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Abstract- DNA sequence basecalling is commonly regarded
as a solved problem, despite significant error rates being
reflected in inaccuracies in databases and genome annotations.
This has made measures of confidence of basecalls important,
and fuzzy methods have recently been used to approximate
confidence by responding to data quality at the calling position.
We have demonstrated that variation in contextual sequencing
trace data peak heights actively encodes novel information
which can be used for basecalling and confidence estimation.
Using neuro-fuzzy classifiers we are able to decode much of the
hidden contextual information in two fuzzy rules per base and
partially reveal its underlying behaviour. Those two fuzzy rules
can satisfactory explain over 74% of data samples. The error
rate is 6-7% higher on individual bases than when using
classification trees, but the number of rules is reduced by a
factor of 100. Compact comprehensible knowledge
representation is achieved with the use of SANFIS which allows
us to easily interpret the embedded knowledge. Finally, we
propose a hybrid architecture based on SANFIS which achieves
slightly better performance than a classification tree with
significantly improved knowledge representation.

I. INTRODUCTION

After 30 years, the Sanger method remains the dominant
DNA sequencing approach [1,2,3], but is subject to errors
[4] and restricted read lengths. Up to 1% errors in the "high
confidence" region of a trace are not uncommon. Miscalls or
indels are commonly recovered in genomic sequencing by
multiple coverage of the region of DNA being sequenced.
Estimates of confidence in individual basecalls are
important. In 1994, Lipshutz [17] proposed a successful
classification-based method for confidence estimation using
contextual data quality. More recently Varghese, Musavi and
Ressom applied fuzzy methods to a different set of features
to good effect [12]. These methods assess data quality.
A new means for reducing error rates or increasing read

lengths will reduce the depth of coverage required in
sequencing applications, and hence reduce resource
consumption. A novel approach was proposed by Thornley
[5] in 1997 in which the inherent sequence dependent peak
height variation - rather than data quality - is exploited
through abduction of the sample sequence composition
against a model of trace data behaviour prediction. This uses
a model of sequence-specific enzyme activity in the Sanger
reaction, which enables prediction of signal variation. While
development of a phenomenological model continues, we
have used machine learning to demonstrate clearly that the

D. Thornley was supported in this work on EPSRC Grant GR/S60266/01
in the Department of Computing, Imperial College London, UK. (e-mail:
djt 0doc.ic.ac.uk).

S.Petridis is a PhD student in the Department of Computing, Imperial
College London, UK. (e-mail: sp104 0doc.ic.ac.uk).

variation in peak heights encodes information which can be
used for basecalling [6]. We used neural networks and
classification trees, singly and in ensembles, responding to
measurements in the context of the basecalling position, i.e.
calling bases without reference to the peak heights at the
basecalling position itself. The result of that work was a
success rate of 78%, which compares well with the 3400
achievable using only organism specific base composition
information (data for these experiments comes from the
human X chromosome).

In this paper, we extend our previous work [6] to provide
an efficient and compact machine learned interpretation of
the information. The neural networks used previously are
"black-boxes" models, not providing clear information about
the underlying process. The classification (and regression)
trees (CART) [7] performed less impressively than neural
networks in this domain, but they have the advantage that
rules can be easily extracted. The main drawback is that
crisp trees result in hundreds of rules in this application. We
currently believe that the reasons for this include the non-
linearity of the system being modeled, and the existence of
two main modes of behaviour which we explain later. The
neural network, which uses non-linear relationships but crisp
decisions, required 70 nodes to achieve a better error rate
than approximately 200 nodes in the classification tree. In
the present work we use a neuro-fuzzy network approach,
SANFIS [8], to acquire a compact rule base for interpreting
the embedded knowledge.

