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Identification and substrate prediction of
new Fragaria x ananassa aquaporins and
expression in different tissues and during
strawberry fruit development
Britt Merlaen 1, Ellen De Keyser2 and Marie-Christine Van Labeke1

Abstract
The newly identified aquaporin coding sequences presented here pave the way for further insights into the
plant–water relations in the commercial strawberry (Fragaria x ananassa). Aquaporins are water channel proteins that
allow water to cross (intra)cellular membranes. In Fragaria x ananassa, few of them have been identified hitherto,
hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding
sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and
PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the
presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions
(SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing
fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression
over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening
occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins
belonging to a different but also to the same (sub)class.

Introduction
Because of its shallow root system, large leaf area and

high fruit-water content, good water management is key
to strawberry production1,2. At the cellular level, water
transport is controlled through water channels called
aquaporins. Aquaporins form a pore in (intra)cellular
membranes and in this way facilitate water transport
across these membranes. A growing body of evidence is
presenting them as influencing factors when it comes to
plant–water relations3,4.

Five aquaporin classes are distinguished in higher
plants, based on sequence and subcellular localization,
although occurrence at different locations has been
reported5–9. Due to their abundance and subcellular
localization and the fact that they generally transport
water more efficiently than other types, the plasma
membrane intrinsic proteins (PIPs) and the tonoplast
intrinsic proteins (TIPs) are most promising when looking
for aquaporins that significantly influence the plant–water
status3. Other classes are nodulin-26 like intrinsic pro-
teins (NIPs), small basic intrinsic proteins (SIPs) and X
intrinsic proteins (XIPs), a small, recently discovered
class7,10,11.
Aquaporins have six transmembrane helices and five

loops connecting them. Their 3D structure has a pore in
the middle. They form heterotetramers, resulting in units
with four pores12–15. Next to this conserved 3D structure,
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aquaporins have several highly conserved residues defining
the pore specificity. In the first place, the two conserved
NPA motifs (Asparagine–Proline–Alanine) that are in close
proximity of each other in the 3D protein configuration aid
in directing the water molecules one by one through the
channel16. Additionally, the Ar/R (an aromatic amino acid
and Arginine) selectivity filter also contributes to the spe-
cificity of the channel by providing a size barrier and
effectuating proton exclusion (reviewed in refs. 3,8,17–19).
Aquaporins can quickly and reversibly transition from an
open to a closed state. This process, called gating, is con-
trolled through phosphorylation and protonation of spe-
cific, also highly conserved residues20–24.
Aquaporins have been shown to transport several small

solutes in addition to water. These include ammonia,
arsenite, silicic acid, boron, antimonite, hydrogen per-
oxide and carbon dioxide3,8,25. Arsenite, silicic acid and
antimonite are generally transported by aquaporins other
than PIPs or TIPs8,26. The residues surrounding the NPA
motifs and the Ar/R residues, along with the Froger’s
P1–P5 residues are involved in discriminating between
different substrates27. Substrate-specific signature
sequences (SSSSs) for these positions have been suggested
for different substrates, along with additional specificity-
determining positions (SDPs)8,26.
Qualitative and quantitative knowledge about the con-

tribution of aquaporins to maintaining the plant–water
status is very limited in Fragaria x ananassa. In the diploid
Fragaria vesca, Surbanovski et al. have identified 10
aquaporins, belonging to PIP1, PIP2 and TIP (sub)classes28.
Only four aquaporins have been identified in the octoploid
F. x ananassa up to now: a root-specific TIP (FaRB7
(Genbank Acc. No. DQ178022.1))29, a PIP subtype 1
(FaPIP1;1 (Genbank Acc. No. GQ390798.1))30, a PIP sub-
type 2 (FaPIP2;1 (Genbank Acc. No. GQ390799.1))31 and
one NIP (FaNIP1;1 (Genbank Acc. No. KJ159565.1))32.
Considering the multitude of physiological and biological
processes that are affected by cellular water transport and
plant–water relations in general, it is in the interest of many
research fields related to strawberry cultivation that new
F. x ananassa aquaporin coding sequences are identified.
In this study, we present several new F. x ananassa PIP-

coding sequences. As a basis for this, known coding
sequences from the wild strawberry (F. vesca) were used
because of the high homology that exists among aqua-
porins28. Additionally, the recent sequencing project of
the octoploid strawberry is a source of new PIP and TIP
aquaporin coding sequences33. The substrate specificity of
the newly identified sequences is predicted based on
SSSSs and SDPs. We also analyse the expression of dif-
ferent groups of aquaporins, both PIPs and TIPs, across
different tissues and fruit developmental stages. The
variety in predicted substrates and expression patterns

points at functional specialization, even within (sub)
groups. Providing these PIP and TIP coding sequences,
this study paves the way for further research on
plant–water balance in the commercial strawberry,
including research in ripening, abiotic stress and water
use.

Materials and methods
RNA extraction and reverse transcription
RNA was extracted using a method modified from

Chang et al.34. Modifications were kindly provided by
Kevin Folta (Horticultural Sciences Department, Uni-
versity of Florida). For detailed protocols, please refer to
Supplementary file 1.

