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Abstract 19 

 20 

Propranolol (PRO), a human β-AR (β-adrenergic receptor) antagonist, is considered to result 21 

in specific effects in a non-target species, D. magna, based on our previous studies. The 22 

present study investigated the effects of β-AR agents, including an antagonist and agonist 23 

using pharmacologically relevant endpoints as well as a more holistic gene expression 24 

approach to reveal the impacts and potential mode of actions (MOAs) in the model non-target 25 

species. Results show that the responses in cardiac endpoints and gene expression in D. 26 

magna are partially similar but distinguishable from the observations in different organisms. 27 

No effect was observed on heart size growth in PRO and isoprenaline (ISO) exposure. The 28 

contraction capacity of the heart was decreased in ISO exposure, and the heart rate was 29 

decreased in PRO exposure. Time-series exposures showed different magnitudes of effect on 30 

heart rate and gene expression dependent on the type of chemical exposure. Significant 31 

enrichment of gene families involved in protein metabolism and biotransformation was 32 

observed within the differentially expressed genes, and we also observed differential 33 

expression in juvenile hormone-inducible proteins in ISO and PRO exposure, which is 34 

suspected of having endocrine disruption potential. Taken together, deviation between the 35 

effects of PRO and ISO in D. magna and other organisms suggests dissimilarity in MOAs or 36 

attributes of target bio-molecules between species. Additionally, PRO and ISO may act as 37 

endocrine disruptors based on the gene expression observation. Results in the present study 38 

confirm that it is challenging to predict ecological impact of active pharmaceutical 39 

ingredients (APIs) based on the available data acquired through human-focused studies. 40 

Furthermore, the present study provided unique data and a case study on the impact of APIs 41 

in a non-target organism.  42 
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Main Finding 47 

• Present study reveals that effects of β-adrenergic agents on heart function and gene 48 

expression of Daphnia magna are distinguishable from effects on other species despite partial 49 

similarity. 50 

 51 

 52 

1. Introduction 53 

 54 

APIs that are introduced into the aquatic environment can affect non-target organisms and, 55 

consequently, result in unintended harmful effects on ecosystems. Unexpected detrimental 56 

effects of APIs in natural ecosystems have been reported and are a pressing concern in 57 

environmental science (Brodin et al., 2013; Cuthbert et al., 2006; Pérez et al., 2012). Studies 58 

have proven that vertebrate biochemical messengers react with receptors in wildlife, which 59 

are potential targets of several APIs and responsible for crucial physiological functions in 60 

non-target organisms (Buonomo et al., 1984; Kashian and Dodson, 2004). Although the 61 

homology of pharmaceutical target receptors is highly species-dependent, studies have shown 62 

therapeutic actions of APIs in non-targeted organisms (Brooks and Huggett, 2012; Campos et 63 

al., 2012; Gunnarsson et al., 2008). Considering persistent concentrations of APIs up to 64 

several µg/L in the aquatic environment (Tijani et al., 2016), deeper understanding of the 65 

ecological risk of APIs is necessary to investigate how the effects of APIs occur and whether 66 

those are pharmacologically relevant.  67 

PRO, a cardiovascular drug, is one of the potentially harmful APIs to aquatic organisms. 68 

Results of our previous study on D. magna confirmed a heart-specific action of PRO in a 69 

non-target organism (Jeong et al., 2018), but details on the cardiac effects were limited due to 70 

the lack of observation on additional pharmacologically relevant endpoints. Furthermore, the 71 

complexity of the proposed MOAs of PRO in non-targeted organisms (Huggett et al., 2002; 72 

Massarsky et al., 2011) requires a study employing multiple biomarkers to further understand 73 

the effects and potential MOAs of the β-AR agent. Therefore, the current study focused on 74 

multiple pharmacologically relevant endpoints to investigate how β-AR binding agents affect 75 

D. magna. In addition, whole-body gene expression profiling in a time-course experiment 76 

was performed to provide deeper insight into the effects and potential MOAs. β-AR 77 

antagonist and agonist, PRO and ISO (Day and Roach, 1974), were used to activate and 78 



deactivate the target receptor. A mixture of the agents was also utilized to confirm a mixture 79 

effect as the effect of ISO is abolished by PRO (Hainsworth et al., 1973).  80 

 81 

2. Materials and Methods 82 

 83 

2.1. Preparation of chemical solutions and model organisms 84 

 85 

(±)-Propranolol hydrochloride and isoprenaline hydrochloride were purchased from Sigma-86 

