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Abstract

There is a dearth of models for multivariate spatially correlated data recorded on

a lattice. Existing models incorporate some combination of three correlation terms:

(i) the correlation between the multiple variables within each site, (ii) the spatial

autocorrelation for each variable across the lattice, and (iii) the correlation between

each variable at one site and a different variable at a neighbouring site. These may

be thought of as correlation, spatial autocorrelation and spatial cross-correlation

parameters respectively.

This thesis develops a flexible multivariate conditional autoregression model where

the spatial cross-correlation is asymmetric. A comparison of the performance of the

FMCAR with existing MCARs is performed through a simulation exercise. The

FMCAR compares well with the other models, in terms of model fit and shrinkage,

when applied to a range of simulated data. However, the FMCAR out performs all

of the existing MCAR models when applied to data with asymmetric spatial cross-

correlations.

To demonstrate the model, the FMCAR model is applied to road safety

performance indicators. Namely, casualty counts by mode and severity for vulnerable

road users in London, taken from the STATS19 dataset for 2006. However,

by exploiting correlation between multiple performance indicators within local

authorities and spatial auto and cross-correlation for the variables across local

xiv



authorities, the FMCAR results in considerable shrinkage of the estimates of

local authority performance. Whilst this does not enable local authorities to be

differentiated based upon their road safety performance it produces a considerable

reduction in the uncertainty surrounding their rankings. This is consistent with

previous attempts to improve performance rankings. Further, although the findings

of this thesis indicate that there is only mild evidence of asymmetry in the spatial

cross-correlations for road casualty counts, the thesis provides a demonstration of the

applicability of this model to real world social and economic problems.
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Nomenclature & Notation

Introduction

Unlike the physical sciences there are no international standards for notation or

symbols in economics and econometrics, only common conventions. As such, they

are frequently broken. This section aims to set out the notation and nomenclature to

be used consistently in this thesis.

Vectors and Matrices

Vectors are lowercase (a) and matrices are uppercase (A) symbols, but both are

written in bold-italics. We write a = (aij) to denote a typical element of matrix A.

The n columns of A are denoted by a.1, a.2, . . . , a.n, and the m rows by a′1., a
′
2.,

. . . , a′m., where transpose is denoted by a prime. Two or more matrices (vectors) are

conformable if their sum or product is defined.

Special vectors are:

0, 0n null vector (0, 0, . . . , 0)′

ı, ın sum vector (1, 1, . . . , 1)′

Special matrices are:

xvii



O, Omn null matrix of order m× n

I, In identity matrix of order n× n.

Matrix Operations

The following matrix operations will be defined:

A′ transpose

A−1 inverse

diag(a1, . . . , an) diagonal matrix containing a1, . . . , an

on the diagonal

diag(A1, . . . ,An) block-diagonal matrix with A1, . . . ,An on the diagonal

A2 AA

A1/2 (unique) square root of positive semidefinite matrix

Ap p-th power

Ak principal submatrix of order k × k

(A,B), (A : B) partitioned matrix

rk(A) rank

λi, λi(A) i-th eigenvalue (of A)

trA, tr(A) trace

|A|, detA, det(A) determinant

‖A‖ norm of matrix (
√

(trA∗A))

‖a‖ norm of vector (
√

(a∗a))

A ≥ B, B ≤ A A−B positive semidefinite

A > B, B < A A−B positive definite (>, <)

A⊗B Kronecker product
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If we have a symmetric matrix A of order n × n, then the eigenvalues are real and

can be ordered, such as

λ1 ≥ λ2 ≥ · · · ≥ λn,

since there are many cases where it is desirable that λ1 denotes the largest eigenvalue.

Mathematical symbols, functions and operators

Definitions, implications, convergence, and transformations are denoted by:

≡ identity, equivalence

=⇒ implies

⇐⇒ if and only if

We write f(x) ≈ g(x) if the two functions are approximately equal in some sense

depending on the context. If f(x) is proportional to g(x) we write f(x) ∝ g(x) ).

The usual sets are denoted as follows:

N natural numbers 1, 2, . . .

Z integers . . . ,−2,−1, 0, 1, 2, . . .

Q rational numbers

R real numbers

C complex numbers

Superscripts denote the dimension and subscripts the relevant subset. For example,

R2 = R × R denotes the real plane, Rn the set of real n × 1 vectors, and Rm×n the

set of real m× n matrices. The set Rn
+ denotes the positive orthant of Rn, while Z+

denotes the set of positive integers (hence, Z+ = N) and Z0,+ denotes the non-negative

integers. Finally, Cn×n denotes the set of complex n× n matrices.
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Other symbols used are:

∈ belongs to

/∈ does not belong to

{x : x ∈ S, x satisfies P} set of all elements of S with property P

⊆ is a subset of

⊂ is a proper subset of

∪ union

∩ intersection

∅ empty set

Ac complement of A

B\A B ∩ Ac

We denote functions by:

f : S → T function defined on S with values in T

f , g, ϕ, ψ, ϑ scalar-valued function

f , g vector-valued function

F , G matrix-valued function

Finally, various other symbols in common use are

e, exp exponential

log natural logarithm

loga logarithm to the base a

! factorial

|x| absolute value (modulus) of scalar x ∈ C

1K indicator function (note the use of 1, not I):

xx



equals 1 if condition K is satisfied, 0 otherwise

Statistical symbols, functions and operators

It is customary to use capital letters (e.g. X) for random variables and lowercase

letters for their realisations, for example Pr(X = x). We cannot do this in a thesis

on multivariate statistics as there will inevitably be the problem that X and x have

been reserved for matrices and vectors respectively.

We follow the convention to denote the cumulative distribution function (c.d.f) by

F and the probability density function (p.d.f) by f . In general, these will depend on

a vector of m parameters, θ. An estimator of θ is θ̂ (and θ̃ if it’s a second estimator)

and its realisation is an estimate. We use the word predictor for an “estimator” of

a random variable, employing the same hat and tilde conventions as for estimators.

The realisation of an predictor is a prediction.

We denote the null hypothesis as H and alternatives as H1,H2, .... The value of θ

under the hypothesis Hj is denoted as θj. If the hypothesis concerns only a subset of

θi then denote the value under the hypothesis Hj as θji .

The following symbols are commonly used:

∼ is distributed as

a∼ is asymptotically distributed as

π(·) probability

E(·) expectation

E(·|·) conditional expectation

var(·) variance (matrix)
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cov(·, ·) covariance (matrix)

corr(·, ·) correlation (matrix)

L(θ) likelihood function

`(θ) log-likelihood function

t t-statistic, t-value

→, −→ converges a.s.

p−→ converges in probability

d−→ converges in distribution

plim probability limit

The main distributions in statistics are denoted as follows:

Bin(n, p) binomial distribution

Poi(µ) Poisson distribution

U(a, b) uniform distribution

Nm(µ,Ω) m-dimensional normal distribution

LN(µ, σ2) lognormal distribution

φ(·) standard-normal p.d.f.

Φ(·) standard-normal c.d.f.

χ2
n(δ) chi-squared distribution with n d.f.

and non-centrality parameter δ.

χ2
n central chi-squared (δ = 0)

tn(δ) Student distribution with n d.f. and

noncentrality δ

tn central t (δ = 0)

C(a, b) Cauchy distribution
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Γ(α, λ) gamma distribution

B(a, b) beta distribution

W (τ), B(τ) standard Wiener process (Brownian motion)

on τ ∈ [0, 1]

Quantiles are denoted as follows. If a random variable follows some distribution

D(θ), then the αth quantile is Dα(θ). For example, t0.05(n, δ) denotes the 5 percent

quantile of the non-central t-distribution.

We use the word ‘expectation’ to denote mathematical expectation of a random

vector x, written E(x). The word ‘average’ refers to taking the average of some

numbers: x̄ = (1/n)
∑n

i=1 xi. Like ‘expectation’, the words ‘variance’ (var),

‘covariance’ (cov), and ‘correlation’ (corr) indicate population parameters. The

corresponding sample parameters are called ‘sample variance’, ‘sample covariance’

and ‘sample correlation’.
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CHAPTER 1

INTRODUCTION

Everything is related to everything else, but near things are more related

than distant things. (Tobler 1970, p.236)

1.1 Space: the final frontier

Traditionally, economists have been more reluctant than geographers like Tobler to

consider space as a relevant factor. In 1890, economist Alfred Marshall asserted the

dominance of time by maintaining that the working of the market depends “...chiefly

on variation in the area of space, and the period of time over which the market in

question extends; the influence of time being more fundamental than that of space”

(Marshall 1920, Bk. V chap. XV sec.1). Not until Isard (1956) do economists question

this preoccupation with time when he famously commented that Hicks (1939) confines

economic theory “to a wonderland of no spatial dimensions”. Isard coined the term

“Anglo-Saxon bias” for the prevailing paradigm within general equilibrium analysis

in the tradition of Walras, Pareto, and Hicks of failing to consider spatial dimensions

explicitly. Thus, following the economic trends of the day econometric investigation

has traditionally favoured the time rather than the spatial domain.

The regional science literature was the first to take the issue of ‘space’ seriously

within economics, with Dutch-Belgian regional economist Jean Paelinck coining the
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CHAPTER 1. INTRODUCTION

term “spatial econometrics” and writing the first book on the subject (see Paelinck

& Klaassen 1979). The first modern textbook treatment of spatial econometrics

was Anselin (1988), another regional economist, with later texts including Anselin

(2003a) and Anselin et al. (2004). At the same time, statisticians such as Besag

(1974), Cliff & Ord (1981), Diggle (1983), Ripley (1981) and Cressie (1993) were

developing appropriate methods from the statistician’s perspective, much of which is

of use in econometrics.

Once a marginal endeavour, modelling spatial interactions is now commonplace in

applied econometrics. Economists are increasingly aware of the relevance of spatial

interactions, spatial externalities and networking effects between agents in all fields

of economic research (Florax & Nijkamp 2004) . This has prompted the development

of the subdiscipline of spatial econometrics with methods to specify and estimate

regression models that explicitly include and correct for spatial effects (Anselin et al.

2004). Spatial econometrics is now firmly established as a subdiscipline with its

own professional association1, several books2 dedicated to the topic and a number of

prestigous peer-reviewed journals publishing special issues3 on spatial problems and

methods.

Geography and the role of spatial interaction have gained prominence in the

applied as well as the theoretical literature. This growing literature on empirical

spatial econometrics includes many of the traditional fields of economics. A few

1Visit http://spatialeconometr.altervista.org/ for further details

2see for example Anselin (1988), Anselin & Florax (1995), Anselin et al. (2004), Arbia (2006),
Bailey & Gatrell (1995), Banerjee et al. (2004), Cressie (1993), Haining (1991), Paelinck & Klaassen
(1979) and Ripley (1981)

3see for example Anselin (1992), Anselin (2003b), Baltagi et al. (2007), Florax & van der Vlist
(2003), Holloway (2007), LeSage et al. (2004), Nelson (2002), Pace et al. (1998) and Pace & LeSage
(2004)
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examples include studies in demand analysis (Case 1991), international economics

(Aten 1996), labour economics (Topa 1996), public economics (Case et al. 1993),

agricultural economics (Holloway & Lapar 2007), environmental economics (Nelson

& Hellerstein 1997), microeconomic theory (Durlauf 1997), development economics

(Nelson & Gray 1997), and financial economics (Ioannides 1997) among many others.

This short list is far from exhaustive and it is not the aim of this thesis to survey

the whole literature on either spatial econometric theory or applications. Interested

readers are invited to consult one of the many journal special editions which provide

an excellent overview of important research directions.

1.2 The importance of space

There are obvious differences between spatial and time-series data (Pinkse et al. 2007).

The most commonly noted differences are that (i) time is unidirectional whereas space

is (usually) multidirectional , (ii) time is one-dimensional whereas space is of higher

dimensionality, (iii) time series observations are (normally) uniformly spaced on the

time line whereas spatial data are rarely observed on a regular grid or lattice, (iv)

time series observations are considered draws from a continuous stochastic process,

where as in spatial data analysis it is common for the sample and the population to

be the same (causing problems for inference and asymptotics)

Spatial effects include spatial heterogeneity and spatial dependence. Standard

texts on spatial effects, specification strategies and an overview of inference for the

standard spatial process models include Anselin (1988), Haining (1991) and Cressie

(1993). Spatial heterogeneity refers to structural relations that vary over space, either

in a discrete manner (for instance urban versus rural) or in a continous manner

(such as a trend surface for ozone). Spatial dependence points to systematic spatial
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variation that results in observable clusters or systematic spatial pattern. The usual

convention of using the terms spatial dependence, spatial autocorrelation and spatial

clustering interchangeably is continued. Strictly speaking, spatial dependence is a

characteristic of the joint probability density function. As such, it is only verifiable

under simplifying conditions such as normality. Spatial autocorrelation is simply a

moment of that joint distribution.

The presence of spatial heterogeneity does not necessarily have severe implications

for the information that can be obtained from the spatial dataset. Spatial

autocorrelation does, however, because an observation is partly predictable from

neighbouring observations. A series of spatially dependent observations therefore

contains less information. This is similar to the time series situation where a forecast

can be partly inferred from the past

Although work on spatial autocorrelation can be traced back to the work of

pioneering statisticians such as Moran (1950), Geary (1954) and Whittle (1954),

the development of the literature is slow until Cliff & Ord (1981). Ignoring spatial

autocorrelation when it is present has different consequences depending upon whether

the correct model is a spatial lag or a spatial error specification4 (see Anselin 2003a,

for details). Ignoring a spatially lagged dependent variable is equivalent to an omitted

variable error and will lead to Ordinary Least Squares (OLS) estimates that are biased

and inconsistent. Monte Carlo studies have shown OLS estimates to biased by up to

35 percent when a spatially lagged dependent variable is incorrectly excluded from

the specification (Darmofal 2006). Alternatively, ignoring the presence of spatially

correlated errors will produce biased standard errors for the OLS estimates, but the

OLS estimates themselves will remain unbiased; it is therefore more a problem of

4Unsurprisingly, the spatial lag model includes a spatially lagged dependent variable where as
the spatial error model includes an autoregressive process for the error term.
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efficiency. Yet this can cause serious Type I errors with the biased standard errors

being as low as 50 percent of the true standard errors (Darmofal 2006). Moreover,

to the extent that the spatially correlated errors mask a spatially varying omitted

variable, the true consequences of ignoring this problem may be more serious than

much of the literature acknowledges.

Research into the specification, estimation and application of spatial regression

models is a legitimate and worthwhile enterprise with applications spanning the

breadth of economics. Although much work has taken place in this arena there is

still a long way to go until the range of spatial methods matches those available in

the standard cross-sectional and time-series toolboxes.

1.3 Road Safety Performance Indicators

Performance management is a high profile activity throughout the public sector in the

UK. Road safety is no exception and is typical of activities which are monitored by

performance indicators (PIs) based on ‘outcome measures’ (Bailey & Hewson 2004).

In particular, the UK Government has identified three traffic safety targets which are

expected to be achieved by 20105: a 40 percent reduction in the number of fatally

or seriously injured casualties, a 10 percent reduction in the rate of slight casualties

relative to the level of traffic, and a 50 percent reduction in the number of children

who were fatally or seriously injured (DfT 2000). Related performance indicators,

broken down by modal group, are monitored and published in the local authority

league tables under the ‘best value’ requirements of the Local Government Act 1999

(Department for Transport, Local Government, and the Regions 1999).

5These were set relative to a baseline of the mean number of casualties that were reported between
1994 and 1998 inclusively
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However, current UK road safety performance indicators continue to be expressed

simply in the form of crude per capita numbers of reported collisions by type

and modal group, with no allowance for geographically differing patterns in road

infrastructure and usage, or spatially varying socioeconomic conditions. In fact,

according to Bailey & Hewson (2004) there is no explicit consideration given to the

extent to which differences in the raw rates reflect differential performance, rather

than just inherent random variability in observed rates. In general, local government

activity does not appear to have received anything like as much attention in the

literature as that devoted to performance monitoring in other sectors. For instance,

although local government (in the UK at least) plays a significant role in education,

performance monitoring interest in that sector has largely focused on the school as

the observational unit, rather than on the Local Educational Authority.

Traditional econometric methods for modelling performance and productivity of

organisations such as Data Envelopment Analysis and Stochastic Frontier Analysis

are problematic when applied to the public sector (Stone 2002a). This is partly

due to the lack of prices for outputs and poor data on outputs, but there is also

some concern that a single measure of (in)efficiency isn’t appropriate for monitoring

complex public service organisations (Smith & Street 2005). Given the extent of

the public sector and the lack of appropriate tools available, developing more general

methods for measuring and ranking public sector performance is clearly an important

theme for social science research.

1.4 The contribution of this research

There are two motivations for this research. One is methodological — to extend

the range of multivariate conditional autoregressive models available for spatially
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correlated data; and the second is applied — to reduce the uncertainty in multiple

road safety performance indicators by exploiting the spatial correlation inherent in

the data.

Many applied econometric problems are inherently multivariate in that more than

one dependent variable is measured for each unit of observation. Multivariate spatial

datasets are now prevelant in economics, particularly at areal level. Yet despite a

growing spatial methodological literature there are limited empirical tools available

to investigate multivariate spatial data. Chapter 3 provides an overview of the main

models in the existing sparse literature. In general, existing multivariate approaches

are shown to have severe constraints on the within site and across site correlations

(see the discussion in Banerjee et al. 2004, chap. 7). The conditional means in

the existing models are also directly dependent upon the number of neighbours,

which in irregular lattices will not be constant across the lattice. Additionally these

multivariate models are intended for the analysis of continuous dependent variables.

Frequently, economically relevant variables are discrete and this will be the focus of

this thesis.

This thesis will develop a new model for multivariate spatial data recorded on a

lattice. The innovation in this model will be the incorporation of very general forms

of intra and inter site correlations for the multiple variables i.e. allowing for the

possibility of asymmetric spatial cross-correlations. To make this concrete, consider

a lattice consisting of just three sites and two variables. In figure 1.1 there are three

sites (1, 2 and 3) represented by the circles and for each site data on two variables

(A, B) are recorded. There are five separate correlation parameters indicated in

the figure. There is a spatial autocorrelation parameter α1 relating observations of

variable A across the sites on the lattice. Similarly, variable B has its own spatial

7



autocorrelation parameter, α2. Given that two variables are recorded at each site,

there is the potential that these two variables are correlated, hence the correlation

coefficient, ρ in figure 1.1. There is also what is termed a spatial cross-correlation or

linking parameter in the literature, α3, which links variable A at site i with variable

B at site j. The existing literature consists of models that incorporate these four

types of correlation. This thesis aims to develop a model that allows for the cross-

correlation to be asymmetric i.e. that there is a fifth correlation parameter, α4,

linking variable A at site j with variable B at site i. The additional flexibility offered

by incorporating asymmetric spatial cross-correlations will be the principal theoretical

aim of this research.

The use of generalized linear mixed models (GLMMs) for performance measure-

ment and ranking is well-established in the literature. A common finding is that

these models result in an inability to differentiate performance. In an attempt to

improve the estimation of local authority road safety performance, this new flexible

spatial model will be incorporated into a GLMM for a dataset of multiple road traffic

performance indicators recorded for the census output areas. Each performance

indicator is nested within a census output area which is nested within a Local

Authority (LA). The GLMM will provide estimates of a random effect which can

be considered latent local authority performance. By incorporating a spatial model

into this GLMM, additional structure will be imposed onto the random effects with

the aim of reducing the variance or uncertainty associated with these performance

measures. This is the empirical aim of this research.
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Figure 1.1: A representation of correlation coefficients on a two-dimensional bivariate
lattice

1.5 Research Aims & Objectives

This research aims to extend the standard econometric toolbox to include a

multivariate model with asymmetric spatial cross-correlations. After developing the

model it will be demonstrated through an application to road safety performance

indicators, a topic at the border between transport economics and public economics.

The detailed objectives are therefore to:

1. Develop a flexible multivariate conditional autoregression that allows asymmet-

ric inter site spatial correlations.
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2. Demonstrate the performance of the model through a comparison with existing

models using simulated data.

3. Demonstrate the applicability of this model through investigation of multiple

traffic safety performance indicators in London.

4. Contribute to an improvement in public sector performance management by

reducing the uncertainty of performance rankings through the inclusion of

spatial correlation.

5. Provide a more general method for ranking public sector organisations than

Data Envelopment Analysis and Stochastic Frontier Analysis.

6. Contribute to the road safety literature by identifying good and weak performing

local authorities.

7. Provide the relevant computer code to perform parameter estimation, statistical

inference and diagnostics within the Bayesian paradigm.

8. Provide a thorough introduction to multivariate conditional autoregression

models.

1.6 Summary

The importance of space was first acknowledged in economics in the 1950s by Isard,

yet it was not until the 1980s that there was any concerted effort to provide the

necessary methodological framework to model spatial effects. There was a rapid

expansion of the theoretical econometric literature in the 1990s and since then there

have been a growing number of applied spatial econometric articles. Today, it is

quite common to consider the possibility of spatial autocorrelation when performing
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econometric analysis. Ignoring it can lead, at best, to biased standard errors and

more likely to biased and inconsistent parameter estimates.

Multivariate datasets are increasingly available in economics yet the tools to model

them have been lacking from the literature. This thesis aims to partially fill this gap by

developing a flexible multivariate spatial model that incorporates asymmetric cross-

correlation parameters. This model will be demonstrated through an application to

a multivariate dataset of road safety performance indicators for London indexed over

census output areas. In doing so, it is hoped that the uncertainty in the individual

rankings will be reduced and that this will enable differential performance to be

identified.

This thesis is structured as follows. The next chapter provides a brief review of the

necessary theory to model univariate spatial processes. Chapter 3 then looks at the

existing literature on multivariate spatial models demonstrating a clear need for this

current research into flexible multivariate models. In chapter 4 the use of performance

indicators in public sector management as well as more specificaly within road safety

performance management is discussed. The rather sparse literature in this area is

reviewed. In particular, the main problems with the current system of crude headline

indicators are presented, and a motivation for the application is provided. The main

contribution to the theoretical literature is chapter 5, which presents an innovative

flexible multivariate conditional autoregression model. The performance on the model

in comparison with the existing approaches is considered through a simulation study

in chapter 6. Chapter 7 is the principal empirical contribution of this thesis and is

an application of the flexible multivariate conditional autoregression model to a set

of multiple road safety performance indicators. Chapter 8 discusses the outcomes of

the thesis and chapter 9 concludes.

11



CHAPTER 2

A BRIEF REVIEW OF UNIVARIATE

SPATIAL MODELS

2.1 Introduction

This thesis considers multivariate spatial autoregression models. As a point of

departure, this chapter reviews two well established univariate spatial autoregressive

models. There are two forms of effects considered: spatial dependence and spatial

heterogeneity. Spatial dependence is a particular case of cross-sectional dependence,

in the sense that the structure of the correlation or covariance between observations at

different locations is derived from the specific ordering, which in turn is determined by

the relative position of the observations in geographic space (or, in more general terms,

network space)1. While similar in concept to correlation in the time domain, spatial

dependence requires specialised methods that are not straightforward extensions of

the time-series techniques to the spatial domain. Therefore, this chapter reviews

the essential univariate theory for spatial autoregressions. Spatial heterogeneity is a

special case of observed (or unobserved) cross-sectional heterogeneity which is a well

studied problem in standard econometrics. Unlike spatial dependence, tackling spatial

heterogeneity does not require specialized tools and as such will not be explicitly

1See for instance Lee (2007) or Lin (2005), for examples of spatial autoregression models applied
to the social interaction literature and Manski (1993) infamous reflection problem
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considered in this thesis.

With geographically referenced data over a regular or irregular lattice it is common

to incorporate the spatial dependence into the covariance structure either explicitly

or implicitly via an autoregressive model. When the geographic location of the

observations is known it is common to assume that observations at sites near each

other may have a similar value on the omitted variables in the regression causing

the error terms to be serially autocorrelated. Once a neighbourhood structure is

determined (usually by the econometrician with reference to the actual lattice),

models resembling autoregressive models from time-series econometrics are formed.

Two popular models in the spatial literature are the conditionally autoregressive

model (CAR) favoured by statisictians and the simultaneously autoregressive model

(SAR) which dominates the econometric and regional science literature.

These models were originally developed for analysis on a regular (doubly infinite)

lattice beginning with Whittle (1954) for the SAR model and Besag (1974) for the

CAR model. As discussed in Cressie (1993) when used for modelling a doubly

infinite regular lattice, these models are analgous to the well understood stationary

autoregressive time series model defined on the integers. That is, the CAR is analgous

in its Markov property, and the SAR specification in its functional form. Spatial

autoregressive models were first deployed in economics to analyze data on regular

lattices, which may arise for instance, in agricultural field trial experiments. In

practice, particularly in economics where data are generated in non-experimental

settings, these models are usually applied to irregular lattices and the effect of the

neighbourhood structure and the spatial correlation parameter have on the implied

covariance is not well understood. When applied to irregular lattices several authors

have pointed out that the models exhibit some undesirable and often unexpected

13
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properties (for instance Besag & Kooperberg (1995) and Wall (2004)).

This chapter focuses on the two principal autoregressive models for a vector of

observations y on a univariate random variable, Y , recorded for a set of locations,

s. It leans on the excellent textbook presentations of Anselin (1988), Haining

(1991), Cressie (1993) and Rue & Held (2005) summarising and simplifying the

methodological aspects required to understand the multivariate approach developed

in this thesis. As such it can be omitted by readers familiar with these texts or

confident in the specification, estimation and testing of these particular univariate

spatial models. To begin consider how the econometrician codifies the geographical

relationships in the data by specifying neighbourhoods.

2.2 Neighbourhoods

The concept of a neighbourhood is central to the study of spatial dependence.

Consider a spatial location s and a random variable Y associated with each location.

This location may be an actual geographical location, but it may also refer to a time

of occurrence in panel/longitudinal data, or a grouping mechanism in a subsampling

or repeated-measures study. For example, in a spatial problem, there may be

(si) = (ui, vi), where ui is longitude or northing and vi is latitude or easting; in

a multivariate time-series application there may be (si) = (k, tk(j)), where k indexes

the variable and tk(j) is the time at which the jth observation of the kth variable

is obtained. Letting s vary over the index set D ⊂ Rd generates a random field

{Y (s) : s ∈ D}. For lattice data, D is commonly assumed to be given a finite (or

countably infinite) collection of points. Lattices may be regular (like a grid) or more

commonly in applied situations, irregular, such as census areas (ouput areas, wards,

counties), regions, fields, etc. This thesis will consider irregular lattices.

14
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An integral feature of spatial autoregressive models is the specification of

neighbourhoods. For each site (si) on the lattice, D, a neighbourhood is a collection of

sites that are in spatial proximity. Many schemes exist for defining sites as neighbours

(see Anselin (1988) for a discussion) but in this thesis two sites that share a common

border (adjacency) will be considered neighbours.

The primary concept here is a proximity matrix,W . The entries wij inW spatially

connect locations i and j in s. Typically wii = 0 and wij = 1 if and only if i and

j share a common boundary. As a result, W is usually symmetric. However, it is

common to standardize the wij’s by Σjwij = wi+. If W̃ has entries w̃ij = wij/wi+,

then evidently W̃ is row stochastic, i.e. W̃1 = 1, but now W̃ need not be symmetric.

The entries in W can be viewed as weights. The specification of neighbourhoods via

a spatial proximity matrix is how spatial dependence is considered. A key concept

embodied by the structure of the spatial proximity matrix is conditional independence

which is considered in the next section.

2.3 Time Series Autoregressions

2.3.1 Conditional Independence

Much of the methodological material presented in this thesis depends upon conditional

independence as implied in the concept of a Markov chain, or more generally in the

spatial case, a Markov random field. Conditional independence is a powerful concept

and its discussion is motivated by reconsidering the time-series autoregressive models

familiar to applied econometricians. Let y = (y1, y2, y3)
′ be a random vector, then y1

and y2 are conditionally independent given y3, if for a known value of y3, discovering

the value of y2 provides no information about the distribution of y1. Under conditional
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independence, the joint density π(y) must be:

π(y) = π(y1 | y3)π(y2 | y3)π(y3) (2.3.1)

which is a simplication of the more general representation

π(y) = π(y1 | y2, y3)π(y2 | y3)π(y3). (2.3.2)

The conditional independence assumption implies that π(y1 | y2, y3) can be

simplified to π(y1 | y3) because it provides no additional information.

2.3.2 AR(1) Processes

Consider a simple autoregressive time series of order one with white noise errors

and with the autoregressive parameter |ρ| < 1 so as to ensure covariance stationarity.

Any standard econometric textbook such as Greene (2003) or Davidson & MacKinnon

(2004) will cover this model in detail. This ‘textbook’ autoregressive model is usually

represented

yt = ρyt−1 + εt εt ∼ Niid(0, 1), |ρ| < 1 (2.3.3)

where the subscript, t, indexes time. Assumptions about conditional independence

are not explicit in (2.3.3) but show up more clearly if expressed (2.3.3) in conditional

form

yt | y1, ..., yt−1 ∼ N (ρyt−1, 1) (2.3.4)

for t = 2, ..., n. In this model ys and yt with 1 ≤ s ≤ t ≤ n are conditionally

independent given {ys+1, ..., yt−1} if t− s > 1.

In addition to (2.3.4), assume that the marginal distribution of y1 is normal with
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mean zero and variance 1/(1− ρ2), which is simply the stationary distribution of this

AR(1) process. The joint density of y is then

π(y) = π(y1)π(y2 | y1)...π(yn | yn−1) (2.3.5)

=
1

(2π)n/2
det(Σ−1)1/2exp(−1

2
y′Σ−1y). (2.3.6)

where Σ−1 is the precision matrix2 or the inverse variance-covariance matrix which

is the tridiagonal matrix

Σ−1 =



1 −ρ

−ρ 1 + ρ2 −ρ
. . . . . . . . .

−ρ 1 + ρ2 −ρ

−ρ 1


(2.3.7)

with zero entries outside the diagonal and the first off-diagonals. The conditional

independence assumptions impose certain restrictions on the precision matrix (Demp-

ster 1972). The tridiagonal form is due to the fact that yi and yj are conditionally

independent for |y − j| > 1, given the rest. If Σ−1ij = 0 for i 6= j, then yi and yj

are conditionally independent given the other observations {yk : k 6= i and k 6= j}

and vice versa. The simple relationship between conditional independence and the

sparse nature of the precision matrix is not apparent from investigating the variance-

2The precision matrix is used in many Bayesian settings because it offers computational
advantages as the conditional independence assumptions represented in it are readily exploited by
Markov chain Monte Carlo methods. Therefore MRF methods can be employed without the need
for computationally expensive matrix inversion.
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covariance matrix, Σ which is completely dense with entries

σij =
1

1− ρ2
ρ|i−j|. (2.3.8)

It is difficult to derive the conditional assumption from such a dense matrix. For

example, for a sample of n = 5 the variance-covariance matrix would be:

Σ =
1

1− ρ2



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


(2.3.9)

The enteries in Σ, above, only give information directly about the marginal

dependence — in this AR(1) model the observations ys and yt are marginally

dependent whenever ρ 6= 0.

Simplied forms are obtained not only through the directed conditionals seen in

(2.3.4) but also through the full or undirected conditionals {π(yt | y−t)}, where y−t

denotes all observations in the vector y excluding yt. Returning to the AR(1) example,

yt | y−t ∼


N (ρyt+1, 1) t = 1,

N
(

ρ
1+ρ2

(yt−1 + yt+1),
ρ

1+ρ2

)
1 < t < n,

N (ρyn−1, 1) t = n,

(2.3.10)

so, in general, yt depends both on the previous (yt−1) and the future (yt+1) obser-

vations. Equation (B.1.1) illustrates an important alternative model specification

through the full conditional distributions π(yt | y−t) for t = 1, ..., n. As will be seen

in more detail in section 2.4.1 beginning with the full conditional distributions allows
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an alternative, yet equivalent, specification for the joint density of y to be derived.

This is not as obvious as using the directed conditional densities in 2.3.4 to form the

joint densities as a product of these densities times the marginal density of y1, which

necessitates the level of detail provided in section 2.4.1.

2.4 Markov random fields

A Markov random field is the key to moving from the full conditional distributions

presented in Section 2.3.2 to a joint distribution for y. A Markov random field

(MRF) is a name given to a natural generalisation of the well known concept of

a Markov chain. It arrises by considering the chain itself as a simple graph and

ignoring the directionality implied by ‘time’. A Markov chain can then be seen

as a chain graph of stochastic variables, each of which has the property of being

independent of all the others (the future and the past) given its two neighbours. Using

this interpretation of a Markov chain, a Markov random field is the same thing but

instead of the chain graph we allow any graph to determine the relationship between

the variables. Rozanov (1982) presents a very general treatment of MRFs and Rue &

Held (2005) provide a thorough treatment of Gaussian Markov Random Field models

with applications that include state-space models and time-series analysis.

A MRF is therefore a stochastic process Y indexed over some countable subset

of Rk. To any such MRF corresponds an acyclic algebraic graph with undirected

edges3(Whittaker 1990). This section is concerned with the construction of a joint

distribution for y, given a complete set of full (univariate) conditional distributions.

3An undirected graph G is an ordered pair G = (V, E) that is subject to the following conditions:
(i) V is a set, whose elements are called vertices or nodes, and (ii) E is a multiset of unordered pairs
of vertices (not necessarily distinct), called edges or lines. Bying acyclic there is no single cycle
through all the nodes of the graph. See, for example, Lauritzen (1996) for further details.
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As Besag (1974) discussed, these conditional distributions are the building blocks of

a MRF.