Isolation of new PIP-coding sequences
Primers were designed using Primer3 software (http://

biotools.umassmed.edu/bioapps/primer3_www.cgi) based
on F. vesca PIP sequences and a partial F. x ananassa
coding sequence (Genbank Acc. No. DQ022749.1)
(Table S3)28,35. These primers were used in PCR on F. x
ananassa cv. Elsanta cDNA in order to amplify and
sequence F. x ananassa aquaporin fragments. For detailed
protocols, please refer to Supplementary file 1.
In addition to these fragments, an EST (Genbank Acc.

No. GW403182.1) was derived from the NCBI database
by using the BLAST tool (http://blast.ncbi.nlm.nih.gov/
Blast.cgi). The FaPIP1;1 (Genbank Acc. No. GQ390798.1)
coding sequence was used as a query to search the
expressed sequence tags database of the organism F. x
ananassa30.
Next, 5’ RACE (Rapid amplification of cDNA ends) PCR

and 3’ RACE PCR were applied to these fragments and the
EST derived from the NCBI database. For detailed pro-
tocols, please refer to Supplementary file 1.
Finally, primers in the 5’ and 3’ untranslated region

were designed for amplification and sequencing of the full
length coding sequence. For detailed protocols, please
refer to Supplementary file 1. The resulting sequences
were named according to the current plant aquaporin
nomenclature36.

PIP and TIP coding sequences in Strawberry GARDEN
Fragaria vesca PIP protein sequences (FvPIP1;3,

FvPIP2;2, FvPIP2;3, FvPIP2;4, FvPIP2;5, FvPIP2;6 and
FvPIP2;7) and predicted TIP protein sequences derived
from the NCBI database were used as query sequences to
search the FAN/_r1.1_pep database of the Strawberry
Genome And Resource Database ENtry (Strawberry
GARDEN project) (http://strawberry-garden.kazusa.or.jp/
blast.html) by means of the BLASTp tool28,33. Coding
sequences resulting from this BLAST have names starting
with FAN.
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Sequence analysis
Translation of coding sequences into protein sequences

was done by means of the online translate tool of the

Swiss Institute of Bioinformatics (http://web.expasy.org/
translate/). All alignments were performed using either
the ClustalX2.1 or CLC program. Phylogenetic trees were

Fig. 1 Alignment of amino acid sequences of Fragaria x ananassa PIP aquaporins Transmembrane domains (TM): grey; NPA motif: red; AEF motif:
purple; Ar/R selectivity filter (FHTR): pink; P1–P5 residues: turquoise; putative conserved phosphorylation sites (S): green; putative conserved
methylation sites (K and E): blue; putative conserved protonation site (H): orange; putative conserved blocking residue (L): black
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constructed by means of Neighbour Joining using the
CLC program. The number of transmembrane helices was
predicted using the TMHMM software of the Technical
University of Denmark (http://www.cbs.dtu.dk/services/
TMHMM/). SSSSs of NPA motifs, Ar/R filters (H2, H5,
Loop E(1), Loop E(2)), Froger’s positions (P1–P5) and
SDPs were identified based on careful visual inspection of
multiple sequence alignments of F. x ananassa aqua-
porins and alignments reported earlier8,27. Indication of
transmembrane helices and conserved residues onto
alignments was done using Jalview.

Plant material for RT-qPCR
Vegetative tissues (young fully developed leaves (Ly),

dark green fully developed mature leaves (Lm) and
petioles (P)) and fruits in four developmental stages were
sampled in three biological replicates (three separate
plants). The four developmental fruit stages were: small
green (sGF) (length 23.08± 1.77 (SD) mm (n= 6)), large
green (lGF) (length 34.52± 4.44 (SD) mm (n= 6)), white
(WF) (before turning stage) and red (RF) (ripe). Leaf and
petiole samples were cut off with a sharp scalpel and were
frozen immediately in liquid nitrogen. Fruits, receptacle
with achenes, were cut into small pieces after removal of
the calyx and rapidly frozen in liquid nitrogen. For
detailed RNA extraction and reverse transcription pro-
tocols, please refer to Supplementary file 1.
An early season F. x ananassa cultivar, Cléry, and a

midseason cultivar, Elsanta, were used in this expression
study. For details on the sampling location and growing
practices, please refer to Supplementary file 1. All samples
were taken between 1.5 and 3.5 h after sunrise. All Cléry
samples (young and mature leaves, petioles and four fruit
developmental stages) were harvested on 1 April 2015.
Elsanta young and mature leaves, petioles, white and red
fruits were collected on 21 April 21 2015. Due to bad
RNA quality (see below) Elsanta small and large green
fruit samples from 21 April were discarded and resampled
on 22 May 2015, from different plants than those sampled
on 21 April. The second sampling is referred to as bio-
logical replicates 4, 5 and 6.