Aldrich. Reagents were handled as recommended by the manufacturer. Chemical solutions 87 

for each exposure test were generated using media identical to the culture media. For the 88 

investigation of cardiac functional and structural change, an in-house D. magna culture was 89 

used. Culturing methods and media composition were in compliance with the US 90 

Environmental Protection Agency (EPA) guideline (Weber, 1991). For the gene expression 91 

profiling, the Xinb3 genotype of D. magna was used, which had been raised in the laboratory 92 

of K. D. Schamphelaere (Asselman et al., 2016). COMBO media and Organization for 93 

Economic Co-operation and Development (OECD) guidelines were used for the test 94 

organism culture (Kilham et al., 1998; OECD, 2012). The Xinb3 isolate was specifically 95 

selected for the gene expression profiling because it has been used to develop the recently 96 

published transcriptome of D. magna and allowed us to easily identify potential targets using 97 

the recently published corresponding gene set of D. magna (Orsini et al., 2016). 98 

 99 

 100 



 101 

Figure 1. Overall experiment design. 102 

 103 

 104 

2.2. Chemical exposure experiments and body sampling 105 

 106 

The overall design of the exposure experiments is described in Figure 1. The first and 107 

second experiments investigated the heart-related endpoints monitoring and whole body gene 108 

expression profiling, respectively. In the first experiment, animals were exposed to solutions 109 

of PRO and ISO during 6 days to study chronic effects in heart size, contraction capacity, and 110 

heart rate. The mixture of PRO and ISO was additionally used to investigate mixture effect of 111 

the target compounds on heart rate. The concentrations of solutions were 96 μg/L and 1,755 112 

μg/L for PRO and ISO solution, which are sub-lethal concentrations (Dzialowski et al., 113 

2006). Seven-day-old animals were individually exposed to each chemical solution in 30-mL 114 

plastic beakers. After 6 days of exposure, cardiac size, body size, and heart volumes in 115 

relaxation and contraction states were measured under the microscope. Every exposure was 116 

replicated 6 times.  117 

In the second experiment, animals were exposed for 24 h to 2 different concentrations of 118 

PRO, a single concentration of ISO, and a mixture of PRO and ISO to study changes in gene 119 

expression and heart rate. Five-day-old daphnids, which have no egg on their clutches, were 120 

used to avoid detection of gene expression in eggs. The solution concentrations were 0.9 121 



mg/L and 3.6 mg/L for PRO solutions, 84.4 mg/L for an ISO solution, and 0.9 mg/L of PRO 122 

and 84.4 mg/L of ISO for a mixture. The concentrations in the exposure were chosen to be 123 

sufficiently high to observe clear time-series changes of heart rate and corresponding gene 124 

expression regulation within 24 h, which is the period of initial response of D. magna to the 125 

exposed chemicals. Twenty individuals were exposed to different chemical solutions 126 

separately in a volume of 35 ml and were harvested at 1, 3, 6, and 24 h of exposure. When the 127 

whole body sample was gathered, heart rates were recorded from separate exposure sets, an 128 

individual D. magna in 20 mL chemical solutions, under a microscope. The body sampling 129 

was triplicated, and heart rate measurement was replicated 6 times. Exposure conditions, 130 

including room temperature and food concentration, were the same across all exposures and 131 

identical to the culturing conditions. Solutions in all exposures were daily generated and 132 

renewed daily to prevent degradation of the chemicals. 133 

 134 

2.3. Confirmation of chemical concentrations of solutions 135 

 136 

Chemical concentrations in the exposure solutions were quantified separately using liquid 137 

chromatography-tandem mass spectrometry (LC-MS/MS) in triplicate, and the averages of 138 

the estimated concentrations were used in this manuscript. The studies of Jeong et al. (Jeong 139 

et al., 2016) and Gu et al. (Gu et al., 2008) were used as references for analysis method 140 

development, and metoprolol was used as an internal standard compound. In brief, 141 

quantification was performed using a Waters Quattro micro high-performance LC-MS/MS 142 

system. Chromatographic separations were performed on an ACQUITY UPLC BEH C18 143 

column (2.1 × 150 mm, 3.5 µM, water). The mobile phases were Milli-Q water (0.1% formic 144 

acid) and acetonitrile (0.1% formic acid). The column temperature was 40℃. The mass 145 

condition was as follows: ESI positive ion mode; source temperature of 150℃; desolvation 146 

temperature of 350℃; desolvation gas flow of 500 L/h; nitrogen gas for desolvation, and 147 

argon gas for collision. The instrument was operated in multiple reaction monitoring mode 148 

and ion masses of 260>183, 208>166, and 268>74 were used for PRO, ISO, and metoprolol, 149 

respectively. 150 

 151 

2.4. Heart rate, heart size, and body size measurement from the 6-day exposure set 152 

 153 



Animals of similar body size were chosen to minimize biological variation. After 6 days of 154 

exposure, individuals were placed under a microscope (CKX41SF, Olympus) equipped with 155 

a digital camera, and heart rate, heart size, and body size were measured. The heart rate for 156 