2.4.1 Brook’s Lemma and the Hammersley-Clifford Theorem

A useful technical result for constructing the joint distribution of the y is Brook’s

Lemma (Brook 1964) as described in the seminal paper by Besag (1974) on

Conditionally Autoregressive (CAR) models. A technical presentation of this theorem

is reserved to appendix B.1 and it is discussed only intuitively here. It is clear that

given the joint distribution π(y1, ..., yn), the so-called full conditional distributions,

π(yi | y−i), are uniquely determined, as demonstrated in section 2.3.2. Brook

(1964) demonstrates how to retrieve the unique joint distribution given these full

conditionals. It should be obvious that an arbitrary set of full conditional distributions

can not simply be written down and it asserted that they uniquely determine the joint

distribution. Textbooks such as Banerjee et al. (2004) and Cressie (1993) are replete

with examples of contradicting and incompatible full conditionals. This thesis does

not propose to examine these conditions for compatibility in much detail, although

there has been considerable work in this area (see for example Arnold & Straus

(1991) and references therein). Typically these conditions reduce to requiring that

the precision matrix,Σ−1, is a symmetric and positive-definite matrix. As noted in

Rue & Held (2005) an all too common approach to ensuring the positive-definite

condition is met is to force the precision matrix to be diagonal dominant.4 This is a

sufficient but not necessary condition for positive-definiteness, which will be discussed

in section 2.5.1.

4Meaning that for each row (or column) of Σ−1 the diagonal entry is larger than the sum of the
absolute off-diagonal entries.

20



CHAPTER 2. A BRIEF REVIEW OF UNIVARIATE SPATIAL MODELS

Although Brook (1964) illustrates how to create the joint density from the full

conditionals up to a constant of proportionality, it is often cumbersome for a large

number of geographical areas. Instead, it may be preferable to model the n full

conditionals. In the context of a spatial model, it is expected that the full conditional

distribution for yi should depend only upon the neighbours of site i. Using the

definition of a neighbourhood presented in section 2.2 let ∂i represent the set of site

i′s neighbours. Then a set of full conditionals of the following form are obtained

π(yi | y−i) = π(yi | {yj : j ∈ ∂i}) (2.4.1)

All that is required is to be assured that (2.4.1) specifies a joint distribution i.e. if

a Gibbs sampler (Geman & Geman 1984) is implemented to simulate realisations from

the joint distribution that there actually exists a unique stationary joint distribution

for this sampler. This concept of using a local specification such as (2.4.1) to determine

a joint or global distribution should be a familiar notion to Bayesians and is called

a Markov random field. The literature on this topic is voluminous and there is

no attempt to cover it here, although a good starting place is Geman & Geman

(1984). Section 5.8.2 provides a very brief overview of the Gibbs sampler in terms

of implementing the model developed in chapter 5. Additionally, Gelfand & Smith

(1990) provide a good introduction to the topic and Kaiser & Cressie (2000) provide

a current perspective with numerous references.

A few important definitions are required, and a starting point is to determine a

clique: a set of sites (or indices) such that all elements in the set are neighbours of

all the other elements. Adopting the terminology from physics a potential function

of order k is a function of k arguments that is exchangeable in those arguments.

The arguments of the potential would be the values of the variables associated with
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the sites for a clique of size k. For continuous Yi, a typical potential when k = 2

is YiYj, if i and j are a clique of size 2. If there were only cliques of size 1 then

data are independent. Another important definition is that of a Gibbs distribution:

π(yi, ..., yn) is a Gibbs distribution if it is a function of the Yi only through potentials

on cliques. For example,

π(y1, ..., yn) ∝ exp{γ
∑
k

∑
α∈Mk

φ(k)(yα1 , yα2 , ..., yαk
)}. (2.4.2)

where φ(k) is a potential of order k, Mk is the collection of all subsets of size k from

{1, 2, ..., n}, α = (α1, ..., αk)
′ indexes this set and γ > 0 is a scale parameter.

Informally then, the unpublished Hammersley-Clifford Theorem (see for example

Clifford 1990) states that if there exists an MRF as per equation (2.4.1) then the

unique joint distribution defined by it is a Gibbs distribution (see Besag 1974, for

an exposition). Again, a formal treatment of this theorem is provided in appendix

B.2 for interested readers. The result of the Hammersley-Clifford Theorem means

that the MRF model can be written in the form of equation (2.4.2) with all of the

‘action’ coming in the form of potentials on cliques. The inverse was proven by

Geman & Geman (1984); beginning with a Gibbs distribution such as (2.4.2) a MRF is

determined. The significance of this was that simply sampling from the related Gibbs

distribution provides samples from the related MRF.5 MRFs that are Gaussian form

a class of model introduced by Besag (1974) and labelled Conditional Autoregression

(CAR) models in the literature. The CAR model, presented in the next section, forms

the basis of the multivariate approach developed in this thesis.

5Hence Geman & Geman (1984) coined the term “Gibbs Sampler” to describe their method.
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2.5 Conditional Autoregressions

2.5.1 Theory

Extensive literature on the origins, derivation and properties of this model can be

found in Cressie (1993). Therefore only a brief summary is presented here. Assuming

Yi) is univariate, Besag (1974) shows that, under given consistency conditions (e.g.

positivity), the conditional distributions

π(yi | y−i) = π(yi | {yj : j ∈ ∂i}) (2.5.1)

can be used to determine the joint distribution

π(y1, ..., yn) (2.5.2)

which is called a MRF. MRFs that are Gaussian define a class of models that were

described in earlier sections as conditional autoregressive (CAR) models. Assuming

the conditional distributions in (2.5.1) are Gaussian, the ith distribution (i = 1, ..., n)

is specified through

E[yi|{yj : j ∈ ∂i}] = µ+
∑
j∈∂i

bij(yj − µj), (2.5.3)

Var[yi|{yj : j ∈ ∂i}] = τ 2i . (2.5.4)

These full conditionals are compatible so via Brook’s theorem (see Section 2.4.1) the

joint distribution is

π(y1, ..., yn) ∝ exp{−1

2
(y − µ)′Γ−1(I −B)(y − µ)}, (2.5.5)
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with B = {bij} capturing the spatial dependence and Γ = diag(τ 2i ). Equation (2.5.5)

yields a multivariate joint distribution for y as

y ∼ Nn(µ, (I −B)−1Γ). (2.5.6)

In the presence of covariates, µ is reparameterized as µ = X ′β where X is an n

x q matrix of known covariates and β is a q x 1 vector of regression parameters. Of

course, the joint distribution in (2.5.6) must be well defined: the elements of B must

be chosen so that (I − B)−1Γ is a symmetric, positive-definite matrix. To ensure

symmetry the following is required

bij
τ 2i

=
bji
τ 2j

∀i, j. (2.5.7)

From (2.5.7), B is not symmetric. However, assuming a symmetric proximity matrix,

W (see Section 2.2) set bij = wij/wi+ and τ 2i = τ 2/wi+. Now (2.5.7 is symmetric

and (2.5.3) becomes π(yi | yj, j 6= i) ∼ N (
∑

j wijyj/wi+, τ
2/wi+). Also (2.5.5) now

becomes

π(y1, ..., yn) ∝ exp{− 1

2τ 2
(y − µ)′(Dw −W )(y − µ)}, (2.5.8)

with Dw = diag(wi+). Unfortunately now (Dw−W )1 = 0, i.e. the precision matrix is

now singular so that covariance does not exist, hence distribution (2.5.8) is improper.6

Expression (2.5.8) can be expressed in pairwise form as

π(y1, ..., yn) ∝ exp{− 1

2τ 2

∑
i 6=j

wij(yi − yj)2} (2.5.9)

6When the precision matrix is singular there is a non-integrable density function i.e. there are
too many variables and a contraint is required. Where as when the variance-covariance matrix is
singular there is no density function but a proper distribution residing on a lower dimensional space,
i.e. there are too few variables.
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which more clearly shows the impropriety of the joint distribution (undefined mean

and infinite variance) since any constant can be added to the observations yi without

affecting expression (2.5.9). Introduced by Besag et al. (1991) this specification of

the CAR model is usually termed the intrinsic autoregressive model (IAR).

As a constraint cannot be imposed on (2.5.9) in order to restore propriety,

model (2.5.9) cannot be used as a model for data. Nevertheless, a proper posterior

distribution – in the sense of a Bayesian hierarchical model – will result when used

(2.5.9) is used as a prior distribution and subjected to the (usual) requirement of a

proper hyperprior distribution on the variance components. Thus, as intended by

Besag et al. (1991) this can be used as a prior distribution for the spatial effects.

That is, it could be employed as a prior distribution for spatial random effects in

the second (or third) stage of a Bayesian hierarchical model. Section 2.5.2 provides

further details.7

There is an obvious alternative solution to the problem of a singular precision

matrix in expression (2.5.8). Redefine Σ−1 = (Dw − ρW ) choosing ρ to ensure that

Σ−1 is positive definite. This requires that ρ ∈ (1/λ(1), 1/λ(n)), where λ(1) < λ(2) <

... < λ(n) are the ordered eigenvalues of D
−1/2
w WD

−1/2
w (refer to Cressie 1993, p.

471)8. A yet simpler constraint on the precision matrix is if the proximity matrix,

W is reparameterized as the row-stochastic or row-standardized counterpart, W̃ ≡

diag(1/wi+)W , introduced in section 2.2. W̃ is no longer symmetric. Rewritting

Σ−1 = M−1(I −αW̃ ) where M is diagonal. Then (I −αW̃ ) is non-singular as long

as |α| < 1. Banerjee et al. (2004) show that Σ−1 is diagonal dominant and symmetric

7Gelman et al. (2003) provides a gentle yet complete introduction to the Bayesian approach for
the unfamiliar. A very general introduction to Bayesian econometrics is provided in Poirier & Tobias
(2006) and standard texts include Koop (2003) or Lancaster (2004).

8The appendices provide a brief review of the linear algebra necessary to prove these results for
the unfamiliar reader
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which makes it a positive-definite matrix. This forces α ∈ (−1, 1) irrespective of the

neighbourhood structure chosen for W when specification (2.5.8) is used. The case

of α = 0 has immediate interpretation as conditional independence. There is also an

intuitive interpretation of the conditional mean E(yi | y−i) as a weighted average of

the random effects for all neighbours, but it does cause the conditional variance to be

non-constant across areas (i.e. it induces heteroscedasticity). Further, interpretation

of α is not straightforward – see Sun et al. (2000) for an interpretation of α as a spatial

shrinkage factor – and a value close to the maximum (1/λ(max)) is needed to reflect

even moderate spatial dependence (Besag & Kooperberg 1995). This is essentially

what Besag et al. (1991) do in the intrinsic autoregression presented earlier; in effect

they force α to its upper limit of 1.

The CAR model is reconsidered in the next chapter when the current literature on

multivariate spatial models is reviewed. In this section the specification of a global or

joint distribution based solely upon a local specification through the n full conditionals

was considered. Given its prominence in the Bayesian literature on MCMC sampling

this should not be controversial material. The main consideration when constructing

a CAR is ensuring that the precision matrix is non-singular. A number of ways to

impose this constraint were presented. Typically, the CAR model will not be used

as a model for data, but instead as a second stage prior specification for the spatial

random effects. How to implement the CAR model as a prior in a hierarchical model

is considered in the next section.

2.5.2 Hierarchical Modelling for Non-Gaussian Data

When using the CAR specification to model the data directly, the dependent

variable will often not be normally distributed. Common extensions to the Gaussian
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CAR specification of Besag (1974) include models for binary data, often called the

autologistic CAR (see Banerjee et al. 2004, chap. 3). As Section 2.5.1 discussed,

the CAR model is often used as a prior for spatial random effects in a hierarchical

(Bayesian) setting rather than as a model for the data. In this situation, the

Instrinsic Autoregression (IAR) model presented in Equation (2.5.9) is suitable

as it leads to a proper posterior distribution despite being improper itself. This

hierarchical framework is particularly useful when the data are counts because the

Generalized Linear Modelling (GLM) framework of Nelder & Wedderburn (1972) can

be employed.9 Including a spatial random effect term changes the GLM into a GLMM

or Generalized Linear Mixed Model — see, for example, Breslow & Clayton (1993),

Clayton & Kaldor (1987) and Besag et al. (1991).

GLMMs are appropriate for accommodating the overdispersion (extra-Poisson

variation) in count data, for modelling the dependence between dependent variables in

multilevel and multivariate analyses and for producing shrinkage estimators in multi-

parameter problems. It is not surprising therefore, that the most common application

of a CAR prior in the GLMM regression framework is within epidemiological disease

mapping. There, the spatial random effects model is modelling the underlying risk

surface which is assumed to come from some common distribution. See Elliott et al.

(2000) for a review.

Consider the following GLM set-up for a discrete random variable Yi such as the

number of children killed or seriously injured in each area, i:

Yi | θi ∼ Poi(Eie
θi), (2.5.10)

θi = α +Xβ + ψi + φi + ε. (2.5.11)

9A standard reference on GLMs is McCullagh & Nelder (1989).
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Equation (2.5.10) represents the first two stages of a hierarchical Poisson GLM with a

matrix of explanatory variables, X, and coefficients β. The explanatory variables are

area level and although interpretation must be done carefully to avoid ecological bias

it is hoped that they will explain some of the spatial variation in the observed counts,

Yi. A common procedure when modelling count data is to standardize the data by the

expected number of counts in each area, Ei. For instance, the number of accidents in a

particular area will be dependent upon the local population and thus perhaps a more

interesting model investigates any difference from the expected number i.e. increased

road traffic risk. Letting Yi be the observed number of accidents in site si and Ei to be

the expected number. There are two methods of standardization employed, internal

standardization and external standardization, and these will be discussed in more

detail in chapter 7. The ψi in (2.5.10) capture the global or region-wide heterogeneity

(i.e. they capture any global extra-Poisson variation) and is usually modelled via an

exchangeable normal prior

ψi ∼ N (0, τ 2h). (2.5.12)

The φi in (2.5.10) are the spatial random effects and capture the extra-Poisson

variation that occurs locally (i.e. through neighbourhoods). Although alternatives

exist, the most common prior for this spatial random effect term (φi) is the Gaussian

CAR presented in (2.5.3) or the IAR presented in (2.5.9). Thus φi ∼ CAR(τ 2c ) where

τ−1c is the precision of the CAR model. The hierarchical framework is completed

by specifying priors for the precision hyperparameters in the priors for ψi and φi.

Alternatives to the CAR and IAR priors include a jointly specified multivariate

model (φi ∼ Nn(µ,Σ)) applied to environmental data in Diggle et al. (1998) as well

as semiparametric specifications such as the mixture model of Green & Richardson

(2002) and the partition model of Knorr-Held & Raßer (2000).
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Due to the MRF formulation of the CAR model (see Section 2.4.1) hierarchical

models employing the CAR or IAR prior are computationally convenient. The Gibbs

sampler (Geman & Geman 1984) for simulating from the posterior distribution of

ψi and φi operates by successively sampling from the full conditional distribution of

each parameter (i.e. the distribution of each parameter in the model given the data

and the other parameters). Therefore besides not requiring any computationally

expensive matrix inversion, there is no need for the joint distribution of φi at all. The

full conditional of φi is

π(φi | φ−i,ψ,β,y) ∝ Poi(yi | EieX
′β+ψi+φi)N (φi | φ̄i, τ 2c ). (2.5.13)

As noted in section 2.5.1, there are some difficulties in implementing the CAR

specification. For instance, the impropriety of the IAR version of the CAR model in

(2.5.9) as introduced by Besag et al. (1991) was discussed. The IAR is improper

in that it does not integrate to one and hence it is not a legitimate probability

distribution i.e. the precision matrix Σ−1 = (Dw − W ) is singular. Section

2.5.1 presented options for ensuring Σ−1 is non-singular including asserting diagonal

dominance. When using the IAR model as a prior for the random spatial effects in

(2.5.10) it does not matter that (2.5.9) is improper because the posterior in (2.5.10)

will be proper. However, in order to identify the intercept (α) in (2.5.10) the following

constraint
∑N

i=1 φi = 0 is required. One way to implement this constraint is to recentre

the vector φi around its own mean after each iteration of the Gibbs sampler.

The model is also sensitive to the choice of hyperpriors for τ 2h and τ 2c . These

precision terms control the amount of extra-Poisson variation in the global term, ψi,

and in the clustering or spatial random effect term, φi. If they are set arbitrarily

vague then the model becomes unidentified because only univariate Yi is observed
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whilst the model attempts to estimate two random effects for each i. One choice of

hyperprior would be the gamma distribution as it is conjugate. Such computational

issues will be discussed in more detail when the models are fitted to real data in

chapters 2.7 and 7, but note here that although CAR models are computationally

convenient that care must be taken when specifying the hierarchical components to

ensure identifiability and good convergence of the Gibbs sampler.

Implementing Gibbs sampling or alternative MCMC strategies requires repeated

evaluation of the multiple undirected conditional densities. Given a spatial random

effect, GLM hierarchical models such as the one presented in (2.5.10) necessitates

repeated evaluation of the likelihood and/or conditional densities requiring calculation

of the determinant and quadratic forms of the precision matrix. Even using Cholesky

decomposition (see Rao & Rao 1998, p. 173) and taking advantage of the sparse

nature of the precision matrices (see for instance Rue 2001), with large n computation

of n x n matrices can become unstable and convergence can be difficult to achieve.

When this problem is extended to a p dimensional multivariate dataset, evaluation of

np x np matrices is required. Therefore, careful consideration will be given to efficient

and stable sampling alogorithms when the multivariate CAR model is developed in

Section 5.

Despite their wide application in statistics, biostatistics, environmetrics and

epidemiology, conditional autoregressions have been overlooked within econometrics

in favour of the Simultaneous Autoregression (SAR) models, which are presented in

the next section. In fact, to date, the only application in the econometric literature

that was found is Parent & LeSage (2008) which adopts a CAR model for knowledge

spillovers. Section 2.7 attempts to explain this lack of interest in the CAR model

among econometricians whilst presenting a case for the superiority of the CAR model
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in certain situations.

2.6 Simultaneous Autoregressions

When modelling areal data, the Simultaneous Autoregression (SAR) of Whittle (1954)

is the main alternative to the CAR presented in Section 2.5.1. A brief introduction

to Simultaneous Autoregession (SAR) models can be found in Anselin (2006) and

Anselin (1988) provides a comprehensive treatment of them, while Wall (2004) and

Cressie (1993) compare the SAR and CAR specifications. As this thesis concentrates

solely on CAR models the SAR model is introduced only briefly as a comparison.

Consider expression (??) again. Instead of letting y induce a distribution for ε let ε

induce a distribution for y. Adopting the usual time series assumption of independent

innovations for εi and assuming ε ∼ N (0, Γ̃) where Γ̃ = diag(σ2
i ).

10 Analogous to

(2.5.3) the SAR can be written as:

E[y(si)] = µi +
∑
j

bij(yi − µj) + εi, (2.6.1)

for i = 1, ..., n and εi ∼ N (0, σ2
i ). Providing that (I −B) is full rank the following

joint distribution is obtained

y ∼ N (µ(I −B)−1Γ̃((I −B)−1)′) (2.6.2)

This model is called simultaneous because, in general, εi is correlated with {yj :

j 6= i}. To ensure that (I −B) is full rank it is possible to redefine B = ρW where

10Importantly, Γ̃ is not the same matrix as Γ from Section 2.5.1 hence the use of the tilde yet it
serves the same purpose in the model. The matrix B in this section may (or may not) be the same
as B adopted in Section 2.5.1
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W is the proximity matrix introduced in Section 2.2 incorporating elements wij = 1 if

areas i and j are neighbours and being 0 otherwise. Again, setting wii = 0. As in the

CAR example (see Section 2.5.1) the term (I−ρW ) will be non-singular as long as ρ ∈

(1/λ(min), 1/λ(max)) where λ(min) an λ(max) are the smallest and largest of the ordered

eigenvalues of W . In this form, ρ is commonly called the spatial autoregression

parameter and therefore yi = ρ
∑

j yjI(j ∈ ∂i) + εi. Similarly to Section 2.5.1 the

row-stochastic neighbourhood matrix W̃ could be adopted and then B = αW̃ . Now,

yi = α
∑

j yiI(j ∈ ∂i)/wi+ + εi and α is called a spatial autocorrelation parameter.

Analogous to the CAR situation with row-stochastic, W̃ , (I − αW̃ ) will be non-

singular if α ∈ (−1, 1) hence the name, autocorrelation parameter. It is perhaps the

intuitive interpretation of α that has lead to so many econometric applications of the

SAR model with row-stochastic proximity matrix, W̃ .

Typically, the SAR model is employed in a regression context in which the residuals

U = y −Xβ are assumed to follow a SAR model. Yet considering expression (??)

again, gives

y = By + (I −B)Xβ + ε (2.6.3)

demonstrating that y is modelled through a combination of a traditional OLS

regression and a spatial weighting of the neighbours. Expression (2.6.3) does not

induce any spatial effects as the errors are independent. As a result, the SAR

model cannot be used in conjunction with a Generalized Linear Model (GLM) and is

therefore not convenient for modelling discrete data such as the count data considered

in this thesis. In fact, no progress has been made in the discrete data field to date.

A popular specification for the SAR model is to incorporate the spatially lagged

dependent variable as an explanatory variable. See, for instance Anselin (2006) for

details or Kim et al. (2003) for an empirical example. This model is inevitably used
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with a row-stochastic neighbourhood proximity matrix, W̃ and therefore a spatial

autocorrelation parameter, α. The specification is:

y = αW̃y +Xβ + ε (2.6.4)

y = (I − αW̃ )−1Xβ + (I − αW̃−1ε (2.6.5)

(I − αW̃ )−1 = I + αW̃ + α2W̃ 2 + α3W̃ 3... (2.6.6)

(2.6.7)

where Xβ are a matrix X of explanatory variables with a vector of parameter

coefficients, β. One of the problems with specification (2.6.4) is that the partial

derivatives of yi with respect to the ith observation of the rth variable, xir involves

also xjr. Since the explanatory variables matrixX is transformed by the n x n matrix

inverse I−αW̃−1 any change in one variable within one site will affect the dependent

variable in other sites throughout the lattice and the conventional interpretation of the

regression parameters no longer holds. In particular, ∂yi/∂xjr 6= 0 and ∂yi/∂xir 6= βr.

As Kim et al. (2003) discuss, this is frequently ignored in applications of this model.

Too often econometricians and applied economists are interpreting the regression

coefficients, β as if they were from a standard OLS style linear regression model.

Thus, even though the SAR model takes on a similar matrix form as the standard (non

spatial) linear regresion model it is not true that it has the same ease of interpretation.

Textbooks by Anselin (1988), Anselin & Florax (1995), Florax & De Graaff

(2004) and Arbia (2006) present a number of extensions to the standard SAR model

presented here. There has been a growing literature adapting the SAR model to meet

the demands of econometric applications, yet as Section 2.5.2 discussed there have
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been very few extensions of the CAR model to suit econometric problems. As a result

there remains much research to be done.

2.7 Comparing the CAR and SAR

It is evident from the literature that in terms of spatial autoregressions, many

statisticians prefer CAR over SAR. Unlike SAR, CAR can achieve minimum mean

squared prediction error (see Cressie 1993, p. 408-410) and maximum entropy in some

circumstances (Künsch 1981). Yet despite the reported benefits, the SAR model is still

used extensively in many areas particularly economics and regional science (Anselin

2006).

This popularity may be due to the intuitive interpretation of the SAR model

as a semiparametric estimator when the row-stochastic proximity matrix, W̃ , is

used. According to Pace & LeSage (2003) using the CAR specification with a

doubly stochastic proximity matrix (i.e. one in which row and column sum to 1)

leads to the same intuitive interpretation. Although many authors appeal to the

intuitive interpretation of the ρ spatial autoregression or the α spatial autocorrelation

parameter in the SAR model, Martellosio (2006) argues using graph theory that this

is not actually the case. Furthermore, Wall (2004) examines in detail the correlation

structure implied by the CAR and SAR models. This study illuminates a number

of alarming pecularities in the models, which were first highlighted in Besag &

Kooperberg (1995). In particular, Wall (2004) argues that there is no intuitive

interpretation of the implied spatial autocorrelations that result from fitting CAR

and SAR models. With the use of a little graph theory Martellosio (2006) explains

these pecularities in an appealing manner; the relevant quantity appears to be the

length of walks between sites on the lattice.
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An undirected graph G is an ordered pair G = (V , E) that is subject to the

following conditions: (i) V is a set, whose elements are called vertices or nodes, and

(ii) E is a multiset of unordered pairs of vertices (not necessarily distinct), called

edges or lines. Two vertices are called neighbours if there is an edge between them.

A walk from a vertex, u, to a vertex, v is a sequence of vertices u = v0, v1, ..., vr = v

such that (v−i, vi) ∈ E(G) for 1 6 i 6 r where r is the length of the walk. From

Martellosio (2006) it is apparent that regardless of whether CAR or SAR is used the

covariance between sites i and j are generating functions of the total weight of the

walks of the same length between i and j in G. Because there are fewer constraints

on the form of the weights matrix, the correlation parameter will always be higher in

the case of the SAR model (see p. 17 of Martellosio 2006, for details). It is fair to

say (and unfortunate) that practitioners do not completely understand the properties

of these spatial autoregressive models (Anselin (2003a), Wall (2004), and Martellosio

(2006). Yet one thing is certain, the argument in favour of SAR models because of

their intuitive interpretability is flawed.

CAR and SAR models are similar, both being spatial generalizations of time-series

autoregressions (Brook 1964). As shown in Ripley (1981), the two models are only

equivalent in the limiting case of their covariance matrices being equivalent (assuming

that the mean has been successfully modelled). Using the CAR covariance matrix

from (2.5.6) and the SAR covariance from (2.6.2) this implies:

(I −B)−1Γ = (I −B)−1Γ̃((I −B)−1′) (2.7.1)

Cressie (1993) credits Brook (1964) with being the first person to compare the

conditional and simultaneous approaches. As already stated in Section 2.5.1, the

spatial proximity matrix, W , must be symmetric in the CAR specification but not in
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the SAR alternative. Although this may appear an advantage, the spatial proximity

matrix must be carefully specified to ensure identifiability of the spatial dependence

parameters. Likelihood computations with both SAR and CAR models are expensive,

and methods have to appeal to the sparse nature of the spatial weights matrix and

by extension the precision matrix. Estimation of SAR parameters is inconsistent

using OLS (Whittle (1954)) hence more sophisticated and often computationally

burdensome estimation techniques must be employed. In fact, estimation of SAR

model parameters is still an area of active research, and debate over the most

appropriate method (e.g. MLE versus GMM) is rife. On the other hand, CAR

models can be implemented with MCMC and has advantages when extending the

model to multivariate data. Additionally, as muted in Section 2.5.2, the CAR model

is available for use as a prior in a hierarchical GLM framework immediately opening

up discrete variables to spatial analysis. The same is not the case for the SAR model.

Econometricians have focused almost exclusively on SAR models; research by

R. Kelley Pace and James LeSage are the exception. However, despite their

fondness for the simultaneous approach many econometricians interpret their results

in a conditional expectations structure similar to standard linear regression. If

a conditional expectations interpretation is more natural then perhaps the CAR

approach should be adopted from the beginning.

2.8 Summary

This chapter provided a brief overview of the principal l univariate spatial models:

the Conditional Autoregression of Besag (1974) and the Simultaneous Autoregression

of Whittle (1954). The presence of spatial dependence can cause problems for econo-

metric models, both in terms of efficiency and bias. When spatial autocorrelation
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is present the econometrician has the choice of a conditional or a simultaneous

specification, as developed in sections 2.5.1 and 2.6 respectively. Both models require

the econometrician to specify whether or not each area of the lattice are neighbours

with the rest through the spatial proximity matrix, W , discussed in section 2.2. The

CAR and SAR models can be thought of as spatial analogues of the familiar time-

series autoregressions in standard econometrics textbooks: the CAR is similar in its

Markov property and the SAR in its functional form. Although the SAR model has

dominated the econometrics literature to date, section 2.7 presents a case for the

inclusion of the CAR model in the econometrician’s toolbox. In particular, the CAR

can achieve minimum mean squared prediction error and maximum entropy unlike

the SAR model. Given the ease of implementation of the CAR model through MCMC

methods and the relative computational burden of fitting SAR models, CARs can be

considered a pragmatic alternative in the right circumstances. Additionally, the CAR

model can be used as a spatial prior within a Bayesian hierarchical framework enabling

Generalized Linear Modelling to be implemented. This extends the applicability of

the CAR to discrete data such as counts.

Despite the rapid adoption of univariate spatial modelling in both statistics

and econometrics, the modelling of multivariate data has received relatively little

attention. In the next chapter recent innovations in the multivariate setting are

discussed and the key weaknesses with the existing specifications are identified. In

particular, the problem of incorporating differing spatial correlation parameters (α)

within and between sites in multivariate models is considered as well as the difficulties

in building MCMC sampling algorithms for multivariate CAR models.
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CHAPTER 3

A REVIEW OF MULTIVARIATE

SPATIAL MODELS

3.1 Introduction

The analysis of spatially correlated data is now an active area of research in both

applied and theoretical econometrics. However, with the exception of Gamerman

& Moreira (2004) and Kelejian & Prucha (2004)) this research has been limited

to univariate data, yet many economic problems are inherently multivariate and

there has been a long history of multivariate methods in econometrics. See for

example, Harvey (1989) or West & Harrison (1997) for multivariate regression models

in time series econometrics. The last chapter introduced the main theoretical

contributions to univariate spatial analysis: the conditional autoregression (CAR) and

the simultaneous autoregression (SAR). In comparison to econometrics, the statistics

literature has seen significantly more progress with multivariate data, although this

has been focused predominently on point-referenced or so called geostatistical data

(i.e. data with a continuously varying spatial index) rather than on data distributed

over a lattice (i.e. data with a discrete spatial index). In this chapter the relevant

literature for multivariate spatially correlated data on a lattice is reviewed. The

key theoretical developments in multivariate CAR models are presented and the

weaknesses of the existing approaches are identified. These reduce to the problems of
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modelling inter and intra site correlations between the multiple variables and issues

regarding sampling from the posterior distributions implied by these models. This

paves the way for the development of the flexible multivariate CAR model in Chapter

5.

Consider a p-dimensional random variable yi recorded at each site, i, which varies

over an index set, D ⊂ Rd generating a multivariate random field {yi ∈ D}. For

geostatistical data D is assumed to be a subset of Rd and i is assumed to vary

continuously over D. For areal or lattice data, D is assumed to be a given finite or

countably finite collection of points.

3.2 Multivariate MRF Models

Recall from section 2.4 that a Markov random field (MRF) is a generalization of

a Markov process where, instead of the sequence or chain being indexed by time,

any graph can be the index. Two popular specification of MRFs, the conditional

autoregression of Besag (1974) and the simultaneous approach of Whittle (1954),

were presented in section 2.7 as well as the limited situation in which these two forms

are equivalent. In this section the focus is on presenting multivariate extensions of the

CAR model, which will be the point of departure for this research. Before reviewing

the literature on multivariate CAR models alternative multivariate MRF approaches

are briefly discussed: (i) geostatistical approach for modelling data indexed on a

continuous rather than discrete index, and (ii) multivariate extensions of the SAR

model of section 2.6.
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3.2.1 Geostatistical Data

Models for multivariate point-referenced or geostatistical data have been extensively

explored in the literature. See, for example, papers by Royle & Berliner (1999), ver

Hoef & Cressie (1994) or Gelfand et al. (2004) and the textbook by Wackernagel

(1998). The essence of the analysis of geostatistical data is the construction of

covariance functions between variables at different spatial locations as a function of

their relative distance. Prediction at sites that were unobserved is then made using

kriging1 or co-kriging methods, such as in ver Hoef et al. (2004). These methods have

been extended to lattice data by assigning the lattice measurements to one particular

point in the lattice (e.g. the centroid of each site). Although on regular lattices this

approach may be valid, it has limited use in irregular lattices such as those considered

in this thesis and which constitute most economic datasets. This results largely from

the arbitrary assignment of measurements to point sources (see chapter 7 of Cressie

1993, for a discussion). Lattice data are typically already aggregated over the site

and collapsing this aggregate value to one point within the site adds to the problem of

ecological bias as well as raising issues about the lack of a continuous underlying field

and induced heteroskedasticity. As a result geostatistical methods are not optimal

for lattice data applications.

3.2.2 Multivariate SAR models

Obviously, it is possible to extend either the SAR or CAR model for lattice data to the

multivariate setting. For example, LeSage (1989) and LeSage & Reed (1989) consider

1Kriging is a group of techniques to interpolate the value of a random field at an unobserved
location from observations of its value at nearby locations. Co-kriging is also a interpolation tool
which expoits correlations between two, or more, variables to improve the estimation of variables at
unobserved locations.
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spatial Vector Autoregressions (VAR). More recently, Kelejian & Prucha (2004)

introduce a very general class of multivariate SAR models that incorporate spatial

lags in both endogenous and exogenous variables on top of the spatial dependence

in the residuals. Frequentist two and three stage least squares (2SLS and 3SLS)

estimators are derived and their properties discussed, generalizing those of Kelejian

& Prucha (1998) from the univariate setting. This model is a multivariate extension

of the traditional SAR model of Whittle (1954) as presented in Cliff & Ord (1981)

and reviewed in section 2.6. However, the multivariate SAR has received very little

attention in the applied literature to date and the open question about interpretation

of regression parameters in the SAR model, univariate or multivariate, remains (see

the discussion in section 2.6). This model will not be considered further.

3.2.3 Multivariate CAR models

In Chapter 5, the point of departure is the work of Mardia (1988) and recent

extensions by Gelfand & Vounatsou (2003) and Jin et al. (2005) among others. This

review begins by presenting the original multivariate CAR model of Mardia (1988).

Mardia (1988) presents a summary of the very early literature on multivariate spatial

approaches that will not be discussed further.

For a vector of univariate variables y = (y1, y2, ..., yn), zero mean CAR models

were developed in Besag (1974). Recall from section 2.5.1 on page 23, that under the

Markov assumption, the n full unconditional distributions are specified as

π(yi | yj : j ∈ ∂i) ∼ N (α
∑
j∈∂i

bijyj, τ
2
i ), i, j = 1, ..., n, (3.2.1)

where j ∈ ∂i denotes that j is a neighbour of i which is captured in the spatial
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proximity matrix W with elements wii = 0 and wij = 1 if and only if sites i and j

share a common boundary and j 6= i – see page 15 in section 2.2 for details. Consider

the spatial autocorrelation parameter version of the IAR model of Besag et al. (1991)

(see page 24 in section 2.5.1) where the joint distribution, π(y) is given by

y ∼ N (µ, (I − αB)−1Γ), (3.2.2)

and the spatial dependence is captured through B = W̃ , which is the row-stochastic

proximity matrix2 and Γ = diag(τ 2i ) and α is the spatial autocorrelation parameter

from section 2.5.1. Recall that when α = 0 there is spatial independence and when

α = 1 the improper IAR specification of Besag et al. (1991) is obtained. Cressie (1993)

showed that a range of α ∈ (λ−1min, λ
−1
max), where λmin and λmax are the minimum and

maximum eigenvalues of W , leads to non-singular covariance matrix, (I − αB) and

therefore a proper joint density. Carlin & Banerjee (2003) prove that α < |1| ensures

the model’s propriety.