RT-qPCR
All obtained aquaporin coding sequences were aligned

(Figs. 1 and 2) and divided into eight different groups
based on the visual interpretation of multiple sequence
alignments and sequence similarities in the untranslated
regions. Using Primer3Plus (http://primer3plus.com/cgi-
bin/dev/primer3plus.cgi), primers were designed in such a
way that they amplified all sequences within one group
but not the sequences belonging to other groups. In
Table 1, the aquaporin sequences belonging to each group
are listed. Gene specific amplification efficiencies were
determined by LinRegPCR (Table 1)37,38. Based on geN-
orm analyses, clathrin and CHP3 were selected as refer-
ence genes39. Both reference genes had amplification
efficiencies of 1.911. For detailed RT-qPCR protocols,
please refer to Supplementary file 1.

Statistical analysis
RT-qPCR data were analysed using SPSS (version 2.2).

Relative expression values were log-transformed. Because
of the low number of replicates, the Brown–Forsythe test
(robust test of equality of means) was used in combination
with the Scheffé post hoc test at the 5% significance level.
For an overview of all tests performed, please refer to
Supplementary file 1.

Results
Identification and analysis of aquaporin coding sequences
Five fragments of F. x ananassa coding sequences were

obtained by RT-PCR using primers designed on F. vesca
PIP-coding sequences and one partial F. x ananassa coding
sequence (Genbank Acc. No. DQ022749.1) (Table S3)28,35.
In addition to these fragments, one F. x ananassa EST
(Genbank Acc. No. GW403182.1) resulted from a BLAST
using the FaPIP1;1 (Genbank Acc. No. GQ390798.1) cod-
ing sequence as a query. By means of RACE PCR, the
coding sequence of these fragments was extended towards
both the 5’ and 3’ ends of the coding sequences. The start
codon and/or stop codon could not be found for all
sequences (Fig. 1). Using the obtained sequences, primers
were designed for amplification of full or partial coding

Fig. 2 Alignment of amino acid sequences of Fragaria x ananassa TIP aquaporins Transmembrane domains (TM): grey; NPA motif: red; AEF motif:
purple; Ar/R selectivity filter (HIA/GR): pink; P1–P5 residues: turquoise; putative conserved phosphorylation sites (S/T): green
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sequences of aquaporins from F. x ananassa cv. Elsanta
and Diamante cDNA. After ligation of the full or partial
coding sequence into a vector and amplification in E. coli
several positive colonies per amplification reaction were
sequenced on both strands. Because of the presence of
eight alleles in each F. x ananassa cultivar, several
sequences that slightly differ from each other were ampli-
fied by the same primers (Table S5). Additionally, six
coding sequences were derived from the Strawberry
GARDEN database using the BLAST tool: FAN_iscf0026
0109.1.g00002.1; FAN_iscf00092258.1.g00001.1/partial;
FAN_iscf00029827.1.g00001.1; FAN_iscf00145621.1.g000
01.1; FAN_iscf00096115.1.g00001.1; FAN_iscf00088732.1.
g00001.1 (Supplementary file 2). To classify the new
aquaporins, a phylogenetic analysis, including aquaporins
from Fragaria vesca, Malus domestica, Vitis vinifera and
Arabidopsis thaliana was conducted (Supplementary
file 3). This clearly identifies the new aquaporins as PIP
subtype 1, PIP subtype 2 or TIP aquaporins. Based on
sequence similarities within the coding sequence and
similarities in the 5’ and 3’ UTR, several coding sequences
were named as alleles from the same gene. Sequence names
were chosen to reflect the partitioning into different groups
according to the phylogenetic tree (Supplementary file 3)
and to reflect the similarities in coding sequence and UTR
regions (Supplementary file 4).
For all full coding sequences except FAN_iscf00145621.1.

g00001.1, six transmembrane domains were predicted
(Figs. 1 and 2). This is in accordance with the properties of
other aquaporins17,40.
Next, the presence of conserved residues among all or

specific (sub)classes of aquaporins (Table S6) was con-
firmed in all sequences presented here (Figs. 1 and 2),
except for the Ser/Thr in the B-loop of FAN_iscf0029827.1.
g00001.1. NPA motifs are conserved among all classes of
aquaporins, unlike the residues making up the Ar/R
selectivity filter, which can differ between and even within
subclasses. While PIP Ar/R filters are always made up by
F, H, T and R, the TIPs carry a high diversity in these
residues, among others the combinations found here
(HIAR and HIGR)8,18. The position of the conserved Leu
residue was described by Törnroth-Horsefield et al. to be
in loop D23, but the corresponding residues in the
sequences presented here are predicted by the TMHMM
software to be lying in the transmembrane helix following
loop D. Since this L residue is highly conserved and its
location in SoPIP2;1 is based on the X-ray structure of the
protein, localization in loop D can be considered as the
true location23. The phosphorylation site in loop B in TIPs
is part of a RXSXXR motif in most α-TIPs and of a TXXR
motif in δ-TIPs41. This motif provides an indication that
FAN_iscf00145621.1.g00001.1 is an α-TIP. The other TIP
cds’s possess only the conserved Thr, the surrounding
residues do not match these motifs, indicating they belong