30 sec was counted for 30s in slow-motion mode using a GOM player (Gretech Corporation), 157 

and relative heart rate to control was calculated for comparison between different exposures. 158 

The heart size and body size were captured and estimated using ImageJ software, and raw 159 

units (pixel) were not transformed to actual-size units (Schindelin et al., 2015). Heart size and 160 

body size were measured at the start and at the end of the exposure to calculate the relative 161 

change. To compare heart sizes between individuals, the measured heart size was normalized 162 

to the measured body size.  163 

The contraction capacity was defined as the area deduction between the heart sizes in 164 

relaxation and contraction states, and ImageJ was used for the measurements and calculations 165 

of the heart area. The details of the contraction capacity calculation are listed in Figure S1.  166 

 167 

2.5. Gene expression profiling and heart rate measurement from the 24-h exposure set 168 

 169 

During the 24-h exposure period, the animals were harvested after 1, 3, 6, and 24 h of 170 

exposure, at which heart rate was also simultaneously recorded. The measurement method of 171 

heart rate was the same as that in the 6-day exposure experiment. Body samples of D. magna 172 

frozen using liquid nitrogen were stored in 1.5 ml microtube at -80°C until RNA extraction. 173 

Total RNA was extracted from the body sample using the RNeasy kit and Qiashredder 174 

(Qiagen, Venlo, The Netherlands) following the manufacturer’s protocol.  175 

Concentration and quality of the extracted total RNA was measured using the Quant-it 176 

RiboGreen RNA assay (Life Technologies, Grand Island, NY, US) and using an RNA 6000 177 

Pico Chip Kit on a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, US). An 178 

Illumina mRNA sequencing library was made from 500 ng of total RNA using the Truseq 179 

stranded messenger RNA Library Prep Kit (Illumina, San Diego, CA, US). Libraries were 180 

quantified by quantitative polymerase chain reaction, according to Illumina's protocol 181 

Sequencing Library qPCR Quantification protocol guide. A DNA 1000 chip (Agilent 182 

Technologies, Santa Clara, CA, US) was used to control the library's size distribution and 183 

quality. In total, 21 RNA-sequence (RNA-seq) libraries were equimolarly pooled and 184 

sequenced on an Illumina NextSeq 500 high throughput run, generating 1 × 75 base pair 185 



reads. All sequencing data was deposited in GEO and is available under accession number 186 

GSE104487. 187 

 188 

2.6. Data analysis 189 

 190 

For the data from cardiac endpoints monitoring, an analysis of variance (ANOVA) test was 191 

performed with a post hoc Tukey’s test to compare the significant changes between exposure 192 

sets and control using SPSS 18.0.0 software. For the RNA-seq data, quality of the raw reads 193 

was assessed using FastQC (Babraham Institute, Cambridge, UK, version 0.11.5). Potential 194 

adapter contamination in the raw reads was removed using Trim Galore (Babraham Institute, 195 

Cambridge, UK, version 0.3.2.). Additionally, reads were dynamically trimmed to the longest 196 

stretch of bases to obtain at least 99.9% base-call accuracy. Reads were aligned to the Xinb3 197 

transcriptome (Orsini et al., 2016) using Bowtie2 (version 2.1.0) (Langmead and Salzberg, 198 

2012). Aligned reads were processed with HTseq to count the number of reads per gene 199 

(Anders et al., 2015). These counts files were then statistically analyzed in R and 200 

Bioconductor (Gentleman et al., 2004; Ihaka and Gentleman, 1996) for differential gene 201 

expression. Trimmed means of M-values were applied for normalization after data filtration. 202 

Quasi-likelihood dispersion was estimated (Lun et al., 2016). Gene expression at different 203 

time points and chemical exposures were compared with controls to identify significant 204 

differences using factorial designs to determine the effects of exposure time, PRO, ISO, and 205 

any potential interactions, e.g., interactions between PRO and time. This was done by fitting 206 

a quasi-likelihood negative binomial generalized log-linear model to the data and conducting 207 

gene-wise statistical tests for each statistical contrast or coefficient of the log-linear model, 208 

which includes both main effects and interaction effects (Lun et al., 2016). The Benjamini-209 