Neuro-fuzzy networks are multilayered connectionist
networks that realize the component functions of fuzzy logic
decision systems. We chose SANFIS over ANFIS [9],
FALCON [10] or NEFCLASS [ 1] for our experiments due
to its immunity from the curse of dimensionality, hence
addressing our requirement for a smaller, comprehensible
rule set to guide our research. A mapping-constrained
agglomerative (MCA) clustering algorithm is used to
initialize the network architecture, which results in a number
of rules (clusters) similar to the number of classes. The
present approach consists of two stages as shown in Fig. 1.
In the first stage four SANFIS classifiers are used, each
attempting to recognize a single class (True or False). If they
do not call a base (all False or more than one True) then the
second stage uses an alternative classifier, in this case a
neural network. This yields accuracy comparable to the use
ofCART [6], but with the added advantage that we are able
to extract two simple IF-THEN fuzzy rules for each class
(basecalls A, C, G and T) which describe the majority of
cases. Thus the influence of the context for each base is
largely encoded in only 2 fuzzy rules. We therefore have a
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combination of practical efficacy and valuable information
about the system.

Experiments in over 600,000 samples show that 2 fuzzy
rules explain (i.e. classify correctly) approximately 74%,
77%, 79% and 83% of the samples for bases T, A, C and G
respectively. The full classifier achieves a success rate of
68.77%. We emphasize that in all experiments we only use
contextual information as shown in Fig. 2, excluding the
data at the basecall position which would be used in
traditional basecalling. In this work, we are exploring in
isolation the contextual information which is currently not
utilized in basecallers.

The rest of the paper is organized as follows. In section II
we briefly describe the SANFIS architecture we use. In
section III we provide some background on DNA sequence
analysis and describe our proposed method for efficient
representation of contextual information by extraction of
fuzzy rules. In section IV we describe the results obtained
using our approach and finally section V summarizes our
conclusions.

II. SANFIS

The recently introduced SANFIS architecture comprises
five or six layers, each implementing an operation of the
fuzzy inference system. In this work we restrict ourselves to
a type III SANFIS (Takagi Sugeno model commonly
referred to as TSK), and further define that the consequent
linear functions cannot be shared by multiple rules. This
leads to five layers as described below.
The output of each rule j is a linear combination of its

inputs, with the following format:

Rule i IFx1 isA(j)and...andx isA$j
THEN y1 is f(j) and... and (j)

where f(J) =bk) +bIk1I n+k+bnkxn
Each node in the network consists of an input combination

function f and an output activation function a. The input
function is expressed as:

nodei= (/(), u(/) . . ., u°; w°, W(, . .., pW )

Where u' ,... u '/ are the inputs to the node,I p

w('),...w) are the associated weights and a superscript
always indicates the layer number. The output activation
function is expressed as:

nodeout - a(l) (nodein) - u(/(f+) I

Links which are not described by a particular function have
weight 1. The functions of the nodes from layer 1 to 5 are
defined as follows:
Layer 1: This is the input layer. The nodes in this layer

this case - for the next layer. Thus, the functions of the ith
node are defined as

-;(I) = uM1 = xin oc(1) = f()
and a

Layer 2: This fuzzification layer calculates the degrees of
membership of each term in the fuzzy rule. The nodes
represent Gaussian membership functions defined as:

( (2)(J<) 2
2

2)_ u mi 2)_fi()
an ..) =e

fui 2 i)

where mW and CO) are the center and width of the
Gaussian membership function of the jth term of the ith input

respectively. The link weight, represented as [ m'i) , 0cY0)

provides the Gaussian parameters. These are initialized by
the MCA algorithm and optimized during the learning phase.
Layer 3: This layer implements the antecedent or IF part of
the fuzzy rules and calculates the firing strength of each rule.
Each node is equivalent to a rule (cluster) in the input space.

The rule nodes perform a fuzzy AND operation, yielding
input nodes and output functions ofthejh node as follows:

n

(3)= U(3) and a3) = fj(3)
i=l

Layer 4: This is the rule strength normalization layer. The
number ofnodes in layers 3 and 4 are equal to the number of
rules J.