to another type. FAN_iscf29827.1.g0000.1 lacks the
phosphorylation site itself, but the other conserved resi-
dues are present in this cds, as well as six transmembrane
domains, providing still enough evidence that this
sequence is a TIP.
Consequently, indications of aquaporin water perme-

ability were obtained from a residue in transmembrane
domain 2 (TM2) and one in loop E (positions 103 and
249, respectively, in FaPIP1;1-like(1)_(KY453768) in
Fig. 1)42. In TM2, Ala is found in all PIP1 sequences, Ile/
Val in all PIP2. At the position in loop E, Ile is present in
all PIP1 sequences, Val in PIP2s. These residues corre-
spond to lower predicted water permeability for PIP1s and
higher predicted water permeability for PIP2s42–44.
Thereafter, the residues at the positions of the SSSSs

and putative SDPs were retrieved from the cds’s (Tables 2
and 3)8,26. These residues were compared to the SSSSs
and SDPs suggested in literature for each substrate and
the corresponding substrates were listed.
Sequences belonging to groups FaPIP1;1 and FaPIP1;2

have an E residue in position P1, which does not occur in
any of the SSSSs suggested by Hove et al. or Azad et al.8,26.
Apart from this P1 position, groups FaPIP1;1 and
FaPIP1;2 have the same SSSS residues as groups FaPIP1;3,
FaPIP2;1(a) and FaPIP2;1(b), pointing at transport of
boron, CO2, H2O2 and urea according to Hove et al.8.
Group FaPIP2;2 has the SSSS residues for transport of
H2O2 and urea, but one residue in the loop E NPA sig-
nature differs from that for boron and CO2. Azad et al.,
contrary to Hove et al., provide no boron SSSS for PIPs or
TIPs and no urea SSSS for PIPs8,26. Group FaTIP(a) is
predicted to transport H2O2 and urea, as does group
FaTIP(b), that is, additionally, also predicted to transport
ammonia according to Hove et al.8. The SSSSs for H2O2

and urea are slightly different according to Azad et al. and
don’t match the residues in group FaTIP(a)26. Silicon
SSSSs don’t match since silicon transport appears to be
unique for NIPs8,26,42.
Finally, SDP residues were listed for the sequences

presented here (Table 3). These SDPs are also proposed
by Hove et al., in addition to the SSSSs8. Ammonia
SDPs are exclusively listed for TIPs, but the residues do
not match those in the TIPs presented here and are
therefore omitted from Table 3. No TIP residues were
listed for boric acid and CO2. All PIP1 groups have SDP
residues matching those listed by Hove et al. for boric
acid, H2O2 and urea8. FaPIP2;1 groups only match the
SDPs listed for H2O2 and urea and group FaPIP2;2 and
both TIP groups only match those for urea. In some
cases, only one out of nine residues does not match the
ones listed by Hove et al.8. This is the case for boric acid
transport by both FaPIP2;1 groups, for boric acid, CO2

and H2O2 transport by FaPIP2;2 and for H2O2 transport
by TIPs.
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Tissue-specific expression analysis
The newly obtained sequences described above, toge-

ther with some coding sequences derived from the
strawberry GARDEN database and the F. x ananassa
(partial) PIP aquaporin coding sequences that had
already been described in literature, were divided into
eight groups (Table 1)29–31. RT-qPCR was used to
determine the expression level of each group across
different tissues. The quality of the DNase treated RNA
samples was shown to be good for all samples used in
RT-qPCR, i.e. all Cléry samples, Elsanta young and
mature leaf, petiole, white and red fruit replicates 1, 2
and 3 and Elsanta small and large green fruit replicates 4,
5 and 6. Statistical tests were performed to compare the
expression between different tissues and groups of tis-
sues for each aquaporin group. Significant differences
between fruit developmental stages are indicated in
Fig. 3.
The expression patterns are generally the same for both

the early season (Cléry) and the midseason cultivar
(Elsanta) (Fig. 3). Only in some tissues and for some
aquaporin groups, there are significant expression differ-
ences between cultivars (Table S7).
Group FaPIP1;1 (Fig. 3a) shows a gradual down-

regulation of the expression during fruit development.
Only in Elsanta, this downregulation is significant (p<
0.001). The expression of this group in leaves and petioles
is significantly smaller than in the fruit tissues, but still
substantial (p< 0.001 and p= 0.015 for Cléry and Elsanta,
respectively).
Group FaPIP1;2 (Fig. 3b) seems to be ubiquitously

expressed under the conditions of this study, no sig-
nificant differences could be found between the different
tissues.
Group FaPIP1;3 (Fig. 3c) is nearly leaf-specific, the dif-

ference between leaf and other tissues is significant (p<
0.001, both cultivars). The modest expression in the fruits
is significantly downregulated during development and
ripening in Cléry (p= 0.028).
Both groups FaPIP2;1 (a) and (b) (Fig. 3d,e) are upre-