Hochberg method was applied to adjust p values (Benjamini and Hochberg, 1995). Genes 210 

with a significant p-value (<0.05) and a positive log2 fold change were identified as 211 

significantly upregulated, genes with a significant p-value and a negative log2 fold change 212 

significantly downregulated. No additional cut-off value was used. Fisher’s exact test was 213 

performed to identify enrichment or overrepresentation of gene families and pathways within 214 

the differentially expressed gene set (Asselman et al., 2012). 215 

 216 

3. Results  217 

 218 



3.1. Effect on heart rate, size, and contraction capacity after 6-day exposure 219 

 220 

The effects of PRO and ISO on cardiac structure and function were determined by 221 

measuring heart size, heart contraction capacity, and heart rate (Figure 2). Heart size did not 222 

significantly change after exposure to PRO and ISO (Figure 2a). However, heart contraction 223 

capacity decreased significantly in ISO exposure (Figure 2b). The heart rate measurement 224 

results are shown in Figure 2c. Heart rate was significantly reduced after 6 days of PRO 225 

exposure, whereas it was not affected by ISO. Interestingly, when ISO was mixed with PRO, 226 

the heart rate was significantly higher than when D. magna was exposed to PRO alone. The 227 

lowered heart rate in the mixture was still significantly decreased from that of the control.  228 

 229 

 230 
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 2 
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Figure 2. (a) Heart size, (b) contraction capacity, and (c) heart rate after 6-day exposure. Each 

bar and line represents the average and ± standard error. *P ≤ 0.05. Propranolol and Isoprenaline 

were 96 μg/L and 1,775 μg/L, respectively. 



3.2. Heart rate and gene expression profile after 24 h exposure 231 

 232 

Time series effects of PRO and ISO on gene expression were monitored with timely 233 

synchronized heart rate measurement. The decrease in heart rate in D. magna was time-234 

dependent as well as dependent on types of exposures (Figure 3). PRO at 3.6 mg/L had the 235 

biggest effect on heart rate among all exposure conditions and the lowest heart rate was 236 

observed at 24 h. ISO did not have a significant effect, and the mixture of ISO and PRO 237 

resulted in a decrease in heart rate. However, this effect was smaller than that of PRO alone.  238 

 239 

 240 

Figure 3. Heart rate measurements for the different exposures at the different time points. 241 

Each scatter and line represent the average and ± standard error. Propranolol was 0.9 and 3.6 242 

mg/L for PRO 1 and 4, and Isoprenaline was 84.4 mg/L for ISO 100, respectively. 243 

 244 

At the gene expression level, we studied more than 19,000 genes and observed significantly 245 

different regulation of genes across exposures and time points. When comparing 246 

differentially expressed genes across the different statistical contrasts (Figure 4), we observed 247 

a similarity between the different contrasts. Eleven and 261 genes were shared across the 248 

different main contrasts and different interaction contrasts with time, respectively. These 249 

overlapping genes between the contrasts imply that gene expressions and consequent 250 

physiological changes might be partly overlapped as results of those gene expressions. In 251 

figure 4, the effects of PRO on gene expression seem to be more stable across different time 252 



points as we observed more than 1300 genes significantly expressed at all time points (PRO) 253 

whereas we observed roughly 400 genes which were significantly expressed depending on 254 

the time point (PRO X TIME). We observed the opposite for ISO and ISO + PRO. For those 255 

treatments, gene expression depends on the time point as more genes were significantly 256 

expressed in ISO X TIME and ISO + PRO X TIME contrast than the main effects. Based on 257 

these observations, it is assumable that ISO and ISO + PRO showed different level of 258 

influence dependent on time than PRO.  259 

 260 

 261 

Figure 4. Venn diagram of differentially expressed genes shared across different contrasts 262 

regardless of time (left): genes that differ significantly between control and PRO exposures 263 

regardless of time (PRO), between control and ISO exposures regardless of time (ISO), genes 264 

that show a significant interaction in a combined exposure of propranolol and isoprenaline 265 

regardless of time (ISO + PRO). Venn diagram of differentially expressed genes shared 266 

across different time contrasts (right): genes that showed a significant interaction between 267 

ISO and time (ISO X TIME), genes that showed a significant interaction between PRO and 268 

time (PRO X TIME), genes that showed a significant interaction between ISO and PRO 269 

exposures across time (ISO + PRO X TIME). 270 

 271 

The known main target of PRO and ISO is the β-AR, meaning that the changes in gene 272 

expression are not directly regulated by agents; however, it could provide hints on potential 273 

MOAs by comparing with results of previous studies focusing on effects of β-AR activity-274 

related agents. Table 1 compares MOA-related or frequently reported gene expressions from 275 



the present and previous studies. If there were too many genes annotated in a gene function to 276 

be summarized, only differentially expressed genes were listed in the table. As shown in 277 