For a multivariate CAR model (MCAR) let y′ = (y′1,y
′
2, ...,y

′
n) where each y′i is

a p-dimensional vector. Following Mardia (1988) the zero mean MCAR is

yi | y−i ∼ N (
∑
j

Bijy,Σi), i = 1, ..., n (3.2.3)

where each Bij and Σi is p x p conditional covariance matrix. Analogous to the

univariate case (equation (2.5.5)), Brook’s lemma (Brook 1964) in Section 2.4.1

2gained by D−1W where D = diag(mi) where mi are the number of neighbours to site i and
W is the spatial proximity matrix.
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provides the joint density for y of the form

π(y | Σ) ∝ exp

{
−1

2
y′Γ−1(I − B̃)y

}
, (3.2.4)

where Γ is block diagonal with blocks Σi and B̃ is an np x np matrix with (i, j)th

block Bij. From the MCAR specification in (3.2.4), different Γ and B̃ matrices can

be specified to produce different MCAR model structures. But, as in the univariate

case, it is necessary to ensure that Γ−1(I−B̃) is a symmetric, positive-definite matrix

if a proper joint density is to exist. Unfortunately, guaranteeing these conditions can

be troublesome and has exercised a great part of the literature on multivariate spatial

models.

Considering the case of symmetry, setting Bij = bijI yields bijΣj = bjiΣi

analogous to (2.5.7). If bij = wij/wi+ and Σi = w−1i+ Σ, similar to section 2.5.1,

then the symmetry condition is satisfied.

Kronecker product notation simplies the multivariate form of Γ−1(I−B̃) by letting

B̃ = B ⊗ I with B the same as equation (2.5.5) and Γ = D−1 ⊗Σ. This simplifies

Γ−1(I − B̃) to

Γ−1(I − B̃) = (B ⊗ I)(D−1 ⊗Σ) = (DW −W )⊗Σ−1. (3.2.5)

As discussed in section 2.5.1 in the univariate case, DW −W is singular implying

the singularity of Γ−1(I − B̃). This distribution is denoted by MCAR(1,Σ). This

improper MCAR was ignored initially due to computational difficulties, but work by

Knorr-Held & Rue (2002) employs block updating to conduct inference in a Bayesian

MCMC setting with an application to disease mapping.

The literature since has focused on correcting this impropriety. Again, following
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the approach adopted for the univariate case, rewrite (3.2.3) in the general form of

E[yi | y−i] = Ri

∑
j

Bijyj. (3.2.6)

Substitute Γ−1(I−B̃) with Γ−1(I−B̃R) where B̃R has (i, j)th block RiBij Then

from Mardia (1988) the symmetry condition becomes (Σ−1i RiBij)
′ = Σ−1j RjBji, or

ΣjB
′
ijR

′
i = RjBjiΣi. Setting Bij = bijI and bij = wij/wi+ simplifies this symmetry

condition to

wj+ΣjR
′
i = wi+RjΣi. (3.2.7)

Additionally, if Σi = w−1i+ Σ then ΣR′i = RjΣ is obtained which reveals that

Ri = Rj = R and as a result,

ΣR′ = RΣ. (3.2.8)

See Banerjee et al. (2004) for details. For any arbitrary positive-definite Σ, a generic

solution to (3.2.8) according to Carlin & Banerjee (2003) isR = αΣ′ resulting without

loss of generality to R = αI. This now results in

Σ−1(I − B̃R) = (D − αW )⊗Σ−1 (3.2.9)

Adopting the same restrictions on the range of α as we did in the univariate case

in section 2.5.1 results in a non-singular matrix. This was that α ∈ (λ−1min, λ
−1
max)

where λmin and λmax are the minimum and maximum ordered eigenvalues of the

proximity matrix. Carlin & Banerjee (2003) avoid the calculation of eigenvalues by

using a row-stochastic proximity matrix, W̃ and proving that |α| < 1 ensures a non-

singular matrix3. Refer back to section 2.5.1 for a review. This proper MCAR model

3If Σ is appropriately constrained to be diagonal with elements σ2
ı , R can be diagonal with
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is denoted MCAR(α,Σ)

To simplify, assume Ri = αI for i = 1, ..., n where α is the spatial autocorrelation

coefficient from section 2.5.1 or as Sun et al. (2000) termed it, a spatial smoothing

parameter. Additionally, set Γ = D⊗Λ where D = diag(mi) and mi are the number

of neighbours to site i. With these two assumptions (3.2.4) becomes

y ∼ N (µ, [(D(I − αB))⊗Λ]−1), (3.2.10)

where Λ is a p x p dimensional symmetric, positive-definite matrix of non-spatial

variances. This simplication allow us to state that the covariance matrix in (3.2.10)

is positive-definite as long as Λ is positive-definite. When B = W̃ (i.e. the row-

stochastic spatial weights matrix) and D = diag(mi) with mi being the number of

neighbours of site i and restricting α ∈ (−1, 1) then equation (3.2.10) reduces to

y ∼ N (µ, [(D − αW )⊗Λ]−1). (3.2.11)

This proper MCAR model is denoted MCAR(α,Λ) by Carlin & Banerjee (2003)

and Gelfand & Vounatsou (2003). All of the univariate structures from chapter 2 can

now be applied to the matrices in (3.2.10) to obtain equivalent multivariate structures.

For instance, by forcing α = 1 in (3.2.10) the multivariate IAR model of Besag et al.

(1991) results.

All of the above MCAR models are generalizations of the univariate CAR models

under the assumption Ri = αI and is thus applicable to any dimension, p. This

assumption of a common Ri for all i may be too strong and is rather inflexible.

Relaxing this assumption whilst maintaining a positive-definite covariance matrix has

elements αı which would yield p independent CAR models.
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been the focus of the literature since Mardia (1988). Consider the bivariate case (i.e.

p = 2 for each site i = 1, ..., n) and define y′1 = (y11, ..., yn1) and y′2 = (y12, ..., yn2).

Then the MCAR(α,Λ) model from Equation (3.2.11) becomes

 y1

y2

 ∼

 µ1

µ2

 ,

 (D − α1W )Λ11 (D − α3W )Λ12

(D − α3W )Λ12 (D − α2W )Λ22


−1 , (3.2.12)

where Λij, i = 1, 2 and j = 1, 2 are the elements of Λ. From equation (3.2.12) three α

parameters are required, representing a spatial autocorrelation for each variable (y1

and y2) and one to control for the correlation between variables at different locations.

The covariance matrix includes α1 and α2 which are the spatial autocorrelation

parameters (or spatial smoothing parameters to be more precise) for the two variables

y1 and y2 and α3 is the “linking” parameter (Kim et al. 2003) associating the two

variables yi1 and yj2 (i 6= j) at different sites. As shown in Gelfand & Vounatsou

(2003) and Jin et al. (2005) it is difficult to confirm the positive-definiteness of the

covariance matrix in (3.2.12) due to the unknown Λ matrix. Consequently, this model

is particularly difficult to fit via traditional MCMC methods.

Gelfand & Vounatsou (2003) and Carlin & Banerjee (2003) instead generalize

the basic MCAR(α,Λ) model to the case of two different spatial autocorrelation

parameters, α1 and α2, which they denote as MCAR(α1, α2,Λ) They write the

precision matrix, Σ−1, for this MCAR model as

 R′1R1Λ11 R′1R2Λ12

R′2R1Λ12 R′2R2Λ22

 =

 R′1 0

0 R′2

 (Λ⊗ I)

 R1 0

0 R2

 , (3.2.13)

where R′kRk = D − αkW , k = 1, 2. Carlin & Banerjee (2003) take the

Cholesky decomposition of D − αkW as Rk so that it is an upper-triangular
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matrix. Alternatively, Gelfand & Vounatsou (2003) adopt a spectral (eigenvalue)

decomposition such that Rk = diag(1−αkλi)1/2P ′D1/2P where λi are the eigenvalues

of D−1/2WD−1/2 and P is an orthogonal matrix with the corresponding eigenvectors

as its columns. Whichever way Rk is found, these generalization of the basic MCAR

model of Mardia (1988) allow for a different spatial autocorrelation parameter, αk, for

each of the k variables observed. The non-spatial correlation between the variables

at any location is captured by the Λ matrix.

The usefulness of these models is that as long as the Cholesky or spectral

decompositions exist and Λ is positive-definite, then the necessary conditions to

ensure that the covariance matrix is positive-definite are easy to find. As Jin et al.

(2005) show, this reduces to restricting the spatial autocorrelation parameters to be

less than 1 in the bivariate case (i.e. |α1| < 1 and |α2| < 1). From a computational

perspective, the spectral decomposition favoured by Gelfand & Vounatsou (2003) is

preferred because it saves the overhead of calculating the Cholesky decomposition at

each MCMC iteration. However, both versions of (3.2.13) are limited because they

do not allow for spatial autocorrelation between different variables across sites as in

the general MCAR presented in (3.2.12). This is obvious from the fact that there is

no spatial autocorrelation parameter, α, on the off-diagonal in (3.2.13) because the

off-diagonal is determined by the diagonal to force positive-definiteness. Moreover,

as D − αkW is not unique there could exist different MCAR models with the same

covariance structure as (3.2.13).

Kim et al. (2003) proposed a bivariate CAR model which they called the “two-fold

conditionally autoregressive model”. They specify the moments of the full conditional
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distributions as

E[yik | yil, yjk, yjl] =
1

2mi + 1

(
αk
∑
j∈∂i

yjk + α3

√
τl
τk

∑
j∈∂i

yjl + α0

√
τl
τk
yil

)
(3.2.14)

and

Var[yik | yil, yjk, yjl] =
τ−1k

2mi + 1
, i, j = 1, ..., n, l, k = 1, 2, l 6= k. (3.2.15)

They derive the joint distribution given by these full conditionals as

 y1

y2

 ∼ N

 0

0

 ,

 (2D + I − α1W )τ1 −(α0I + α3W )
√
τ1τ2

−(α0I + α3W )
√
τ1τ2 (2D + I − α2W )τ2


−1

(3.2.16)

where y′1 = (y11, ..., yn1), y
′
2 = (y12, ..., yn2), D = diag(mi), and W is the spatial

proximity matrix. Notice that this has the same number of coefficients as the general

specification in equation (3.2.12) for the bivariate case and so they are related to

each other. In the Kim et al. (2003) specification in (3.2.16) there is one spatial

autocorrelation parameter per variable (α1 and α2) and two additional correlation

coefficients (α0 and α3) associating yi1 with yi2 and yj2 respectively. The so-called

“bridging” parameter relates yi1 with yi2 (i.e. is a correlation coefficient for variables

within a site) where as the so-called “linking” parameter relates yi1 with yj2 (i.e. it

is a spatial correlation coefficient for different variables at different sites). The Kim

et al. (2003) model therefore incorporates a more flexible correlation pattern than

the MCAR(α1, α2,Λ) models of Gelfand & Vounatsou (2003) and Carlin & Banerjee

(2003) presented in (3.2.13).

However as noted in Banerjee et al. (2004), model (3.2.16) is designed solely for the
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bivariate case and it apears difficult to generalize it to larger numbers of dependent

variables. The absense of any research in this direction over the intervening years

is testament to this view. Moreover, it is unattractive because of the computational

burden of fitting this “two-fold” model: it requires numerous inverse calculations,

matrix multiplications and determinant evaluations at each iteration of the sampler

requiring significant computational power and time for even reasonably small sample

sizes. Finally, guaranteeing the positive-definite condition of the covariance matrix

is not easy. Kim et al. (2003) provide a set of sufficient but unnecessary conditions:

|αl| < 1, l = 0, 1, 2, 3. These conditions restrict the possible correlations between yi1

with yi2 and yj2 more than is practical in applied situations.

More recently, Jin et al. (2005) develop a “generalized MCAR” model. Reminis-

cent of the approach of Royle & Berliner (1999) for geostatistical (or continuous) data

they specify the joint distribution for the multivariate data through the specification

of simple conditional and marginal distributions. All of the MCAR models considered

so far specify the precision matrix rather than the covariance matrix directly. This

greatly improves MCMC computation but can make interpretation difficult. As

demonstrated, specifying a valid joint covariance matrix is a difficult task. Jin et al.

(2005) specify the joint distribution directly. Assuming a zero-mean joint bivariate

distribution for y1 and y2 is

 y1

y2

 ∼ N

 0

0

 ,

 Σ11 Σ12

Σ12 Σ22


 (3.2.17)

where Σkl, k, l = 1, 2 are n x n covariance matrices. Appealing to standard
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multivariate theory (see for instance Mardia et al. 1979) for normal distributions

E[y1 | y2] = Σ12Σ
−1
22 y2

Var[y1 | y2] = Σ11·2 = Σ11 −Σ12Σ
−1
22 Σ′12

Writing A = Σ12Σ
−1
22 the joint distribution in (3.2.17) can be rewritten as

 y1

y2

 ∼ N

 0

0

 ,

 Σ11·2 +AΣ22A
′ AΣ22

(AΣ22)
′ Σ22


 . (3.2.18)

The conditions to ensure the propreity of (3.2.18) are that Σ22 and Σ11·2 are both

positive-definite matrices (see Harville 1997, Corollary 14.8.5). Because y1 | y2 ∼

N (Ay2,Σ11·2) and y2 ∼ N (0,Σ22), it is possible to write π(y) = π(y1 | y2)π(y2).

This allows the joint distribution of y to be specified by the matrices Σ11·2,Σ22 and

A.

Jin et al. (2005) adopt the univariate CAR structure discussed in section 2.5.1 and

specify the conditional distribution, y1 | y2 as y1 | y2 ∼ N (Ay2, [(D − α1W )τ1]
−1),

and the marginal distribution as y2 ∼ N (0, [(D − α2W )τ2]
−1) where α1 and α2 are

the spatial autocorrelation coefficients for the conditional and marginal distributions

of y1 | y2 and y2 respectively. Similarly, τ1 and τ2 are the relevant conditional and

marginal precisions. The resulting joint distribution will be proper providing that

these two, simpler CAR distributions are proper. Again, as above, D = diag(mi)

and W is, again, the spatial proximity matrix. As a result, the necessary conditions

to ensure a valid covariance matrix for the joint distribution in (3.2.18) is the same

as for the univariate case: |α1| < 1 and |α2| < 1 (Jin et al. 2005, p. 953).

The so called bridging and linking parameters can be introduced through the
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elements of the matrix A. Since E[y1 | y2] = Ay2 the elements are of the form

aij =


η0 if j = i,

η1 if j ∈ ∂i,

0 otherwise

(3.2.19)

Therefore, A = η0I + η1W and E[y1 | y2] = (η0I + η1W )y2. It is clear then, that η0

and η1 are the bridging and linking parameters relating yi1 with yi2 and yj2 (j 6= i)

which are analogous to the α0 and α3 parameters in the two-fold model of Kim et al.

(2003) in (3.2.16). Given these assumptions on the form of A, the joint distribution

covariance matrix from (3.2.18) becomes

 Σ11·2 +AΣ22A
′ AΣ22

(AΣ22)
′ Σ22

 (3.2.20)

where

Σ11·2 +AΣ22A
′ = [τ1(D − α1W )]−1 + (η0I + η1W )[τ2(D − α2W )]−1(η0I + η1W )

AΣ22 = (η0I + η1W )[τ2(D − α3W )]−1

(AΣ22)
′ = [τ2(D − α2W )]−1(η0I + η1W )

Σ22 = [τ2(D − α2W )]−1

Jin et al. (2005) denote this model the Generalized Multivariate Conditional

Autoregression (GMCAR). To avoid confusion and to draw out the similarities

(and differences) with the models considered previously, this model is labelled

the MCAR(α1, α2, η0, η1, τ1, τ2). Many of the MCAR models that have already

been reviewed can be seen within the Jin et al. (2005) framework when various

assumptions are made about the six parameters in (3.2.20). For instance, assuming
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that α1 = α2 = α and applying standard multivariate theory (namely Harville 1997,

Corollary 8.5.12) the MCAR(α, η0, η1, τ0, τ1) is the same as the MCAR(α,Λ) model

of Mardia (1988) in (3.2.12). The relationship between the parameters becomes

τ1 = Λ11, τ2 = Λ22 − Λ2
12/Λ11, and η0 = −Λ12/Λ11. Given these assumptions and

functional relationships, setting α = 1 then this MCAR becomes MCAR(1, η0, τ1, τ2)

and is equivalent to the multivariate IAR model denoted MCAR(1,Λ). Assuming

that each variable has a separate spatial autocorrelation parameter (i.e. α1 6= α2)

but ignoring dependence between the multivariate components (i.e. η0 = η1 = 0)

then two separate univariate CAR models result. Finally, if α1 = α2 = 0, ηo 6= 0, and

η1 = 0) then the MCAR reduces to a normal bivariate model.

One of the problems of the Jin et al. (2005) MCAR model of (3.2.20) is that when

fitting the hierarchical model the econometrician has to decide whether to model

the conditional distribution π(y1 | y2) and then the marginal distribution π(y2)

or whether to model the conditional distribution π(y2 | y1) and then π(y1). In

some applications there will be a natural ordering. For instance Royle & Berliner

(1999) model the concentration of ozone at particular points which is scientifically

explained by the maximum temperature at that location, but not the other way

around. Similarly, Gelfand et al. (2004) model property price data and model the

selling price for a block of apartments as a function of the rental income of that

block. When no natural ordering is present, Jin et al. (2005) suggest that is possible

to incorporate this as a model selection problem using DIC4 (Spiegelhalter et al.

2002) to assess the best fit. However, remains a problem that has not been properly

4The deviance information criterion (DIC) is a hierarchical modeling generalization of the
AIC (Akaike information criterion) and BIC (Bayesian information criterion), also known as the
Schwarz criterion. It is particularly useful in Bayesian model selection problems where the posterior
distributions of the models have been obtained by MCMC. See Gelman et al. (2003), Spiegelhalter
et al. (1996) or Spiegelhalter et al. (2002) for further information.
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addressed in practice and applications of this model are extremely limited.

As can be seen with all of the models discussed in this chapter, the linking

parameters or conditional cross-correlations between variable k at site i and variable

l and site j is symmetric due to the symmetrical specification of the spatial

correlation parameters αk. Only an asymmetric specification of these parameters will

allow the multiple variables to have varying cross-correlations. Asymmetric spatial

dependencies can occur in a range of natural processes important to modern economics

such as agriculture, pollution, social mobility and disease. Even if there is no explicit

a priori reason to suspect asymmetric spatial dependence between the variables it

should still be explored during the analysis. ver Hoef & Cressie (1994) note that

not considering this possible asymmetric structure can lead to researchers missing

important elements of the process under study. This will be particularly important in

situations where the relationships between the variables is important for the analysis

itself, such as the multiple road safety performance indicators that are considered in

this study.

An additional weakness of the MCAR models reviewed in this chapter is their

reliance on the number of neighbours in calculating the precision of the measurements.

For instance Carlin & Banerjee (2003) and Gelfand & Vounatsou (2003) both relate

the precision at site i with the number of neighbours mi in the neighbourhood of site

i i.e. the number of j ∈ ∂i. For instance, we defined Γ = D ⊗Λ and the covariance

matrix as

Σ = (D − αW )⊗ Γ (3.2.21)

where D = diag(mi) with mi being the number of neighbours of site i. Hence both

of these matrices depend explicitly on the number of neighbours which can vary from

site to site. Using standard multivariate theory (see Appendix B.3.1 for details) the
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conditional covariance of two neighbouring locations (i and j) is

Σij|−ij =

 mi −α

−α mj


−1

⊗ Γ

= Γ ∗ij

 I − α√
mimj

I

− α√
mimj

I I


−1

Γ∗ij

= Γ ∗ij

 1
1−α√mimj

I
α/
√
mimj

1− α√mimj

I

− α√
mimj

I
α/
√
mimj

1−α√mimj
I

Γ∗ij

(3.2.22)

where

Γ∗ij =

 Γ1/2/
√
mi 0

0 Γ1/2/
√
mj

 .

The conditional correlation matrix is then given by

Rij|−ij =

 1 α/
√
mimj

α/
√
mimj 1

⊗R (3.2.23)

where R = D−1/2ΓD−1/2.

It is clear that the correlations in (6.1) are functions of the number of neighbours

as well, and this can vary with each pair of neighbours over irregular lattices such as

the one considered in this thesis. Therefore, interpretation of the spatial dependence

parameters, α will be very difficult, if not impossible, under such a parameterization of

the MCAR model. In chapter 5 a novel solution is proposed based upon earlier work

by Chan & Cressie (1989) that instead incorporates individual precision measures

into the m rather than the number of neighbours.

Multivariate CAR models can also provide parameters in a multiple regression
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setting that are dependent and spatially varying at the site level. For instance,

Gamerman et al. (2002) investigate a multivariate extension of the IAR model of

Besag & Kooperberg (1995), in which they resolve the impropriety of the density

by centering the spatial random effect, φi from equation (2.5.10) around some mean

location. Additionally they remove the spatial random effect from the intercept term

(i.e. they actually drop φi) and replace it with spatially varying regression coefficients

(i.e. they replace β1 from the vector β in equation (2.5.10) by β1i) which follow a CAR

distribution. This was termed a space-varying coefficient model by Assunção et al.

(2002) who applied the model to estimating fertility schedules. A good survey of the

methods in this particular approach can be found in Assunção (2003). The downside

of this approach is the rather complicated MCMC blocking strategies proposed. Also

noteworthy is the work of Langford et al. (1999) and Leyland et al. (2000) who

create spatial random effects as proximity-based weighted averages of independent

normal variables and use a hierarchical setting to improve estimates of each variable

by shrinkage across the variables as well as across the levels of the hierarchical model.

3.3 Summary

Building from the presentation of univariate spatial models in Chapter 2, this chapter

has reviewed the literature on multivariate spatial regression models. Multivariate

extensions of the simultaneous autoregression model of Whittle (1954) were briefly

introduced and the limitations of geostatistical approaches (i.e. those designed for

point-referenced data over a continuous surface) were discussed. This chapter focused

on the multivariate CAR (MCAR) model first proposed by Mardia (1988). Spatial

dependence is captured through the covariance matrix, or rather its inverse, as in the

univariate case. Previous research efforts have used simple forms for the covariance
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matrix that, although computationally convenient, unduly constrain the range and/or

type of correlation modelled. For instance, both Gelfand & Vounatsou (2003) and

Carlin & Banerjee (2003) restrict the degree of spatial dependence to be symmetric

at different locations. Although Royle & Berliner (1999) develop a model that

incorporates asymmetric spatial dependencies it is only suitable to geostatistical data.

Jin et al. (2005) build a similar model for lattice data but do not explicitly model the

cross-dependencies.

Given the growing number of multivariate spatial datasets available and the

large number of problems in disciplines as diverse as econometrics, environmetrics,

biostatistics, epidemiology and statistics that are inherently multivariate, work in this

domain is a worthy avenue of research. Developing very general covariance structures

that allow for flexible spatial correlation to be modelled whilst maintaining the

positive-definite nature of the covariance matrix are important. This thesis will make

a contibution to the literature on multivariate spatial regression models by introducing

a novel conditional approach that allows for varying degrees of spatial dependence

for different variables as well a asymmetric covariances between different variables

at different locations. The model is presented in chapter 5, and efficient MCMC

samplers for fitting the model are provided. In the next chapter the importance of

modelling multiple performance indicators in the public sector is discussed.
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CHAPTER 4

ROAD SAFETY PERFORMANCE

INDICATORS

There can be economy only where there is efficiency. (Disraeli, 1868)

4.1 Introduction

The use of performance indicators is widespread in the public sector. Their use reaches

across all levels of the public sector (from organisations to individuals) and across all

branches. The limitations of performance indicators in general and league tables in

particular are well reported and they are introduced only briefly here. Road accidents

kill 3,000 people every day around the world; they are the 10th largest cause of death

(Commission for Global Road Safety 2005). As such the UK government has set road

safety a priority for local authorities and requires local authorities to publish a number

of headline performance indicators of road causalities by mode as part of the statutory

reporting of Best Value Performance Indicators (BVPI) produced annually. These

crude measures do not reflect the true output under consideration, road safety, and are

subject to high variability. In this chapter the literature on performance management

in the public sector is reviewed and the problems with existing approaches highlighted.

The importance of research into road safety monitoring and performance indicators is
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stressed. A number of the problems raised in this review will be addressed in chapter

7 through the application of the model developed in chapter 5 to data.

4.2 Performance Management in the Public Services

Performance monitoring in government has received significant attention since the

1980s, fostered by the “re-inventing government” movement (Osbourne & Gaebler

1992), and Smith (1990) provides an account of these early attempts at performance

management in the UK public sector. The 1990s witnessed an explosion in the

the UK’s “government by measurement” (House of Commons Public Administration

Select Committee 2003). Although good performance management is productive

for all concerned, done badly, it can be costly, ineffective, harmful and destructive

(Bird 2004). Performance management (PM) was introduced across government in

an attempt to measure the process and outcomes of the public sector, and as an

incentive to drive increases in efficiency and effectiveness. It also provided greater

accountability to Parliament and the public for the government’s “stewardship” of

the public services (Bird 2005). PM takes places at all scales. For instance at the

level of the programme (e.g. the impact of the NHS on health), at an organizational

level (e.g. a local authority) or in extreme cases at the individual level (e.g. a

surgeon). Bird (2005) identify three aims for public sector PM: to establish “what

works” and therefore promoting best practice; to identify the functional competence

of organisations or individuals; and accountability by Ministers to Parliament and

the general public. These have been termed, respectively, research, managerial and

democratic roles of PM. Increasingly, however, the government is using PM as a way

of paying for performance (Burgess et al. 2002). An excellent example of this is the

Public Service Agreements used by Her Majesty’s Treasury.
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4.2.1 The rationale for Performance Management

Performance in the public sector attracts significant attention. Stevens (2005)

suggests there are two reasons for this: its size and the services that it provides.

Government expenditure was £585 billion, £10,100 per capita or 41.7 percent of

GDP in the fiscal year 2007-08 (H.M. Treasury 2008). Any inefficiency will therefore

have a large impact on the country’s welfare. Education, policing and healthcare

affect everybody, the vulnerable in particular, and the private sector cannot be relied

upon to provide these services due to a host of market failures, for instance:

• The service may be a public good (or quasi-public good) such as policing or

national defence involving the problems of non-excludability and non-rivalry.

• The service may be a natural monopoly with enormous infrastructure costs such

as the road network.

• A lack of (or asymmetric) information or time inconsistent preferences may

result in lower than socially optimal consumption under a free market.

• There may be other market failures such as the presence of negative externali-

ties.

The economic rationale for performance managament is clear and can be

considered in a Principal-Agent framework (see Stiglitz 1987, for a brief presentation).

In the first instance the principals are the electorate and taxpayers, whilst the agents

are elected politicians in local and central government. They are held accountable

largely through the ballotbox. In turn, however, the politicians are also the principals

and the agents are the civil servants and managers of central government, local

authorities, agencies and devolved organisations. Lastly, there is a complex hierarchy
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between central and local government (e.g. the Department for Transport and local

highway authorities) and between central government departments and agencies (e.g.

the Department of Health and the National Health Service).

In the private sector, incentives and targets on simple constructs such as profit are

available to overcome the principal-agent problem. However, with a lack of prices for

the output of the public services and no common yardstick, measuring performance

is frought with theoretical, empirical and statistical problems.

4.2.2 How to measure performance

The problems in measuring the output of the public sector frequently occur for the

same reasons that these goods and services have to be delivered by the public sector

in the first place. There are three main problems with measuring public service

performance: identifying outputs, the lack of prices and the problem of attribution.

For instance, it may be considered that one of the outputs of local government is road

safety. However, the local authority cannot produce “road safety” but undertakes a

series of activities (e.g. road safety education or traffic calming and infrastructure

improvements) which lead (hopefully) to the production of the output. There is

also the problem of attribution. For instance, the level of the output “road safety”

will also be affected by external factors such as central government policy e.g. the

Department for Transport may introduce new seatbelt or speed legislation. Even

when these outputs can satisfactorily be identified and measured they are difficult

to aggregate because of the lack of prices resulting from the absence of markets.

Prices are critical in economics because of the information they signal (see Deaton

& Muellbauer 1980, for a full discussion). Consumers indicate the value of the good

or service through their willingness to pay for it, and producers indicate the cost by
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the price they’re willing to accept. Products and services have a range of attributes

that are valued by consumers and signalled through prices. For instance, for waste

collection provided by a local authority the frequency of collection, where the waste

is collected from (roadside or home) and the availability of recycling schemes may

all carry different values for each consumer. This lack of prices and the problem

of aggregation makes it very difficult to employ traditional economic assessment of

efficiency such as parametric Stochastic Frontier Analysis (SFA) (see Kumbhaker &

Lovell 2003) or non-parametric Data Envelopment Analysis (DEA) (see Thanassoulis

2001).1

Despite these limitations, productivity analysis is still used extensively in the

literature on public service performance management. See Martin & Smith (2005)

and Hauck & Street (2006) for two recent examples from the health literature. SFA

and DEA methods vary in their assumptions and estimation techniques but they

both aim to identify the frontier of feasible performance and then estimate a single

measure of the (in)efficiency of each organisation against this efficient frontier. The

notion of efficiency used is that developed by Koopermans (1951) and Debreu (1951)

and introduced into econometrics by Farrell (1957). These models have been employed

countless times in the literature and specific software is now available (Coelli (1996a)

and Coelli (1996b)). Outside of the public sector, they are used in industries as diverse

as agriculture (Thirtle et al. 2003), banking (Khatri et al. 2002), fisheries (Holloway

& Tomberlin 2006), healthcare (Koop et al. 1997) and viticulture (Conradie et al.

2006).

However, a growing number of academics challenge the relevance of productivity

analysis to public sector data (Stone (2002a), Stone (2002b) and Smith & Street

1For a general introduction to both methods a good starting point is Coelli et al. (1998).
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(2005)). The relevance of a single measure of (in)efficiency is questionable from a

managerial perspective. There are also reasonable concerns about the relevance of

a production function approach to the analysis of public sector organizations where

the production process is not well understood, and probably cannot be modelled

well by traditional production analysis. Moreover, the results from SFA and DEA

are sensitive to the model assumptions and in particular, the level of inefficiency is

dictated by the signal to noise ratio in the data. Given the number of omitted factors

in public sector analyses this can be problematic for the correct interpretation of these

analyses.

Given the lack of public information available on inputs and the total absence of

output prices, the use of production analysis approaches for performance management

in road safety is questionable. As a result, this research will focus on the multiple

performance indicator approach where by the output “road safety” can be considered

as a latent output measured (imperfectly) by a number of observable measures such

as the number of road deaths per mode per capita. These measures will be discussed

in more detail in section 4.4 on page 73.

4.2.3 Problems with Performance Measurement

In November 1995, Goldstein & Spiegelhalter (1996) read a seminal paper before the

Royal Statistical Society (RSS) on the limitations of league tables which was widely

discussed and is now a key reference in the literature (Bird 2004). Performance

monitoring in the public sector has continued to increase since the Labour government

came to power in 1997 (Propper & Wilson 2003). The collection, publication and

linking of performance targets to financial resources is now widespread in British

Government, and discussion of the target setting “culture” was an important topic
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of debate during the 2005 general election campaign. Although the ultimate aims of

PM are honourable and important (to increase efficiency and garner transparency),

the statistics community generally recognises that league tables of PIs are misleading

due to the level of uncertainty present (see for example Goldstein & Myers 1996).

Perhaps the pinnacle of this obsession with “government by numbers” is that the

assessment (i.e. the ranking in the league table) is more important than the (latent)

performance.

Any published ranking of organizations (public or private) identifies winners and

losers, irrespective of whether these rankings were based on crude, uncontextualised

outcome measures or so called “value-added” scores. All rankings are flawed.

Research by Goldstein & Spiegelhalter (1996) suggests that rankings adopting robust

procedures that incorporate uncertainty in a statistically valid manner frequently

make it impossible to separate the organisations under study. There are several

reasons for this.

First, no fancy statistical technique can rescue inappropriate, manipulated or

otherwise bad data. Secondly, the statistical procedures that contextualise the

numbers will produce estimates with a margin of error. This uncertainty creates

uncertainty in the rankings and appropriate confidence (or credible) intervals for the

rankings typically overlap. Thirdly, the PIs are based on the past and not the current

state of the institution. For instance, school exam results are based on students who

joined the school many years previously and local authority outcomes may be the

result of old policies or staff. And, finally, there will always be omitted factors that

could distort comparisons. The identification and measurement of these factors may

be very difficult.

In January 2003, the RSS held a discussion meeting on performance management,
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reported in Bird (2004), which highlighted the extent to which performance indicators

and performance management in general escapes the safeguards of national statistics.

Consequently, the RSS launched a Working Party on Peformance Management

in the Public Services which dealt with the statistical aspects of performance

management which were identified by theHouse of Commons Public Administration

Select Committee (2003). Their report, Performance Indicators: good, bad and ugly

(Bird 2005) highlights the need for: independent scrutiny of PM schemes; formal and

transparent PM protocols; and education for policy makers, politicians, the media,

and the wider public on the difficult issues surrounding PM. It also highlighted the

role statisticians, and academics in general, should play in both research, education

and scrutiny of PM and PI. This research is aimed to meet this need for improved

performance management tools.

4.3 Road Safety

4.3.1 The Problem

Worldwide, injuries and death resulting from road traffic accidents are of epidemic

proportions. At present over 1 million people die every year and over 10 million people

sustain permanent disabilities from road accidents (Bunn et al. 2003). Globally, road

accidents are the 10th most common cause of death (Commission for Global Road

Safety 2005). The World Health Organisation (WHO) predict road accidents will be

the 6th leading cause of death worldwide, and the second leading cause of Disability-

Adjusted Life Years (DALYs) lost in developing countries by 2020 (WHO 2004). The

scale of the problem is vast and in developing countries is growing exponentially.