gulated during fruit development and ripening (except
for group FaPIP2;1(b) in Cléry). This trend is only sig-
nificant for group FaPIP2;1(b) in Elsanta (p= 0.002). The
expression of group FaPIP2;1 (a) (Fig. 3d) is higher in
fruit tissue when compared to the expression in leaves
and petioles in Elsanta (p= 0.001). Group FaPIP2;1 (b)
(Fig. 3e) on the other hand is predominantly expressed in
vegetative aboveground tissues (p < 0.001, both
cultivars).
Group FaPIP2;2 (Fig. 3f) shows an expression pattern

similar to group FaPIP1;1 (Fig. 3a), namely down-
regulation during fruit development (p= 0.002, Cléry; p
= 0.003, Elsanta). Expression of this group in leaves and
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Table 3 Residues in the sequences presented in this study at the putative specificity-determining positions (SDPs)
suggested by Hove et al.8 Residues that do not match the ones listed by Hove et al. are highlighted in black. Group members
are listed in Table 1. The SDPs that are also part of an NPA motif or are one of the Froger’s positions (P1–P5) are shown in bold

Group Boric Acid CO2 H2O2 Urea Substrates matching SDPs

according to Hove et al. (ref. 8)
Positiona SDP

residue

Positiona SDP

residue

Positiona SDP

residue

Positiona SDP

residue

FaPIP1;1 108 T 136 V 146 A 115 H H2O2 Urea Boric acid

111 I 139 I 149 G 118 P

115 H 143 T 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 I 220 I 193 L

226 L 254 K 260 H 233 P

229 L 257 W 263 F 236 G

231 T 259 D 265 V 238 G

233 P 261 W 267 P 240 N

FaPIP1;2 108 T 136 V 146 A 115 H H2O2 Urea Boric acid

111 I 139 I 149 G 118 P

115 H 143 T 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 I 220 I 193 L

226 L 254 E 260 H 233 P

229 L 257 W 263 F 236 G

231 T 259 H 265 V 238 G

233 P 261 W/C 267 P 240 N

FaPIP1;3 108 T 136 V 146 A 115 H H2O2 Urea Boric acid

111 I 139 I 149 G 118 P

115 H 143 T 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 I/V 220 I 193 L

226 L 254 A 260 Q 233 P

229 L 257 W 263 F 236 G

231 T 259 D 265 V 238 G

233 P 261 W 267 P 240 N

FaPIP2;1 (a) 108 T 136 V 146 A 115 H H2O2 Urea

111 I 139 I 149 G 118 P

115 H 143 S 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 V 220 I 193 L

226 M 254 K 260 Q 233 P

229 L 257 W 263 F 236 G

231 T 259 D 265 V 238 G

233 P 261 W 267 P 240 N
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Table 3 continued

Group Boric Acid CO2 H2O2 Urea Substrates matching SDPs

according to Hove et al. (ref. 8)
Positiona SDP

residue

Positiona SDP

residue

Positiona SDP

residue

Positiona SDP

residue

FaPIP2;1 (b) 108 T 136 V 146 A 115 H H2O2 Urea

111 I 139 I 149 G 118 P

115 H 143 S 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 V 220 I 193 L

226 M 254 K 260 Q 233 P

229 L 257 W 263 F 236 G

231 T 259 D 265 V 238 G

233 P 261 W 267 P 240 N

FaPIP2;2 108 T 136 V 146 A 115 H Urea

111 I 139 I 149 G 118 P

115 H 143 S 153 V 122 F

118 P 146 A 156 F 125 F

186 E 214 V 220 I 193 L

226 M 254 D 260 H 233 P

229 L 257 W 263 F 236 G

231 T 259 D 265 L 238 G

233 P 261 W 267 P 240 N

FaTIP (a) No TIPs No TIPs 116 A 85 H Urea

119 A 88 P

123 L 92 F

126 V 95 L

182 I 158 L

219 H 195 P

222 Y 198 G

224 L 200 S

226 P 202 N

FaTIP (b) No TIPs No TIPs 116 S 85 H Urea

119 A 88 P

123 L 92 F

126 V 95 A

182 I 158 L

219 N 195 P

222 Y 198 G

224 V 200 S

226 P 202 N

aPosition is relative to the numbering used in Fig. 1 for FaPIP1;1-like(1)_(KY453768) for all PIP groups and relative to the numbering used in Fig. 2 for both TIP groups
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petioles is significantly higher than in fruit tissue (p=
0.005, Cléry; p= 0.027, Elsanta).
For group FaTIP (a) (Fig. 3g) expression in the leaves

and petioles is negligible compared to the fruits (p<
0.001, both cultivars). This group of aquaporins is also
downregulated during fruit development and ripening (p
= 0.015, Cléry; p= 0.010, Elsanta).
For FaTIP (b) (Fig. 3h) upregulation during fruit

development is significant for Elsanta (p= 0.046), but
post hoc tests do not indicate differences. There is no
significant variation in FaTIP(b) expression in Cléry
(Fig. 3h). Expression in leaves is markedly lower compared
to other tissues (i.e. petioles and fruits) (p= 0.014, Cléry;
p< 0.001, Elsanta).