Table 1, gene expression results are partially matched to the previous studies; the kinds of 278 

differentially expressed genes are quite similar but the patterns of gene expressions are far 279 

different. The details of all genes differentially expressed are provided in Table S2. 280 

 281 

Table 1. Differential gene expressions in this study and previous studies. Genes from 282 

previous studies are all regulated by β-AR activity-related agents. Up and Down arrows 283 

indicate up and downregulation of gene expression. ND: Differential expression not detected.  284 

Related 
function 

Observation References 

Gene Expression-Agent 
(across time) 

Expression-Agent 
(regardless of 
time points) 

Gene Expression - 
Agent 

Tissue 

β-Adrenergic 

receptor 

β-AR kinase  ND ND β1-AR ↑↓ - ISO Medaka 
heart 
(Kawasaki 
et al., 2008) 

β2-AR  ND ND 

Protein 
Kinase A 

Camp-dependent 
protein  

kinase catalytic 
subunit  

↑ - ISO 

↓ - ISO+PRO 

↓ - PRO 

Myosin Myosin light 
chain kinase,  
smooth muscle 

↑ - ISO, PRO 

↓ - ISO+PRO 

↓ - PRO Myosin 
XVIIIA 

↓ - PRO Minnow 
brain 
(Lorenzi et 
al., 2012) Myosin-RhoGAP 

protein  
↑ - ISO 

↓ - ISO+PRO 

↓ - PRO 

Unconventional 
Myosin 16 

↑ - ISO 

↓ - ISO+PRO 

↓ - PRO Myosin 
light chain 

↓ - PRO Burned 
patients 
muscle 
(Herndon et 
al., 2003) 

Myosin 3  ↓ - ISO  

Actin α -Actinin-1  ↑ - ISO 

↓ - ISO+PRO 

↓ - PRO skeletal α-

actin 
↑ - ISO Rat 

ventricular 
myocytes 
(Bishopric 
et al., 1992) 

Apoptosis B-cell 
lymphoma/leuke
mia 11A  

↓ - ISO+PRO ND Caspase 8 ↓ - PRO Minnow 
brain 
(Lorenzi et 
al., 2012) Tumor necrosis 

factor ligand  
superfamily 
member  

↑ - ISO ↓ - PRO Caspase 3 ↓ - PRO 

Calcium/calmodul
in dependent  
protein kinase 

↑ - ISO 

↓ - ISO+PRO 

↓ - PRO TGF-β3 ↓- ISO Rat cardiac 
fibroblasts(
Colombo et 
al., 2001) 

Immediate 
early gene 

c-Fos ND ND c-Fos ↑- ISO+CHT Rat 
myocardial 
cell, Rat 
ventricular 
tissue 
(Brand et 
al., 1993; 

Iwaki et al., 
1990) 

c-Jun ↑- ISO+CHT Rat 



myocardial 

cell (Iwaki 
et al., 1990) 

Jun-B ↑ - ISO Rat 
ventricular 
tissue 
(Brand et 
al., 1993) 

Early growth 
response 

ND ND Jun-D ↑ - ISO Rodent 
parotid 
gland (Ten 
Hagen et al., 
2002) 

Early 
growth 

response 1 

↑-ISO+CHT Rat 
myocardial 

cell (Iwaki 
et al., 1990) 

 285 

 286 

Apart from the expression analysis on the single genes, we observed the enrichment of 287 

several gene families with differentially expressed genes in ISO, PRO, and mixture exposures 288 

(Table S1, Figure 5, 6 and 7). Given the small number of genes for the main ISO and ISO × 289 

PRO contrasts, few significant enrichments could be detected (Table S1, Figure 5, 6 and 7), 290 

and, as such, gene family enrichment for the contrasts without time interactions will not be 291 

discussed further. Eight gene families were significantly enriched with differentially 292 

expressed genes across the different exposures in time x exposure interactions (Table 2, 293 

Figure 5, 6 and 7). For all gene families, the largest upregulation was observed after 6 or 24 h 294 

for the PRO exposure as shown in the case of PRO exposure (Figure 5). In addition, we 295 

observed dose-dependent gene expression after 6 h for all these gene families for the different 296 

PRO exposures (Figure 6). For all gene families, the gene expression patterns can be 297 

described as similar for all exposures. Only C-type lectin and carboxylesterase gene families 298 

showed different regulation patterns by the mixture of PRO and ISO at 6 h, suggesting a 299 

potential mixture interaction between the effects of ISO and PRO at the gene level.  300 