The cost of road accidents are generally thought to be high and an important
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variable in the analysis of transport projects and the formation of transport policy

(Evans (1994) and Peirson et al. (1998)). For the UK, estimates of annual external

costs of road accidents vary from £3 billion to £26 billion (see Maddison et al. (1996);

Pearce (1993); Fowkes et al. (1990); Hansson & Marckham (1992) and Newbery

(1988)). Besides the pure economic costs, accidents cause emotional and psychological

suffering for family and friends, and pain and suffering for the individuals involved.

Road safety is a vast and active area of research with strong policy support

throughout the world. Leading global organisations such as the World Bank, United

Nations and World Health Organisation are at the forefront of research and policy

design in this field. The FIA Foundation recently launched the Commission for

Global Road Safety, supported by the G8, United Nations and World Bank, which

is calling for a $300 million ten-year global road safety programme (Commission for

Global Road Safety 2005). The need for evidence-based policy in this area has never

been greater. This research will therefore contribute to the road safety literature by

improving the performance management of local authorities in respect to road safety,

the aim being that ‘best practice’ could be determined by identifying areas of strong

performance. In this respect, this thesis will consider a dataset of casualty count for

vulnerable road users in London. The justification for this focus is presented next.

4.3.2 Vulnerable Road Users

This thesis considers vulnerable road users which are considred to be pedestrians,

cyclists and motorcyclists. Given the recent focus on integrated transport and shifting

away from cars to alternative modes of transport, vulnerable road users numbers will

increase. This promotion of sustainable transport is supported by iniatives from the

Department of Health to promote lifestyle change to tackle obesity and coronary
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heart disease (Department of Health 2008). If these strategies are successful there

will be increasing numbers of vulnerable road users and monitoring and ensuring

their road safety will become increasingly important. Moreover, this thesis focuses

on vulnerable road users because the underlying causal mechanism for road accidents

involving them is similar. Other road users such as car drivers are excluded because

the underlying causes, for example excessive speed or drink-driving, ar different.

The safety programmes that should be targetted towards reducing vulnerable road

accidents would be therefore be different. Performance measurement should be

conducted separately for these two broad classes of road users.

Figure 4.1 clearly shows the extent of pedestrian road accidents. Every pedestrian

road accident in 20062 within London is plotted on a plain, white background. The

pattern mapped is easily recognizable as London. Several famous London features

are clear including Hyde Park and the River Thames, as well as the main arterial

roads and roundabouts.

All pedestrians are at risk in traffic but child pedestrians are particularly

vulnerable because they are small and fragile, and their road sense and crossing skills

are still developing. Children should be able to walk and cycle in safety, for their social

development and to improve their health and fitness. Yet road traffic injury is the

leading cause of accidental injury among children and young people (RSAP (2000)

and Towner et al. (1993)). Two teenagers are killed or injured crossing London’s

roads every day (TfL 2006b). Across the UK, over 13,000 child pedestrian accidents

were reported to the police in 2004, including more than 2,500 serious injuries (such

as multiple fractures and extended hospital admission) and almost 100 deaths (DFT

2005).

22006 was seleted because it was the latest year of data available at the time of analysis.
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Cycling is a healthy, environmentally friendly way to travel, providing quick and

cheap transport. Over 350,000 cycle journeys are made in the Greater London area

every day, and in the last five years the number of recorded cycle trips has doubled,

while the number of cyclists killed or injured has fallen by over 40 per cent (TfL 2008).

Given the promotion of healthy and environmentally sustainable transport modes

it is not surprising that there is renewed concern for the safety of pedestrians and

(pedal) cyclists. However, given the vulnerable nature of these modes of transport, the

number of accidents involving pedestrians and cyclists is still high, and in particular

the number of killed and seriously injured victims is high.

Powered Two-Wheelers (PTW) is the generic term used in road safety to cover any

motorised two-wheeled vehicle, from moped to motorcycle, although this thesis will

use the more common term motorcycle or motorbike interchangeably for the catch-all

term “powered two-wheelers”. Motorcyclists have always been a vulnerable group for

a number of reasons, not least of which is the fact that the affects of a collision are

more severe for motorcycle riders than car drivers. In 2006 there were 839 riders or

passengers killed or seriously injured in London (TfL 2006a). This is 9 percent over

the target as laid out under the Best Value Performance Indicator, and the only road

safety target which Transport for London did not meet. In addition there were 4,297

riders or passengers slightly injured on London’s roads.

Motorcyclists are a particular concern for road safety professionals and for

Transport for London in particular. There appears to be a significant difference

in the type of motorcyclist in London when compared to the rest of the UK. London

motorcyclists are more likely to be involved in more accidents, to be younger, higher

earners, riding smaller capacity bikes and to be using those bikes for commuting (TfL

2004). Londoners buy motorcycles to avoid congestion and because they are relatively
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cheap to run and insure. Non-Londoners are more likely to use their motorcycles for

freedom or leisure reasons. As such, Londoners are more likely to be classified as

“new riders”, which may partially explain why causalty statistics have increased in

proportion with the number of new bikes registered in London. This is in stark

contrast the rest of the UK and in contrast to the general trend of accident numbers

which has steadily been in decline for the past decade.

4.3.3 The Solution

Recognizing the importance of road safety, the UK Government set out a strategy

to their 2000 road safety white paper, Tomorrow’s Roads: safer for everyone (DfT

2000). This commitment is resonant of the European Commission’s commitment

to improving pan-European road safety through the 2003 Road Safety Action

Programme (European Transport Safety Council 2006). The focus of the UK strategy

is on road safety education with some mention of 20mph zones, Home Zones3 ,

increased speed enforcement and other engineering approaches. This is in stark

contrast to the European Commission’s focus on the harmonisation of European road

safety legislation, programmes to improve (and test) drivers’ abilities, and vehicle

technologies (such as speed limiters, pedestrian recognition systems and adaptive

control systems).

The identification of effective strategies for the prevention of road casualties is of

major social, economic, political and health importance. But in order to establish

what policies and practices work, more needs to be done to provide clear and robust

information on the most effective local authorities. This includes research into the

3A home zone is a street or group of streets where pedestrians, cyclists and vehicles share the
space on equal terms, with cars travelling at little more than walking pace.
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causes of accidents, the effects of policy interventions and on producing more robust

performance management tools. High quality evidence is required to make informed

policy decisions as well as for the effective management of public sector agencies

tasked with reducing road casualties.

Without good quality statistical research poor decisions may be made. For

instance, superficial presentation of the raw numbers of child pedestrian casualties

is taken to support the view that road safety education in schools has been successful

(Hewson 2002). Data presented in figure 4.2 demonstrate that casualty rates have

fallen consistently in recent decades despite rapidly growing traffic levels. However,

there is no empirical evidence as to the cause of the remaining accidents and to the

cause of this downwards trend. What is clear is that better information is required.

For instance, once we account for the exposure to traffic in figure 4.3 this performance

looks less impressive. Thus, the exposure-adjusted risk has been largely stable.

Figure 4.2: Downward Trend in Child Pedestrian Casualties
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Figure 4.3: Exposure Adjusted Child Pedestrian Casualty Rates

One view, promulgated by a number of road safety researchers including Hewson

(2002), Davis (1992), Plowden et al. (1984), and Grayling et al. (2002) (among others)

is that increasing awareness of the risk of traffic through road safety education

programmes, combined with busier roads and a cultural shift towards sedentary

pastimes has led to a reduction in the amount children walk and play. Among the

plethora of causes has been an inexorable shift into cars (Hewson (2002), Hillman

et al. (1990), Roberts (1993) and Grayling et al. (2002)). The key point here is that

reporting of single headline numbers is frequently misleading.

4.3.4 Explaining spatial variation

Very little attention has been paid to the issue of spatial structure in the road safety

literature, although there have been many studies that have investigated the spatial

variation in the incidence of pedestrian road casualties (including children). The
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largest body of work in this area seeks to explain the spatial variation through the

inclusion variation of spatially varying covariates such as deprivation. For instance,

Grayling et al. (2002), Graham et al. (2005) and Graham & Glaister (2005) have

all attempted to explain the spatial variation in accident rates through area level

deprivation covariates. Others have focused, at varying degrees of aggregation, on

the influence of other factors on the spatial variation of accident rates, including

Dee (1998) Noland (2001), Noland & Quddus (2002), Noland & Quddus (2004),

and McCarthy (1999). In addition, Graham & Glaister (2003) looked at the

spatial variation in pedestrian road casualties by examining the role of the urban

environment. All of these studies have ignored the fact there may well be spatial

dependence and spatial heterogeneity within the data, and as a result continue to

apply methods of statistical inference that are not robust to such problems.

Although in themselves excellent studies, none of them have sought to understand

and use the intrinsic spatial characteristics of the underlying data generation process.

Recently work applied to data from Canada (MacNab 2003) and (MacNab 2004) and

to Devon, UK (Hewson 2004) and (Hewson 2005) have sought to model the spatial

dependence within the data. However, these studies are limited and the methods

proposed have not been adopted by other researchers.

4.4 Road Safety Performance Indicators

As discussed in section 4.2, performance management is widespread in the public

sector and is a high profile activity receiving significant attention from politicians,

the media and the wider public. Road safety is no exception and is one of the many

local government activities that is monitored through outcome based performance

indicators. In particular, the UK Government has identified three traffic safety targets
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which are expected to be achieved by 20104: a 40 percent reduction in the number

of fatally or seriously injured casualties, a 10 percent reduction in the rate of slight

casualties relative to the level of traffic, and a 50 percent reduction in the numbers

of children who were fatally or seriously injured (DfT 2000). Most local authorities

incorporate these targets into their Local Transport Plans (LTP) but it is related

performance indicators, broken down by modal group, which are monitored and

published in the local authority league tables under the ‘best value’ requirements

of the Local Government Act 1999 (Department for Transport, Local Government,

and the Regions 1999). It is these indicators called BVPI99 (Best Value Performance

Indicators 99) that are used to judge the relative performance of each local authority

with respect to road safety and they shall be the focus of this research. According to

PACTS (2003a)5, DfT guidance intimates that performance will be used in future to

determine financial allocations to local authorities. This is supported by Department

for Transport, Local Government and the Regions (2001) which suggests that good

and improving performance will attract additional funding and increased autonomy

under Public Service Agreements via pump priming. The Comprehensive Spending

Review (H.M. Treasury 2007) has also indicated that budget allocation will increase

from 5 percent allocated fr relative performance over the coming years.

There is also widespread support from within local authorities for a target-led

approach (PACTS 2003a). However, there was concern expressed in PACTS (2003a)

that the headline indicators should be aggregated together because of the variability

in individual indicators. Obtaining statistically reliable results on performance is

4These were set relative to a baseline of the mean number of casualties that were reported between
1994 and 1998 inclusively

5PACTS is the Parliamentary Advisory Council for Transport Safety (PACTS) is a registered
charity and an associate Parliamentary Group.
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therefore a major concern of authorities themselves who do not possess the expertise

and experience to produce robust methods internally.

These current UK traffic safety performance indicators are expressed simply in

the form of crude per capita numbers of reported collisions by type and modal group,

with no allowance for geographically differing patterns in road infrastructure and

usage or spatially varying socioeconomic conditions, so called contextualisation in the

literature (Goldstein & Spiegelhalter 1996). In fact, according to Bailey & Hewson

(2004) there is no explicit consideration given to the extent to which differences

in the raw rates reflect differential performance, rather than just inherent random

variability in observed rates. In general, local government activity does not appear

to have received anything like as much attention in the literature as that devoted to

performance monitoring in other sectors. For instance, although local government (in

the UK at least) plays a significant role in education, performance monitoring interest

in that sector has largely focused on the school as the observational unit, rather than

on the Local Educational Authority.

There have been significant developments in the modelling of performance and the

uncertainty inherent in performance rankings (or league tables) in the education and

health literatures. For example, see Laird & Louis (1989), Goldstein & Spiegelhalter

(1996), Marshall & Spiegelhalter (1998), Lockwood et al. (2002), Kuhan et al. (2002),

Draper & Gittoes (2004), Bratti et al. (2004) and references contained within.

Unfortunately, this work has not been transferred to the area of local government

performance management and performance indicators remain crude, uncontextualised

numbers.

Although detecting a (statistically significant) departure in road safety perfor-

mance between organisational units is only part of the larger picture of performance
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management, it is still important to ascertain if there is differential performance.

This can, for example, indicate the need for further research e.g. detailed auditing

to identify best practice and/or intervene in poor performaning authorities. It is

also important to make the best possible statistical inference about the road safety

performance of local authorities when their performance is tied to financial resources

and Public Sector Agreements with Her Majesty’s Treasury. Limited work has

been done in this area. For instance, MacNab (2003) employed generalized additive

modelling to smooth out year-in-year variance in area level accident rates in Canada.

He emphasized the importance of separating signal from noise when investigating

such “noisy” data. More generally, the Generalized Linear Mixed Model (GLMM)

presented in section 2.5.10 is now well established in the wider literature on PM

to model to uncertainty associated with performance indicators. See, for example,

applications in the healthcare literature by Marshall & Spiegelhalter (1998) and

Morris & Christiansen (1996).

The GLMM is discussed in more detail in chapters 5 and 7 but interested readers

are directed to the appendix of Marshall & Spiegelhalter (1998) for a very concise

and readable introduction to GLMM in the context of performance management.

Briefly, the GLMM is characterized by the inclusion of a random effect as well as the

traditional fixed effects of the GLM. In section 2.5.10 this random effect was used

to capture the local spatial variation in the data. In the performance management

context, the random effect captures the local authority specific performance that

has not been directly measured: i.e. it can be considered a parameter for the

latent (unobservable) local authority performance. It is this underlying construct

of road safety that is important for performance management. This is in contrast to

a fixed parameter (intercept) that would simply reproduce the observed performance

75



CHAPTER 4. ROAD SAFETY PERFORMANCE INDICATORS

indicator that was observed for each local authority. The random effect is a zero-

mean process with unknown variance that is estimated when the model is fitted

i.e. it explictly incorporates unknown uncertainty into the model for the performance

indicators. The unknown variance component induces smoothing or shrinkage toward

the global (zero mean) in the authority specific random effect depending upon the

strength of evidence in the local authority’s performance – it is therefore analogous to

a partial pooling of the data to improve the efficiency of the estimation (see Gelman

& Hill 2006, for a presentation).

Specifically within the road safety performance management literature, Papageor-

giou & Loukas (1988) consider a bivariate binomial model for road safety in East

Virginia based on the theory that fatalities should be correlated with injuries. More

broadly, it is sensible to consider that there would be correlation between multiple

road safety indicators because inherently they can all be considered as measures of

the latent construct “road safety”. In light of this Bailey & Hewson (2004) model

a multivariate GLMM for nine road safety performance indicators, because the local

authority specific random effects can borrow strength across the multiple variables

to produce a better estimate (i.e. with smaller variance) of the local authority

specific performance. If the variance is smaller than so will any credible interval

used in ranking the organizations and therefore it may be possible to separate the

performance between local authorities. Bailey & Hewson (2004) do find considerable

shrinkage of the credible intervals and therefore an improvement in the rankings of

local authorities. However, they report that the resulting league table still remains

quite “fuzzy” with a great deal of overlap between authorities still remaining.

One potential reason for their findings remaining inconclusive is that they

omitted to include any potentially important explanatory or contextualising variables.
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Additionally, they failed to consider the spatial dependence in the data. Moreover,

they applied their model to the entire UK dataset with full exchangeability inherent in

the model. This is a questionable assumption. For instance, it is reasonable to expect

a significant difference between rural and urban authorities or between metropolitan

and county council areas. This thesis will model only the 32 boroughs of Greater

London including a multivariate spatial model to improve inference in the model.

4.5 Summary

This chapter motivated the empirical objective of the thesis through a review

of performance measurement. In particular, it argued that a common problem

with performance indicators in the public services is that they usually make no

allowance for the inherent uncertainty in both the underlying performance being

measured or any rankings of this performance. Moreover, when attempts are made to

incorporate uncertainty into performance measurement – for example through the use

of generalized linear mixed models (GLMMs) – the resulting credible intervals relating

to the performance rank are typically large and overlapping. The obvious result is

that it becomes impossible to differentiate the relative performance of organisations.

Given the increasing reliance on performance management in the public sector, and

the trend towards ‘payment for performance’, this chapter argued that improving

performance measurement was a worthy endeavour. Bird (2004) argues that the

statistician plays an important role in safeguarding those that are monitored from

misconceived reactions to uncertainty and to design effective performance monitoring

tools. The important role that academics can play in deriving sensible PIs is also

discussed by Stone (2002a). This thesis aims to address both of these roles by

investigating the Best Value Performance Indicators for road safety. The concerns
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of PACTS (2003a) on the large variation in the individual measurements is addressed

by adopting a multivariate approach that will allow for shrinkage in the estimators of

performance and an improvement in the precision of these estimates. Additionally,

it is hoped that more robust rankings of institutions will be produced by correcting

for spatial dependence in the data and any omitted spatially varying variables as

highlighted in Bailey & Hewson (2004). This will be achieved by the use of the

multivariate spatial model to be developed in chapter 5. Robust rankings that

properly account for uncertainty in the positions will be produced by adopting a

Bayesian perspective (Lilford & Braunholtz 1996) and using Markov chain Monte

Carlo techniques which will be presented in chapter 7. The next chapter therefore

introduces a new, flexible multivariate CAR model into the literature which will later

be used to model multiple road safety performance indicators.
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CHAPTER 5

A FLEXIBLE MCAR MODEL

5.1 Introduction

As reviewed in chapter 2, Gaussian conditional autoregressions (CAR) have been used

extensively to model the association between univariate random variables at sites on

both regular and irregular lattices. Yet, as chapter 3 demonstrated, there is a rather

limited body of work on conditional autoregressions for multivariate lattice data, so

called MCAR models. In comparison, there is an extensive literature on geostatistical

approaches to modelling multivariate data. The principal challenge when modelling

multivariate lattice data is to develop conditional models that guarantee valid

covariance matrices in the joint probability model whilst allowing for correlation

both between variables within sites and between variables across sites. An additional

complexity would be to allow these correlations to be asymmetric, something which

ver Hoef & Cressie (1994) consider for the continuous (i.e. geostatistical) approach.

Given two variables, X and Y recorded at two locations i and j then symmetric

spatial cross correlation would mean that ρ1(Xi, Yj) = ρ2(Xj, Yi) where ρ captures

the spatial cross correlation. Allowing these two cross correlations to be different

i.e. asymmetric will be the key methodological contribution of this chapter. More

concretely, consider two of the road safety performance indicators introduced in

Chapter 4: severe motorcycle casualties and severe cyclist casualties and two

neighbouring locations from London, Waterloo and London Bridge. Asymmetric
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spatial cross correlations allows the relationship between motorcycle accidents at

Waterloo and cycling casualties at London Bridge to be different from the relationship

between motorcycle accidents at London Bridge and cycling accidents at Waterloo.

Differential relationships like the one posited here could occur for a range of

unobserved or unrecorded reasons such as infrastructure differences, differing road

user prioritisation and differing road safety policies adopted by Southwark and

Lambeth councils (in which London Bridge and Waterloo are located).

Mardia (1988) provided the theoretical groundwork for multivariate Gaussian

CAR models extending the seminal univariate work of Besag (1974). The problem

with Mardia’s original multivariate specification was that it required separable models

that necessitated identical spatial parameters for each variable. The “two-fold CAR”

model of Kim et al. (2003), which was described in chapter 3, provides a more flexible

correlation structure incorporating both bridging1 and linking2 spatial parameters.

However, this model is only suitable for the bivariate case and extension to higher

dimensions seems problematic. The MCAR models of Gelfand & Vounatsou (2003)

and Carlin & Banerjee (2003) are almost identical in their approach, although Carlin

& Banerjee (2003) extend their model to spatio-temporal data. These MCAR models

are suitable for non-separable models but do not allow for flexible between area

correlations. In response to this rather limited cross-correlation structure, Jin et al.

(2005) propose the Generalized MCAR model that specifies the joint distribution for

a Markov random field in terms of a combination of simpler conditional and marginal

distributions. In such, they are adapting the multivariate geostatistical model of

Royle & Berliner (1999) to the lattice case. As discussed in chapter 3, one concern

1Bridging parameters refer to correlation coefficients between different variables at the same site.

2Linking parameters refer to spatial correlation coefficients that link different variables at different
sites.
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with this model is the rather arbitrary order in which the conditional and marginal

variables are considered i.e. should π(y1|y2) be modelled and then π(y2) or the other

way around. Jin et al. (2005) propose to use model comparison techniques such as

the Deviance Information Criterion (DIC) to decide on the modelling order, yet this

seems infeasible with more than a few variables.

Many problems in econometrics are multivariate and increasingly spatial datasets

that record multiple observations for each location are becoming available. This thesis

will consider the spatial dependence in a set of road safety performance indicators for

Greater London local authorities which were briefly introduced in chapter 4. Chapter

7 will attempt to improve the measurement of the underlying or latent road safety

performance by applying the model developed in this chapter to the data on road

safety Best Value Performance Indicators. This will then be used to rank and select

the top performing authorities from these results. Chapter 3 reviewed the current

MCAR models for lattice data. The main problem with the existing approaches is the

difficulty in relaxing the conditions on the cross-correlations whilst maintaining the

propriety of the covariance matrix. In response, a very flexible model is introduced for

multivariate spatial data recorded on a lattice whilst providing conditions to ensure

a non-singular covariance matrix and hence a proper joint distribution. This is an

important step beyond what is currently available to researchers.

5.2 Univariate Review

Recall from section 2.5.1 that when the variable y is univariate that, given some mild

consistency conditions as given by Besag (1974), the full or undirected conditional

distributions

π(yi | yj : j ∈ ∂i), i = 1, ..., n (5.2.1)
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determine a valid joint distribution

π(y1, ..., yn) (5.2.2)

which is called a Markov Random Field (MRF). Gaussian MRFs are called Con-

ditional Autoregression (CAR) models and these were introduced in chapter 2.

Assuming that these n full conditionals are all Gaussian, the ith distribution can

be given as

E[yi | yj : j ∈ ∂i] = µi +
∑
j∈∂i

bij(yj − µj), (5.2.3)

Var[yi | yj : j ∈ ∂i] = τi
2. (5.2.4)

Together these n full conditional distributions yield the joint distribution for y

y ∼ N (µ, (I −B)−1Γ), (5.2.5)

where y ≡ (y1, ..., yn)′, µ ≡ (µ1, ..., µn),Γ ≡ diag(τ 21 , ..., τ
2
n), and B ≡ (bij). In the

presence of explanatory variables, µ can be reparameterized as (µ = Xβ). (See

section 2.5.1 for full details.) As discussed previously, for the joint distribution to be

well defined (I −B)−1Γ must be a symmetric, positive-definite matrix. A common

reparameterization of the model to ensure this condition holds is the so called intrinsic

autoregression (IAR) of Besag et al. (1991) which requires (D − αW̃ ) where W̃

is a row stochastic proximity matrix, D = diag(wi+) and wi+ are the number of

neighbours to site i. As long as |α| ∈ (−1, 1) then Banerjee et al. (2004) show that

the model leads to a valid covariance matrix and hence a valid joint distribution.

82



CHAPTER 5. A FLEXIBLE MCAR MODEL

5.3 The FMCAR

inputfmar.tex

5.4 Ensuring the Existence of the Covariance

inputcov.tex

5.5 Interpreting the Spatial Parameters

inputparameter.tex

5.5.1 Conditional Correlations

5.5.2 A Brief Example

5.6 Unconditional Correlations

inputcorr.tex

5.7 Precision Measures

inputtau.tex

5.8 Implementation

This section deals with the implementation of the FMCAR model i.e. to the

estimation of model parameters. A hierarchical framework3 is used for pragmatic

3Also frequently called multilevel models, and sometimes by the more specific terms generalized
linear mixed models, nested models, mixed models, random coefficient, random-effects models and
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and theoretical reasons. The theoretical reasons for hierarchical modelling is best

explained in Gelman & Hill (2006) but include shrinkage of estimators and increased

efficiency of estimation, achieved largely through the (partial) pooling of data across

levels of the model. There are also pragmatic reasons for employing a hierarchical

framework, which centre on the desire to use Bayesian methods of inference for the

estimation of model parameters. Bayesian methods are best modelled in a hierarchical

framework because they easilylend to the inclusion of prior information in the model.

Lastly, hierarcichal models provide a simple way to deal with the generalized linear

model which is a well established method of modelling count data.

5.8.1 Hierarchical GLM

In most applications, CAR and MCAR models are not typically used as models for

data but as priors for a spatial random effects parameter in a hierarchical model.

Following the rest of the literature, this section demonstrates how to implement the

FMCAR as a prior in a Bayesian hierarchical framework for count data. Without loss

of generality, consider the bivariate case (p = 2) and let Y (si) = (y1(si),y2(si))
′ ≡

(yi1,yi2)
′ denote the observed accident casualty counts for two modal types (e.g.

pedestrians and cyclists) respectively for each site i = 1, ..., n (e.g. London boroughs

or Lower Super Output Areas). The two variables could be generalized to any

counts and the model can be generalized to any number of variables although, in

this implementation, p = 2.

As proposed in chapter 2, a standard method for modelling such count data would

be via Generalized Linear Modelling (see McCullagh & Nelder (1989) for details),

random parameter models. Multilevel or hierarchical model is the preferred label for this approach
due to the confusion among disciplines as to exactly what is meant by random coefficients, effects
and parameters.
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which is used extensively in the literature on road casuality modelling – see, for

instance, Bailey & Hewson (2004), Graham et al. (2005) or MacNab (2003). The

first level of the hierarchical GLM model (the data model) will follow the convention

from the road safety literature which relates the observed accident counts to some

reference population level. This is a standard approach taken from epidemiology

where the expected counts are calculated from the underlying population at risk in

any particular geographic area. At the second stage of the model, the process model,

departures from the expected level are explained by regression effects (e.g. exposure

to traffic) or stochastic spatial-dependence modelled through a spatial random effects

parameter.

Formally then, the data model can be written as:

Yik | θik ∼ Poi(Eike
θik), i = 1, ..., n; k = 1, ..., p (5.8.1)

where the Eik are expected counts for variable k in site i derived from the standardized

population. Chapter 7 provides further details on the standardization methods used

in this application but the literature is extensive – see Mantel & Stark (1968).

Departures from the expected counts are modelled by the parameter, θik.

The process model, or second stage of the hierarchical GLM, models these

departures from the expected counts through a combination of regression effects

and stochastic spatial dependence parameters. The common notation of an n x p

matrix, X, of regression parameters with a q x p matrix, β of regression coefficients

is adopted for these regression effects. The spatial dependence will be modelled using

the FMCAR model. By using the vector operator to stack columns of the matrix so

that θv ≡ vec(θ′), the second stage of the GLM can be written as:
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θv | β,V ,C ∼ Nnp(µv ,Σ), (5.8.2)

where µv = vec(µ′), µ = Xβ, V = Γ−1, Mi ≡ diag(Ei1, ...,Eip), i = 1, ..., n and Σ

is as defined in equation (??).

To complete the hierarchical GLM specification, the third level or priors must be

specified for the matrices, β,C, and V . Assume that the regression coefficients have

a normal prior distribution, so that each column vector (βk) of the matrix β for each

of the p dependent variables (k = 1, ..., p) can be written as:

βk ∼ Np(0, σ2I). (5.8.3)

The usual choice of prior for precision (inverse covariance) matrices is the Wishart

distribution (Mardia et al. 1979), which is adopted here,

V ∼Wishart(ρ, (ρA)−1), (5.8.4)

where ρ > p andA is a predetermined symmetric positive-definite matrix. An obvious

candidate would be A = I. The choice of the final prior, for C, is not straightforward

however. It is selected to be proportional to

exp{−(Cv)′Cv/ξ2} (5.8.5)

where Cv ≡ vec(C). The prior distribution must be truncated to ensure that only

values of C that provide for a positive-definite G (see section 5.4) are permitted. A

hyperprior distribution for ξ is not used but values of ξ are predetermined instead. If a

hyperprior for ξ was used the computational burden on the model would be significant.

Smaller values for ξ are preferred as it results in a peaked prior distribution for C
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centered around zero. Therefore, posterior values of C far from zero are strong

statistical evidence for spatial dependence in the data. Note that use of this prior for

C does not favour either symmetric or asymmetric spatial dependence.

The posterior distribution of this hierarchical model can be obtained by the simple

application of Bayes’ theorem, which yields:

π(θ,β,V ,C | Y ) ∝ π(Y | θ)π(θ | β,V ,C)π(β)π(V )π(C). (5.8.6)

Substituting in the model specification at each of the three levels of the hierarchical

model gives

π(θ,β,V ,C | Y ) ∝ (5.8.7)
n∏
i=1

p∏
k=l

exp(−Eike
θik)(Eike

θik)Yik (5.8.8)

x | V |n/2| G |1/2 exp

{
−1

2
(θv − µv)′Σ−1(θv − µv)

}
(5.8.9)

x exp

{
− 1

2σ2
β′1β1

}
x · · · x exp

{
− 1

2σ2
β′pβp

}
(5.8.10)

x | V |(ρ−p−1)/2 exp
{
−ρ

2
tr(A−1V )

}
(5.8.11)

x exp
{
−(Cv)′Cv/ξ2

}
. (5.8.12)

5.8.2 Statistical Inference

Statistical inference is carried out in the Bayesian paradigm where the objective

is to obtain the posterior distribution given by Bayes’ theorem. Frequently these

distributions are high-dimensional and numerical integration or analytic solutions

are not feasible. One of the major limitations to the widespread implementation
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of Bayesian methods is that frequently the posterior distribution is not available

analytically and therefore high dimensional numerical integration is required to

conduct statistical inference. Computationally, this can be very difficult. Several

alternative approaches that do not rely on direct integration of these high dimensional

functions have been proposed in the literature; reviews can be found in Tanner (1996),

Smith (1991) and Evans & Swartz (1995). The dominant approach is currently

Markov chain Monte Carlo (MCMC). MCMC methods are so-called because they use

previous sample values to randomly generate the next sample value thus generating

a Markov chain. Excellent introductions to MCMC methods are Robert & Casella

(2004), Gamerman (1997) and the edited volume by Gilks et al. (1996). A briefer

and more recent reference is Besag (2001) which covers recent innovations such as

Langevin-Hastings diffusions. MCMC is approximately 50 years old and originated

in physics, yet it came to the attention of a wider audience when Geman & Geman

(1984) used the Gibbs sampler to sample from the joint probability distribution in

a spatial imaging problem. The signifcance of this method was reviewed in section

2.4.1 when the Hammersley-Clifford theorem was introduced.

The introduction of the Gibbs sampler by Geman & Geman (1984), which is

simple yet as Gelfand & Smith (1990) demonstrated applicable to a broad class of

problems, generated significant interest in MCMC methods for statistical inference.

Although MCMC has been widely adopted and adapted by Bayesian statisticians it

is important to separate the Bayesian paradigm from MCMC methods. MCMC is

simply a method for conducting approximate high dimensional numerical integration

and although it is used heavily in Bayesian statistics it is also useful in Frequentist

statistics. Besag (2001) goes to significant effort to make this distinction clear by

demonstrating the usefulness of MCMC methods in Frequentist analysis, for example
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the exact Monte Carlo p-values of Barnard (1963) or maximum likelihood estimation.

Bayesian statistics in general, and MCMC techniques in particular, are well

established and accepted, and this thesis will not discuss the underlying ‘philosophical’

or statistical debates surrounding these methods. Recommended textbooks on

Bayesian methods include Gelman et al. (2003) and Lancaster (2004); the later

adopts an econometric perspective. For a more rigorous treatment of the underlying

mathematical statistics, readers should consult Bernardo & Smith (1994), O’ Hagan

(1994) or Berger (1985). A comprehensive treatment of MCMC methods is given in

Gilks et al. (1996) or Gamerman (1997), and more succinct coverage can be found

in either Besag (2001) or Green (2001). For discussion of the frequentist-Bayesian

‘debate’ readers are directed to Bernardo (2003), Berger (1985) and de Finetti (1970),

and references therein. For information and advice on implementing MCMC methods

for Bayesian inference in Matlab consult LeSage (1999), in R see Gelman et al. (2003)

and in Python or C refer to Wilkinson (2008). These authors also provide freely

available code for implementing basic MCMC samplers all of which can be ammended

to implement the FMCAR model.

It is possible to implement MCMC methods in any computer language or matrix

computing environment and each option has trade-offs in terms of financial cost,

opportunity cost and computational cost. Two of the most popular ways to conduct

Bayesian analysis is either through the extensive MATLAB econometrics toolbox

compiled by James P. LeSage4 or by using one of the derivatives of the BUGS

software (Bayesian inference Using Gibbs Sampling), which is introduced below.

Many econometricians and statisticians continue to write their own MCMC samplers.

Throughtout this thesis the Python language is used because it offers the power of an

4Available freely along with a 350 page e-book from http://www.spatial-econometrics.com
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object-orientated language without the usual overheads of development and training

time. Python is free as well as incredibly easy to learn and deploy. Compared

to other languages it is very succinct and runs across all operating and hardware

configurations. Additionally, it works very well with the R statistical environment as

well as with leading Geographical Information Systems (GIS) such as the commercial

ArcGIS suite (from ESRI) or the open source GRASS5 implementation. ArcGIS is

used for the geographic elements of this thesis and basic data analysis and figure

generation is done in R. The appendix provides further details.

For researchers who do not want to programme their own MCMC alogrithms or

are not comfortable with amending the vast amount of computer and application

code already available there is BUGS (Bayesian inference Using Gibbs Sampling),

a self-contained piece of computer software for performing Bayesian analysis using

MCMC methods. There are many different versions of the BUGS software6, which

was originally written for DOS systems. These include WinBUGS7, OpenBUGS8,

JAGS9, and BRugs10. There are also tools in the statistical languages R and S useful

for convergence diagnostics11 which are also built into BUGS and its derivatives.

Sampling from the posterior in (5.8.7) requires the use of an MCMC sampler.

5Geographical Resources Analysis Support System.

6All of the versions introduced here can be downloaded, for free, from http://www.mrc-
bsu.cam.ac.uk/bugs/. There is also a link to JAGS from this website.

