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Abstract

Robots are being deployed in a wide range of environments
to assist humans with their daily activities. To assist a per-
son, and avoid obstructing them when executing a different
task, a robot needs to know what the intentions of the people
are. In this short paper we present an early version of our
work, in which we focus on goal recognition using techniques
from classical symbolic planning to form an Action Tree. We
present results which show improved goal recognition times,
without compromising on accuracy.

Introduction
Increasingly robots are being developed to work alongside
and help humans, therefore it is essential for a robot to un-
derstand the intentions of the humans. In many situations
there are multiple ways the same aim can be achieved. Thus,
in order to assist the person a robot will need to recog-
nise both the goal and the intended plan. However, humans
are likely to switch between goals and leave goals partially
completed causing real world intention recognition to be a
challenging problem. In addition to this, noisy erroneous
sensor observations may cause further problems. Our long-
term aim is to enable robots to provide assistant to humans
with their daily activities, by recognising a person’s goal and
how they intend to reach that goal (i.e. their plan).

In this paper we focus on single-goal recognition, as a first
step. This is to show our algorithm’s potential advantages for
use in intention recognition in robotic applications. We pro-
pose transforming the planning problem into an Action Tree
(i.e. AND-OR tree with some temporal constraints). This al-
lows the dependencies between different actions to be rep-
resented, and the most likely plans as well as goals can be
extracted.

A well-studied approach to intention recognition is
searching through a dictionary/library of predefined plans
(Zhuo and Li 2011). (Holtzen et al. 2016) take a similar ap-
proach to us, as they use a Temporal AND-OR tree. How-
ever, their probability update rules differ from ours, and we
do not use a dictionary, as we aim to allow more flexibility
in the way a person’s intentions are modelled (Ramırez and
Geffner 2010).

One approach is through training a model on humans’ in-
tentions using a set of training data, such as HMM (Singla,
Cook, and Schmitter-Edgecombe 2010) and RNN (Bisson,

Larochelle, and Kabanza 2015). These types of approaches
can require a lot of time being spent on manually labelling
data and can produce models which only work on data sim-
ilar to the training set (Yordanova, Krüger, and Kirste 2012).

Due to the above disadvantages we have opted to use a
classical planning approach to intention recognition, which
in some literature is referred to as goal/plan recognition as
planning (Sohrabi, Riabov, and Udrea 2016) or inverse plan-
ning (Ramırez and Geffner 2010). In (Ramırez and Geffner
2010), (Chen et al. 2013) and (Freedman and Zilberstein
2017) a planner must be called twice for every possible goal,
which is unscalable to large state-spaces.

(Pereira, Oren, and Meneguzzi 2017) significantly reduce
the recognition time through the use of landmarks, i.e. ac-
tions that must always be performed for a goal to be reached.
We will compare our approach to this and show we have im-
proved the scalability of goal recognition. In (Freedman et
al. 2018) an algorithm to speed-up recognition time, by only
using a single call to the planner, has been proposed but not
yet implemented, therefore in future work we would look at
also comparing to this approach.

We begin by presenting a brief description of the planning
algorithm we have adapted. Then, we describe our approach
to goal recognition. Finally, we give our preliminary result.

Background
Traditionally a planning problem is formally defined as
P = (F, I,A,G). Where F is a set of atoms, I ⊂ F is
the initial state, G ⊂ F is a goal state, and A is a set of
actions along with their preconditions and effects (Ramırez
and Geffner 2010). A task planner is used to find the least
costly sequence of actions required to reach the goal state.
Often these planning problems are written in Planning Do-
main Definition Language (PDDL).