Discussion
Gating, subcellular localization and water permeability
The presence of certain conserved residues that have been

attributed a function in literature provides us with information
regarding the mechanisms that are potentially involved in
gating (opening/closure of the water channel) or subcellular
localization of the aquaporins presented here. Likewise, other
conserved residues indicate that in Fragaria PIP1 aquaporins
have a lower water permeability than PIP2 aquaporins. This
phenomenon has been widely described in literature12.

Substrate specificity
Several residues can be used to predict substrate spe-

cificity of aquaporins26,42,45. SSSSs at the NPA and Ar/R

Fig. 3 Relative expression levels (non-log-transformed CNRQ) per gene group across different tissues (a) group FaPIP1;1 (b) group FaPIP1;2 (c) group
FaPIP1;3 (d) group FaPIP2;1(a) (e) group FaPIP2;1(b) (f) group FaPIP2;2 (g) group FaTIP(a) (h) group FaTIP(b) Ly young leaf, Lm mature leaf, P petiole,
sGF small green fruit, lGF large green fruit, WF white fruit, RF red fruit. Geometric means of 3 biological replicates ± standard error. When the
difference in Cq value between noRT and sample was smaller than 5, this sample was left out of the dataset, resulting in some mean relative
expression levels based on 2(*) or 1(**) biological replicate(s). Letters indicate statistically significant differences between fruit developmental stages
(p < 0.05)
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filters and at the Froger’s P1–P5 positions have been
suggested per substrate, along with additional SDPs)
outside of these filters (Tables 2 and 3)8,26.
The only group carrying the suggested SSSS for

ammonium is group TIP(b), which is in accordance with
experimental evidence25,26,42.
H2O2 transport is predicted for groups FaPIP1;3,

FaPIP1;2 (a) and (b) by Hove et al. and Azad et al.8,26.
Azad et al. suggest different SSSSs for H2O2 in TIPs than
Hove et al. do, excluding group FaTIP(a) from the H2O2

transporters8,26. These results deviate from what is seen in
barley, where H2O2 transport is predicted to be restricted
to TIPs. Transport assays show that several PIP2s and
TIPs transport H2O2, but tested PIP1s were never shown
to transport this solute8,25.
When considering the SSSS only, CO2 is likely to be

transported by groups FaPIP1;3, FaPIP2;1(a) and (b)
(Table 2). When also considering the SDP suggested by
Hove et al., more than one SDP residue deviates
(Table 3)8. Functional tests will have to elucidate whether
CO2 is transported by these aquaporins or not, validating
or contradicting the suggested SDPs. Experimental evi-
dence for CO2 transport exists (only) for PIPs, but very
few aquaporins have been tested8,25.
Regarding boron and urea transport, SSSSs from Azad

et al. do not comply with Hove et al.8,26. Hove et al.
include PIPs experimentally proven to transport boron
and urea in their analysis, while Azad et al. base their
analysis on a selection made by Perez Di Giorgio et al., not
listing PIPs8,25,26. Discrepancies between both selections
apparently lead to different SSSS outcomes.
According to Hove et al., boron is predicted to be

transported by group FaPIP1;3 (Table 2)8. Azad et al.,
however, don’t provide an SSSS for PIPs26. In literature,
boron has been experimentally proven to be transported
by PIP1s, but generally boron transport seems to be a
feature of NIPs rather than PIPs3,8,25.
Urea is predicted to be transported by all of the

sequences presented here, except for groups FaPIP1;1 and
FaPIP2;1. Both the SSSS and SDPs correspond to Hove
et al. (Tables 2 and 3)8. According to Azad et al., however,
only group FaTIP(b) transports urea. Experimental evi-
dence exists for urea transport by TIPs, studies providing
evidence for urea transport by PIPs are less
numerous8,25,26.
In summary, groups FaPIP1;3, FaPIP2;1(a) and (b) are

predicted to transport H2O2. Group FaTIP(b) is predicted
to transport ammonia and urea. These predictions are
based on full correspondence to all SSSSs and SDPs, both
according to Hove et al. and Azad et al.8,26. When con-
sidering the SSSSs and SDPs suggested by Hove et al.
only, groups FaPIP1;3, FaPIP2;1(a) and (b), FaPIP2;2 and
FaTIP(a) transport urea too and group FaPIP1;3 trans-
ports boron8. Since all substrates discussed here have

important physiological functions (reviewed in refs. 8,26),
it’s worthwhile having an idea of which aquaporins can
transport them. We must remark that validation of these
predictions through in vivo tests is still required.