7Probably the most widely known Bayesian computer “application” this version runs on the
Microsoft Windows platform and was developed by staff at Imperial College London.

8This is an open source version of BUGS which runs natively on Linux systems and Intel-based
Mac computers and was developed by the University of Helsinki

9Just Another Gibbs Sampler is a re-written version of BUGS for UNIX users that uses the same
syntax and model description tools as BUGS. It is written by Martyn Plummer.

10an R interface to OpenBugs

11CODA or Convergence Diagnostics and Output Analysis for R and S is available from
http://www-fis.iarc.fr/coda/.
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Gibbs sampling is applicable when the joint distribution is not known explicitly, but

the conditional distribution of each variable is known. The Gibbs sampling algorithm

generates a sample or draw from the distribution of each variable in turn, conditional

on the current values of the other variables. It has been shown (see, for example,

Gamerman (1997) for a thorough explanation) that the sequence of samples produced

by the sampler constitutes a Markov chain, and the stationary distribution of that

Markov chain is just the required joint distribution.

The Gibbs sampling algorithm is actually a special case of the Metropolis-Hastings

(Metropolis et al. (1953) and Hastings (1970)) algorithm, although it is usually faster

and easier to implement. However, the Gibbs sampler is actually less useful in

practice. Unlike the Gibbs sampler which relies on sampling from simple, univariate

probability distributions, the Metropolis-Hastings algorithm can draw samples from

any probability distribution π(x), requiring only that a function dominating the

density can be calculated at x. Similarly to the Gibbs sampler, the Metropolis-

Hastings algorithm generates a series of autocorrelated samples using a proposal

density Q(x′, xt), which depends on the current state xt, to generate a new proposed

sample x′. This proposal is ‘accepted’ as the next value (xt + 1 = x′) if α drawn from

U(0, 1) satisfies

α <
π(x′)Q(xt|x′)
π(xt)Q(x′|xt)

.

If the proposal is not accepted, then the current value of x is retained: xt + 1 = xt.

The Gibbs sampler simply has an α = 1 i.e. the sample is always accepted. Chib

& Greenberg (1995) provide an intuitive introduction to the Metropolis-Hastings

method and Gamerman (1997) provides a comprehensive treatment. Many advances

have been made in the field of MCMC techniques but these two alogrithms are

adequate to sample efficiently from the posterior (5.8.7) of the FMCAR.
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To implement the FMCAR thousands of samples are produced from the posterior

(5.8.7) using Metropolis-Hastings steps within a Gibbs sampler. After discarding

some initial samples called ‘burn-in’12 because they will be autocorrelated, quantities

of interest (e.g. the expectation) can be calculated from the posterior. This will be

discussed in more detail in chapter 7. For (5.8.7), one iteration of the Gibbs sampler

requires sampling from:

1. π(βk | β−k,V ,C,θ), k = 1, ..., p (5.8.13)

2. π(V | β,C,θ), (5.8.14)

3. π(Ckl | β,V ,θ), k , l = 1, ..., p (5.8.15)

4. π(θi | θ−i,β,V ,Γ,Y ), i = 1, ..., n (5.8.16)

where β−k denotes all of the columns of the regression coefficient matrix, β except for

the kth and similarly for the parameter matrix, θ−i. The term Ckl in step 3 represents

the (k , l)th element of C.

Deriving the conditional distributions for each step in the Gibbs sampler requires

examining the terms in (5.8.7) that involve that parameter. This is done as follows.

Conditional distribution of βk

The conditional distribution is

π(βk | β−k,V ,C,θ) ∝ exp

{
−1

2
(θv − µv)′Σ−1(θv − µv)

}
exp

{
− 1

2σ2
β′kβk

}
(5.8.17)

The distribution in (5.8.17) can be simplified by reordering the elements in the

quadratic term. Instead of ordering the stacked parameter vector by site (i = 1, ..., n)

12A good introduction to this and other key concepts of MCMC methods for the unfamiliar is
Green (2001).
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and then by variable (k = 1, ..., p) it could be ordered by variable and then by site.

Hence, instead of writing

θv = (θ11, θ21, · · · , θ1p, · · · , θnp)′ (5.8.18)

consider reordering the stacked vector as

θ∗ = (θ11, θ21, · · · , θn1, · · · , θnp)′. (5.8.19)

The result of this reordering is that the parameter matrix θ∗ has an np x np covariance

matrix of the form Block(Skl) where the elements (Skl) are n x n matrices which are

derived below.

The conditional distribution in (5.8.17) becomes

exp

{
−1

2

[
(θ∗k − µ∗k)′Skk(θ∗k − µ∗k) + 2(θ∗k − µ∗k)′

∑
l 6=k

(θ∗l − µ∗l )

]}
exp

{
− 1

2σ2
β′kβk

}
,

(5.8.20)

where θ∗ is written as ((θ∗1 )′, ..., (θ∗p )′)′. Reparameterizing the mean as µ∗k = Xβk ,

(5.8.20) can be rewritten as

exp{−1

2

[
β′k

(
X ′SkkX +

1

σ2
I

)
βk − 2β′k

(
X ′Skkθ

∗
k +X ′

∑
l 6=k

Skl(θ
∗
l −Xβl

)]
}

(5.8.21)

The conditional distribution in (5.8.21) is proportional to a multivariate normal

distribution with covariance matrix

Σβk
=

(
X ′SkkX +

1

σ2
I

)−1
, (5.8.22)
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and with the mean given by

µβk
≡ Σβk

[
X ′Skkθ

∗
k +X ′

∑
l 6=k

Skl(θ
∗
l −Xβl)

]
. (5.8.23)

As this is a multivariate normal distribution, sampling of this particular conditional

distribution can be done directly in the relevant step of the Gibbs sampler.

It is still necessary to derive the matrix Skl , (k , l = 1, ..., p). If k = l , then for

each site i = 1, ..., n, the ith diagonal block element of Skk is given by

m
1/2
ik Vkkm

1/2
ik

where mik is the kth diagonal element of the matrix Mi and Vkk is the kkth element

of V . Allow U ≡ (Ukl = V 1/2CV 1/2), then the off-diagonal elements are

m
1/2
ik Vkkm

1/2
jk

if j ∈ ∂i and zero otherwise. In the case that k 6= l then the diagonal elements of Skl

are given by

m
1/2
ik Vklm

1/2
il .

For i < j the off-diagonal elements are

m
1/2
ik Uklm

1/2
jl ,

and when i > j they are given by

m
1/2
ik Ulkm

1/2
jl .
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Conditional Distribution of V

Recall that V ≡ Γ−1. The conditional distribution is

π(V | β,C,θ) ∝ (5.8.24)

| V |n/2 exp

{
−1

2
(θv − µv)′Σ−1(θv − µv)

}
| V |(ρ−p−1)/2 exp

{
−ρ

2
tr(A−1V )

}
(5.8.25)

If there was no spatial dependence (i.e. C = 0) then (5.8.24) would reduce to a

Wishart distribution that could be sampled directly. However, in the presence of

spatial dependence (i.e. C 6= 0) then this is not possible and a Metropolis-Hastings

alogrithm using a Wishart proposal density must be used to generate realisations

from (5.8.24) in step 2 of the sampler. See Metropolis et al. (1953) and Hastings

(1970) for details or the overview in either Gilks et al. (1996) or Green (2001). It

is important to select a precision parameter for the Wishart proposal density that

ensures a sufficiently high level of acceptance of the random draws and therefore

reasonable mixing for V .

Conditional distribution for C

From the posterior distribution (5.8.7) the conditional distribution is

| G |1/2 exp

{
−1

2
(θv − µv)′Σ−1(θv − µv)

}
exp{−(Cv)′Cv/ξ2}. (5.8.26)

In the step 3 of the sampler where values for C are sampled, a Metropolis-Hastings

algorithm with a uniform proposal density must be employed to generate random

draws from (5.8.26) because the distribution is not directly available. The algorithm

samples values for Ckl conditional upon the values of the other components. During

this step, the order of the components generated is randomly selected. As in the

proposal density for V , the uniform density must be truncated with upper and lower
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bounds to reasonable mixing of C and a sufficiently high acceptance rate.

Conditional distribution for θi

It only remains to specify the conditional distribution for the fourth step in the

sampler, the conditional distribution for θ, which is proportional to

n∏
i=1

p∏
k=l

exp(−Eike
θik)(Eike

θik)Yikexp

{
−1

2
(θv − µv)′Σ−1(θv − µv)

}
. (5.8.27)

It is simpler to interpret, if the conditional distribution is considered for each θi,

or rather as the process parameters for each site. From section 5.3, these conditional

distributions are proportional to

p∏
k=l

exp(−eθikEik)(e
θikEik)

Yikexp

{
−1

2
(θi − µ∗i)′M

1/2
i VM

1/2
i (θi − µ∗i)

}
(5.8.28)

where

µ∗i ≡ µi +
∑
i<j

M
−1/2
i V −1/2CV 1/2M

1/2
j (θj − µj)I(j ∈ ∂i) (5.8.29)

+
∑
i>j

M
−1/2
i V −1/2C ′V 1/2M

1/2
j (θj − µj)I(j ∈ ∂i) (5.8.30)

Once again, the distribution is not immediately available and sampling is performed

through a Metropolis-Hastings algorithm with a multivariate normal proposal density

with the covariance matrix set to ε2Ip with ε2 chosen to ensure sufficiently high levels

of acceptance for the candidate draws and therefore reasonable mixing of the θi.

Starting values for the sampler

Starting values for the sampler could be obtained by setting θik = log((yik + 1)/Eik)
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for i = 1, ..., n and k = 1, ..., p where yik and Eik are the observed and expected counts

respectively. With these estimates of θ, maximum likelihood estimates could be used

to obtain starting values for the regression coefficients in β and the residuals could

be used to select a suitable starting value for the precision matrix V = Γ−1. A coarse

grid search could be used to maximise (5.8.26) given the other parameters to find a

starting value for C.

5.9 Summary

In this chapter the Flexible Conditional Autoregressive (FMCAR) model was

introduced. The innovation in this model is the inclusion of flexible (i.e. asymmetric)

cross-correlations between different variables at different sites. Another novel feature

is the removal of the dependence of the number of neighbours in estimating the

conditional means, and instead the inclusion of a precision measure that allows

for variation in the data to influence the correlation. The conditions necessary to

ensure that the joint covariance matrix exists were introduced and interpretation of

the spatial autocorrelation parameters was discussed. The conditional and posterior

distributions for a hierarchical GLM model adopting the FMCAR model as a spatial

prior distribution were derived and the sampling steps of an MCMC sampler were

presented. This hierarchical formulation will be applied in later chapters and is the

standard approach for incorporating spatial dependence into a model for count data.

Chapter 7 uses this model in a hierarchical Generalized Linear Mixed Model to model

multiple road safety performance indicators for 33 London Boroughs. The impact

of allowing asymmetric correlations is investigated in the context of the multiple

performance indicators and the relevance of the precision measures is explored. In

the next chapter the relative performance of this model in comparison to existing
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MCAR approaches is considered through a simulation exercise.
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CHAPTER 6

A COMPARISON OF MCAR MODELS

6.1 Introduction

The last chapter developed the FMCAR, a flexible multivaritate conditional autore-

gression which incorporates an asymmetric linking or cross-correlation parameter.

This additional flexibility comes at a cost; there are more parameters to estimate

and the model is computationally more difficult to implement than the original

MCAR model of Mardia (1988). It is therefore important to consider how well the

FMCAR compares to the alternative models considered in chapter 3. When the

spatial relationships between variables across sites on the lattice is asymmetric then

the FMCAR model should be preferred. However, when the relations are symmetric

how well does the FMCAR perform in comparison to the existing approaches? This

question is answered in this chapter by comparing the performance of the main

multivariate spatial models using both simulated and real data.

In most spatial modelling situations, the MCAR is used as a prior in a Bayesian

hierarchical framework. The main use of these models to date has been in the disease

mapping literature, a sub-speciality of epidemiology. Here, Bayesian methods are

particularly useful because they allow for statistical inference over a fine geographic

resolution where data are sparse by nature (rare diseases recorded over small areas

results in a low expected count per grid on the lattice) and observational noise is

commonplace. Hierarchical methods are easily incorporated into a Bayesian method
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of inference and are useful because they allow borrowing of strength in the estimation

of small area point estimates across the whole lattice, yet also allow for variance

reduction by the use of shrinkage estimators.

It is a well established property of Bayesian inference that Bayesian procedures

offer a trade-off between bias and variance reduction of estimates (Carlin & Louis

2000). Gilks et al. (1996) provide a good discussion of this property as well as

demonstrating the use of Bayesian methods for small area estimation. This is

particularly prevelant in the disease mapping literature as discussed in Elliott et al.

(1992) and Elliott et al. (2000), where Bayesian hierarchical spatial methods are

demonstrated to produce point estimates with good properties in terms of Minimum

Squared Error loss. Variance reduction in Bayesian methods is achieved through the

borrowing of strength or information within the hierarchical structure. The result is

point estimates that are shrunk towards a ‘global average’ from the distribution of

all the units included in the hierarchy. The effect of this shrinkage is dependent upon

the prior structure assumed and conditional upon this structure being close to the

‘true’ population model. Returning to the spatial setting, the different MCAR models

will produce different levels of shrinkage when used as spatial priors in a hierarchical

model. Therefore it will be useful to compare the variance and bias trade-offs implied

by each model.

The empirical goal of this thesis is to model multiple road accident performance

indicators in small areas with a view to producing overall road safety performance

measures that have low variability and therefore improve performance ranking.

Thus, the aim of this chapter is to compare the performance of the various MCAR

formulations in terms of model complexity and fit to sets of simulated and ‘real-world’

data whilst also considering the impact upon variance and bias.
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Due to their extensive use in the disease mapping and epidemiology literature, a

small number of studies already exist that adopt a simulation framework to compare

spatial models. For instance, Lawson et al. (2000) compared a range of univariate

spatial models according to goodness of fit criteria and Richardson et al. (2004)

compared the smoothing of disease risk performed by different univariate models

and therefore their ability to detect hightened risk. More recently, Best et al. (2005)

produced a thorough comparison of univariate models that extended their coverage

beyond CAR models to semi-parametric and moving average models. Currently no

similar simulation study exists for multivariate model, although both Kim et al. (2003)

and Jin et al. (2005) demonstrate their models using simulated data. Therefore this

chapter will be a useful aid to applied researchers in selecting the most appropriate

MCAR specification for use in a Bayesian hierarchical framework.

For reasons of space and due to the undelying aim of comparing the FMCAR

the focus of this simulation study will be on variants of the MCAR. After presenting

the simulation to be used in this comparison along with the models, the comparative

performance of the models is discussed. A comparison of the models applied to cancer

data for West Yorkshire completes the chapter.

6.2 Comparing Spatial Priors

There are five different ‘correlation’ parameters that could possibly be specified

in the multivariate (bivariate) models considered: (1) for variable one there is a

spatial autocorrelation parameter (α1), (2) for variable two there is also a spatial

autocorrelation parameter (α2), (3) for each site there is a non-spatial correlation

parameter (α0) which has also been called a bridging parameter in the literature, (4)

there is a spatial cross-correlation parameter, also called a linking parameter in the
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literature, between variable one at site i and variable two at sitej which is labelled

α3, (5) and for asymmetric specifications there is a second linking or spatial cross-

correlation parameter, α4, which relates variable two at sitei with variable one at site

j. For a symmetric specification α3 = α4. These multiple relationships are illustrated

in figure 6.1 which depicts a lattice of four sites (labelled 1 to 4) arranged on a simple

grid or square. There are two variables (labelled a and b) and therefore they can be

viewed as two overlapping grids as in figure 6.1. The solid and dashed lines represent

each of the five correlations described above.

Figure 6.1: Illustration of the correlations in a bivariate dataset recorded on a four
site lattice.

The FMCAR model incorporates all five types of correlation into the model and

is therefore the most flexible of the models. Note that this is not the same as the

FMCAR being more general because the other models (GMCAR, MCAR and 2fCAR)

are not nested within the FMCAR. These parameters can be extracted from the

matrixC in the FMCAR model – see section 5.5. However, it is also the most complex
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(i.e. has the most parameters) but is not necessarily the most computationally

burdensome. The GMCAR of Jin et al. (2005) allows for a cross-correlation or linking

parameter (α3) but this cross-correlation is assumed to be symmetric (i.e. α3 = α4).

As indicated in chapter 3, Jin et al. (2005) use the notation ηo for α0 and η1 for α3,

but this simulation study will use αi for all of the correlation parameters to make

interpretation of the findings simpler. The GMCAR is also difficult to implement

in practice because there is very little guidance as to whether the right model is

π(y1 | y2) and π(y2) or whether it is actually π(y2 | y1) and π(y1). Chapter 3

covered this issue in some detail. The two-fold CAR model (2fCAR) of Kim et al.

(2003) also has four correlation parameters like the GMCAR model, but it can not

be generalized beyond the bivariate case and is rather troublesome to implement,

as was discussed in chapter 3. The last model that is included in this comparative

study is the MCAR version specified in Gelfand & Vounatsou (2003) and discussed in

chapter 3. Here there are three types of correlation that are included, the two spatial

autocorrelation parameters and the non-spatial covariance which is captured in the

covariance matrix, Λ rather than through a separate α0 term. Table 6.1 summarizes

the four models to be used as spatial priors in this chapter and the parameters they

contained.

Table 6.1: Summary of model parameters

Model Parameters

1. FMCAR α0, α1, α2, α3, α4

2. GMCAR α0, α1, α2, α3

3. MCAR α0, α1, α2

4. 2fCAR α0, α1, α2, α3
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6.3 Simulation Study

A small simulation study is used to compare the performance of the MCAR prior

specifications presented in the last section. Bivariate data are simulated based on

the geographical layout of the 44 Health Authorities in Greater London because the

adjacency map is readily available in WinBUGS for other researchers to compare

results. For each health authority (i = 1, .., 44), assume that the data yij arise from

the following bivariate Gaussian process:

yij ∼ N (βj + φij, σ
2), i = 1, ..., 44 j = 1, 2 (6.3.1)

where the βj are fixed constants and the φij are random effects. Four simulation

studies are performed where in each study one of the four models listed in table

6.1 are assumed to be the data generating or ‘true’ model. In the first study the

φij are generated from the FMCAR model from chapter 5 and hence the data have

asymmetric cross-correlations. In the second study the φij are produced using the

GMCAR as the assumed model with symmetric cross-correlations. The MCAR model

of Gelfand & Vounatsou (2003) is assumed to be the true data generating model in

the third study and the spectral decomposition approach is used to produce the Rk

matrices – see chapter 3 if this is unfamiliar. This model has a different spatial

parameter for each variable (i.e. α1 and α2) but no spatial cross-correlations between

variables at different sites (α3 = α4 = 0). Lastly, the two-fold CAR model of Kim

et al. (2003) is used for the fourth study which includes a single symmetric spatial

cross-correlation parameter (α3) similarly to the GMCAR model. The true values of

the parameters that were assumed for each of these models to simulate the data are

shown in table 6.2.
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Table 6.2: The true parameter values used in the simulation studies

Study True Model β1 β2 σ2 τ1 τ2 α0 α1 α2 α3 α4 Λ12

1 FMCAR -2.0 -5.0 0.01 10 10 0.90 0.20 0.90 0.50 0.30 —
2 GMCAR -2.0 -5.0 0.01 10 10 0.90 0.20 0.90 0.50 — —
3 MCAR -2.0 -5.0 0.01 10 10 — 0.20 0.90 — — 6.1
4 2fCAR -2.0 -5.0 0.01 10 10 0.90 0.20 0.90 0.50 — —

To compare the performance of the FMCAR with the existing multivariate

approaches in the literature, 100 datasets were simulated for each study where each

study uses one of the four models to generate the data. The four models were then

fitted to each of the 100 datasets from each study using MCMC methods. To improve

convergence of the MCMC chains the models were recentered (Gelfand et al. 1995)

so that the hierarchical model becomes

yij ∼ N (Zij, σ
2), i = 1, ..., n j = 1, 2 (6.3.2)

where

Zij = βj + φij

and the mean of Zij becomes βj rather than zero. This leads to trivial changes in

the conditional distributions, π(Z1 | Z2), for each of spatial priors adopted. The

variance, σ2 is given a non-informative inverse gamma distribution (σ2 ∼ IG(1, 0.1))

and the intercept for each variable is given a vague normal prior (βj ∼ N (0,∞)).

All that is required to complete the four model specifications are the hyperpriors

i.e. the prior distributions for(αi and τj. To keep the models as comparable as

possible the same prior distributions are used for each of the MCAR models where

possible, and non-informative priors are chosen. The precisions are given vague

gamma distributions (τj ∼ G(1, 0.1), which is equivalent to specifying a Wishart
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distribution for the multivariate variance matrix, Γ. Lastly, prior distributions for

the correlation coefficients (α0, α1, α2, α3 and α4) are required. The MCAR doesn’t

have an α3 or α4 (spatial cross-correlations), and the GMCAR and two-fold CAR

priors don’t have an asymmetric spatial cross-correlation parameter, α4. In the

bivariate case it is easier to specify each parameter individually as taking uniform

priors (αi ∼ U\〉{(0, 1)).

To monitor convergence of the MCMC chains five overdispersed (relative to the

posterior) parallel chains1 were run for each model and covergence checked visually

using sample trace plots as well as numerically using summaries such as Gelman’s
√
R-statistic (Gelman 1996) which are available in the CODA2 package for S or

R (see Best et al. (1996) and Best et al. (1997)). The chains had converged (i.e.
√
R-statistic ≈ 1.0) in all cases by iteration 5,000. These were then discarded as

“burn-in” and an additional 25,000 samples were produced from which to summarize

the posterior distributions of the models. Although all of these models could be

implemented in the popular WinBUGS application3 the MCMC program already

written in Python for the FMCAR was adapted for the simulation study. Random

number generation, posterior summarization, data visualization, and convergence

diagnosis was performed using R4 by using the RPy5 Python interface.

1This requires that one chain is initially run and after signs of convergence the posterior is
inspected. From the posterior four initial values for four additional chains that are overdispersed
relative to the posterior are selected and are then run.

2Convergence Diagnosis and Output Analysis - see chapter 5 for further details.

3See chapter 5 or visit http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

4www.r-project.org

5http://rpy.sourceforge.net/
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6.3.1 Model Complexity and Fit

The complexity and fit of the four models in consideration were compared using

the deviance information criterion (DIC), a simple and intuitive extension of the

established Akaike information criterion (AIC)(Akaike 1974) for hierarchical models.

The DIC is based on the posterior distribution of the deviance statistic, D(θ) =

−2logf(y | θ) + 2logh(y), where f(y | θ) is the likelihood function for the observed

data (y) given the vector of parameters (θ) and h(y) is some standardizing function

of the data. Analogously to the AIC, the DIC is defined in terms of the posterior

expected deviance and an estimate of the ‘effective’ number of parameters i.e. DIC

= D̄ + pD. In classical nonhierarchical models this concept is well defined but in

a Bayesian hierarchical setting, the shrinkage properties of the prior distribution

essentially restrict the model parameters.

The effective number of parameters term, pD, in the DIC was proposed by

Spiegelhalter et al. (2002) to capture the amount of shrinkage performed by the

prior. pD was shown (for approximately normal likelihoods) in Spiegelhalter et al.

(2002) to be equal to the ratio of the likelihood to the total information contained

in the posterior distribution (∝ likelihood x prior). Thus a pD that is small relative

to the number of observations highlights that the prior distribution is providing a

lot of structural information about the parameters and that there is considerable

‘borrowing of strength’, while a pD that is relatively large indicates that the prior is not

providing much information. With models that provide very little prior information

the effective number of parameters will be approximately equal to the actual number

of parameters and the DIC will be almost equivalent to the AIC. Spiegelhalter et al.

(2002) also demonstrate that the DIC can be interpreted as the expected posterior loss

in prediction when adopting a particular model and therefore DIC can be considered
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to be selecting the model that produces the best prediction of the spatial random

effect. The effective number of parameters, pD, is the posterior mean of the deviance

minus the deviance of the posterior means. In normal hierarchical models this is

the trace of the “hat” matrix that maps the observed data to their fitted values.

For linear models the trace of the hat matrix is equal to the rank of the matrix of

independent variables i.e. it is the number of linearly independent parameters in the

model. Gelman (2009) suggests using half the variance of the deviance as an estimate

of pD because it is invariant to parameterisation and is trivial to calculate.

The DIC, then, can be thought of as a combination of a goodness of fit measure

(D̄) and a complexity measure (pD). As small deviance values indicate good fit and

small number for pD indicates a parsimonious model, small values of the DIC are

preferred. Due to D̄ being scale-free so is the DIC and hence there is no substantive

interpretation to be placed on the absolute values of the DIC; only the rankings of the

DIC between models is of interest. An important question is how large a difference

in the DIC between models is noteworthy. According to Spiegelhalter et al. (2002)

models with DIC values within 1 or 2 of the ‘best’ model (i.e. the one with the lowest

DIC) are also strongly supported, those with DIC values between 3 and 7 of the ‘best’

are only weakly supported, and any other models (i.e. with a DIC greater than 7

away from the ‘best’) are substantially inferior.

In addition to computing the DIC, the average mean squared error (AMSE) is

also calculated for the 100 datasets in each study. The mean squared error (MSE)

of an estimator is one method of quantifing the difference from the true value of the

quantity being estimated. While particular values of (A)MSE other than zero are

meaningless (which indicates that the estimator completely accurately predicts) the

MSE values may, once again, be used for comparative purposes. Once again, the
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model with the lowest (A)MSE is preferred. As the true Zij values are known in the

simulation the ˆAMSE can be estimated as

1

Nnp

N∑
t=1

p∑
j=1

n∑
i=1

(
Ẑij −Zij

)2

with associated Monte Carlo standard error estimate, ŝe( ˆAMSE) calculated as

√√√√ 1

(Nnp)(Nnp− 1)

N∑
t=1

p∑
j=1

n∑
i=1

[(
Ẑij −Zij

)2
− ˆAMSE

]2
,

where for this simulation study N = 100, p = 2 and n = 44.

Tables 6.3 and 6.4 report the DIC and AMSE comparisons. Recall that study 1

used the FMCAR to generate data and is called model 1, study 2 used the GMCAR

to generate data and is labelled model 2, model 3 is the MCAR and is used in study 3,

and lastly model 4 is the two-fold CAR model and is used in study 4 to generate the

data. Table 6.3 summarizes the relative performance of each of the models against

that study’s true model. Therefore the values reported are the amount by which each

model is above (positive numbers) or below (negative numbers) the DIC of the true

model. Hence a negative number would indicate that the model in question ‘beat’

the true model. The true model in each study is indicated by a dash (—). The

median alongside the 2.5 and 97.5 percentiles are recorded for the DIC difference.

Table 6.4 reports the estimated average mean square error and the related Monte

Carlo estimates of the standard errors, again for each model in the simulation. The

percentage change6 (∆) in AMSE for each model relative to the true model (indicated

by a dash) is also reported. Once more, negative values for ∆ indicate that the model

6Calculated as follows: ∆ = ( ˆAMSEi − ˆAMSEtrue)/ ˆAMSEtrue x 100 for models i = 1, ..., 4.

109



CHAPTER 6. A COMPARISON OF MCAR MODELS

is superior to the true model.

Table 6.3: Percentiles of estimated DIC difference between the true model and the
other models

Study 1 Study 2 Study 3 Study 4
2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

— — — -6.24 2.74 5.64 -15.3 -0.59 8.57 -12.1 -2.24 2.37
-4.80 19.6 56.7 — — — -11.29 2.32 13.0 -14.3 -2.15 3.16
3.56 34.9 68.8 -3.62 1.48 8.47 — — — -10.0 0.83 4.89
3.03 23.7 65.1 0.50 30.4 63.7 2.76 20.9 53.3 — — —

The symbol “—” indicates the model is the true model for this study

Table 6.4: Average mean squared error (x10−3), associated MC standard errors (SE
x10−5), and percentage change in AMSE (∆,%) relative to the true model.

Study 1 Study 2 Study 3 Study 4
AMSE (SE) ∆ AMSE (SE) ∆ AMSE (SE) ∆ AMSE (SE) ∆

7.51 (8.26) — 7.91 (8.57) 1.54 8.49 (9.20) -3.08 5.46 (5.92) -7.92
8.17 (8.91) 8.79 7.70 (8.44) — 8.81 (9.67) 0.571 5.44 (5.87) -8.26
9.22 (10.1) 22.8 7.82 (8.50) 0.385 8.76 (9.55) — 5.85 (6.34) -1.35
8.22 (8.80) 9.45 9.86 (10.9) 26.6 11.2 (12.3) 27.8 5.93 (6.44) —

The symbol “—” indicates the model is the true model for this study

The results of the simulation study appear reasonably consistent; larger DIC

differences in table 6.3 correspond with larger AMSE values in table 6.4. Starting

with table 6.3, when asymmetric cross-correlations are present in the data (i.e. when

the FMCAR was used to generate the data) the FMCAR is the best model with

the DIC difference between it and the rest of the models being substantial when the

indicator of a substantially inferior model is being more than 7 away from the best

model. In the case of symmetric cross-correlations (i.e. in study 2 using thr GMCAR)

both the FMCAR and the standard MCAR are close to the best model, the GMCAR.

Surprisingly, the 2fCAR model of Kim et al. (2003) is over 30 units away from the

GMCAR when it includes a cross-correlation parameter. In fact in no cases is the
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2fCAR even weakly supported by the DIC using the criteria from Spiegelhalter et al.

(2002). Even when it is used to generate the data (study 4) it is beaten by the

two other models that also include cross-correlation parameters (the FMCAR and

GMCAR) and the MCAR is effectively tied with the 2fCAR model being only 0.83

above it in terms of the DIC. Finally, in the case of no cross-correlations (study 3)

the FMCAR and GMCAR both perform well being strongly supported by the DIC

criteria.

These general findings are supported by the AMSE reported in table 6.4. All of

the models have a better AMSE than the data generating 2fCAR model in study 4.

And, with the exception of study 1, the 2fCAR model performs exceedingly badly

in terms of AMSE being more than 25 percent worse than the true model. Again,

the FMCAR is the best model under an asymmetric cross-correlation situation with

the alternative models performing relatively poorly. In study 2, under a symmetric

cross-correlation structure, both the FMCAR (+1.5%) and the MCAR (+0.4%) are

close in terms of AMSE to the true model.

The additional complexity of the FMCAR appears to offer benefits in terms of

shrinkage of the spatial random effects in comparison to the other MCAR priors

tested. Figure 6.2 plots a histogram of the random effect variance (σ2
1 = 1/τ)

for variable 1 for each of the four models fitted to the simulated data where the

FMCAR is the true model. This, in effect, measures the precision. There is greater

shrinkage occuring by the use of additional information contained in the spatial

correlation structure which is allowing for the estimates of the random effect to be

“shrunk” towards the global mean of zero. This indicates that the FMCAR will be

an appropriate model to use in the ranking of road safety performance indicators in

chapter 7 as the aim will be to generate narrow credible intervals for the random
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Figure 6.2: Histograms of posterior conditional variance for variable 1 from each
model

effects.

In terms of predictive ability, the general conclusion that can be drawn from this

simulation study is that the FMCAR is by far the superior model when asymmetric

cross-correlations (study 1) are present in the data. However, even when the cross-

correlations are symmetric (study 2) or non-existent (study 3) the FMCAR is strongly

supported by the DIC and is within a few points of the ‘best’ model in each case.

Given this and the ease of implementation and interpretation of the FMCAR which

was discussed in chapter 5 there does not seem to be a downside to using the FMCAR
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as the default model for modelling spatial random effects. Additionally, the FMCAR

model does offer attractive properties in terms of shrinkage of the estimated spatial

random effects variance, which will be of considerable use in modelling performance

indicators. However, the FMCAR offers little or no benefit over existing spatial priors

in the absence of asymmetric cross-correlations. The conclusion drawn was that, given

the negligible penalty of adopting the FMCAR by default, the attractiveness of this

model to other researchers with depend upon the relative overhead of implementing

this model.

6.4 Data Example

Although the results of the last section suggest that the FMCAR performs well

regardless of the true data generation process, this section uses real data to compare

the models. Further, this example illustrates the use of the various MCAR prior

distributions for the joint modelling of non-Gaussian data. This is particularly

salient given the empirical objective of this thesis is to model accident counts. In

this comparison, the data represent observed and age and sex standardised expected

counts of incidenct cases of oral cavity and lung cancer in each of 126 electoral wards

in the West Yorkshire region of England between 1986 and 1991.7

Since both cancers are rare, the mortality counts yij for cancer j, (j =1, 2) in area

i (i =1, ..., 126) are assumed to follow independent Poisson distributions, conditional

on an unknown mean θij

Yik ∼ Poi(Eije
θij) (6.4.1)

7This dataset is used because it is available along with the West Yorkshire adjacency file in the
WinBUGS library allowing these results to be freely replicated. This dataset was previously used
by Best et al. (2005) to compare univariate CAR models.
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logθij = logEij + βj + φij (6.4.2)

where Eij is the age and sex standardised expected count (offset) for cancer j in area

i, βj is an intercept term representing the baseline (log) relative risk of cancer j across

West Yorkshire, and φij is the area- and cancer-specific log relative risk. The φij are

therefore spatial random effects and are modelled using the MCAR models from the

simulation exercise as spatial priors.

By inspecting figures 6.3 and 6.4 it is apparent that the log relative risks for oral

cavity and lung cancer are spatially correlated across West Yorkshire. Comparing the

two figures there also appears to be within area correlation. This is confirmed by the

correlation between risk of oral cavity and lung cancers being 0.84 suggesting strong

shared geographical pattern of risk between the two diseases. This could be the result

of some underlying common cause such as smoking prevelance.

Figure 6.3: Map of relative risk of oral cavity cancer for West Yorkshire.