In Fast Downward (FD) (Helmert 2006) the planning
problem is first translated into SAS+ (a “multivalued plan-
ning tasks” representation). Actions and states which are
impossible to reach from the goal are removed during this
translation. From this the causal relationships between state
variables (i.e. causal graph) and how the variables change
state i.e. Domain Transition Graphs (DTGs) are determined.
Every variable has its own DTG. The causal graph and DTG
are used during the search for a plan.
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Goal recognition is often viewed as the inverse of plan-
ning i.e. T = (F, I,A,O,G) where G is the set of all
possible goals and O is the sequence of observed actions
(Ramırez and Geffner 2010). In this paper, we aim to find
the probability of each G ∈ G.

Dataset
For evaluating our approach we use the datasets produced by
(Pereira, Oren, and Meneguzzi 2017), which are based on
the problems used for the International Planning Competi-
tion (IPC). Each dataset contains a PDDL domain and tem-
plate (i.e. problem without a goal) file, a list of possible goals
G, and a sequence of observations O ⊂ A. To check the res-
ults produced by goal recognition the real goal is provided.

In Figure 2 we show the Action Tree for the Kitchen data-
set. The next section describes how it has been created and
how the probability of an action being performed is updated.

Method
Our software starts by creating a PDDL problem file, con-
sisting of the template plus a goal state containing all of the
possible goals G in an or statement. The PDDL domain and
problem file is then transformed into a set of DTGs. Once the
Action Tree has been created from the DTGs, the probability
of each action a ∈ A appearing in the person’s plan is up-
dated based on the observations O. The tree is then searched
for the most likely actions which result in each of the pos-
sible goals being reached. The goal(s) with the highest prob-
ability are returned, i.e. the candidate goals C ⊂ G. Multiple
candidate goals could be returned as several goals can be
equally likely. An overview of our system is shown in Fig-
ure 1. We use the term dependencies to mean the actions that
must be performed before another action can be performed.

Figure 1: The most important classes in our system are de-
picted in green boxes; grey boxes show the steps performed
by the original task planner FD (Helmert 2006).

To describe our method we use the Kitchen dataset. In
this dataset there are 3 possible goals: made breakfast,
lunch packed and made dinner. For each of these goals
there are multiple plans which can be used to reach that goal,
e.g. for lunch packed a person must always perform the
take(lunch bag) action and has the option of either per-
form the activity-make-peanut-butter-sandwich
or activity-make-cheese-sandwich action.

Action tree creation
To perform goal recognition, we transform the DTGs into
an Action Tree, in which leaf nodes are actions and all other
nodes are: OR nodes in which one or more of the sub-trees
must be performed; UNORDERED-AND nodes where all sub-
trees are performed in any order, and ORDERED-AND nodes

for which all sub-trees must be performed in order.. All ex-
amples used in this section are shown in the Action Tree
depicted in Figure 2. Action (leaf) nodes and ORDERED AND
nodes can have multiple parent nodes, as the Action Tree
only contains one action node per action. Unless otherwise
stated, we always use the term parent(s) to refer to the direct
parent(s) of a node. A tree is initialised with an OR node as
the root, this root remains the same and will receive a new
child for every action inserted into the tree.

Each DTG describes how a variable changes state.
Multiple labels are given to transitions with multiple pos-
sible preconditions, e.g. the preconditions for activity-
Pack-lunch require either (made cheese sandwich)
or (made peanut butter sandwich) to be true.
activity-Pack-lunch has the effect lunch packed,
therefore the transition to lunch packed being true will
have at least two labels.

Figure 2: Small section of the action tree created from
the kitchen domain. O-AND stands for ORDERED-AND
and U-AND is UNORDERED-AND. For readability some ac-
tion names have been shortened, e.g. activity-make-peanut-
butter-sandwich has been shortened to peanutB-sandwich.
Note, in this figure nodes have been repeated to represent
that they have multiple parent nodes.

Our system iterates through all the DTG transitions for
all of the variables and adds each transition (i.e. action) to
the tree. Actions which do not have any preconditions are
appended to the root node’s children, e.g. take(bread).
Actions with dependencies/preconditions are added after
all of their dependencies are, e.g. take(lunch bag),
activity-make-cheese-sandwich and activity-
make-peanut-butter-sandwich are added to the tree
before activity-pack-lunch is.