Tissue-specific expression analysis
Our results clearly show that PIP1 aquaporins are

substantially expressed in Cléry and Elsanta leaves and for
two out of three PIP1 groups also in petioles (Fig. 3). The
expression of the FaPIP1;1 aquaporin in leaves has also
been investigated in cultivars Selva and Camarosa by
Northern blot30. The probe is considered general for all
PIP131. In contrast to the RT-qPCR results presented
here, expression in leaves and petioles was not detected30.
Cultivar differences cannot be ruled out, but this dis-
crepancy could also be explained by the fact that the
primers amplifying group PIP1 detect a pool of mRNA’s,
showing the combined expression levels of several aqua-
porins. As the probe used for the Northern blot analysis
spans the entire coding sequence, it is potentially more
specific and shows the (combined) expression levels of
only one or a subset of the genes considered here in group
FaPIP1. Another possible explanation is that the sampling
time causes this difference in expression. It was shown
that PIPs exhibit a diurnal expression pattern in F. vesca
leaves, with a peak about 2 h after sunrise and an up to 14
fold lower expression in the late afternoon28. It is possible
that, at the time of sampling (which is not mentioned),
expression in the Selva and Camarosa samples had
dropped to levels no longer detectable by Northern blot.
The expression data presented here for fruits is the

combined level of receptacle and achene expression. Since
the water uptake/release is much smaller in achenes, the
major water movements take place in the receptacle.
Consequently, variation in aquaporin expression in
achenes is likely to be minimal compared to that in the
receptacle. We can thus argue that the majority of the
variation in expression will originate from the receptacle.
This assumption must, however, be confirmed by RT-
qPCR analysis on receptacle tissue only.
We demonstrated downregulation of group FaPIP1;1

during ripening. In Elsanta, significantly lower expression
was found for red fruits compared to green fruits. The
expression of FaPIP1;1 was also investigated in different
developmental stages of fruits in the cultivars Selva and
Camarosa, using Northern blotting. In contrast to our
RT-qPCR data, expression was shown to increase during
fruit ripening30. Neither group FaPIP1;1, nor one of the
two other PIP1 groups show a pattern consistent with
this30. Upregulation was also found in cultivars Toyonaka
and Camarosa with a probe spanning the entire open
reading frame31.
For groups FaPIP2;1(a) and FaPIP2;1(b), there is an

increase in expression from the large green to the white
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stadium and a decrease from white to red for Cléry. For
Elsanta, expression is rather stable from the green to the
white stage, but shows an increase towards the red stage.
The same Northern blot analysis as described above for
FaPIP2;1 was performed and the expression pattern was
found to increase from the green to the white stage and to
decrease again towards the red stage in Camarosa,
although this decrease is smaller than our RT-qPCR data
show for Cléry31. For Toyonaka, the response was not
pronounced, the expression seems to be rather stable. The
patterns during fruit development and ripening found in
Cléry and Elsanta are comparable to the ones found in
Camarosa and Toyonaka respectively.
In three PIP groups we observe significant down-

regulation during fruit development (group FaPIP1;1
(Elsanta), group FaPIP1;3 (Cléry) and group FaPIP2;2
(Elsanta and Cléry)), while upregulation at least until the
white stage is displayed for two PIP groups (FaPIP2;1(a)
and FaPIP2;1(b) (significant for Elsanta)). In Vitis vinifera,
a majority of the PIP genes was downregulated during
fruit ripening, also in seeded berries46–48. In seeded
tomato fruits (Solanum lycopersicum Micro-Tom), the
majority of PIPs tested also showed a downregulation
from the green towards the red stadium (SlPIP1;2,
SlPIP1;7, SlPIP2;1, SlPIP2;4, SlPIP2;8 and SlPIP2;9)49.
Other tomato research shows a diversity in expression
patterns for eight PIPs throughout fruit development.
Some are downregulated during fruit development, some
show a higher expression in the turning stage than in the
green or red stage50, which is similar to the patterns found
here in groups FaPIP2;1(a) and FaPIP2;1(b) for straw-
berry. High expression in the pré-veraison stage of
grapevine berries was also reported for eight PIP tran-
scripts, only three of which were induced during ripen-
ing51. Four PIP ESTs, belonging to two different PIP genes
according to the authors, were also downregulated during
parthenocarp Clementina mandarin ripening52.
Up to 10 days after anthesis, cells in the developing

strawberry fruit divide. From 10 till 20 days after anthesis,
fruits grow and this is only due to cell enlargement by
water uptake53. This period of strong increase in cell
volume reaches from the small green to the white fruit
stadium. During the periods of fruit volume increase, a lot
of water needs to be transported from the fruit vascular
system towards the peripheral parenchyma. A high PIP
expression level could aid in this water distribution.
During periods of slower growth, water demand by per-
ipheral tissues drops and so does the PIP expression. This
could explain the downregulation of several PIPs during
fruit development. In grapevine, expression of PIPs was
shown to coincide with the periods of berry growth, while
during the periods of slower growth, PIP expression was
downregulated48. Also in apple (Malus domestica) it has
been reported that expression of one PIP coincides with

fruit cell expansion54. Cultivar Elsanta has a slightly dif-
ferent growth curve (double sigmoid)55. There are two
periods of increase in cell and fruit volume: the strongest
increase happens roughly between the small green and the
large green fruit stadium (up to 15 days after anthesis),
during the white stadium growth and cell expansion slow
down. A second growth period occurs during the col-
oration of the fruit (about 25 to 30 days after anthesis)56.
Consequently, a temporarily lower PIP expression during
the white stage could be expected because of the sigmoid
growth curve, but this is not reflected in our data. Our
results can also point at a more dominant role for sym-
plastic water transport in riper fruit, as was proposed for
grapevine52. This route might be partially impaired in the
immature fruit stages.
We observed no TIP expression in the leaves. Expres-