All four models are fitted to the West Yorkshire cancer data using the same
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Figure 6.4: Map of relative risk of lung cancer for West Yorkshire.

priors and hyperpriors as section 6.3. In the first study the φij are estimated

with the FMCAR prior and therefore there are five model parameters. In the

second model the φij are fitted using the GMCAR as the prior and there are four

parameters i.e. the cross-correlations are assumed to be symmetric. The MCAR

model of Gelfand & Vounatsou (2003) is the prior in the third model and the spectral

decomposition approach is once again used to produce the Rk matrices. This model

has a different spatial parameter for each variable (i.e. α1 and α2) but no spatial

cross-correlations between variables at different sites (α3 = α4 = 0). Lastly, the two-

fold CAR model of Kim et al. (2003) is used for the fourth model which includes a

single symmetric spatial cross-correlation parameter (α3) similarly to the GMCAR

model. The same hyperpriors from section 6.3 are used along with the same MCMC

methods (Metropolis-Hasting step within a Gibbs sampler). For each model, five

overdisperesed chains were run to check for convergence which occured around the
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5,000th iteration. These were then dropped as ‘burn-in’ and another 10,000 iterations

were run giving 50,000 samples for posterior summarization.

As the main concern of this chapter is comparing these competing spatial priors in

terms of model fit, table 6.5 reports the separate contributions of fit D̄ and complexity,

pD, to the the DIC scores. A discussion of the fixed and random effects is omitted

as understanding the spatial distribution of two cancers in West Yorkshire is not the

focus of this chapter.

The first thing to note from table 6.5 is that all four models allow considerable

degrees of shrinkage or borrowing of strength with between 50 and 70 effective

parameters to fit 126 data points. The FMCAR has the smallest pD indicating that

there is a lot of structural information in the prior leading to considerable borrowing

of strength. However, despite this the GMCAR has a marginally better model fit

D̄. Note that the effective number of parameters, pD, may actually be smaller for

more complex models precisely because it allows for more complex forms of shrinkage.

This has been reported by Best et al. (2005) and could help to explain the potentially

contradictory findings from this exercise. Putting these two measures together, the

DIC shows that the GMCAR model is the best supported model for this dataset (i.e.

has the smallest DIC) although the FMCAR is also strongly supported by the data

being within 2 of the DIC score achieved by the ‘best’ model. The MCAR model is

weakly supported, lying less than 7 away from the best model, but the two-fold CAR

model is substantially inferior.

The results aren’t suprising. Whilst it seems sensible that there could be a cross-

correlation to these two cancers (i.e. high lung cancer rates at site 1 may be related to

high oral cavity cancer rates at site 2) there is no a priori reason to believe that this

relationship would be asymmetric. Therefore the two models (GMCAR and FMCAR)
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that incorporate these linking or cross-correlation parameters would both fit the data

well. However, the additional complexity and structure imposed by the asymmetric

FMCAR is not warranted in this case. Yet, model fit is robust to changes between

these two spatial priors and the effects of inappropriately fitting the FMCAR to these

data seem limited (i.e. the change in DIC is minimal).

Table 6.5: Model comparison using DIC for West Yorkshire cancer data

Model D̄ PD DIC

1. FMCAR 485.4 58.2 543.6
2. GMCAR 477.6 63.8 541.9
3. MCAR 483.6 64.3 548.9
4. 2fCAR 492.6 65.1 557.7

6.5 Summary

The aim of this chapter was to compare the three principal MCAR models from the

extant literature with the FMCAR model developed in chapter 5. This was achieved

through a combination of a simulation study and an application to a small real-world

dataset on cancer mortality in West Yorkshire. Four studies were used where each

of the four competing models was assumed to be the true data generating process.

In each of these studies 100 datasets were simulated and the four models were fitted

to the datasets. This allows a comparison of the models across a range of possible

spatial configurations. In general, the performance between the FMCAR, GMCAR

and MCAR was comparable for all situations except the presence of asymmetric

linking parameters (cross-correlations) i.e for all but the case where the FMCAR

generated the data. This is both good and bad news. On the positive side, fitting the

FMCAR when asymmetric spatial cross-correlations are not present does not have

deleterious effects. It is therefore safe to fit the FMCAR without a priori reasons
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to suspect asymmetric cross-correlations as there is little impact in terms of model

fit. However, the FMCAR offers little or no benefit over existing spatial priors in the

absence of asymmetric cross-correlations. Therefore persuading researchers to adopt

the FMCAR will depend upon the relative costs of implementing this model over

the potential benefits of avoiding model mis-specification. The ease of implementing

and interpreting the model will be discussed in the chapter 7. The FMCAR model

does offer attractive properties in terms of shrinkage of the estimated spatial random

effects variance, which will be of considerable use in modelling multiple road safety

indicators as achieving narrow credible intervals for the random effects is the principal

aim.
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CHAPTER 7

MODELLING ROAD SAFETY

PERFORMANCE INDICATORS

7.1 Introduction

This chapter applies the FMCAR model developed in chapter 5 to multiple road

safety performance indicators. Currently, local authority road safety performance

is measured through a series of crude per capita accident rates by modal type and

accident severity. Given the rare nature of road accidents (particularly fatalities)

the data are sparse and subject to great variability. This makes robust inference

about local authority performance difficult. The aim of this chapter is two-fold.

Firstly, this chapter seeks to demonstrate the applicability of the FMCAR to a policy-

relevant problem. Additionally, inference and interpretation of the model output will

be illustrated. Therefore, this chapter aims to persuade other researchers to adopt the

FMCAR for their research. Secondly, by adopting a multivariate spatial modelling

framework it is hoped that the correlation structure in the data (both within local

authorities and across local authorities) can be exploited to reduce the uncertainty

in the estimates of road safety performance. This is the major empirical contribution

of this thesis: to reduce the uncertainty involved in the estimation of local authority

specific performance and to improve performance ranking of local authorities.
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7.2 Background

7.2.1 Why manage performance?

Worldwide, injuries and death resulting from road traffic accidents are of epidemic

proportions: over 1 million people die every year and over 10 million people sustain

permanent disabilities from road accidents (Bunn et al. 2003). Globally, road

accidents are the 10th most common cause of death (Commission for Global Road

Safety 2005). By 2020, the World Health Organisation (WHO) predict road accidents

will be the 6th leading cause of death worldwide, and the second leading cause of

Disability-Adjusted Life Years (DALYs) lost in developing countries (WHO 2004).

Recognizing the extent of the problem, the UK Government identified three road

safety targets which are expected to be achieved by 2010 (these were set relative to

a baseline of the mean number of casualties that were reported between 1994 and

1998 inclusively): a 40 percent reduction in the number of fatally or seriously injured

casualties, a 10 percent reduction in the rate of slight casualties relative to the level

of traffic, and a 50 percent reduction in the numbers of children who were fatally or

seriously injured (DfT 2000). Most local authorities incorporate these targets into

their Local Transport Plans (LTP) but it is related performance indicators, broken

down by modal group, which are monitored and published in the local authority

league tables under the ‘best value’ requirements of the Local Government Act 1999

(Department for Transport, Local Government, and the Regions 1999). It is these

indicators called BVPI99 (Best Value Performance Indicators 99) that are used to

judge the relative performance of each local authority with respect to road safety.1

According to PACTS (2003a) DfT guidance intimates that performance will be

1Although arguably they are measures of ‘unsafety’.
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used to determine financial allocations to local authorities in future. This is supported

by Department for Transport, Local Government and the Regions (2001) which

suggests that good and improving performance will attract additional funding and

increased autonomy under Public Service Agreements. The Comprehensive Spending

Review (H.M. Treasury 2007) has also indicated that in future increasing attention

will be paid to performance when allocating resources. There is also widespread

support from within local authorities for a target-led approach (PACTS 2003a).

However, there was concern expressed in PACTS (2003a) that the headline indicators

should be aggregated together because of the variability in individual indicators.

Obtaining statistically reliable results on performance is therefore a major concern of

authorities themselves who do not possess the expertise and experience to produce

robust methods internally. Futher, if central government is moving towards a culture

of ‘payment for performance’ then producing improved measures of performance is a

worthwhile endeavour.

7.2.2 Current Practice

Currently, UK traffic safety performance indicators are expressed simply in the form

of crude per capita numbers of reported collisions by type and modal group, with

no allowance for geographically differing patterns in road infrastructure and usage

or spatially varying socioeconomic conditions, so called contextualisation in the

literature (Goldstein & Spiegelhalter 1996). In fact, according to Bailey & Hewson

(2004) there is no explicit consideration given to the extent to which differences

in the raw rates reflect differential performance, rather than just inherent random

variability in observed rates. As chapter 4 discussed, it is bad practice to use point

estimates of indicators to rank performance across observational units (e.g. local
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authorities) without accommodating the uncertainty inherent in these estimates.

Research by Goldstein & Spiegelhalter (1996) suggests that rankings adopting robust

procedures that incorporate uncertainty in a statistically valid manner frequently

make it impossible to separate the organisations under study.

There have been significant developments in the modelling of performance and the

uncertainty inherent in performance rankings (or league tables) in the education and

health literatures. For example, see Laird & Louis (1989), Goldstein & Spiegelhalter

(1996), Marshall & Spiegelhalter (1998), Lockwood et al. (2002), Kuhan et al. (2002),

Draper & Gittoes (2004), Bratti et al. (2004) and references contained within.

This literature was discussed in chapter 4. Unfortunately, this work has not been

transferred to the area of local government performance management and performance

indicators remain crude, uncontextualised numbers.

Although detecting a (statistically significant) departure in road safety perfor-

mance between organisational units is only part of the larger picture of performance

management, it is still important to ascertain if there is differential performance.

This can, for example, indicate the need for further research e.g. detailed auditing

to identify best practice and/or intervene in poor performaning authorities. It is

also important to make the best possible statistical inference about the road safety

performance of local authorities when their performance is tied to financial resources.

Limited work has been done in this area. For instance, MacNab (2003) employed

generalized additive modelling to smooth out year-in-year variance in area level

accident rates in Canada. He emphasized the importance of separating signal from

noise when investigating such ‘noisy’ data. More generally, the Generalized Linear

Mixed Model (GLMM) is now well established in the wider literature on performance

management to model the uncertainty associated with performance indicators.
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GLMMs are characterised by the inclusion of ‘random effects’ in addition to

the fixed parameters found in conventional generalized linear models2. The use

of fixed and random effects is now commonplace in a number of disciplines, and

modelling using random effects is the norm in hierarchical or multilevel modelling.

In terms of modelling road accident performance, the traditional GLM would be

extended to include a random effect term to capture the latent or unobserved local

authority performance. This term reflects the difference in performance between

local authorities that has not been observed and must be estimated from the data.

This is assumed to be a latent (i.e. unobserved) zero mean process with unknown

variance. In contrast, a local authority fixed effect would simply reproduce the

observed performance indicator for that local authority. The strength of this GLMM

approach is the recognition of a source of uncertainty (or variance) that is related to

local authority specific performance that is not captured by the indicators (accident

counts) included in the model. This uncertainty could be the result of omitted

variables, mismeasured exposure or noisy data. The inclusion of this random effect

or variance component induces smoothing of these local authority specific effects. In

effect, the estimate of these local authority random effects ‘borrow strength’ from each

other and are therefore ‘shrunk’ to the global mean (of zero). How much shrinkage

occurs depends on the relative strength of the evidence i.e. the relative size of the

variance of the data relating to that local authority to the variance of the random

effect as a whole.

If performance ranking is of interest – for instance for producing league tables

– then the local authority specific random effect can be used to produce estimates

(along with relevant credible intervals) of each local authority’s performance which

2See, for example, Gelman & Hill (2006) for an excellent introduction.
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has taken into account uncertainty in the estimate of this effect. Given the sparse

nature of the data, univariate GLMMs for each road user type lead to large and

overlapping confidence intervals: very little can be inferred from the rankings (Bailey

& Hewson 2004).

An alternative approach would be to model multiple performance indicators

simultaneously. For example, Papageorgiou & Loukas (1988) used a bivariate negative

binomial model for vehicle accidents in East Virginia. The underlying motivation is

that for each transport mode there should be significant correlation between fatalities

and serious and slight injuries. More broadly, it seems sensible that there should

be some correlation between all road safety indicators. The various activities that

local authorities may perform to improve road safety may affect multiple transport

modes. For example, driver awareness campaigns3 that aim to increase car drivers’

awareness of motorbikes may simultaneously increase their awareness of cyclists and

pedestrians. Accordingly, it may be possible to reduce the uncertainty associated with

local authority specific random effects by borrowing strength from multiple, related,

variables. In essence, the random effects are correlated between the road accident

variables within each local authority and their estimates are therefore shrunk across

the variables to increase precision. This is the approach adopted by Bailey & Hewson

(2004). They hoped that the shrinkage would reduce the credible intervals on the

performance rankings for individual indicators enough to allow for judegements to

be made of relative performance. The result of their analysis was a reduction in

the credible intervals, however there remained significant overlap and it remained

impossible to discriminate (statistically) between local authorities’ performance.

3For example, the “Think Bike!’ campaign that is running in London in 2008.
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7.2.3 The impact of space

There is an additional source of structure within the data that could provide

additional sources of shrinkage and therefore improve the precision of the performance

estimates. As well as correlation between the multiple road accident indicators

there is also correlation across local authorities. More specifically, modelling spatial

dependence in each of the variables at a lower level of aggregation (the LSOAs) allows

the large variability in accident rates to be smoothed across the areas. Moreover,

there is also the potential to model correlation between different variables across

sites – the so called linking or cross-correlation parameter. There may be unobserved

characteristics of the area (e.g. the road network) that may result in a high correlation

between motorcycle accidents in one area and cycling accidents in a neighbouring area.

Further, it is feasible that this correlation structure is asymmetric i.e. that there is a

different correlation between motorcycle accidents at site 1 and cycling accidents at

site 2 to the correlation between cycling accidents at site 1 and motorcycle accidents

at site 2.

Very little attention has been paid to the issue of spatial structure in the road

safety literature, although there have been many studies that have investigated the

spatial variation in the incidence of pedestrian road casualties. Most of this research

seeks to explain the spatial variation through the variation in area deprivation.

Grayling et al. (2002), Graham et al. (2005) and Graham & Glaister (2005) have

all attempted to explain the spatial variation in accident rates through area level

deprivation covariates. Others have focused, at varying degrees of aggregation, on

the influence of other factors on the spatial variation of accident rates, including

Dee (1998) Noland (2001), Noland & Quddus (2002), Noland & Quddus (2004),

and McCarthy (1999). In addition, Graham & Glaister (2003) looked at the
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spatial variation in pedestrian road casualties by examining the role of the urban

environment. All of these studies have ignored the fact there may well be spatial

dependence and spatial heterogeneity within the data, and as a result continue to

apply methods of statistical inference that are not robust to such problems. Recently

work applied to data from Canada (MacNab 2003) and (MacNab 2004) and to Devon,

UK (Hewson 2004) and (Hewson 2005) have sought to formally test the assumption

of spatial independene in the data and firmly reject this hypothesis. They both adopt

univariate CAR models in their analyses but the impact of this research has so far

been limited.

There are two principal reasons for the application of spatial models to multiple

road accident data. The first reason concerns the need to reduce the variability in

the estimates for individual areas and consequently improve the confidence placed

in these estimates. Just as modelling random effects through GLMMs can produce

shrinkage across observational units and improve the stability of the estimates, so can

the introduction of spatial structure. This is the principal empirical concern of this

chapter. This smoothing effect is particularly important for count data where the is

high variability in the data as a result of excessive zero counts. The second reason

concerns the need to address potentially omitted spatially varying covariates when

any model of road accident data is extended to a regression context. With spatial

data it is common to incorporate the spatial dependence into the covariance structure

either explicitly or implicitly via an autoregressive model because it is assumed that

observations at sites near each other may have a similar value on the omitted variables

in the regression causing the error terms to be serially autocorrelated. It is hoped

by demonstrating the presence of spatial dependence in the road accident data and

providing a model for incorporating these spatial effects that other researchers will
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adopt the FMCAR for their research.

In the analysis that follows, the FMCAR model developed in chapter 5 is applied to

a subset of the Best Value Performance Indicators for road safety for 2006. This subset

includes the multiple performance indicators reported for vulnerable road users4 for

the 33 London boroughs recorded at the Lower Super Output Area (LSOA). The

FMCAR is employed as a prior for the random effects in a hierarchical generalized

linear mixed model (GLMM). Given the recent focus on integrated transport and

shifting away from cars to alternative modes of transport, vulnerable road users

numbers will increase. This promotion of sustainable transport is supported by

iniatives from the Department of Health to promote lifestyle change to tackle obesity

and coronary heart disease (Department of Health 2008). If these strategies are

successful there will be increasing numbers of vulnerable road users and monitoring

and ensuring their road safety will become increasingly important. Moreover, this

thesis focuses on vulnerable road users because the underlying causal mechanism

for road accidents involving them is similar. Other road users such as car drivers are

excluded because the underlying causes, for example excessive speed or drink-driving,

ar different. The safety programmes that should be targetted towards reducing

vulnerable road accidents would be therefore be different. Performance measurement

should be conducted separately for these two broad classes of road users.

4Vulnerable road users are defined as pedestrians, cyclists and motorcylists
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7.3 Data

7.3.1 Best Value Performance Indicators

Road casualties per capita by mode and severity are performance indicators that are

statutarily reported by local authorities to the Audit Commission as part of their

reporting on ‘best value’. Collectively they are known as BVPI99 and collecting

and reporting these data was introduced in the Local Government Act (1999), which

requires local authorities to publish details of these indicators in their ‘best value

performance plans’. Additionally, these indicators are collated by central government

and used to produce league tables of local authority performance.

This thesis analyses a subset of BVPI99 relating to vulnerable road users. Bailey

& Hewson (2004) argue that vulnerable road user casualties are problematic as

indicators of road safety performance due to the small number (and therefore high

variability) involved. This problem is indicated in table 7.1 which provides summary

statistics for the nine performance indicators considered in this study. Three road

user or transport modes are considered: pedestrians, (pedal) cyclists and motorcylists

(sometimes referred to as powered two-wheelers). In addition, the accident data

are broken down by the severity of the injuries sustained: fatal, serious and slight.

The severity is assessed by the police officer completing the report and a serious

injury is usually defined as one that requires hospitalisation (most commonly multiple

fractures or cranial and spinal injuries). Therefore, the accident dataset consists of

nine accident counts.

One commonly used solution to the problem of small numbers is to aggregate the

data. Frequently in the literature this is done over multiple years (e.g. Graham &

Glaister (2005) or Edwards et al. (2006) ) but this is not possible for local authorities
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Table 7.1: Median (and upper and lower Quartiles) for Vulnerable Road User
Casualties by London Borough in 2006

Mode Fatal Serious Slight

Pedestrians 3 (1,4) 33 (27,41) 122 (87,162)
Motorcylists 1 (0,3) 24 (16,30) 96 (78,143)
Cyclists 0 (0,1) 9 (5,16) 61 (43,95)

reporting annual performance indicators. More commonly during publication of

best value indicators, fatal and serious injuries are aggregated or less frequently,

as suggested by PACTS (2003b), road user categories are merged – for example,

pedestrians and cyclists or even all vulnerable road users. Although this superficially

can smooth out random fluctuations it also hides a significant amount of information.

This is problematic when the government sets road safety targets that include specific

modal groups (e.g. pedestrians) such as those laid down in Tomorrow’s Roads

(DfT 2000). In the future there is likely to be growing interest in vulnerable road

users, especially pedestrians and cyclists, as central government continues to promote

integrated transport and modal shift away from cars.

This promotion of sustainable transport is supported by iniatives from the

Department of Health to promote lifestyle change to tackle obesity and coronary heart

disease (Department of Health 2008)5. Almost 25 percent of adults in England are

obese with this figure set to reach 90 percent by 2050 Department of Health (2009).

The cost of obesity to the NHS is estimated to be £4.2 billion and is forecasted

to more than double by 2050 (ibid). If these strategies are successful there will be

increasing numbers of vulnerable road users and monitoring and ensuring their road

safety will become increasingly important. Therefore disaggregated analysis of these

performance indicators must be preferred.

5These include Let’s Get Moving, Local Exercise Action Plans, and Change4Life.
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7.3.2 STATS19 data

The administrative data on road casualties reported by local authorities originates

from the police via a recording system referred to as “STATS19”.6 Bull & Roberts

(1973) summarize a number of problems with these data. For the purposes of this

thesis, the most significant is the under-reporting of accidents involving vulnerable

road users. More recent evidence of this under-reporting is found in an article on

25 case studies by James (1991). It also appears that up to 60 percent of slight

accidents go unreported (Cryer et al. 2001). However, hospital episode data are

equally problematic: only those casualties that require hospital treatment (serious

and fatal accidents) will be included in the dataset and no accident location will

be recorded. The STATS19 are the definitive data source in terms of policy and

practice. It is these data that local authorities must report and which are used for

determining road safety targets locally and nationally, and it is these data that are

used almost exclusively in the literature on road safety modelling. Therefore, despite

their limitations, the STATS19 data will be used for modelling local authority road

safety performance in this thesis.

The individual accidents reported in the STATS19 dataset were aggregated by

casualty type and accident severity at census Lower Super Output Area level (LSOAs)

to form nine area-level accident counts. The LSOAs are geographic areas containing

an average of 1,500 people and are defined by the Office for National Statistics

(ONS) using measures of population size, mutual proximity and social homogeneity

to provide robust small-area statistics for use in comparative analyses. In London

there are 4,765 LSOAs contained within 33 boroughs. The STATS19 file contained

6STATS19 is the colloqial name for the dataset Road Accident Statistics GB collated by the
Department for Transport. The name refers to the title of the form used to collect the data.
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data on 13,184 vulnerable road user casualties within London in 20067, all of which

could be linked to a LSOA based on the location of the collision.

The STATS19 data were downloaded from the UK Data Archive8 at Essex

University and matched to a LSOA using a six figure grid reference (easting and

northing) for the accident location, which is recorded by the police at the scene of

the accident. Digital boundary datasets for the LSOA were downloaded from the

UKBorders repository at the EDINA9 data archive at the University of Edinburgh.

Population ‘forecast’ data at LSOA level for 2004 were made available by the Small

Area Population Estimates team at the Office of National Statistics10, which is based

upon the 2001 census. All of the data were matched using ArcGIS.11

For a given road user type and accident severity, an expected casualty count for

each LSOA can be calculated to create a model offset using the data sources outlined

above. This is based upon the London-wide accident rate per capita (by modal

type and severity) and the local population in each LSOA. A simple ratio of the

actual (i.e. observed) accident count to the expected accident count (also known as

relative risk) can be used as a performance indicator for each transport mode and

level of severity. This is a standard approach used in epidemiology and statistics more

broadly. However, the reference populations used may not be entirely satisfactory.

For example, the number of people ‘at risk’ of a pedestrian accident in any particular

area may be more (or theoretically less) than the population resident in that area.

7It is worth noting that strictly speaking these data are accidents that occured in 2004 and were
reported for the financial year 2005-6.

8www.data-archive.ac.uk

9www.edina.ac.uk

10http://www.statistics.gov.uk/sape

11See www.esri.com/software/arcgis/ for further details.
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This would be particularly true in town centres or parts of central London where

people may congregate for work, shopping or leisure for instance. Similarly, as noted

by Woodward (1983) a better estimate of the motorcyling population may be the

number of motorcyle owners in a particular area. The argument can be extended to

cyclists as well. However, as table 7.212 illustrates, accidents tend to happen close to

home for both pedestrians and cyclists but this doesn’t tend to hold for motorcyclists;

this is intuitive as motorcyclists would tend to make longer journies. Given the focus

of government targets to date is on per capita accident rates, the data seem adequate

for this purpose but the data could be improved if data on ‘exposure’ were available

by area.

Table 7.2: Distance (Km) between Home and Collision Location for Vulnerable Road
Users in 2006

Mode Median 5 percentile 95 percentile

Pedestrians 1.06 0.06 12.26
Motorcylists 4.22 0.38 16.75
Cyclists 2.14 0.16 10.10

7.3.3 Exploratory Data Analysis

The use of multiple road safety performance indicators relies on a reasonable degree

of correlation between the various accident counts. Papageorgiou & Loukas (1988)

reported high correlations between fatal road accidents and injuries for data from

East Virginia in a bivariate negative binomial model and Bailey & Hewson (2004)

report strong correlations between 9 different accident variables recorded for highway

authorities in the UK. There are reasonable precedents for assuming that the variables

12The home postcode was available for 50% of the accidents in 2006. The distance was calculated
as the straight line distance from the postcode centre to the six-figure grid reference for the accident
location using ArcGIS.
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will be correlated which is confirmed by figure 7.1 – a matrix scatterplot of the nine

vulnerable user variables on a log scale. The figure also reports the Pearson correlation

coefficients with the size of the font also representing the correlation strength.

The data appear to be reasonably correlated as a set with cycling fatalities being

the only departure from this general trend. This is likely to be the result of the very

small number (19) of cycling fatalities in 2006. This isn’t peculiar to this dataset

as Bailey & Hewson (2004) also report very small correlation coefficients for cycling

fatalities and the other variables. The highest observed correlation was between

cycling slight and motorcyling slight (ρ = 0.91). All of the correlations between

serious and slight injuries within the same modal type were 0.88 or 0.89.

Similarly, figures 7.2 to 7.4 gives an indication that there is a fair degree of

spatial correlation present in the data. Each of the transport modes exhibits spatial

clustering with high levels of accidents (darker regions) in the centre of London. A

comparison across figures 7.2 to 7.4 indicates that there is a fair amount of shared

spatial correlation which may indicate that there is spatial cross-correlations present

in the data.

This intuition is supported by formal tests of spatial autocorrelation. Table 7.3

presents the Geary C statistic (Geary 1954)13. The statistic ranges from 0 to 2 with

a value of 1 indicating that the data were spatially independent, and a number lower

(higher) indicating positive (negative) spatial dependence (Cliff & Ord 1981). The

p-values are Monte Carlo p-values generated from producing 1,000 replicates. The

data have been aggregated by mode to match figures 7.2, 7.3 and 7.4 but this does

not affect the result that positive spatial autocorrelation is present in the data.

13Geary’s C is calculated as C =
(N−1)

∑
i

∑
j wij(Xi−Xj)2

2W
∑

i(Xi−X̄)2
where N is the number of spatial units

indexed by i and j; X is the variable of interest; X̄ is the mean of X; wij is a matrix of spatial
weights; and W is the sum of all wij
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Figure 7.1: Bivariate log-log scatterplots and correlations of accident casualty rates

Table 7.3: Monte Carlo simulation of Geary C statistics

Statistic p-value

Pedestrians All 0.654 0.035
Motorcyclists All 0.894 0.046
Cyclists All 0.821 0.044
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7.4 The Spatial GLMM

7.4.1 Modelling approach

The GLM is well established in the literature for modelling count data (Cameron &

Trivedi 1998). Given observed accident counts as described in the last section, the

typical model for each univariate count, Yi in each area i (i = 1, ..., n) is the Poisson

model: Yij ∼ Poi(Eie
θi), where Ei = rNi is the offset or expected accident count in

area i (where r is the lattice wide accident rate and Ni is the population in area i),

and eθi is the relative risk or performance of area i. The second stage of the GLM is

typically to model the log-linear function: log(θi) = β + φi where φi are area specific

random effects. The inclusion of the random effect, which is usually specified in the

third stage of the hierarchical model as a zero mean process (e.g. φi ∼ N (0, σ2))

results in the GLMM described earlier on page 99.

The principal motivation for modelling accident counts using a GLMM is to

interpret these effects as a latent measure of local authority performance. An

alternative argument for the inclusion of a random effect term is to capture the lattice-

wide heterogeniety or over-dispersion in the data. Frequently count data exhibits

over-dispersion (i.e. variability beyond that imposed by the Poisson model’s equality

of mean and variance). Bailey & Hewson (2004) used a multivariate version of this

GLMM to model vulnerable road user casualties recorded for highway authorities.

This is a straightforward extension of the univariate case, where the collection of

accident counts yij are a set of j = 1, ..., p variables recorded for each site i (i = 1, ..., n)

on the lattice. The GLMM now becomes: yij ∼ Poi(Eije
θij), where the offset Eij is

now calculated as rjNi where rj is the lattice wide accident count for mode/severity

variable j and Ni is the site population. Again a log-linear model is used at the
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second stage with logθij = βj + φij with the vector of area specific random effects for

any authority φi1, ..., φip, modelled as a multivariate normal density wih zero mean

and unknown p x p variance-covariance matrix i.e. φ ∼ (0,Σ).

The innovation in this chapter is two-fold. Firstly, by modelling the random

effects using the FMCAR prior spatial structure is incorporated into the model. The

borrowing of strength across areas as well as across variables will hopefully reduce

the uncertainty in the estimates of the local authority random efects. Secondly,

an additional level of hierarchy is created as accident counts (j = 1, ..., 9) are nested

within LSOAs (i = 1, ..., 4766) which are nested within local authorities (k = 1, ..., 33).

This allows for a fine degree of spatial smoothing within the model yet still provides

estimates of local authority specific performance.

The data model becomes:

yijk | θik ∼ Poi(Eije
θij), i = 1, ..., n; j = 1, ..., p; k = 1, ..., r. (7.4.1)

where the Eij are expected counts for variable j in site i derived from the standardized

population. Departures from the expected counts are modelled by the parameter, θij.

As per chapter 5, using the vector operator to stack columns of the matrix so that

θv ≡ vec(θ′), the second stage of the GLM can be written as:

θv | β,V ,C ∼ Nnp(µv ,Σ), (7.4.2)

where µv = vec(µ′), µ = β, V = Γ−1, mi ≡ diag(Ei1, ...,Eip), i = 1, ..., n and Σ is

as defined in equation (??).

To complete the hierarchical GLM specification, the third level or priors must
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be specified for the matrices, β,C, and V . Vague priors are adopted for the

intercept and precision matrix as discussed in chapter 5: βk ∼ Np(0, σ2I) and

V ∼ Wishart(ρ, (ρA)−1). Lastly, to ensure a positive-definite covariance matrix it

is important to specify the prior for C carefully. Again, adopting the same priors

suggested in chapter 5, it is proportional to exp{−(Cv)′Cv/ξ2} where Cv = vec(C).

The prior distribution must be truncated to ensure that only values of C that provide

for a positive-definite G (see section 5.4). A hyperprior distribution for ξ is not used

but values of ξ are predetermined. If a hyperprior was used the computational burden

on the model would be significant. Smaller values for ξ are preferred as it results in a

peaked prior distribution forC centered around zero. Therefore, posterior values ofC

far from zero is strong statistical evidence against no spatial dependence in the data.

Note that use of this prior for C does not favour either symmetric or asymmetric

spatial dependence.

7.4.2 Fitting models

To implement the FMCAR thousands of samples are produced from the posterior

(5.8.7) using Metropolis-Hastings steps within a Gibbs sampler. After discarding

some initial samples called ‘burn-in’14 because they will be autocorrelated, quantities

of interest (e.g. the expectation) can be calculated from the posterior. This will be

discussed in more detail in chapter 7. For (5.8.7), one iteration of the sampler requires

14A good introduction to this and other key concepts of MCMC methods for the unfamiliar is
Green (2001).
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sampling from:

1. π(βk | β−k,V ,C,θ), k = 1, ..., p (7.4.3)

2. π(V | β,C,θ), (7.4.4)

3. π(Ckl | β,V ,θ), k , l = 1, ..., p (7.4.5)

4. π(θi | θ−i,β,V ,Γ,Y ), i = 1, ..., n (7.4.6)

where β−k denotes all of the columns of the regression coefficient matrix, β except

for the kth and similarly for the parameter matrix, θ−i. The term Ckl in step 3

represents the (k , l)th element of C. The posterior distribution was given in equation

(5.8.7) along with the conditional distributions used in each step in the sampler were

presented in chapter 5.

Starting values for the sampler could be obtained by setting θij = log((yik+1)/Eij)

for i = 1, ..., n and j = 1, ..., p where yij and Eij are the observed and expected counts

respectively. This is a common approach in the epidemiology literature. Given these

estimates of θ, a non-spatial GLMM was estimated to obtain the regression intercepts

for each accident count ( β) and the residuals were extracted as starting values for

the precision matrix V = Γ−1. To generate initial values for the uniform proposal

density for C a coarse grid search was used to maximise (5.8.26).

7.5 Results & Discussion

7.5.1 Model Checking

Five over-dispersed chains were run using an MCMC sampler written in Python

for a burn-in period of 5,000 iterations. Convergence of the model parameters was
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assessed visually using autocorrelation trace plots as well as numerical summaries

(e.g. the
√
R statistic of Gelman (1996)) available in CODA. All of the parameters

had
√
R statistic of approximately 1 and below the 1.2 value suggested in Gelman

(1996). The convergence of the precision, V , which is important due to the focus on

modelling random effects is shown as elipses for each chain at various iterations in

figure 7.5. Model fit was assessed using the DIC introduced in the previous chapter.

The spatial GLMM was compared to the non-spatial GLMM used by Bailey & Hewson

(2004) (although they used data from 2000 for England and Wales indexed at the

highway authority level) as a comparison. The FMCAR model produced a DIC of

2859 whereas the standard GLMM had a DIC of 4696 suggesting that the spatial

GLMM is significantly preferred.

7.5.2 Random Effects

The principal empirical aim of this chapter is to produce improved estimates of local

authority road safety performance. This rests on the spatial multivariate modelling

approach generating significant shrinkage of the estimates of the random effects

between variables and across sites. This warrants close inspection of the posterior

variance-covariance structure. Posterior mean estimates of the correlation between

the random effects for variables within sites are presented in table 7.4. These are the

bridging parameters or α0 from the bivariate models formulated in chapters 3, 5 and

6.

Given the range of correlation values (from high positive correlation to low

negative correlation) it is apparent that the hyperiors from the FMCAR didn’t

dominate the data. This isn’t surprising given the sample size and the non-informative

nature of the hyperpriors chosen. A pattern emerging from the intra site correlations
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Figure 7.5: Ellipses of the precision matrix for the 5 chains as the iteration number
is increased: 100, 1000, 2000, 3000, 4000 and 5000.