J u(4)fj4) (5u4) an (c4) i 4
j=1 fi(

Layer 5: This layer implements the consequent part of the
fuzzy rules to form the output layer. It integrates the
information from layer 5 with link weights [1 b1 b2 b]
and acts as a defuzzifier. The functions of the k th output
node are

J 'n

t(5) EzKzbki Xi +b }kO uj and55)an =f (5)
j=1 i=1

The learning algorithm comprises two phases. In the first,
we take the mean and variance of the clusters generated by
the MCA clustering algorithm to provide the initial
membership functions for the network. The main advantage
of this MCA clustering algorithm is that the number of
clusters (rules) is similar to the number of classes and does
not depend on the number of inputs, and hence does not
suffer from the curse of dimensionality. This property results
in a compact knowledge representation. In the second step a

recursive linear/nonlinear least squares optimization
algorithm is applied to tune the weights of the system to
achieve a better performance. A detailed description of the

convert the input values to a fuzzy type - afuzzy singleton in
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architecture, clustering algorithm and the optimization
algorithm can be found in [7].

III. DNA SEQUENCING -PROPOSED FRAMEWORK

The Sanger method produces four traces (see Fig. 2), one
for each base, which are used for basecalling. Traditional
basecallers perform pre-processing steps to simplify the
data. This 'analysed' trace data enables a basecalling method
based on finding the largest peak at each position which
motivates confidence approximation using data quality.
Later methods, such as PHRED [3,4] calibrate a model of
the general layout of peaks along the trace to assess
proposed signal peaks against expected positions.
No currently available method uses the information

encoded in the contextual peak height variation identified by
Thomley [13]. The presence of contextual information can
be identified using a "blind-spot" analysis, i.e. calling a base
excluding the peak heights at the calling position and only
using information from the context, first introduced in [5].
Integrating this information into a full basecaller which can
address the lower quality data later in the trace is a research
question that we are currently addressing.

In [6], we performed a feature selection procedure which
identified the peak height previous to the basecall and in the
next three base positions, together with the spacing between
the surrounding base positions as the most efficient features
for blind calling a base (labelled in Fig. 2). We might
assume that the surrounding basecalls should be included to
complete the description, but these are implicit in the
provision of peak heights in the correct lanes. Feature
selection is sometimes considered outmoded given the
availability of processing power, but when relating
experiments to other modeling work, it forms part of the
process ofknowledge discovery.

In this framework we propose to use 19 features: 16 peak
heights (fl-fl6) surrounding the base to be called (since
there are four peak heights in each base position) and 3
spacing values (fl7-fI9). The output is the class (base) in the
blind spot position. We work with tuples constructed over 5
base positions, but information from only 4 of these is
included, with the output base to be located in the second
position as shown in Fig. 2.

The architecture we use is shown in Fig. 1. In the first
stage there are 4 neuro-fuzzy classifiers which are trained to
recognize a single class. The output of each classifier is True
if the input pattern belongs to the class that the classifier is
trained to recognize, or False otherwise. Unfortunately, it is
common that two or more components vote for True or, in
the vast majority of undecidable cases, all of them vote for
False. To demonstrate the utility of the fuzzy basecaller in
cooperation with other techniques, we use a neural network
in stage two which is trained on the subset of the data which
the stage one classifier does not produce a conclusive result.

Input Pattern SANFIS True/False
D===* A

Input Pattern SANFIS True/False
-== D=* c

Input Pattern

Input Pattern

SANFIS True/False
G

IF 1 True AND
3 False

v
0
T
E
R Otherwise

NN

SANFIS True/False
T

LI Input Pattem

Fig. 1: Simple hybrid architecture. Initially the pattern is fed into the 4
SANFIS classifiers. Patterns that cannot be classified in stage 1 are passed
to stage 2 where the neural network predicts a class for the input pattern.
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Fig. 2: Example of a 5-base window showing the 4 traces and 19 features

The main advantage of this approach is that the use of
SANFIS allows us to extract two fuzzy rules for each class
while maintaining use of context information in a valid,
informative manner. Therefore the static influence of the
context in each base A, C, G, T can generally be encoded in
those two fuzzy rules. From other work we deduce that it
will not be possible to encode contextual information in a
strictly local, memoryless manner due to emergent dynamic
behaviour [16]. Examination ofthe successes and failures of
classification attempts will shed further light on these issues.
Our analysis of the base contexts failing with the present
SANFIS implementation show a bias toward homogeneous
runs of bases which we propose lead to dynamic behaviour.
Further work will look at iteratively identifying those data
which are and are not susceptible to static classification.