When an action has dependencies, an UNORDERED-AND
node is created containing all the dependencies as its chil-
dren. These children will now have at least two parents,
the UNORDERED-AND and the root node. The UNORDERED-
AND node along with the action itself are added to a new
ORDERED-AND node, which is appended to the root node’s
children. If the dependencies have dependencies, then a dir-
ect child of the UNORDERED-AND node will be an ORDERED-
AND node.

For example, the action activity-make-cheese-
sandwich requires the actions take(bread),
take(cheese) and take(plate) to be performed
first, however it does not matter what order the required
actions are performed, therefore they become the chil-



dren of an UNORDERED AND node; which along with the
activity-make-cheese-sandwich action is set as
the ORDERED AND node’s children. Note, if a node has
an ORDERED-AND node as its parent it can only have one
parent.

When a PDDL action contains a precondition which has
an or statement or multiple actions exist which result in
the same state being reached, the DTG transition will have
multiple labels. This results in OR nodes being inserted into
the tree. For example, to complete the preconditions of
the action activity-pack-lunch the take(lunch bag)
and either activity-make-peanut-butter-sandwich
or activity-make-cheese-sandwich must have been
performed.

Updating probabilities based on observations
All action nodes are initialised with a probability of 0.5,
as they are all equally likely to appear or not appear in a
person’s plan. We experimented with different initial values
but found this made little difference to our results. In fu-
ture work we intend to experiment with multiple interleav-
ing goals, which this value may have a greater impact on.

When an observation o ∈ O ⊂ A is received that action’s
probability is set to 1, this is shown in line 3 of Algorithm 1.
The action node’s parents are then updated (lines 10-12). If
a parent is an OR node its probability is set to the maximum
probability of its children (line 5), otherwise it is set to the
mean probability of its children (line 7). This algorithm re-
curses (line 11) until the root node is reached (line 13). It
does not matter in which order a node’s parents are updated.

Algorithm 1 Update node probability upwards
1: function UPDATE PROBABILITY UPWARDS(node)
2: if node is an action node then . The observed action
3: node.probability = 1.0.
4: else if node is an OR node then
5: node.probability = max(children).
6: else node is an AND node
7: node.probability = children
8: end if
9: for each parent in node.parents do

10: UPDATE PROBABILITY UPWARDS(parent)
11: end for
12: if node is an action node then . The observed action
13: UPDATE PROBABILITY DOWNWARDS(root)
14: end if
15: end function

We considered using product, rather than mean but found
the size of the sub-trees had a much larger effect on the prob-
ability of a goal (i.e. strongly favours shorter plans), there-
fore we opted to use mean as this achieved better results.
The maximum probability is used for OR nodes as it does
not matter which one of its children have been (partially)
executed.

To set the probability of an action appearing in the sub-
sequently performed actions we then traverse down the tree
(depth-first) using Algorithm 2. If the current node is an
AND node (line 2) and its child’s probability is lower, then

the child’s probability is assigned the AND node’s probability
(lines 3-5). The direct children of OR nodes are not updated.

Algorithm 2 Update node probability downwards
1: function UPDATE PROBABILITY DOWNWARDS(node)
2: if node is an AND node then
3: for each child in node.children do
4: child.probability = max(child, this)
5: end for
6: end if
7: for each child in node.children do
8: UPDATE PROBABILITY DOWNWARDS(child)
9: end for

10: end function

Goal recognition

Each goal Gi ∈ G contains one or more atoms Gi ⊂ F .
For each atom f ∈ Gi we find the most likely action whose
effects contain f ; and find the average over all atoms in Gi.
This is shown in Equation 1.

p(Gi) =

∑
f∈Gi

max(p(a1f∈eff ), ..., p(aNf∈eff ))

|f ∈ Gi|
(1)

Where p(Gi) is the probability of the i-th goal in G and
p(a1f∈eff ) is the probability of an action a1 ∈ A whose ef-
fects contain f . If p(Gi) ≡ max(p(G1), p(G2), ..., p(GN ))
then Gi is added to the set of candidate goals C.