sion of FaRB7, classified in group FaTIP(b), has been
investigated in F. x ananassa cv. Calypso by means of
Northern analysis and reverse transcription PCR (RT-
PCR)29. Our results confirm these data. Absence of
expression of these two groups indicates that not yet
identified TIPs must be responsible for regulating water
influx and efflux to/from the vacuoles in leaves.
The significant downregulation of group FaTIP(a) dur-

ing fruit development supports the hypothesis stated
before. During the periods of fruit expansion a lot of water
needs to be taken up by the vacuole to provide sufficient
turgor for cell expansion. Later on, the water must be
contained within the vacuole, causing FaTIP(a) levels to
drop.
The expression of group FaTIP(b) found in red fruits in

Elsanta and to lesser extent in Cléry could not be
demonstrated in Calypso29, but our results also indicate
that big differences in expression between cultivars within
one tissue can exist for this group of TIPs. Also, the pri-
mers designed here probably amplify more transcripts
than are detected by the probe used in Northern blot.
FaTIP(b) is probably subject to a different regulatory
mechanism than group FaTIP(a), supporting the theory of
specialization of isoforms within one subgroup52.
Downregulation of TIPs during fruit ripening was also

demonstrated in seeded Vitis vinifera berries and for some
TIPs in seeded tomato fruits (Solanum lycopersicum
Micro-TOM) (SlTIP1;1, SlTIP2;1, SlTIP3;1)46,49. In par-
thenocarp clementine mandarins, a δ-TIP was down-
regulated while a γ-TIP was upregulated52.

Aquaporin functions suggested by predicted transport and
expression profiles
Combining predicted substrate specificity and expres-

sion profiles, hypothesis can be formulated about the
function of each group of aquaporins. Hereby, one must
keep in mind that for Fragaria and many other species, it
has been shown that PIP1 type aquaporins have a limited
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intrinsic water permeability, but they greatly enhance the
water permeability of PIP2 type aquaporins30,31. Co-
expression with a PIP2 is needed for PIP1s to reach the
plasma membrane15. This implies that individual expres-
sion patterns do not show the full picture, since hetero-
merization defines the net effect on water permeability.
Groups FaPIP1;1 and FaPIP2;2 are clearly down-

regulated during fruit ripening. Taken together with the
fact that these groups are predicted to transport only
water, this indicates that their main function lies in reg-
ulating the water balance in the rapidly expanding and
soluble sugar accumulating, ripening fruit. Expression in
non-fruit tissues indicates that also in vegetative tissue,
this group of aquaporins is involved in regulating cell-to-
cell water transport.
Group FaPIP1;2 is constitutively expressed under

commercial greenhouse circumstances and not predicted
to transport non-aqua substances. This could point at a
role in supporting the basal cell metabolism.
Group FaPIP1;3 seems to be leaf-specific, suggesting a

dedicated role in leaf cells (no data available on root
expression). If they would be located to the thylakoid
membrane, they might aid in thylakoid lumen filling3. The
combination of leaf-specific expression and predicted
H2O2 transport could indicate a function in ROS dis-
sipation in chloroplasts, provided it is located in the
chloroplast envelope57. Leaf-specific expression can also
point at a function in CO2 import towards the chlor-
oplasts26. However, there are no predicted CO2 trans-
porters among the aquaporins presented here.
Groups FaPIP2;1(a) and (b) are expressed in all tested

tissues and upregulated during fruit ripening. Taken
together with the high water permeability that is common
for PIP2 type aquaporins, these aquaporins are expected
to sustain water flows needed for basal cell metabolism,
also in fruits. Upregulation or downregulation of these
aquaporins could adapt the water flows consecutive stages
of fruit ripening and potentially to changing environ-
mental conditions. These aquaporins are also predicted to
transport H2O2, which might be indicative of a role in cell
signalling or ROS dissipation.
Fruit-specific expression (no data available on root

expression) of group FaTIP(a) (downregulation during
ripening) and no predicted non-water substrates strongly
suggest that this group of aquaporins is involved in reg-
ulating water flows to build up turgor in expanding fruit
cells upon accumulation of soluble sugars.
Group FaTIP(b) is not expressed in leaves and upre-

gulated during fruit ripening in only one of two cultivars.
This group is predicted to transport ammonia and urea,
indicating a role in nitrogen acquisition and balance.
However, other, more regulated transport systems for
ammonia and urea are present in the tonoplast, suggest-
ing this role is minor3.

In this study, we present a number of new F. x ananassa
aquaporins, belonging to different (sub)classes (PIP1,
PIP2 and TIP). These coding sequences will contribute to
the extension of our understanding of the regulation of
water transport at the cellular level in plants. Presence of
conserved residues, predicted substrate specificity and
expression patterns are indicative of the aquaporin func-
tions. Our findings confirm functional specialization
among aquaporins, even within the same (sub)class. Now
these sequences are available, their function in regulating
plant–water relations can be further investigated.
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