Apart from extracting the embedded knowledge in the
data for recognizing an individual base we go a step further
and try to construct a classifier that recognizes all the bases.
So we combine the four components as shown in Fig. 1 and
when the data falls outside the scenarios addressable using
the fuzzy classifier we use a neural network. In that way we
are able to combine the interpretability of neuro-fuzzy
systems and the detailed response of neural networks.
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IV. RESULTS

A. Datasets
The data we use come from a genomic sequencing trace

data set used in quality control testing at the Wellcome Trust
Sanger Institute and are taken from a 182 kilobase contig in
the human X chromosome. For our experiments we used
processed output from ABI equipment.

Initially, we perform a skyline normalization [6], [14] of
the data to remove the overall decay in peak heights, and the
initial rise thought to be due to length dependent loading
efficiency, by fitting a quadratic curve to the apexes of the
peaks and dividing through by the value of the quadratic at
each peak sample point.
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Fig. 3: Example membership functions for each feature of class G (the
output base). Dotted MFs belong to the False rule, and solid MFs belong to
the True rule. (the characteristics for gl coincide)

Since we have access to over 10000 files with sequencing
traces and we consider overlapping 5-base windows in our
experiments we have tens of millions of 5-base samples.
Diminishing returns on training set size dictate that we use
several subsets of data for training, validation and testing
which in addition allow us to examine reproducibility. We
use the same data as in [6], in which the training set consists
of 62173 samples and the validation set contains 55782
samples. We also created ten independent test sets, to enable
estimate the accuracy of the classifiers, which contain from
29757 to 113090 samples making a total of 603011 samples.

It is common in pattern classification applications to
consider an equal number of training samples per output
class when the data are uniformly distributed. However, as
we showed in [6] the distribution of the 5-base windows is

far from uniform, so each data set created contains at least
two instances of all possible 5-base groups.

B. Single class neuro-fuzzy classifiers
Initially we trained four SANFIS classifiers to recognize a

single class each. Each SANFIS was trained for 120 epochs.
Two membership functions (MFs) are merged if their
similarity measure calculated as in [9] is higher than 0.9.
The first 16 features are the skyline normalized peak heights
as described in section III and they only take positive values.
The last 3 features are the peak spacing between surrounding
peak heights and they also take positive values. We tested
performance on the ten independent test sets as described in
the previous section. The mean error rates together with the
number of rules generated are shown in Table I.

TABLE I
MEAN % ERROR RATES OF RECOGNISING A SINGLE CLASS

OVER 10 TEST SETS
A C G T

CART 15.84 15.45 10.05 18.31
(num rules) (215) (264) (305) (474)
SANFIS 23.19 20.74 16.62 25.88
(num rules) (2) (2) (2) (2)

We see an increase in the error rate from 5.30 (class C) to
7.570O (class T) compared to classification trees. However
we notice a dramatic reduction in the number of rules
generated. The minimum number of rules obtained by trees
is 215 and in the worst case we have 474 rules which
obscure the main advantage of trees in their interpretability.
SANFIS creates only 2 fuzzy rules in all cases, which are
capable of explaining over 7400 of the samples.

CLASS A

0.5 /0.5

0-5X9.<.2 0 / 5
-1 0 1 2 20 22 24 26 28

tl CLASS C Spacing 1

0.5 0.5 j

0 0 I

1 0 1 2 3 -1 0 1 2
a3 CLASS T g3

0.5-

0 [-
8 10 12 14

Spacing 3

0.5

0
-1 0 1 2

g3

Fig. 4: Membership functions for each feature of bases A, C and T. Dotted
MF belong to the False rule whereas solid MF belong to the True rule.