Preliminary results

We ran our goal recognition, and the goal completion heur-
istic from (Pereira, Oren, and Meneguzzi 2017), on a dataset
they produced. For both approaches we only consider the
most likely goals as being in the set of candidate goals (i.e.
the threshold value described by Pereira et al. is set to 0).

The dataset consists of 15 domains and a total of 6313
goal recognition problems; which include problems where
10%, 30%, 50%, 70% and 100% of observations are
provided. The goal recognition times for each domain are
given in Table 1 and the accuracy is presented in Table 2.
|C| is the number of candidate goals, and the accuracy A is
determined by the number of times the correct goal appears
in the list of candidate goals.

On all plan recognition problems our approach is faster
than that of (Pereira, Oren, and Meneguzzi 2017). Overall
our approach took 1727s to run on all plan recognition prob-
lems, whereas their approach took 7798s.



Table 1: Recognition times per domain. All times are in
seconds. As planning problems can greatly vary in size we
show the standard deviation.

Ours Pereira et al.
Domain |probs|

∑
t t ± std

∑
t t ± std

miconic 364 125.44 0.34 ± 0.26 546.90 1.50 ± 1.07

sokoban 364 140.09 0.38 ± 0.14 579.63 1.59 ± 0.49

satellite 364 127.15 0.35 ± 0.23 621.45 1.70 ± 1.19

logistics 673 170.24 0.25 ± 0.25 1089.15 1.61 ± 1.05

ferry 364 60.86 0.17 ± 0.07 258.40 0.71 ± 0.17

rovers 364 186.93 0.51 ± 0.33 545.47 1.49 ± 0.78

intrusion-detection 465 54.97 0.12 ± 0.01 331.35 0.71 ± 0.07

kitchen 75 8.10 0.11 ± 0.00 41.64 0.55 ± 0.07

easy-ipc-grid 673 127.58 0.19 ± 0.05 743.55 1.10 ± 0.37

blocks-world 1076 205.36 0.19 ± 0.07 941.76 0.88 ± 0.57

depots 364 134.22 0.37 ± 0.17 481.02 1.32 ± 0.30

zeno-travel 364 166.02 0.46 ± 0.16 615.76 1.69 ± 0.65

dwr 364 110.78 0.30 ± 0.06 517.21 1.42 ± 0.37

campus 75 8.74 0.12 ± 0.00 45.42 0.61 ± 0.06

driverlog 364 100.80 0.28 ± 0.17 438.87 1.21 ± 0.71

ALL 6313 1727.27 0.27 ± 0.20 7797.56 1.24 ± 0.84

On average when 10% of observations are provided our
approach has more candidate goals and therefore a higher
accuracy. As the number of observations increases the num-
ber of candidate goals decreases. For (Pereira, Oren, and
Meneguzzi 2017) the number of candidate goals does not
decrease by much, however the accuracy increases as the
number of observations increases. There are some domains
which are exceptions to this trend, such as the kitchen do-
main where our approach produces fewer candidate goals.

Conclusion and future work
In this paper we presented an early version of our intention
recognition system, where we focus on single-goal recog-
nition. DTGs are translated into an Action Tree which is
used to predict the probability of a person performing an ac-
tion. We compared our approach to (Pereira, Oren, and Me-
neguzzi 2017) and found our approach is quicker and per-
forms equally well in terms of accuracy.

We intend to extract the most likely actions a human will
perform from the tree. This will enable a robot to assist the
person (e.g. open doors, fetch objects, provide instructions)
and avoid obscuring the person when performing a different
task within the same environment. In the case of assisting
a person, we will investigate how confident the recognition
should be before the robot attempts to give assistance.