Table 7.4: Posterior mean estimates of within site correlations of random effects

Accident Count 1 2 3 4 5 6 7 8 9

1 Pedestrian Fatal 1 0.91 0.82 -0.04 0.44 0.32 -0.28 -0.07 0.19
2 Pedestrian Serious 0.91 1 0.78 -0.09 0.49 0.26 -0.32 -0.11 0.02
3 Pedestrian Slight 0.82 0.78 1 -0.37 0.08 0.34 -0.69 -0.52 0.06
4 Cyclist Fatal -0.04 -0.09 -0.37 1 0.66 0.76 0.29 0.64 0.64
5 Cyclist Serious 0.44 0.49 0.08 0.66 1 0.64 -0.02 0.53 0.22
6 Cyclist Slight 0.32 0.26 0.34 0.76 0.64 1 -0.49 0.01 0.44
7 Motorcyclist Fatal -0.28 -0.32 -0.69 0.29 -0.02 -0.49 1 0.67 0.13
8 Motorcyclist Serious -0.07 -0.11 -0.52 0.64 0.53 0.01 0.67 1 0.43
9 Motorcyclist Slight 0.19 0.02 0.06 0.64 0.22 0.44 0.13 0.43 1
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is that there appears to be stronger correlation between accident counts for the same

transport mode (e.g. fatal pedestrian accidents and serious pedestrian accidents).

There is also some evidence of negative correlations implying that performing well on

one area of road safety may occur alongside poor performance on another element of

road safety. These negative correlations are most noticeable for motorcycle casualties

with pedestrians and cyclists. Bailey & Hewson (2004) reported similar results

and posited that this may be the result of separate component structures for “non-

motorized transport and for two-wheeled transport” (Bailey & Hewson 2004, p. 510).

This seems sensible; pedestrians and cyclists may well share similar characteristics

or face similar road safety ‘dangers’. Equally, pedestrians and cyclists are fewer in

numbers in areas with faster roads and a greater danger for motorcylists. This idea

is supported in part by these findings and an additional spatial factor analysis using

the same data, which is not reported here. Whatever, one takes from the mixture of

positive and negative correlation it must be apparent that aggregating casualty data

to overcome the problem of high variability due to the sparse data is not appropriate,

and could certainly mask some important information.

Examining the impact of the spatial dependence parameters in the matrix

C contained in the variance-covariance matrix will also indicate the extent that

the FMCAR prior produces shrinkage beyond the non-spatial GLMM approach

considered by Bailey & Hewson (2004). Table 7.5 provides the posterior mean and 95

percent credible intervals for the spatial autocorrelation parameters for each of the

nine casualty variables. Recall from the discussion in chapter 5 that although these

‘correlations’ range from 0 to 1, that they are not correlation coefficients in the usual

(Pearson) sense. On the whole, the posterior mean estimates are fairly moderate

with wide credible intervals indicative of relatively moderate spatial autocorrelation.
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This reflects the moderate patterns seen in the maps in figure ?? and reflect the

underlying sparsity of the accident data. Nevertheless none of the credible intervals

include zero and there is spatial autocorrelation present, thus modelling it will improve

the precision of the random effects.

Table 7.5: Posterior mean estimates of spatial autocorrelation coefficients (and 95
percent credible intervals)

Casualty Variable αj 2.5% 97.5%

1 Pedestrian Fatal 0.757 0.173 0.841
2 Pedestrian Serious 0.638 0.088 0.703
3 Pedestrian Slight 0.815 0.215 0.997
4 Cyclist Fatal 0.602 0.027 0.979
5 Cyclist Serious 0.699 0.080 0.970
6 Cyclist Slight 0.589 0.056 0.893
7 Motorcyclist Fatal 0.643 0.142 0.953
8 Motorcyclist Serious 0.713 0.199 0.978
9 Motorcyclist Slight 0.514 0.031 0.694

Turning to the linking parameters (or cross-correlation parameters) there are again

signs of moderate correlation although many of the marginal posterior distributions

are quite wide. The important advantage of the FMCAR over existing MCAR models

is the incorporation of asymmetric linking parameters. The easiest way to compare

the two cross-correlation parameters (α3 and α4 from the bivariate models in chapter

3, 5 and 6) is to plot the kernel density of their respective posteriors in figures 7.6 to

7.8. Only a representative selection of the plots are presented as there are 72 cross-

correlation parameters. Recall that the objective is to reduce the uncertainty in the

random effect measure of performance rather than to make substantive interpretation

of the spatial autocorrelation and cross-correlation parameters. There are some

interesting findings that can be extracted from inspection of figures 7.6 to 7.8. Firstly,

the majority of the densities fall to the right of zero indicating positive spatial cross-
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correlations. This is supported by inspection of the unmodelled accident data in

figures 7.2 to 7.4. Generally speaking, central London and hotspots around Heathrow

Airport and Croydon have high numbers of all types of accidents a severities. The

cross-correlations (the equivalent of α3 andα4) often exhibit similar shaped densities

which usually overlap although a small number are noteworthy for exhibiting signs

of asymmetry. These are presented in figures 7.6 to 7.8

Figures 7.6, 7.7, and 7.8 present a sample of the posterior densities for the cross-

correlation or linking parameters for the FMCAR. Of particular interest is figure

7.8 which shows the spatial cross-correlation parameters for motorcylist severe at

Figure 7.6: Posterior densities of Motorcyle Fatal and Motorcycle Severe spatial cross-
correlation parameters

Figure 7.7: Posterior densities of Cyclist Severe and Pedestrian Severe spatial cross-
correlation parameters
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Figure 7.8: Posterior densities of Motorcycle Severe and Cyclist Severe spatial cross-
correlation parameters

site i with cyclist severe at site j (right) and motorcyclist severe at site j with

cylist severe at site i (left). A comparison of these two densities shows considerable

difference in the expectation. The relationship between motorcylist severe at site

i with cyclist severe at site j is stronger with less slightly variance than the

relationship between motorcyclist severe at site j with cylist severe at site i. Other

instances of posterior cross-correlations that are indicative of potentially asymmetric

relations are also shown in figures 7.6, 7.7. Figure 7.6 plots the posterior cross-

correlations for motorcycle fatal and motorcycle severe and figure 7.7 plots cyclist

severe and pedestrian severe. The remaining cross-correlations are not reported

as they were, broadly speaking, symmetric.15 There is considerable overlap in the

distributions, however, these cross-correlations deserve further study. Why these

particular variables exhibit asymmetric spatial cross-correlation is not clear and there

is no guidance from the road safety literature on this topic. Hence this is a completely

new finding that deserves further attention.

15This is to remain focused on the chapter’s objective of modelling road safety ranks.
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7.5.3 Road safety performance

The key aim of this chapter was to improve the precision of the local authority

random effects and therefore the ranks of local authority relative performance. A

major interest is in whether increased precision allows for the separation of local

authorities in terms of differential performance or whether the credible intervals of

the performance rankings remain overlapping. It is of considerable interest therefore

to compare the ranks of the standard (i.e. non-spatial) GLMM model with the ranks

of the random effects produced by the FMCAR model.

Figures 7.9 to 7.11 are lattices of plots in which the ranks of each local authority’s

performance is plotted. Each figure shows the “before and after” ranks with credible

intervals for one level of severity. Within each figure the left hand side column are

the posterior summaries of the ranks of the of a non-spatial GLMM random effects

compared alongside the posterior summaries of the ranks of where the use of a spatial

GLMM (FMCAR) has been used to model the random effects. Each row represents a

different mode or casualty type: the top row is pedestrians, the middle row is cyclists

and the bottom row is motorcyclists. Figure 7.9 shows the fatal accident counts,

figure 7.10 the severe accident counts and finally, figure 7.11 plots the slight accident

counts. As the local authority specific random effect is estimated at each iteration

of the MCMC sampler the rank of that random effect (the latent performance) will

vary from iteration to iteration i.e. it will have a posterior distribution which allows

the median rank and a 95 percent credible interval for this rank to be produced. This

summarizes the uncertainty inherent in the estimate of the performance ranking.

The use of the FMCAR prior is most advantageous for modelling local authority

performance for the fatalities indicator. This can be seen clearly in Figure 7.9 where

the 95% credible intervals produced by the non-spatial GLMM (left column) are
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Figure 7.9: Plots of the posterior rank of the local authority performance for fatal
accidents. The left column is a standard GLMM and the right column reports the
FMCAR. The rows represent pedestrian, cyclist and motorcylist accidents starting
from the top.
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Figure 7.10: Plots of the posterior rank of the local authority performance for severe
accidents. The left column is a standard GLMM and the right column reports the
FMCAR. The rows represent pedestrian, cyclist and motorcylist accidents starting
from the top.
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Figure 7.11: Plots of the posterior rank of the local authority performance for slight
accidents. The left column is a standard GLMM and the right column reports the
FMCAR. The rows represent pedestrian, cyclist and motorcylist accidents starting
from the top.
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considerably wider than for the FMCAR produced credible intervals. Given the sparse

data for fatalities, i.e. they are thankfully rare, there is a great deal of uncertainty

in the estimates of local authority ranking. By enabling spatial smoothing across

these low count variables the variance in the local authority random effect is shrunk

considerably generating much narrower credible intervals. Thus it becomes possible

when using the FMCAR prior to separate the top quartile of local authorities from

the bottom quartile in a statistically meaningful manner. A similar effect occurs when

considering the severe casualties (Figure 7.10) and the slight casualties (Figure 7.11)

however the narrowing of the credible intervals is much reduced for these accident

types. This is due to the larger number of accident counts and the lower variability

in accident counts across areas. As shown in Figures 7.10 amd 7.11, less spatial

smoothing is occurring as a result of the FMCAR spatial prior for severe and slight

accidents and more information is being provided by the data. Thus the effect of the

spatial prior on the posterior local authority ranks is diminished.

It is obvious from even a casual inspection of figures 7.9 to 7.11 that the spatial

GLMM using the FMCAR has considerably narrowed the credible interval for the

performance ranking. That is, the modelling approach applied in this chapter is

substantially superior to the non-spatial GLMM model in terms of the precision of

the random effects: there is less uncertainty in the rankings. This effect is most

apparent for indicators that have very sparse data (i.e. the fatalities) where the extra

structure provided by the spatial correlations has allowed significant shrinkage in the

variance estimates. This is the effect of spatial smoothing over neighbouring areas and

accident types within areas. This demonstrates the usefulness of the FMCAR model

(and spatial smoothing in general) to small area estimates where high variability

(excessive zero counts) are encountered. In comparison, relatively little shrinkage has
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occurred for the slight accident counts due to the relatively large amount of data.

Here the data outweighs the structure suggested by the FMCAR prior. Yet despite,

the considerable narrowing of credible intervals from adopting the spatial prior, there

remains significant overlap and it remains impossible to statistically differentiate local

authority road safety performance. The narrowing of the credible intervals is enough

to separate the best performing local authorities from the worst performing ones (i.e.

there is no overlap in their credible intervals). This would allow for some very broad

measure of comparative performance such as ‘above average’ and ‘below average’.

For example, Lambeth and Bexley are consistently above average whereas Barking

and Dagenham is consistently below average. This may be warrant further research

to discover why there is a statistically valid difference between these two extremes.

However, despite the reduction in the credible intervals, a number of local authorities

would not be able to be statistically categorised into one of these groups. Overall

therefore, the picture remains unclear.

7.6 Summary

The results of this chapter have been mixed. The road safety performance indicators

have given ample opportunity to demonstrate the implemention and interpretation of

the FMCAR parameters in the GLMM setting. Although not conclusive, there is some

evidence of asymmetric spatial cross-correlations in the data which indicate a complex

relationship between the underlying variables that warrants further exploration. The

interaction of people, vehicles and the physical and natural environment creates

complex interactions that are difficult to model. The empirical aim of this chapter

however, was not to model or understand the casual mechanisms of road accidents

but to improve estimation of local authorities’ road safety performance where these
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accidents are indicators of their (poor) performance. Therefore the inclusion of

this spatial structure in the GLMM was to generate additional sources of shrinkage

for the estimation of the random effects and their variances. Consideration of the

catterpillar plots in figures 7.9 to 7.11 illustrates that this has been achieved yet

despite a significant reduction in the uncertainty relating to the performance ranks,

differentiating between local authorities remains problematic.

This chapter presented an application of the FMCAR to multiple road safety

performance indicators. In doing so it demonstrated the implementation and

interpretation of the model developed in chapter 5 with the aim of persuading other

researchers to adopt this method. This chapter demonstrated that the FMCAR

provides an easy to implement and interpret method for incorporating a very

general set of correlations for multivariate data. Additionally, the chapter hoped

to improve the estimation and ranking of local authority road safety performance.

By applying the FMCAR model that includes additional correlation parameters (for

spatial autocorrelation and cross-correlations), the aim was to reduce the uncertainty

involved in the estimation of local authority random effects (performance) to enable

performance between authorities to be differentiated. Although the use of the

FMCAR did improve the precision of these estimates and reduced the credible

intervals for the random effects, there was still a significant degree of overlap.

Therefore, although the FMCAR achieved the considerable reduction in uncertainty it

aimed for, it failed to make performance management significantly clearer. Mirroring

the findings of Bailey & Hewson (2004), despite an improvement in the methods the

resulting performance rankings remain ‘fuzzy’. Thus, there seems to have been little

progress since Goldstein & Spiegelhalter (1996) stated that rankings that incorporate

the uncertainty in the rankings in a statistically valid manner frequently make it
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impossible to separate the organisations under study.
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CHAPTER 8

GENERAL DISCUSSION

8.1 Introduction

This thesis has made several contributions to the theoretical and applied literatures.

From a theoretical perspective a new, more flexible, multivariate conditional autore-

gression has been developed and its performance against existing approaches tested.

From an empirical perspective, the application of this FMCAR model to multiple road

safety performance indicators has led to a significant reduction in the uncertainty of

local authority performance rankings. The aim of this chapter then is to discuss the

findings of this research in light of the original research aims and objectives, as well

as placing the findings in the context of the extant literature.

8.2 Aims and Objectives

Recall from chapter 1 that there are two motivations for this research. One is

methodological — to extend the range of multivariate models available for spatially

correlated data; and the second is applied — to improve the road safety performance

ranking of local authorities. In particular, the specific objectives of this research are:

1. Develop a flexible multivariate conditional autoregression that allows asymmet-

ric inter site spatial correlations.
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2. Demonstrate the performance of the model through a comparison with existing

models using simulated data.

3. Demonstrate the applicability of this model through investigation of multiple

traffic safety performance indicators in London.

4. Contribute to an improvement in public sector performance management by

reducing the uncertainty of performance rankings through the inclusion of

spatial correlation.

5. Provide a more general method for ranking public sector organisations than

Data Envelopment Analysis and Stochastic Frontier Analysis.

6. Contribute to the road safety literature by identifying good and weak performing

local authorities.

7. Provide the relevant computer code to perform parameter estimation, statistical

inference and diagnostics within the Bayesian paradigm.

8. Provide a thorough introduction to multivariate conditional autoregression

models.

Each of these objectives will be discussed in turn, in terms of the findings of the

research.

8.2.1 Develop a flexible multivariate conditional autoregression

This thesis has focused on multivariate CAR (MCAR) models. As in the univariate

models presented in chapter 2, spatial dependence is captured through the covariance

matrix, or rather its inverse. Previous research efforts have used simple forms for

the covariance matrix that, although computationally convenient, unduly constrain
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the range and/or type of correlation modelled. Mardia (1988) provided the

theoretical groundwork for multivariate Gaussian CAR models. The problem with

Mardia’s original multivariate specification was that it required separable models

that necessitated identical spatial parameters for each variable. The MCAR models

of Gelfand & Vounatsou (2003) and Carlin & Banerjee (2003) are almost identical

in their approach, although Carlin & Banerjee (2003) extend their model to spatio-

temporal data. These MCAR models are suitable for non-separable models but do

not allow for between area correlations. In comparison, the “two-fold CAR” model

of Kim et al. (2003) provides a more flexible correlation structure incorporating both

bridging and linking spatial parameters i.e. within area correlations and between

area cross-correlations. Despite being very flexible, this model is only suitable for

the bivariate case and extension to higher dimensions using the same approach has

been impossible. Jin et al. (2005) propose an alternative framework for including

cross-correlations into the traditional MCAR model which they term the Generalized

MCAR model. This model specifies the joint distribution for a Markov random

field in terms of a combination of simpler conditional and marginal distributions.

In such, they are adapting the multivariate geostatistical model of Royle & Berliner

(1999) to the lattice case. However, as discussed in chapter 3, the order in which the

conditional and marginal variables are considered (i.e. should π(y1|y2) be modelled

and then π(y2) or the other way around) is completely arbitrary. To combat this

complaint, Jin et al. (2005) propose to use model comparison techniques such as

the Deviance Information Criterion (DIC) to decide on the modelling order, yet this

seems infeasible with more than a few variables.

In summary, the existing literature provides for only a handful of MCAR models,

none of which are entirely satisfactory. The first objective of this thesis therefore was
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to develop a flexible multivariate conditional autoregression that allows asymmetric

inter site spatial correlations. Chapter 5 clearly achieved this with a model that

is both flexible and easy to implement. The conditional distributions and MCMC

sampling scheme were discussed in great depth and this model should be fairly easy

to implement for researchers confident in statistical programming. A novel feature

is the removal of the dependence on the number of neighbours in estimating the

conditional means, and instead the inclusion of a precision measure that allows for

variation in the data to influence the correlation. The conditions necessary to ensure

that the joint covariance matrix exists were introduced and interpretation of the

spatial autocorrelation parameters was discussed. The FMCAR, therefore, fills an

important gap in the literature.

8.2.2 Demonstrate the model’s performance through a comparison

The additional flexibility of the FMCAR comes at a cost; there are more parameters

to estimate and the model is computationally more difficult to implement than the

original MCAR model of Mardia (1988). It is therefore important to consider how well

the FMCAR compares to the alternative models considered in chapter 3. This was

the motivation for this research objective. When the spatial relationships between

variables across sites on the lattice is asymmetric then the FMCAR model should be

preferred. However, when the relations are symmetric how well does the FMCAR

perform in comparison to the existing approaches? This question was answered

by comparing the performance of the main multivariate spatial models using both

simulated and real data.

In addition, very little guidance is available for applied researchers on which

MCAR model is most appropriate in which situations. In comparison there a number
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of comparative studies of univariate models that can help guide researchers in their

model choice. For instance, Lawson et al. (2000) compared a range of univariate

spatial models according to goodness of fit criteria and Richardson et al. (2004)

compared the smoothing of disease risk performed by different univariate models

and therefore their ability to detect hightened risk. More recently, Best et al. (2005)

produced a thorough comparison of univariate models that extended their coverage

beyond CAR models to semi-parametric and moving average models. Currently no

similar simulation study exists for multivariate models. Chapter 6 therefore plugs an

important gap.

MCAR models are typically deployed in a Bayesian hierarchical framework. It

is a well established property of Bayesian inference that Bayesian procedures offer

a trade-off between bias and variance reduction of estimates (Carlin & Louis 2000).

Bayesian hierarchical spatial methods are known to produce point estimates with good

properties in terms of Minimum Squared Error loss. Variance reduction in Bayesian

methods is achieved through the borrowing of strength or information within the

hierarchical structure. The result is point estimates that are shrunk towards a ‘global

average’ from the distribution of all the units included in the hierarchy. The effect of

this shrinkage is dependent upon the prior structure assumed and conditional upon

this structure being close to the ‘true’ population model. Returning to the spatial

setting, the different MCAR models will produce different levels of shrinkage when

used as spatial priors in a hierarchical model. Therefore it will be useful to compare

the variance and bias trade-offs implied by each model.

A comparison of the model fit, variance and bias trade-off was achieved through

a combination of a simulation study and an application to a small real-world dataset

on cancer mortality in West Yorkshire. For the simulation exercise, four studies were
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used where each of the four competing MCAR models was assumed to be the true

data generating process. In each of these studies 100 datasets were simulated and the

four models were fitted to the datasets. This allows a comparison of the models across

a range of possible spatial configurations. In general, the performance between the

FMCAR, GMCAR and MCAR was comparable for all situations except the presence

of asymmetric linking parameters (cross-correlations) i.e for all but the case where the

FMCAR generated the data. This is both good and bad news. On the positive side,

fitting the FMCAR when asymmetric spatial cross-correlations are not present does

not have deleterious effects. It is therefore safe to fit the FMCAR without a priori

reasons to suspect asymmetric cross-correlations as there is little impact in terms of

model fit. However, the FMCAR offers little or no benefit over existing spatial priors

in the absence of asymmetric cross-correlations. Therefore persuading researchers to

adopt the FMCAR will depend upon the relative costs of implementing this model

over the potential benefits of avoiding model mis-specification. However, this is to be

expected. A parsimonious model should be preferred wherever possible and fitting

the more complex FMCAR when it isn’t required should be avoided.

8.2.3 Demonstrate the applicability of this model

The application of the FMCAR model to multiple road safety performance indicators

provided a good opportunity to demonstrate the implementation and interpretation

of the model to real-world data. Chapter 5 went into considerable depth regarding the

theoretical implementation of the model using MCMC within a Bayesian hierarchical

framework. This was accompanied by detailed discussion about interpretation of

model parameters. However, one aim of chapter 7 was to demonstrate the model

applied to data. Examining the spatial dependence parameters in the matrix C
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contained in the variance-covariance matrix indicates the extent that the FMCAR

prior produces shrinkage beyond a non-spatial GLMM. On the whole, the posterior

mean estimates are fairly moderate with wide credible intervals indicative of relatively

moderate spatial autocorrelation. Nevertheless none of the credible intervals include

zero and there is spatial autocorrelation present, thus modelling it will improve the

precision of the random effects.

Furthermore, the majority of the posterior kernel densities for the spatial cross-

correlations fall to the right of zero indicating positive spatial cross-correlations. This

is evidence that a model that allows for cross-correlations (e.g. GMCAR or FMCAR)

should be preferred over traditional MCAR varients. However, the innovation in the

FMCAR is the ability to model asymmetric cross-correlations in spatial datasets.

From the findings in chapter 7, it is apparent that the road accident data used

in this thesis exhibit only mild asymmetric cross-correlations at best. There were

only a few noteworthy departures from symmetric cross-correlations. For example,

the relationship between motorcylist severe at site i with cyclist severe at site j is

stronger with less variance than the relationship between motorcyclist severe at site

j with cylist severe at site i. Although it wasn’t possible to know a priori that there

wouldn’t be asymmetric cross-correlations, it would have obviously been better to

apply the FMCAR to a dataset where it was truly beneficial and where meaningful

interpretation of the asymmetric cross-correlations could take place.

One important thing that applying the FMCAR has demonstrated is that there is

spatial correlation and cross-correlation present in the STATS19 data. These findings

are consistent with the most recent research on this topic such as the two studies

by Hewson ( Hewson (2004) and Hewson (2005)) using STATS19 for the county of

Devon, UK. Both papers explictly test and model for spatial autocorrelation using
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a univariate CAR model and find some degree of positive spatial autocorrelation.

This has severe implications for the existing road safety research briefly reviewed in

chapter 4. In particular, a series of papers (Grayling et al. (2002), Graham et al.

(2005) and Graham & Glaister (2005)) have all attempted to explain accident rates

through area level deprivation covariates. It seems that both of these variables could

be spatially correlated and that the findings of these papers – that there is a high

correlation between area deprivation and accident rates – may require reviewing.

8.2.4 Reducing the uncertainty of performance rankings through the

inclusion of spatial correlation.

As chapter 4 discussed, it is bad practice to use point estimates of indicators

to rank performance across observational units (e.g. local authorities) without

accommodating the uncertainty inherent in these estimates. A well-established

method for accounting for uncertainty in the estimates of performance is the use of

Generalized Linear Mixed Models where the performance measure is assumed to be a

random effect with unknown variance. Research by Goldstein & Spiegelhalter (1996)

suggests that rankings adopting robust procedures that incorporate uncertainty in a

statistically valid manner frequently make it impossible to separate the organisations

under study. (Bailey & Hewson 2004) attempts to reduce the uncertainty in the

random effects (and therefore the performance ranking) via modelling multiple

performance indicators simultaneously. Assuming that these multiple measures

are correlated allows for ‘borrowing of strength’ across the multiple measures of

performance and a reduction in the uncertainty associated with each organisation’s

performance. Additionally, as these data are count data exhibiting significant

variability (due to the preponderance of zeros) spatial smoothing induced by spatial
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autoregressive models should improve the interpretability of th results. Despite,

considerable improvement in the resulting league table Bailey & Hewson (2004) are

still unable to separate organisations based upon differential performance. This

was the motivation behind this research objective. By adding additional forms

of correlation through the modelling of spatial correlations it was hoped that this

uncertainty in the performance ranking could be shrunk further. This is especially

important when the performance indicators are road accidents as the data are sparse

and subject to great variability. This makes robust inference about local authority

performance difficult.

Chapter 7 was remarkably successful in achieving this objective. It is obvious from

even a casual inspection of ranks reported in chapter 7 that the spatial GLMM using

the FMCAR has considerably narrowed the credible interval for the performance

ranking. That is, the modelling approach applied in this chapter is substantially

superior to the non-spatial GLMM model in terms of the precision of the random

effects: there is less uncertainty in the rankings. This effect is most apparent for

indicators that have very sparse data (i.e. the fatalities) where the extra structure

provided by the spatial correlations has allowed significant shrinkage in the variance

estimates. In comparison, relatively little shrinkage has occured for the slight accident

counts due to the relatively large amount of data.

8.2.5 Provide a more general method for ranking public sector

organisations

The problems in measuring the output of the public sector frequently occur for the

same reasons that these goods and services have to be delivered by the public sector

in the first place. There are three main problems with measuring public service
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performance: identifying outputs, the lack of prices and the problem of attribution.

This lack of prices and the problem of aggregation makes it very difficult to employ

traditional economic assessment of efficiency such as parametric Stochastic Frontier

Analysis or non-parametric Data Envelopment Analysis. However, a growing number

of academics challenge the relevance of productivity analysis to public sector data

(Stone (2002a), Stone (2002b) and Smith & Street (2005)). The relevance of a single

measure of (in)efficiency is questionable from a managerial perspective. There are

also reasonable concerns about the relevance of a production function approach to

the analysis of public sector organizations where the production process is not well

understood, and probably cannot be modelled well by traditional production analysis.

Moreover, the results from SFA and DEA are sensitive to the model assumptions and

in particular, the level of inefficiency is dictated by the signal to noise ratio in the data.

Given the number of omitted factors in public sector analyses this can be problematic

for the correct interpretation of these analyses. More importantly for this research,

traditional methods of performace measurement do not take into account the inherent

uncertainty in the estimates themselves.

Chapter 7 envisaged road safety performance as a latent output that was measured

by several related and correlated measures: accident counts by modal type and

severity. By exploiting the correlation across observational units (space) and across

variables, this thesis has produced quite a simple yet statistically robust method of

estimating organisation’s performance.

8.2.6 Identifying good and weak performing local authorities

A more specific objective than the one to reduce the uncertainty in the performance

ranking was to reduce the uncertainty by enough to enable differential performance
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to be identified i.e. to be able to statistically separate organisations based upon

their performance. Ultimately, this is the goal of league tables and performance

rankings. Yet despite, the considerable narrowing of credible intervals from adopting

the FMCAR as a spatial prior, there remains significant overlap and it remains

impossible to statistically differentiate local authority road safety performance. The

narrowing of the credible intervals is enough to separate the best performing local

authorities from the worst performing ones (i.e. there is no overlap in their credible

intervals). This would allow for some very broad measure of comparative performance

such as ‘above median’ and ‘below median’, although for the majority of local

authorities it would not be possible for them to statistically categorised into one

of these groups. Overall therefore, the picture remains unclear. This result mirrors

the findings of Bailey & Hewson (2004), in which despite an improvement in the

methods the resulting performance rankings remain ‘fuzzy’. Thus, there seems to have

been little progress since Goldstein & Spiegelhalter (1996) stated that rankings that

incorporate the uncertainty in the rankings in a statistically valid manner frequently

make it impossible to separate the organisations under study.

8.2.7 Provide the relevant computer code

This objective has been met through the inclusion of Python code for the FMCAR in

the appendix. In addition, and more usefully, the full conditional distributions and

an MCMC sampling scheme are discussed in chapter 5. Specifics of selecting priors,

starting values and issues relating to the monitoring of convergence are discussed in

some depth in chapter 7.
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8.2.8 Provide a thorough introduction to MCAR models

Taken as a whole this thesis should provide a solid introduction to MCAR models.

A great many textbooks exist that cover univariate SAR and CAR models or

geostatistical in depth (e.g. Cressie (1993)) but this thesis allows the reader

to progress from time-series autoregressions to MCAR models in a succinct yet

thorough fashion. The comparison of MCAR models provided in chapter 6 and the

demonstration of the implementation and interpretation of the FMCAR in chapter 7

complete the coverage.

8.3 Summary

This chapter has discussed the findings of this research in light of the original research

objectives and the literature. This research has made two main contributions.

Firstly, a new flexible model has been presented for multivariate spatial data

recorded on lattice. The principal innovation in this model is the incorporation

of asymmetric spatial cross-correlation parameters. The second contribution is

empirical. By applying the FMCAR to data on multiple road safety performance

indicators considerable shrinkage in the estimation of the organisations’ performance

has been achieved. This extends the range of models available for performance

measurement and is particularly useful in the public sector where traditional

econometric approaches to measuring efficiency are inappropriate. The next chapter

concludes by summarising the research and by discussing the limitations, future

directions and policy relevance of the thesis.
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CONCLUSION

9.1 Introduction

In the last 30 years since Jean Paelinck introduced ‘spatial econometerics’ into

the economic lexicon, there has been an exponential increase in the methods for,

and applications of, spatial econometrics. The presence of spatial dependence can

cause problems for econometric models, both in terms of efficiency and bias. When

the geographic location of the observations is known it is common to assume that

observations at sites near each other may have a similar value on the omitted

variables in the regression causing the error terms to be serially autocorrelated.

This autocorrelation is typically modelled through an autoregressive model, two of

which dominate the literature: the Simultaneous Autoregression (SAR) introduced by

Whittle (1954) and the Conditional Autoregression (CAR) promoted by Besag (1974).

The analysis of spatially correlated data is now an active area of research in both

applied and theoretical econometrics. With the exception of Gamerman & Moreira

(2004) and Kelejian & Prucha (2004)) this research has been limited to univariate

data, yet many economic problems are inherently multivariate and there has been

a long history of multivariate methods in econometrics. In comparison, there have

been a number of significant contributions to multivariate methods within statistics,

including recent contributions from Gelfand & Vounatsou (2003), Carlin & Banerjee

(2003), Kim et al. (2003), and Jin et al. (2005) – which were reviewed in chapter
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3. This thesis therefore focused on extending the range of multivariate models and

in doing so draws on both the statistics and econometrics literatures. This chapter

reviews the principal findings of the thesis in light of the original research aims and

objectives. It considers both the limitations and contributions made by this thesis

and suggests future directions for research.

9.2 Findings and Contributions

Recall from chapter 1 that there were two motivations for this research. One

was methodological — to extend the range of multivariate models available for

spatially correlated data; and the second was applied — to improve the road safety

performance ranking of local authorities. Chapter 2 bridged the gap between time

series autoregressions and univariate spatial autoregressions, introducing some of the

key concepts in the analysis of spatially correlated data such as neighbourhoods. The

key contribution of this chapter was the justification of the conditional modelling

approach adopted in this thesis. This rested on four main arguments: (i) that

the CAR achieves minimum mean squared prediction error and maximum entropy

(ii) the CAR model is naturally interpreted in the conditional expectations sense

familiar to econometricians that isn’t true of the SAR model, (iii) the ease with which

CAR models can be implemented through MCMC methods due to their conditional

specification, and (iv) the ease with which the CAR can be used to model discrete

data through GLMMs.

Building from chapter 2’s presentation of univariate models, chapter 3 reviewed

the literature on multivariate spatial regression models. It identified the principal

challenge when modelling multivariate lattice data: guaranteeing valid covariance

matrices in the joint probability model whilst allowing for correlation both between
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variables within sites and between variables across sites. Three existing multivariate

conditional autoregression (MCAR) models were discussed in detail along with their

limitations. The MCAR models of Gelfand & Vounatsou (2003) and Carlin &

Banerjee (2003), which originated in the work of Mardia (1988), are the least general.

They incorporate a spatial autocorrelation parameter for each variable and a non-

spatial correlation term for the variables. The “two-fold CAR” model of Kim et al.

(2003) and the Generalized MCAR (GMCAR) model of Jin et al. (2005) both adopt

an additional linking parameter (or cross-correlation) which allows spatial correlation

between variable 1 at site i and variable 2 at site j. As such they are more general

than the simple MCAR model, but chapter 3 argued that they also have their

weaknesses. In particular, the “two-fold CAR” is only suitable for bivariate data

and the GMCAR suffers from problems with implementation and interpretation.

More generally, neither of the models allow for this spatial cross-correlation to be

asymmetric, and this resulted in the theoretical motivation for this thesis.

In chapter 4, the empirical objective of the thesis was motivated through a review

of performance measurement. This chapter suggested that traditional econometric

methods for measuring and ranking performance (e.g. Stochastic Frontiers) were

inappropriate for multi-output public sector organisations where prices are missing

and input data are scarse. Looking specifically at output-based performance

indicators, it was argued that a common problem with performance indicators in the

public services is that they usually make no allowance for the inherent uncertainty in

both the underlying performance being measured, or any rankings of this performance.

Moreover, when attempts are made to incorporate uncertainty into performance

measurement – for example through the use of generalized linear mixed models

(GLMMs) – the resulting credible intervals relating to the performance rank are
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typically large and overlapping. The obvious result is that it becomes impossible to

differentiate the relative performance of organisations. Given the increasing reliance

on performance management in the public sector, and the trend towards ‘payment

for performance’, chapter 4 argued that improving performance measurement was a

worthy endeavour. Additionally, given the large and growing number of road traffic

accidents – with the resulting impact on the economy and society – any methods that

could identify road safety excellence or weakness is worthwhile. Chapter 4 suggested

that one method of reducing the uncertainty in performance ranking would be to add

further structure to the GLMM random effects. One source of additional structure

for accident data could be spatial autocorrelation and spatial cross-correlations.

Having identified a gap in the theoretical literature in chapter 3, the innovation

in this thesis was the development of a flexible MCAR model i.e. one that allows

asymmetric cross-correlations between different variables at different sites. Chapter

5 presented this innovation. Another novel feature of this model is the removal of

the dependence on the number of neighbours in estimating the conditional means for

each site, and instead the inclusion of a precision measure that allows for variation in

the data to influence the correlation. As identified in chapter 3, the major challenge

in the literature has been ensuring that a valid joint covariance matrix exists. The

conditions that ensure this were also presented in chapter 5 along with an MCMC

sampling scheme for fitting the model to data.