This is a significant improvement in interpretability over
the plethora of crisp rules generated by non-fuzzy systems.
Such simplification is often desirable in bioinformatics
applications where complexity must be peeled away
methodically by recognizing governing trends in the data,
and identifying circumstances in which a model is not
applicable.
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The format of the two fuzzy rules is as follows:

R1: IFf1 is S1 and ... andfi9 is S19 THENy1 isfi (TRUE)

R2: IF fi is D1 and... andf1 9 is D1 9 THENy1 is f2 (FALSE)

where f1, f2are linear combinations of the inputs since we
only use TSK models and S, D are the solid and dotted MF
respectively. Fig. 3 shows examples from the membership
functions MFs for inputs (fl-fl9) from class G. Solid MFs
belong to rule 1 and dotted to rule 2.
When the MFs for a feature overlap strongly, this

indicates that the contribution of that feature is the same for
both rules, achieving the same degree of activation, and
hence not contributing to discrimination. For example, the
MFs for gI have been merged. The MFs of many other
features are quite different, and hence useful for
discrimination since they activate both rules to a different
degree (see for example a3, t3).

TABLE II
FEATURES

Most informative
features

Least informative
features (Merged MF)

Class A at, tl, g3, Spacingl t3, c4, g4, t4,Spacing2
Class C a3, c3, t3, g3, gl, tl, a4, g4, a5,

c5, g5, t5, Spacing 3
Class G cl, ti, a3, g3, t3, gl, a4, c5, t5,

Spacing2
Class T g3, t3, t4, Spacing3 a3

Table II shows the most informative features together with
the least informative features for each class. We see that the
first position to the right of the blind spot, i.e. the third
position in the 5-mer, seems the most important since some
of its features are present in all cases. Particularly, g3 is
present in all classes and t3 is present in three classes. On the
other hand features from the fifth position do not seem to
have significant contribution in the inference process and
their MFs are often merged as shown in the second column
of Table II. These observations agree with our previous
work, but are made clearer by the simpler form of the rules.

Fig. 4 shows two characteristic MFs from the other
classes A, C, T which are not presented for lack of space.

C. Full classifer
In an attempt to create a classifier that is capable of

directly predicting a base in the blind spot given only
contextual information and not just giving a True/False
answer we use the architecture of Fig. 1. As explained in
section III ideally we would like only one True and three
False. To deal with scenarios outside the remit of direct
classification, we use a neural network similar to that in [6]
as a second stage in the classifier. Initially, we tested the
four SANFIS in the validation set of section IV.A and then
the patterns that were not able to classified (led to
contradictory True/False classifications) were gathered and
used to train the neural network. We used a feed-forward
network with 70 neurons. The resilient backpropagation
training algorithm was used for its speed of operation [15]

and the network was trained for 4000 epochs and the
learning rate was set to 0.005.
We tested the full hybrid classifier again over the ten

independent test sets and the results are presented in Table
III. We compare the results to a classification trees and
neural networks trained using the whole training set which
predict the output class directly from [6]. We also quote the
best results obtained using an ensemble of ten neural
networks with averaging as the combination rule.

TABLE III
VARIATION IN ERROR RATES

CART NN
NN SANFIS +

Ensemble NN
Testi 31.01% 23.52% 21.10% 30.55%
Test2 30.69% 23.92% 21.14% 30.3o8%
Test3 30.14% 22.27% 20.80% 30.40°0
Test4 31.41% 23.79°0 21.200% 30.200%
Test5 31.99°0 24.52% 22.166% 30.60%
Test6 30.30°0 22.77%0 19.89% 29.26%
Test7 31.63% 24.133% 21.84% 31.47%
Test8 34.99°0 27.91% 26.18% 34.65%
Test9 33.07°0 25.54°0 23.50°0 32.92%
TestlO 31.92% 24.66% 22.199% 31.87%
Mean 31.72% 24.30% 21.9980% 31.230%
Variance 2.09 2.47 3.10 2.48
No Rules 853 - - 8