 301 

Figure 5. Average gene expression patterns for different gene families in PRO 0.9 mg/L 302 

relative to control exposure across four time points. (e.g., Value 1 means that normalized 303 

counts per million are equal in propranolol and control exposures). Error bars represent 304 

standard errors.  305 

 306 

 307 



 308 

309 

 310 

Figure 6. Average gene expression patterns for different gene families in PRO 1 mg/L (blue), 311 

PRO 4 mg/L (purple), ISO 100 mg/L (red), PRO 1mg/L + ISO 100 mg/L (green) across two 312 

time point. 313 



Among the gene families significantly enriched, only 2 gene families were enriched by ISO 314 

and PRO individually, but not by ISO + PRO. Surprisingly, these 2 gene families showed a 315 

time-dependent pattern for ISO, while they showed a consistent pattern over time for PRO 316 

(Figure 7, Table S1). Indeed, ISO exposure across time regulated genes, which have 317 

endocrine disrupting (ED) potential, the juvenile hormone inducible proteins while this was 318 

regulated significantly but consistently regulated over time in PRO (Figure 7, Table S1). 319 

Similarly, the mRNA capping enzymes are significantly enriched in the ISO X TIME and in 320 

the PRO contrast, but not in any others. These genes are involved in gene expression and 321 

splicing. While it seems likely that exposure to toxicants affects gene expression and splicing, 322 

it is unclear as to why these effects are observed for the single stressors but not for the 323 

combined treatment. 324 

 325 

Figure 7. Average gene expression patterns for the juvenile hormone inducible proteins in 326 

PRO 1 mg/L (blue), PRO 4 mg/L (purple), ISO 100 mg/L (red), PRO 1mg/L + ISO 100 mg/L 327 

(green) across two time points. Error bars represent standard errors.  328 

 329 

4. Discussion  330 

 331 

4.1. Effect on cardiac structure and function after 6-day exposure 332 

 333 



Heart size is known to be affected by β-AR activity (Osadchii, 2007; Stanton et al., 1969). 334 

Abnormal enlargement of the heart, or cardiomegaly, has been reported to be induced by β-335 

AR activation via ISO administration in rats (Osadchii, 2007; Stanton et al., 1969). Both PRO 336 

and ISO have demonstrated negative and positive effects in the heart size of fish (Kawasaki 337 

et al., 2008). Here, the size of the heart of D. manga was not affected (Figure 2a). In addition, 338 

the results of contraction capacity were not comparable to previous studies (Figure 2b). In 339 

general, cardiac output, which is a function of the heart rate and stroke volume, is known to 340 

be increased by ISO (McQueen et al., 2005) with increases in both heart rate and stroke 341 

volume (Fenyvesi and Hadházy, 1973; Kouchoukos et al., 1970). Because the stroke volume 342 

is the amount of blood per heartbeat, the contraction capacity must be positively related to the 343 

stroke volume. As the reduction of the contraction capacity in this study implies a potential 344 

reduction in stroke volume, the effect caused by ISO contrasts with the results of previous 345 

studies, in which an increase in heart rate and stroke volume were reported. 346 

ISO and PRO are known to have opposite regulatory effects on the heart rate in humans, 347 

and PRO is able to negate the effect of ISO (Brick et al., 1968). The decreased heart rate in 348 

the PRO exposure group, and the decreased but higher level than that of PRO alone in the 349 

mixture, supports a similar action of the chosen drugs in D. magna (Figure 2c, 3). On the 350 

other hand, no change in ISO exposure suggests a weak binding affinity or a difference in 351 

pharmacodynamics of ISO in the heart of D. magna. Berghmans et al. reported a non-352 

significant mild increase of zebrafish heart rate at 1 mM of ISO exposure; otherwise, gut 353 

contraction was severely affected in the same exposure condition (Berghmans et al., 2008). 354 

Their results are comparable to ours in terms of the influence of ISO on certain biological 355 

functions, but not heart rate, in non-targeted organisms. 356 

Overall, the observed responses in D. magna hearts highlight clear differences from the 357 

known actions of PRO and ISO. We observed effects partially identical to the 358 

pharmacological effects on heart rate, but the observations on heart size and contraction 359 

capacity were totally unpredictable from the known MOA. It is assumed that the discrepancy 360 

in actions of the APIs results from structural differences of target receptors or variations in 361 

the distribution and function of target receptors between species. Such species deviations 362 

have been reported; for example, β2-AR activation induces a positive inotropic response in 363 

myocytes of cats and dogs, but not in guinea pigs, due to variations in receptor distribution 364 

and physiological function (Booze et al., 1989; Steinberg, 1999). Different amino acid 365 

sequences of target receptor subtypes could also contribute to functional differences (Finch et 366 

b 



al., 2006; Michel and Insel, 2006). Because these differences occur between relatively closely 367 

related mammals, it is not surprising that differences exist between mammals and D. magna, 368 

and this supports a predicted low similarity of β2-AR between Daphnia and humans based on 369 

genome sequence data (Gunnarsson et al., 2008).  370 

 371 

4.2. Effect on whole-body gene expression during 24 h exposure 372 

 373 

In figure 4, more stable effects on gene expression were observed across time in PRO than 374 

