended: case II (A).
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B.2.3.2 Initial growth in the transverse direction – yi-axis

Growth in the transverse direction is now considered for case II (a wide delamination)

and III (a long delamination of dimensions a = 0.20L, b = 0.15B), and the results

are presented in Table 8.5. Tables B.4 and B.5 present cases III (A) and (B),

respectively, in detail for uniform propagation once the defect is square.

Case III (A)y (A) uniform

Λsquare
1 0.462 0.462

a and b at Λsquare
1 (mm) 20 20

Λmax
1 0.882 0.870

a and/or b at Λmax
1 (mm) 27.5 (b) 38 (a and b)

growth stationary at Λmax
1 ? yes yes

Λsquare
2 1.006 1.006

a and b at Λsquare
2 (mm) 20 20

Λmin, unif
2 n/a 1.006

a and b at Λmax
2 (mm) n/a 22 (a and b)

Λmax
2 2.462 2.087

a and/or b at Λmax
2 (mm) 33 (b) 51 (a and b)

growth stationary at Λmax
2 ? no no

Table B.4: Results summary extended: case III (A).
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Case III (B)y (B) uniform

Λsquare
2 1.074 1.074

a and b at Λsquare
2 (mm) 20 20

Λmin, unif
2 n/a 1.073

a and b at Λmax
2 (mm) n/a 21 (a and b)

Λmax
2 2.700 2.088

a and/or b at Λmax
2 (mm) 33 (b) 49 (a and b)

growth stationary at Λmax
2 ? no no

Table B.5: Results summary extended: case III (B).
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