A single neural network and the ensemble of neural
networks clearly out-perform the proposed architecture, but
they do not provide any insight into the underlying
mechanism. The proposed 2-stage classifier has better
performance than CART, and it offers eight fuzzy rules that
explain satisfactory a significant portion of the samples. Of
course, they are not as general as the CART rules since they
are applied to each base individually and output only
True/False whereas a CART rule outputs directly one of the
four classes. However, while the overall performance is
comparable, the gain in interpretability is significant. It is
tractable for humans to understand 8 fuzzy rules, whereas
853 crisp rules would require further processing to be of use.
Compact comprehensible knowledge representation is an
important advantage of SANFIS, and the reduction of rules
by a factor of 100 here confirms this.
We also tried a hybrid classifier with stage one

comprising tree classifiers, resulting in an error rate of
around 30°0, which is slightly better than SANFIS
performance but in this case we have 1269 rules (see Table
I), which further reduces the interpretability of the system.

Table IV presents the error rates in the two stages of the
classifiers. The first column presents the number of samples
per test set. The second column shows the percentage of
samples that were classified by the combination of the four
SANFIS in the first stage. The remaining samples are passed
on stage two. The third column shows the error rate of the
combination of the four SANFIS classifiers. Here we only
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consider the patterns that are classified in stage one and
therefore are not passed on stage two. Finally, the last
column gives the error rate of the neural network on the
patterns that are not classified in the first stage and are fed in
the network.

TABLE IV
DECOMPOSITION OF HYBRID ERROR RATE

No
Samples

Classified Stage 1

in Stage 1 Error Rate Error Rate
Testi 74629 44.790O 34.88% 27.03%
Test2 54859 44.430O 33.56% 27.83%
Test3 59926 46.54% 33.11% 28.04%
Test4 75056 44.82% 34.78% 26.47%
Test5 30589 43.350O 34.67% 27.50%
Test6 34572 44.210% 34.60% 25.04%
Test7 113090 45.350 34.10% 29.290o
Test8 29757 45.31% 34.52% 34.76%
Test9 88492 44.540O 34.83% 31.39%
TestI 0 42041 44.05°O 35.05°O 29.36%
Mean - 44.74% 34.41% 28.67%
Variance 0.76 0.40 7.62

We see that just under 45% of the patterns can be classified
by the four SANFIS with an accuracy of 65.59% (cf 25%
random, or 34% with organism bias). The remaining 55%
percent is classified by the neural network which achieves an

accuracy of 71.33%. The accuracy of the neural network is
lower than the one shown in Table III since it only classifies
samples which are rejected in the first stage and therefore a

significant proportion of "difficult" patterns is included.
Finally, we note the variance of the SANFIS classifiers:

their performance is remarkably consistent between different
test sets (the majority of the variance in the error rate of the
hybrid classifier is due to the neural network in stage two).
This confirms that the compact knowledge representation
consistently captures the behaviour of the system.

V. CONCLUSIONS

DNA sequence basecalling is at the heart of modern
genomics, which is already contributing to healthcare
innovation. This work with fuzzy classifiers is part of our

ongoing investigation of the use of contextual information to
enhance basecalling which began in 1994 with a logical
innovation and a presumptuous model [12], and has recently
included remarkably successful machine learning work [6].
We have demonstrated here that with the use of SANFIS

we are able to achieve the same level of performance as

CART, but with a dramatically more compact rule base for a

significant subset of the data. This allows us to interpret the
embedded knowledge in data and explain static effects of
contextual information in DNA sequencing trace data.
Our further work will draw from modern, emerging

concepts in fuzzy systems directed to achieving a

performance level comparable to neural networks while
maintaining interpretability. This includes the evolution of
constructed features to capture the relationships in the

Sanger reaction [16]. The present results also motivate
investigation of fuzzy classification trees to build directly on
[6] with the expectation of enhancing accuracy over our
previous results while reducing the rule count.
As well as providing information for a basecalling

application, the fuzzy classifier finds compact information
about the contributing features which will be used to guide
development of a phenomenological model ofthe underlying
process to be used in an optimal abduction-based caller [13].
Fuzzy reasoning will therefore play an essential part in the
development and implementation of a basecaller which uses
sequence-dependent context information.
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