ISO and ISO + PRO. This may suggest that the pathways triggered by PRO require 375 

continuous expression whereas the pathways triggered by ISO and ISO + PRO require 376 

subsequent expression of different genes over different time points. Temporal patterns for 377 

gene expression have already been observed for metallothionein genes in response to metal 378 

exposure most likely due to the long half-life of metallothionein proteins (Asselman et al. 379 

2013). As such, this could also suggest that genes regulated by PRO encode for proteins with 380 

a shorter half-life, thus leading to more continuous RNA expression, while genes regulated 381 

by ISO and ISO + PRO encode for proteins with a long half-life, thus requiring only RNA 382 

expression at specific time points. 383 

Table 1 shows similar genes were affected in expression but the patterns of gene expression 384 

were different compared to the previous studies. This tendency is in the same context of the 385 

observed impacts on the cardiac endpoints in this study. β-AR activity has been known to be 386 

involved to muscle contraction, cell growth, apoptosis and a variety of other functions in 387 

different organs, particularly in the heart (Communal et al., 1998; Devic et al., 2001; Simpson 388 

et al., 1991). In the major signaling pathway, stimulation of β-AR results in a signaling 389 

cascade sequentially consisting of G protein-mediated adenylyl cyclase activation, c-AMP 390 

generation, PKA activation, and phosphorylation of diverse proteins, which leads to 391 

physiological changes (Perez, 2006). β1-AR gene, a gene of the target receptor of PRO and 392 

ISO, did not influence the expression, unlike the up- and downregulation by ISO in the fish 393 

model (Kawasaki et al., 2008). Cyclic adenosine monophosphate (cAMP)-dependent protein 394 

kinase (PKA), a major downstream enzyme, phosphorylates various substrates in the AR 395 

signaling pathway; for example, the L-type Ca2
+ channel is phosphorylated by PKA and the 396 

increased inner cell Ca2+ concentration of myocytes (Perez, 2006). Expression of the PKA 397 

catalytic subunit gene was up- and downregulated by agents and its mixture in the present 398 

study. Myosin-related gene expressions were reported to be downregulated by PRO in fish 399 



and burned patients (Herndon et al., 2003; Lorenzi et al., 2012). In the present study, several 400 

myosin-related gene expressions were significantly regulated by drug exposures; a mixture 401 

and solutions of PRO and ISO up and downregulated most of the gene expressions, except 402 

Myosin-3, which is downregulated by ISO only. Actin is supposed to be related to muscle 403 

cell morphological and developmental regulation along with myosin. A study found that gene 404 

expression of the skeletal α-actin is upregulated by ISO in rat ventricular myocytes 405 

(Bishopric et al., 1992). Expression of the α-actinin-1 was found to be up and downregulated 406 

by the mixture and single solutions of PRO and ISO. Apoptosis mediated by β1-AR activation 407 

has been reported (Communal et al., 1999) and in-vitro studies have revealed that myocyte 408 

apoptosis results from PKA-independent activation of calcium/calmoduline-dependent 409 

kinaseⅡ (CaMKⅡ) (Zhu et al., 2003). Differential expressions of the gene related to 410 

apoptosis and CaMKⅡ are detected in the present study, but the impacts on gene expression 411 

were not comparable to those of previous studies. Additionally, early response gene 412 

expressions were compared to those of the previous studies; however, there was also lack of 413 

similarity. 414 

Obviously, there are limitations in the comparison of gene expression between studies. The 415 

studies used different organisms, tissues, effect concentrations, and exposure times. 416 

Complexity of the MOA of agents is another factor making the translation of gene expression 417 

results challenging; for example, ISO and PRO also targets mitogen-activated protein kinase 418 

1 (MAPK1), phosphatidylinositol 3-kinase regulatory subunit alpha (PIK3R, 419 

phosphodiesterase 4 (PDE4), superoxide dismutase 1 (SOD1), and 5-HTR1, which share so 420 

many molecules in their cascade signaling pathways with β-AR pathway (Masson et al., 2012; 421 