In future work we will also provide experimentation res-
ults for datasets containing invalid and missing observations
caused by noisy sensor readings. Additionally, we will test
our approach on multiple interleaving and concurrent goals.
In dynamically changing environments multiple humans act
continuously, including leaving and returning to the envir-
onment. Therefore, rather than ending when a goal (or set of
goals) is reached, we will investigate how the intentions of a
human can be continuously updated. To do this we will ex-
periment with decaying the probability of actions the human
has performed, when they are no-longer part of the person’s
intended plan.
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Table 2: Accuracy for the different domains when different
percentages of observations are known. To save space we do
not show results for 100% of observations.

Ours Pereira et al.
Domain |G| Obs % |C| A |C| A

miconic 6

10 4.40 0.96 1.46 0.69
30 2.64 0.96 1.15 0.98
50 1.88 0.96 1.02 0.99
70 1.23 0.96 1.01 1.00

sokoban 7.14

10 5.35 0.93 2.10 0.55
30 2.73 0.82 1.40 0.58
50 2.26 0.86 1.35 0.71
70 1.45 0.95 1.08 0.86

satellite 6.43

10 2.65 0.87 2.18 0.70
30 1.51 0.87 1.45 0.86
50 1.17 0.89 1.29 0.94
70 1.11 0.96 1.05 0.99

logistics 10.46

10 6.74 0.96 2.01 0.63
30 3.39 0.98 1.34 0.86
50 1.91 0.97 1.21 0.95
70 1.24 0.99 1.10 0.97

ferry 7.57

10 3.51 0.98 1.45 0.64
30 1.50 0.88 1.15 0.86
50 1.26 0.92 1.07 0.94
70 1.12 1.00 1.00 0.96

rovers 6

10 2.73 0.87 1.82 0.67
30 1.31 0.85 1.36 0.82
50 1.12 0.96 1.12 0.89
70 1.00 0.98 1.05 1.00

intrusion-detection 16.67

10 1.39 0.73 1.37 0.74
30 1.05 0.96 1.03 0.95
50 1.01 0.99 1.03 1.00
70 1.00 0.99 1.00 1.00

kitchen 3

10 1.00 0.80 3.00 1.00
30 1.00 0.93 2.60 1.00
50 1.00 0.93 2.60 1.00
70 1.00 0.93 2.33 1.00

easy-ipc-grid 8.66

10 7.67 1.00 2.58 0.67
30 6.03 1.00 1.65 0.82
50 3.97 1.00 1.18 0.91
70 3.12 1.00 1.07 0.97

blocks-world 20.28

10 7.07 0.62 1.26 0.44
30 1.65 0.62 1.17 0.56
50 1.20 0.74 1.13 0.63
70 1.19 0.91 1.15 0.84

depots 8.86

10 4.42 0.90 1.31 0.39
30 2.44 0.93 1.15 0.67
50 1.69 0.98 1.11 0.85
70 1.44 0.99 1.01 0.94

zeno-travel 6.86

10 3.33 0.92 1.43 0.45
30 2.11 0.90 1.40 0.79
50 1.27 0.96 1.15 0.82
70 1.05 1.00 1.10 0.98

dwr 7.29

10 2.55 0.61 1.20 0.38
30 1.51 0.75 1.10 0.64
50 1.38 0.85 1.06 0.73
70 1.15 0.89 1.05 0.90

campus 2

10 1.93 0.93 1.13 0.87
30 1.93 0.93 1.13 0.87
50 1.80 0.87 1.13 0.93
70 1.73 0.93 1.00 1.00

driverlog 7.14

10 3.17 0.83 1.29 0.45
30 1.67 0.73 1.24 0.60
50 1.40 0.90 1.29 0.77
70 1.19 0.95 1.24 0.93

ALL 10.43

10 3.86 0.86 1.71 0.62
30 2.16 0.87 1.36 0.79
50 1.62 0.92 1.25 0.87
70 1.33 0.96 1.15 0.96
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