The additional flexibility that is the hallmark of the FMCAR comes at a cost; there

are more parameters to estimate and the model is computationally more difficult to

implement than existing approaches. It was therefore important to consider how well

the FMCAR compared to the alternative models and this was the purpose of chapter

6. This comparison was achieved through the use of simulated and real world data
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and included both continuous and discrete variables. In general, the performance

between the FMCAR, GMCAR and MCAR was comparable except in the presence

of asymmetric cross-correlations in the simulated data. The major finding of chapter

6 was that this was both good and bad news. On the positive side, fitting the FMCAR

when asymmetric spatial cross-correlations are not present will not have deleterious

effects. Therefore it is safe to fit the FMCAR without a priori reasons to suspect

asymmetric cross-correlations. Additionally, the FMCAR model does offer attractive

properties in terms of shrinkage of the estimated spatial random effects variance,

which was expected to be of considerable use in modelling performance indicators.

However, the FMCAR offers little or no benefit over existing spatial priors in the

absence of asymmetric cross-correlations. The conclusion drawn was that, given the

negligible penalty of adopting the FMCAR by default, the attractiveness of this model

to other researchers will depend upon the relative overhead of implementing this

model.

Chapter 7 had two empirical aims. Firstly, originating from the discussion in

chapter 4, to reduce the uncertainty in the estimates of (road safety) performance

measurement through the addition of the spatial structure inherent in the FMCAR

model. Secondly, given the results of the model comparison in chapter 6, to

demonstrate the implementation and interpretation of the FMCAR model to real

data. The results of this chapter were mixed. The road safety performance indicators

provided a good opportunity to demonstrate the implemention and interpretation of

the FMCAR parameters in the GLMM setting. Although not conclusive, there was

some evidence of asymmetric spatial cross-correlations in the casualty variables which

warrants further exploration. The use of the FMCAR improved the precision of the

local authority performance estimates and therefore reduced the credible intervals
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for the rankings. Mirroring the findings of Bailey & Hewson (2004), there remained

a significant degree of overlap of these credible intervals making it impossible to

statistically differentiate performance. The tentative conclusion of this chapter was

therefore, that there seems to have been little progress since Goldstein & Spiegelhalter

(1996) stated that rankings that incorporate uncertainty in a statistically valid

manner frequently make it impossible to separate the organisations under study.

Despite this negative conclusion the FMCAR did induce a considerable degree of

shrinkage, in part achieving the empirical goal of this chapter. Moreover, the spatial

smoothing induced by the model aids intreptation of a dataset with a large proportion

of zero counts.

In chapter 1, the specific objectives of this research were specified as:

1. Develop a flexible multivariate conditional autoregression that allows asymmet-

ric inter site spatial correlations.

2. Demonstrate the performance of the model through a comparison with existing

models using simulated data.

3. Demonstrate the applicability of this model through investigation of multiple

traffic safety performance indicators in London.

4. Contribute to an improvement in public sector performance management by

reducing the uncertainty of performance rankings through the inclusion of

spatial correlation.

5. Provide a more general method for ranking public sector organisations than

Data Envelopment Analysis and Stochastic Frontier Analysis.

6. Contribute to the road safety literature by identifying good and weak performing

local authorities.
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7. Provide the relevant computer code to perform parameter estimation, statistical

inference and diagnostics within the Bayesian paradigm.

8. Provide a thorough introduction to multivariate conditional autoregression

models.

This thesis has met all of these objectives. The development of a flexible

conditional autoregression that allows asymmetric inter site spatial correlations

was reported in chapter 5 and a demonstration of the performance of the model

through a comparison with existing models using simulated data was then reported

in chapter 6. Chapter 7 met the next four objectives including: demonstrating the

applicability of the the FMCAR to performance management data; a reduction in the

uncertainty of rankings of local authority road safety performance; demonstrating

that the Generalized Linear Mixed Model is a more general method for ranking

public sector performance than traditional econometric techniques; the identification

of good and weak performing local authorities. As already reported, this last aim

was only partially fulfilled by the FMCAR model. Chapter 5 provided the full

conditional distributions and a sampling algorithm to fit the FMCAR model and

chapter 7 demonstrated how to interpret and validate the model output. The actual

Python computer code used in this research is reserved to the appendix, which

satisfies objective 7. Lastly chapters 2 and 3 provide a thorough introduction to

multivariate conditional autoregression models, especially when read in conjunction

with the detailed appendices and chapter 6 which compares multivariate conditional

autoregressions used both simulated and real data.

Besides the production of this thesis, the achievement of these research objectives

are demonstrated through the following specific outputs:

1. Chapter 2 (the univariate review) with additional material has been accepted,
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via peer review, for presentation at The Academy of Management annual

meeting in August 2009 in the research methods division under the title “Space

the final frontier: spatial regression models in organizational research”. It has

also been invited to be submitted to Organizational Research Methods which

will be done after the conference.

2. Chapter 5 introduced the Flexible Multivariate Conditional Autoregression

model, which incorporates asymmetric cross-correlations (or linking parame-

ters). This has been accepted, via peer review, for the European meeting of the

Econometric Society in August 2009 under the title “A Flexible Multivariate

Model for Areal Data”. It will be revised with a new application and ultimately

submitted to an econometrics journal.

3. Chapter 6 used both simulated and real data to compare the FMCAR to existing

MCAR specifications. This chapter with chapter 3 (the multivariate literature

review) has been submitted to Statistics Surveys under the title “A Comparison

of Multivariate Conditional Autoregressions”.

4. Parts of chapters 4 and 7 have been presented at the King’s College London

Social Science conference under the title: “Road traffic accidents: can we

assume spatial independence?” and in revised form have been accepted, via

peer review, for presentation at The Royal Statistical Society annual conference

in September 2009 under the title “Improving performance ranking through a

spatial GLMM.” A revised version of this chapter will eventually be submitted

to a social statistics or public policy journal.
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9.3 Challenges and Opportunities

9.3.1 Limitations

As with all pieces of research, there are inevitably some limitations to this thesis. In

terms of the FMCAR model itself there are a number of minor issues that could be

addressed in further work. Firstly, in section 5.4 the conditions necessary to ensure

the existence of a valid covariance matrix were presented and discussed. Recall from

the discussion in chapter 3 that this has proved the greatest challenge to researchers

developing MCAR models in the literature. This difficulty explains why there is

such a limited body of work on MCARs. Early versions of the FMCAR relied on

the rather blunt and restrictive condition of ensuring diagonal dominance of the

covariance matrix through restricting the MCMC sampler. This was replaced by

a neater solution which imposed a restriction on the singular values of the spatial

correlation matrix. This condition may be seen as a limitation and there is room to

investigate the relaxation of this condition in the future.

Another potential limitation of the model is the complexity of fitting the model

to data using MCMC methods. It is not possible to use a Gibbs sampler on its own;

instead two Metropolis-Hastings steps must be used to simulate draws for the precision

and the spatial correlation parameters. This combined with a number of large matrix

inversions makes the MCMC computationally challenging, requiring liberal use of

sparse matrix methods. There are a range of tools available in most programming

and statistical languages to handle sparse matrix manipulation. Further, the MCMC

methods required are not at the cutting-edge of stochastic simulation. Nevertheless,

a limitation of this model is the need to have a fairly good understanding of

computational statistics and stochastic simulation in order to be able to adapt the

176



CHAPTER 9. CONCLUSION

FMCAR to problems beyond the hierarchical GLMM presented in this thesis. This

will no doubt limit the appeal of the model to other researchers and an important

area of future research would be to produce ‘routines’ or scripts to automate this. In

fact, this need and the skills learnt during the course of this research have prompted

the development of a MCMC sampling ‘application’ developed in Python. Extending

this to a broad class of ‘everyday’ models is still in the early stages.

Given the large number of parameters that the FMAR is estimating, large datsets

are required to ensure efficient estimation of model parameters. In this thesis there

were 9 variables recorded for each of 4,766 observations (sites) which provided enough

data that this wasn’t a concern for this particular application. However, this would

certainly be a concern when considering applying the FMCAR to other datasets.

Unfortunately, there is no solution to this problem.

Turning to the limitations with the empirical elements of this research, the most

obvious weakness is the usefulness of the data in demonstrating the full potential

of the FMCAR. The innovation in the FMCAR is the ability to model asymmetric

cross-correlations in spatial datasets. From the findings in chapter 7, it is apparent

that the road accident data used in this thesis exhibit only mild asymmetric cross-

correlations at best. Although it wasn’t possible to know a priori that there

wouldn’t be asymmetric cross-correlations, it would have obviously been better to

apply the FMCAR to a dataset where it was truly beneficial and where meaningful

interpretation of the asymmetric cross-correlations could take place. Given the

original aim to model road safety performance indicators there was little that could be

done to address this problem without significant divergence from the stated research

aims. Hopefully, it will be possible to address this limitation in the future.

There remains one other empirical weakness with this research relating to one of
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the key objectives as stated on page 9: to “produce a more robust ranking of London

local authorities’ road safety performance through the application of this model.”

Whilst it is true that the addition of spatial structure to the GLMM through the

adoption of the FMCAR as a spatial prior did create a significant improvement in

the precision of the local authority performance estimates, it was not possible to

differentiate between individual local authority ranks. There was, however, enough

narrowing of the credible intervals to identify groups of local authorities that were

statistically above or below average. Thus, this aim was only partially achieved which

can be considered a weakness. One of the conclusions that may be drawn from this

result is that it is likely that almost all statistically robust methods of performance

ranking will leave it impossible to compare individual organisational units.

On reflection, the limitations presented above largely reflect the inadequacy

of the accident data (and the related problem of performance management) in

demonstrating the properties and usefulness of the FMCAR. This leads neatly to

areas of future work.

9.3.2 Future Directions

The most obvious future direction for this research is to find alternative applications

using data that exhibit stronger asymmetric cross-correlations, demonstrating the

full potential of this model. Areas where this model may be more appropriate are

the natural environment and biostatistics. For instance, the complex relationship

between environmental factors like rainfall and temperature. This requires more

thought. Beyond applying the model to different data, the model could be extended

to other domains e.g. panel data.

There are also other theoretical innovations of the FMCAR that could be
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investigated. The most exciting opportunity, but one which is still very much in its

infancy, is the attempt to link MCAR models to dynamic Vector Autoregressions

(VARs) and to offer new approaches to the specification and estimation of well-

established econometric models. The approach would rest of revisiting what is meant

by ‘space’ and instead viewing the macroeconomic panel data on a lattice similar to

spatial models. There is much room for research as this is a completely uninvestigated

topic and there is, so far, very little of substance.

Other, more obvious, extensions of the FMCAR model would be to incorporate

it within a common factor model to develop a spatial common factor model. One

use of this would be to represent in one (or more) latent variables road accident

performance rather than in separate random effects for each indicator. This offers

intuitive simplicity but may prove to obfuscate the mechanisms through which local

authority activity affects accidents. Further, given the presence of some negative

correlations between variables in the analysis conducted in chapter 7, this could be

problematic.

From the performance management side, work has started on developing multivari-

ate estimates of police performance with the Metropolitan Police Service. Similarly

to the road casualty data, crimes have a geographic component that may make spatial

methods useful. It is hoped that this research will plug into existing research streams

that attempt to map crime. Currently these maps are statistically naive and report

graphically uncontextualised per capita crime rates; they are therefore a visualisation

rather than a statistical tool. The adoption of the FMCAR model could lead to the

mapping of smoothed individual crime rates (which counts for the inherent variability

in the crime counts) as well as maps of police performance.
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9.3.3 Policy Implications

There are two broad policy implications of this research. Firstly, the results presented

in chapter 7 indicate that there is spatial autocorrelation and spatial cross-correlation

in the accident counts considered in this thesis. This has implications for the efficiency

and accuracy of existing research using these data. More importantly, it raises the

question as to whether there are one (or more) underlying spatially varying common

factors that may explain the spatial distribution of these casualty variables. Obvious

candidates for further research are environmental variables (e.g. varying patterns of

weather), physical variables (e.g. the built environment), transport variables (e.g.

the transport network) and socioeconomic factors (e.g. area deprivation). Whether

or not all or any of these variables can be accurately measured and incorporated is

questionable, which implies that adopting a spatial autoregressive model would be

important as it would allow for spatially correlated errors. Given the importance of

road safety, this finding has immediate policy relevance.

The second policy implication relates to the measurement of public sector

performance. GLMMs are already promoted by statisticians as more reliable ways

of estimating ‘performance’ than the use of crude, uncontextualised indicators.

Recent innovations in the statistical literature have seen the use of multiple

indicators simultaneously within a GLMM framework to improve the precision of

the performance estimates by ‘borrowing strength’ across the multiple indicators.

Extending this idea, this research provided extra levels of structure through the

incorporation of spatial correlation parameters. There are a number of applications

where the use of spatial information may also help to improve estimates of

performance – for example in performance management for police services. However,

what is also clear from this research is that even the most sophisticated models
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cannot reliably differentiate the relative performance of organisational units. This

has implications for the promotion of policies that allocate resources based upon

performance measurement.

9.4 Final remarks

This thesis considers the theory and application of multivariate conditional autore-

gressions. Given an understanding of time series autoregressions, it provides a self-

contained introduction to the theory and methods of both univariate and multivariate

conditional autoregressions. Beyond this it makes two substantial contributions to the

literature. Firstly, it makes a significant methodological contribution by introducing a

flexible multivariate conditional autoregression which allows asymmetric spatial cross-

correlation to be modelled. A complete derivation, implementation and interpretation

of the model is presented and through a simulation exercise the model is compared to

the current MCAR models available to researchers. The second major contribution

is empirical. The FMCAR model is applied to a selection of road safety performance

indicators for London. By adopting the FMCAR as a spatial prior in the GLMM,

considerable shrinkage of the estimates of local authority performance is produced.

Whilst this does not enable local authorities to be differentiated based upon their

road safety performance, it produces a considerable reduction in the uncertainty

surrounding their rankings. It also provides further evidence to support the conjecture

in Goldstein & Spiegelhalter (1996) that statistically robust methods of performance

ranking make it impossible to separate observational units. Thus, whilst it is highly

unlikely that the findings of this thesis will change policy relating to the use of

performance management in the public sector, it rises to the call in Bird (2005)

that researchers should work to improve the methods of performance measurement
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available to the public sector. Further, although the findings of this thesis indicate

that there is only mild evidence of asymmetry in the spatial cross-correlations for

road casualty counts, the thesis provides a demonstration of the applicability of

this model to real world social and economic problems. Thus while the model may

not be immediately applicable it remains insightful and advances the literature on

multivariate spatial methods.
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COMPUTATIONAL APPENDIX

A.1 Introduction to Python

Python is a clear and powerful object-oriented programming language, comparable

to Perl, Ruby, Scheme, or Java. Some of Python’s notable features:

• Uses an elegant syntax, making the programmes easier to read.

• Is an easy-to-use language that makes it simple to get programmes working.

• Comes with a large standard library that supports many common programming

tasks such as connecting to web servers, searching text with regular expressions,

reading and modifying files.

• Python’s interactive mode makes it easy to test short snippets of code.

• Is easily extended by adding new modules implemented in a compiled language

such as C or C++.

• Can also be embedded into an application to provide a programmable interface.

• Runs on many different computers and operating systems: Windows, MacOS,

many brands of Unix, OS/2, etc

• Is free software in two senses. It doesn’t cost anything to download or use

Python, or to include it in your application. Python can also be freely modified
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and re-distributed, because while the language is copyrighted it’s available under

an open source license.

The ActivePython Python distribution is a distribution focusing on an easy install

and use. It provides versions for a number of platforms: Linux, Windows, Mac OS X,

Solaris, HP-UX and AIX. On Windows, ActivePython also includes Win32All (a.k.a.

pywin32). You can download this distribution from:

http://www.activestate.com/Products/ActivePython/

There are numerous free manuals and tutorials available online for Python. A good

starting point is the official Python programming language website: http://www.python.org/

Python is incredibly easy to learn and deploy. Compared to other languages it is

very succinct and runs across all systems. Additionally, it works very well with the

R statistical environment as well as with leading Geographical Information Systems

(GIS) such as the commercial ArcGIS suite (from ESRI) or the open source GRASS

implementation.

A.2 Introduction to R

R is a free software environment for statistical computing and graphics. Among other

things it has:

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either directly at the computer

or on hardcopy, and
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• a well developed, simple and effective programming language (called S) which

includes conditionals, loops, user defined recursive functions and input and

output facilities.

The term “environment” is used by the designers to characterize it as a fully

planned and coherent system, rather than an incremental accretion of very specific

and inflexible tools, as is frequently the case with other data analysis software. R is

very much a vehicle for newly developing methods of interactive data analysis. It has

developed rapidly, and has been extended by a large collection of packages. However,

most programs written in R are essentially ephemeral, written for a single piece of

data analysis.

R is freely available for download from the Internet: http://www.r-project.org/ A

number of free manuals and tutorials are also available for download from the same

website.

The sampler for the FMCAR is made up of a Metropolis-Hastings step within a

Gibbs Sampler and the code is quite modular and reuseable. The purpose of this

section is to allow people familiar with MCMC methods and basic programming to

be able to understand simple Python MCMC samplers before the Python code for

the FMCAR is presented.

A.3 A Python Gibbs Sampler

Consider the simplest possible Gibbs sampler for a bivariate normal distribution.

from sys import argv

from math import *

from whrandom import random
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def genexp(lamb):

return (-1.0/lamb)*log(random())

def gennor(mu,sigma):

theta=random()*2*pi

rsq=genexp(0.5)

z=sqrt(rsq)*cos(theta)

return mu+z*sigma

n=eval(argv[1])

rho=eval(argv[2])

x=0

y=0

sig=sqrt(1-rho*rho)

for i in range(n):

x=gennor(rho*y,sig)

y=gennor(rho*x,sig)

print x,y

A.4 A Python Metropolis-Hastings Sampler

Consider a very simple independence sampler for a Gamma distribution which uses

a normal distribution as a proposal distribution.

from sys import argv

from math import *

from whrandom import random
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def genexp(lamb):

return (-1.0/lamb)*log(random())

def gennor(mu,sigma):

theta=random()*2*pi

rsq=genexp(0.5)

z=sqrt(rsq)*cos(theta)

return mu+z*sigma

def sdnorm(x,mu,sigma):

return exp(-0.5*pow((x-mu)/sigma,2))

def sdgamma(x,a,b):

if (x>0):

return pow(x,a-1)*exp(-b*x)

else:

return 0

n=eval(argv[1])

a=eval(argv[2])

b=eval(argv[3])

x=(a+0.0)/b

mu=(a+0.0)/b

sig=sqrt((a+0.0)/(b*b))
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for i in range(n):

can=gennor(mu,sig)

aprob=min(1,(sdgamma(can,a,b)/sdgamma(x,a,b)) \

/(sdnorm(can,mu,sig)/sdnorm(x,mu,sig)))

u=random()

if (u<aprob):

x=can

print x

A.5 A Python Implementation of the FMCAR

includefmcarcode.tex
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MATHEMATICAL APPENDIX

B.1 Specification through full conditionals

Chapter 2 introduced the Conditional Autogression of Besag (1974). Besag pioneered

the specification of Gaussian Markov random field models via their full conditionals

rather than the mean and precision. Here we provide a technical presentation of this

approach and the principal theorems required by it. Following the notation adopted

in chapter 2, suppose we specify the full conditional distributions as normals with

E[yi | y−i] = µi +
∑
j∈∂I

bij(yj − µj) (B.1.1)

and

Var[yi | y−i] = τ−1i (B.1.2)

for i = 1, ..., n and τ > 0 for some neighbourhood matrix B with elements bij =

1⇐⇒ j ∈ ∂i.

Theorem B.1.1. Given the n normal full conditional distributions with conditional

mean and variance as in (B.1.1) and (B.1.2), the y is a Gaussian Markov random

field with respect to a labelled graph G = (V , E) with mean µ and precision matrix
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Σ−1 = Σ−1ij , where

Σ−1ij =

 τibij i 6= j

τi i = j

provided τibij = τjbji, i 6= j, and Σ−1 > 0.

To prove this result we need Brook’s lemma, which is due to Brook (1964)

and demonstrates how the joint and full conditional distributions are related. We

discussed the usefulness of this lemma in Section 2.4.1 and it has been used throughout

the thesis.

Lemma B.1.2 (Brook’s Lemma). Let π(y) be the density for y ∈ Rn and define

Ω = {y ∈ Rn : π(y) > 0}. Let y,y′ ∈ Ω, then

π(y)

π(y′)
=

n∏
i=1

π(yi | y1, ..., yi−1, y′i+1, ..., y
′
n)

π(y′i | y1, ..., yi−1, y′i+1, ..., y
′
n)

(B.1.3)

=
n∏
i=1

π(yi | y′1, ..., y′i−1, yi+1, ..., yn)

π(y′i | y′1, ..., y′i−1, yi+1, ..., yn)
(B.1.4)

If we fix y′ then (B.1.3) (and (B.1.4)) represents π(y) up to a constant of

proportionality, employing the n full conditional distributions π(yi | y−i). As π(y)

integrates to 1 we can find the constant.

Proof (Brook’s lemma). Start with the identity

π(yn | y1, ..., yn−1)
π(y′n | y1, ..., yn−1)

=
π(y1, ..., yn−1, yn)

π(y1, ..., yn−1, y′n)

from which it follows that

π(y1, ..., yn) =
π(yn | y1, ..., yn−1)
π(y′n | y1, ..., yn−1)

π(y1, ..., yn−1, y
′
n)
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Express the last term on the right hand side similarly to obtain

π(y1, ..., yn) =
π(yn | y1, ..., yn−1)
π(y′n | y1, ..., yn−1)

x
π(yn−1 | y1, ..., yn−2, y′n)

π(y′n | y1, ..., yn−2, y′n)

x π(y1, ..., yn−2, y
′
n−1, y

′
n)

Repeat this process until Expression (B.1.3) results. To prove the alternative (B.1.4)

start with

π(y1 | y2, ..., yn)

π(y′1 | y2, ..., yn)
=
π(y1, ..., yn−1, yn)

π(y′1, y2, ..., yn)

and proceed forward as we did with (B.1.3).

Proof (Theorem B.1.1). Assume µ = 0 and fix y′ = 0. Then (B.1.3) simplifies to

log
π(y)

π(0)
= −1

2

n∑
1=1

τiy
2
1 −

n∑
1=2

i−1∑
j=1

τibijyiyj. (B.1.5)

Using (B.1.4) this becomes

log
π(y)

π(0)
= −1

2

n−1∑
1=2

τiy
2
1 −

n∑
1=2

n∑
j=i+1

τibijyiyj. (B.1.6)

As (B.1.5) and (B.1.6) are clearly identical it follows that τibij = τjbji, i 6= j. The

joint distribution of y can therefore be expressed as

logπ(y) = const− 1

2

n−1∑
1=2

τiy
2
1 −

1

2

∑
i 6=j

τibijyiyj.

hence y is zero mean multivariate normal distribution provided that Σ−1 > 0. The

precision marix, Σ−1, has elements Σ−1ij = τibij for i 6= j and Σ−1ii = τi.
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B.2 Hammersley-Clifford Theorem

As discussed in Section 2.5.1 it can be difficult to specify a full set of n full conditional

distributions that provide for a valid joint distribution. This would make Markov

random field (MRF) models impossible to work with. Fortunately, as presented

informally in Section 2.5.1, the Hammersely-Clifford Theorem says that a random

field with the Markov property is equivalent to this random field having a Gibbs

distribution. Therefore, instead of concerning ourselves with the full conditional

distributions we can concentrate instead on the Gibbs distribution. If a MRF has a

Gibbs distribution then it has a valid joint distribution. Clifford (1990) provides a

thorough proof of the theorem but we aim to produce a simpler one here. We begin

with some important definitions from graph theory which we initially presented in

Section 2.5.1.

Definition A set of nodes C is complete if all distinct nodes in C are neighbours

of each other. A clique is a maximal complete set of all nodes. C is a clique if it is

complete and no other complete set of nodes D that strictly contain C exists.

Definition Let G be a finite graph. A Gibbs distribution with respect to G is a

probability mass function that can be expressed in the form

π(y) =
∏

C complete

VC(y)

where each VC is a function that depends only on the values yC = (ys : s ∈ C) of y at

the nodes in the clique C. By combining functions VC that are subsets of the same
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clique this product can be further reduced to

π(y) =
∏

C clique

VC(y).

Theorem B.2.1 (Hammersely-Clifford). Suppose that a random variable Y =

(y1, ..., yn) has a positive1 joint probability mass function. Y is a Markov random

field on G if and only if Y has a Gibbs distribution with respect to G

Before we provide a proof of B.2.1 note the following notational conventions that

are adopted for convenience. Each random variable ys takes its values in some finite set

Ss and the entire MRF Y = (y1, ..., yn) takes values in the state space S = S1x...xSn.

The names of the elements of the sets Ss are irrelevant so we adopt the labelling

Ss = {0, 1, ...,ms} for convenience in the following proof. One element has been

arbirtrarily labelled “0”.

Proof (Hammersley-Clifford). One direction of the proof is easy. Suppose that Y has

a Gibbs distribution. It is sufficient to demonstrate that the ratio

π(Ys = ys | Y 6=s = y6=s)

π(Ys = 0 | Y 6=s = y 6=s)
,
π(ys | y6=s)
π(0s | y 6=s)

=
π(ys, y6=s)

π(0s, y6=s)

depends only on yN (s). This ratio is

π(ys, y6=s)

π(0s, y6=s)
=

∏
s∈C

VC(ys, y6=s)∏
s∈C

VC(0s, y6=s)


∏
s 6∈C

VC(ys, y6=s)∏
s 6∈C

VC(0s, y6=s)


1The reason this theorem was never published despite its clear importance was that Hammersley

and Clifford were convinced that it should be possible to relax the restrictive positivity condition.
The theorem was eventually published in ?
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But the last fraction on the right hand side is 1 because changing ys to 0s obviously

does not change VC if node s is not in C. Therefore the ratio only involves functions

VC where node s is in the complete set C and every other member of C is a neighbour

of node s. These functions only depend on yN (s).

For the converse, suppose Y is a Markov random field. We need to prove that we

can write the probability distribution of Y in the following form:

π(y) =
∏
A

VA(y) (B.2.1)

where VA ≡ 1 whenever A is not complete. Define VA such that

π(yD, 0Dc) =
∏
A⊆D

VA(y) (B.2.2)

holds for all D ⊆ {1, ..., n} with VA ≡ 1 when A is not complete, and (B.2.1) will

follow from (B.2.2) by taking D = {1, ..., n}. Functions VD that satisfy (B.2.2) are

found recursively beginning with D = ∅, then singleton sets D, and so forth. For

D = ∅, (B.2.2) says that π(0) = V∅(y) which is a constant function taking on value

π(0). For singleton set D = {s}, (B.2.2) says

π(ys, 06=s) = V∅(y)V{s}(y) = π(0)V{s}(y),

so that

V{s}(y) =
π(ys, 06=s)

π(0)
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Continue this pattern recursively, with the general recursion

VD(y) =
π(yD, 0Dc)∏
A⊂D

VA(y)
(B.2.3)

These definitions guarantee that (B.2.2) holds for allD. Completing the proof requires

that we show that if D is not complete then VD(y) = 1 for all y. This will be proved

by induction on the number of nodes in D, to be called #(D). It is vacuously true

for #(D) ≤ 1 since all elements must be neighbours and all sets D are complete.

Start by assuming that the condition holds for #(D) ≤ k. We will prove that it is

also true for #(D) = k + 1 by induction. Suppose that when #(D) = k + 1 then

D is not complete and that it contains two nodes s and t that are not neighbours:

D = {s, t} ∪B, where #(B) = k − 1. By (B.2.3) we aim to prove that

π(yD, 0Dc) =
∏
A⊂D

VA(y). (B.2.4)

Start with

π(yD, 0Dc) = π(ys, yt, yB, 0Dc) =

[
π(ys, yt, yB, 0Dc)

π(0s, yt, yB, 0Dc)

]
π(0s, yt, yB, 0Dc).

Since s and t are not neighbours then, by the Markov property, we have

π(ys, yt, yB, 0Dc)

π(0s, yt, yB, 0Dc)
=
π(yt | ys, yB, 0Dc)

π(0s | yt, yB, 0Dc)
=
π(yt | 0s, yB, 0Dc)

π(0s | 0t, yB, 0Dc)
=
π(yt, 0s, yB, 0D

c)

π(0s, 0t, yB, 0Dc)
.
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Thus

π(yD, 0Dc) =

[
π(ys, yt, yB, 0Dc)

π(0s, yt, yB, 0Dc)

]
π(0s, yt, yB, 0Dc)

=

 ∏
A⊆B∪{s}

VA(y)

 ∏
A⊆B∪{t}

VA(y)


∏
A⊆B

VB(y)
=

∏
A⊂D{s,t}*A

VA(y).

However, by the induction process VA ≡ 1 if {s, t} ⊆ A ⊂ D. Therefore,

π(yD, 0Dc) =
∏

A⊂D{s,t}*A

VA(y) =

 ∏
A⊂D{s,t}*A

VA(y)

 ∏
A⊂D{s,t}⊆A

VA(y)

 =
∏
A⊂D

VA(y),

which proves (B.2.4).

B.3 Conditional Distributions

Two important results from multivariate statistics concerning conditional distribu-

tions are reported for convenience. For a more detailed treatment, see for example

Bierens (2004). Partition a vector of observations, y as

y =

(
y1
y2

)
,

and let

y ∼ N (µ,Σ)
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with

µ =

(
µ1

µ2

)
and Σ =

 Σ11 Σ12

Σ21 Σ22

 .

The conditional distribution of y1 given y2 is then also multivariate normal with

µ1 | µ2 = µ1+Σ12Σ22
−1(y2−µ2) and Σ1|2 = Σ11−Σ12Σ22

−1Σ21, (B.3.1)

where Σ12Σ22
−1 are regression coefficients and in which Σ1|2 is the Schlur complement

of Σ22 in Σ. Note that knowing y2 shifts both the mean and variance. Now let Σ be

 Σ11 Σ12

Σ21 Σ22

 =

 Σ11 Σ12

Σ21 Σ22


−1

.

Then we have

Σ11 = [Σ11 −Σ12(Σ22)−1Σ21]−1

Σ22 = [Σ22 −Σ21(Σ11)−1Σ12]−1

and

Σ12 = −(Σ11)−1Σ12Σ22 = −Σ11Σ
12(Σ22)−1

Σ21 = −(Σ22)−1Σ21Σ11 = −Σ22Σ
21(Σ11)−1

.

Combining these two results for the inverses of partitioned matrices we obtain

Σ1|2 = Σ11 − (Σ22)−1Σ21Σ11(Σ22)−1Σ21Σ11

= (Σ11)−1(Σ11 −Σ12(Σ22)−1Σ21)Σ11

= (Σ11)−1
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B.4 Conditional & Covariance Structure of the Multi-normal

Distribution

The presentation of the MCAR in Chapter 3 and the point of departure for the

FMCAR developed in Chapter 5 is based upon a key result from Mardia (1988)

for the multivariate normal distribution. Consider a p-dimensional set of random

variables y1, ...,yn where

E(yi|y−i) = µi +
∑
j∈∂i

Bij(yj − µj), i = 1, ..., n (B.4.1)

and

Var[yi|y−i] = Γi, i = 1, ..., n (B.4.2)

where the y−i ≡ (yj : j ∈ ∂i) refers to the “rest” of the variables (y) at the other

sites in the neighbourhood of i. Mardia (1988) proves that given a multivariate vector

y = (y′1, ...,y
′
n) of length np that the joint distribution for y is N (µ,Σ)

Theorem B.4.1 (Mardia). Given the n conditional multi-normal distributions, y is

Nnp(µ,Σ), where

µ ≡ (µ′1, ...,µ
′
n)′ and Σ ≡ [Block(−Γ−1i Bij)]

−1. (B.4.3)

provided

BijΓj = ΓiB
′
ji, i, j = 1, ..., n (B.4.4)

and
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Block(−Γ−1i Bij) or Block(Bij) (B.4.5)

are positive-definite. Further, the p.d.f. of y is

(2π)−np/2
n∏
i=1

|Γi|
−1/2

|Block(−Bij)|

x exp
1

2

n∑
i=1

n∑
j=1

(yi − µi)′Γ−1i Bij(y − µj) . (B.4.6)

Proof. The Brook expansion of B.1 can be extended to the multivariate case i.e. if

x = (x′1, ...,x
′
n)′ and y = (y′1, ...,y

′
n)′ are identically distributed with the joint p.d.f

f(), then

f(x)f(y) =
n∏
i=1

f(xi|x1, ...,xi−1,yi+1, ...,yn)f(yi|x1, ...,xi−1,yi+1, ...,yn). (B.4.7)

Assuming a zero mean process and that y = 0 then from (B.4.1) and (B.4.2), equation

(B.4.7) simplifies to

−2logf(0)f(y) =
n∑
i=1

y′iΓ
−1
i yi − 2

n∑
i=2

i−1∑
j=1

y′iΓ
−1
i Bijyj. (B.4.8)

The forward version2 of (B.4.7) can be written as

f(x)f(y) =
n∏
i=1

f(xi|y1, ...,yi−1,xi+1, ...,xn)f(yi|y1, ...,yi−1,xi+1, ...,xn). (B.4.9)

2See Mardia (1988) p. 267 for an explanation.
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which leads in the same manner as (B.4.8) to

−2logf(0)f(y) =
n∑
i=1

y′iΓ
−1
i yi − 2

n−1∑
i=1

n∑
j=i

y′iΓ
−1
i Bijyj. (B.4.10)

Since (B.4.8) and (B.4.10) must be identical, the coefficients Bij must satisfy (B.4.6).

Further, from (B.4.10) we have

−2logf(y) = Const.+
n∑
i=1

y′iΓ
−1
i yi −

∑
i 6=j

y′iΓ
−1
i Bijyj. (B.4.11)

Thus y is Nnp(0Σ), where Σ is as defined in (B.4.3), provided that Σ is positive

definite i.e. if (B.4.4) holds.
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