Wishart et al., 2017). Although there are uncertainties caused by the limitations, it seems 422 

clear that PRO and ISO affect genes involved in the AR pathway, and the patterns of gene 423 

expressions are quite different from the previous studies, as shown in Table 1, which is in the 424 

same context of physiological monitoring results because the results are only partially 425 

comparable to those of other organisms.  426 

Table 2 shows that most of the gene families that were significantly enriched are related to 427 

protein metabolism. Carboxypeptidase (Carboxypeptidase B and Zinc Carboxypeptidase) is 428 

responsible for the hydrolytic cleavage of a peptide bond at the C-terminal of protein or 429 

polypeptide (Christianson and Lipscomb, 1989). Serine protease (serine protease, trypsin 430 

serine protease, and chymotrypsin) also cleaves peptide bonds; trypsin-like and 431 



chymotrypsin-like protease respectively target basic and non-polar amino acids (Ovaere et al., 432 

2009). Those protein-degrading enzymes are involved in a wide range of biological functions, 433 

including digestion, immune response, reproduction, and protein post-translation 434 

modification (Hedstrom, 2002). According to a recent observation, PRO exposure caused a 435 

depletion of free amino acids in the D. magna metabolome (Jeong et al., 2018). The present 436 

results are not sufficient to suggest which specific mechanisms result in the gene family 437 

enrichments; however, as the peptide-cleaving enzymes are related to the protein metabolism, 438 

the enrichment of the 5 gene families in this study may be associated with the downregulation 439 

of the free amino acid contents. In addition to the carboxypeptidase and protease, the other 2 440 

gene families are related to biotransformation. Carboxylesterase and UDP are individually 441 

phaseⅠand Ⅱ enzymes (Parkinson and Ogilvie, 2001). They catalyze hydrolysis and 442 

glucuronidation of xenobiotics. It was confirmed from our previous study that a major 443 

metabolite of PRO in humans is also generated by D. magna (Jeong et al., 2016); thus, the 444 

gene family enrichment related to the drug metabolism seems rational. 445 

 446 

Table 2. Overview of the gene families that were enriched for differentially expressed genes 447 

in statistic contrasts: (1) genes that differed significantly between PRO and control exposures 448 

across time: PRO X TIME; (2) genes that showed a significant interaction between ISO and 449 

control exposures across time: ISO X TIME; (3) genes that differed significantly between 450 

ISO and PRO exposures across time: ISO + PRO X TIME. P values are Benjamini-Hochberg 451 

adjusted P values and the result of Fisher exact test for enrichment analysis. Visualization of 452 

the gene expression patterns can be found in Figures 5, 6 and 7. 453 

 PRO X TIME ISO X TIME ISO + PRO X 

TIME 

C-type lectins 9.52 e-04 5.4 e-15 9.53 e-16 

Carboxypeptidase B 1.51 e-05 4.04 e-04 2.55 e-05 

Chymotrypsin BI precursor 2.78 e-05 8.72 e-04 1.53 e-04 

Carboxylesterase 3.00 e-09 6.22 e-08 6.66 e-10 

Putative serine protease 7.68 e-06 1.24 e-04 7.63 e-06 

Trypsin serine protease 1.15 e-04 8.72 e-04 9.30 e-05 

UDP-glucorosonyltransferase 2A1 8.67 e-04 5.69 e-05 2.4 e-06 

Zinc carboxypeptidase 8.57 e-03 2.25 e-06 6.66 e-10 



 454 

The ED ability of APIs has been discussed in previous studies, and AR drugs were also 455 

mentioned as a potential ED chemical (Massarsky et al., 2011). Despite the structural 456 

similarity between PRO and ISO, only ISO showed time-dependent impacts on ED-related 457 

gene expressions (Figure 7). It seems needed to be further studied about the effect of ISO on 458 

D. magna requires further study, as ISO showed distinguishable and significant impacts on 459 

cardiac endpoints along with the ED-related gene expression.  460 

 461 

5. Conclusion 462 

Our results highlight that effects of PRO and ISO on a non-target species, D. magna, is 463 

unpredictable, as indicated in the available pharmacological database. Cardiac endpoints and 464 

gene expression in D. magna were affected by PRO and ISO in a manner similar to that of 465 

other organisms, but the results do not seem to be extrapolatable based on the results of other 466 

species. Furthermore, enrichment analysis indicated that AR drugs affect to expression of 467 

genes involved in protein metabolism, drug metabolism and, more importantly, endocrine 468 

system disruption which suggests needs for future studies for ED potential of ISO and PRO. 469 

Although this study still has limitations in study design to reveal MOAs precisely, at the same 470 

time, it proves the novelty of co-employment of physiological and transcriptional 471 

measurements in the investigation of impacts on APIs in non-target species study. 472 

 473 
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