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ABSTRACT 

 

In this review work we have  studied on homotopy properties of CW-complexes 

with an emphasis on finite dimensional CW-complexes. We have first given a brief 

introduction on basic definitions from the general topology and  then have discussed  

the homotopy theory for general topological spaces. Basic definitions and constructions 

of homotopy and CW-complexes have been discussed exhaustively. Then certain 

theorems and definitions on homotopy theory of CW-complexes have been discussed 

briefly. Finally, we have studied Whitehead Theorem. 
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Chapter 0 

 

INTRODUCTION 

 

One of the main ideas of algebraic topology is to consider two spaces to be 

equivalent if they have ‘the same shape’ in a sense that is much broader than 

homeomorphism. In this dissertation we review the stages of development.  

Chapter 1 is devoted to a general discussion of the most primitive notions of 

general topology, i.e., topological spaces, Hausdorff spaces, continuous functions, 

Pasting lemma, homeomorphism and so on. 

Chapter 2 deals with the homotopy theory of topological spaces. 

Chapter 3 is devoted to the study of CW-complexes. Definitions and examples are 

presented in a very precise manner. 

Chapter 4 deals with homotopy theory for the CW-complex. The notions like 

fibration and retraction are also recalled in this chapter for the study of Whitehead 

theorem. 

Much of homotopy theory has to do with CW-pairs      . In many standard 

constructions to work efficiently, it is necessary to make use of homotopy extension 

property. It was Borsuk who first realised the importance of this notion and many of his 

earlier papers were devoted to this study. This has been discussed in the final Chapter 5. 

It also deals with fibration. Most common examples are given and interplay between 

fibration and cofibration is exploited. Finally Whitehead theorem is proved. 

All the results, definition and examples are taken from the textbooks as listed in 

the references. In almost all such cases references have been stated. In case, in any case, 

if the reference is missing, the author renders her sincere apology. 
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Chapter 1 

 

PRELIMINARIES 

 

In this chapter some of the elementary concepts associated with topological spaces 

have been discussed. Categories, functor and push out have been stated in this chapter 

which will be used in further chapters. 

1.1 Topological preliminaries 

In this section we have defined what a topological space is, and different types of 

topological spaces. 

1.1.1 Definition. [5] A topology on a set   is a collection T  of subsets of   having the 

following properties: 

(a)    and     are in  T  . 

(b)  The union of the elements of any subcollection of T    is in T . 

(c) The intersection of the elements of any finite subcollection of T     is in T  . 

1.1.2 Definition. [5] A set   for which a topology T  has been defined is called a 

topological space.  

1.1.3 Examples. Let X be a non-empty set. 

(i) Let T     be the collection of all subsets of  . Then T     is a topology on   , called     

disrete topology. 

(ii)  Let T    be the collection of    and   then T  is a topology on  , called as 

indiscrete topology or trivial topology. 
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(iii) Let          . 

T1     {                   } 

T2     {                 } 

T3   {             } 

T1 ,  T2  and   T3  are the topologies for the set  . 

(iv) Let  Tc  be the collection of all subsets   of   such that     is either 

countable or is all of  .  Then Tc    is a topology on   .    

1.2 Hausdorff Spaces  

An additional condition which brings the class of spaces under consideration 

closer to which geometrical intuition applies. This condition was given by the 

mathematician Felix Hausdorff. 

1.2.1 Definition. [5] A topological space   is called a Hausdorff space if each pair of 

distinct points of  , have disjoint neighborhoods. 

1.2.2 Example.      is a Hausdorff space. In general,    is a Hausdorff space. 

 
1.3 Continuous Functions 

 
The concept of continuous function is basic to much of mathematics. In this 

section, the definition of continuity that will include all the special cases have been 

formulated. 

1.3.1 Definition. [5] A function     , where   and   are topological spaces, is said to 

be continuous if for each open subset   of  , the set        is an open subset of  . 

1.3.2 Definition. [5] Let   and   be topological spaces and       be a bijection. If 

both the functions   and the inverse function         are continuous, then   is called 

a homeomorphism. 
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Pasting lemma is very useful in testing the continuity of a function in algebraic 

topology. 

 

1.4 Pasting Lemma. [5] Let 

      

where   and   are closed in  .  Let 

      and       

be continuous. If 

          

for every      , then    and   combine to give a continuous function 

     , 

defined by setting 

           if      

and 

           if     . 

1.5 Category 

  A category is an abstract structure which consists of a set of objects and arrows. 

Basically it exhibits two properties, the first is the ability to compose the 

arrows associatively and the second one is the existence of an identity arrow for each 

object. In general, the objects and the arrows can be any abstract entity, and the notion 

of category provides a fundamental way to describe the mathematical entities and their 

relationships. Categories can reveal similarities between seemingly different areas of 

mathematics. 

1.5.1 Definition. A category    consists of 

(i) A collection   ( ) of objects, written as                 . 

(ii) Sets          of morphism for each pair          , including 

distinguished “identity” morphism                for each   in  . 

Let         denote the set of morphisms from   to  . 

(iii) A composition of morphisms  function  

                           

for each triple              satisfying 

                                               

http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Associativity
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→  

 
   

                                              

 
 
  

  
→   

 

And                  

 

1.5.1.1 Examples 

(a)      The collection of sets and functions is a category. 

(b)      The collection of topological spaces with continuous functions is a category or    

      we could restrict to special classes of spaces such as CW-complexes, keeping           

      continuous maps as the morphism. 

(c)      The collection of groups and homomorphisms is a category. 

(d)      The collection of Banach spaces and bounded linear transformations is a  

      category. 

 

1.6 Definition. [6] A functor   from a category   to another category   assigns each 

object   of    to an object      in   and to each morphism          in   a morphism 

                  in   such that  

            

and 
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(covariant) 

 

A contravariant functor   from a category   to another category   assigns to 

each object   of   to an object      in   and each morphism          in   to a 

morphism   

                  in   

such that 

            and                   

 

(contravarient) 
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1.6 Push-out 

Push-out is an important universal concept in algebraic topology. 

1.6.1 Definition.  [6] A diagram consisting of two morphisms         and        

                         

with a common domain is said to be a push-out diagram if and only if  

(a) the diagram can be completed to a commutative diagram.  

 

(b) for any commutative diagram, i.e.,       there exist a unique morphism       

such that 

                

                    and      

The dual of push-out is pull-back (we have not used this concept in our study). 
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Chapter-2 

 

HOMOTOPY THEORY 

 

The notion of homotopy has fundamental role in algebraic topology. Precisely 

speaking homotopy theory provides us a machinery to convert topological spaces into 

algebraic situation. In this chapter we define the concepts of homotopy and homotopy 

equivalences. 

2.1 Definition. Let   and    be two topological spaces and   [   ]   . A homotopy is a 

continuous function         . Let         be continuous.   is said to be 

homotopic  to         if and only if there exist a homotopy  

        

such that 

            

and     

                 

for all      

2.1.1 Lemma. Let       be the set of all continuous function from the topological space 

  to the topological space  . Then   is an equivalence relation. 
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Proof. (i) Reflexive: Let          be arbitrary. To show:      Define         by 

the rule              for all     and for all    .    is continuous since   is 

continuous.              and                for all      Hence      . 

(ii) Symmetry: Let            and    . To show:    . Given        

  implies that there exists a homotopy  

         

such that 

            

 and 

             

for all      

Define  

        

by the rule   

                

 for all              is continuous since   is continuous.   

                   

 and  

                   

  for all    .  

Hence       . 

(iii) Transitive: Let              such that     and      To show:    . Given  

         implies that there exist a homotopy 

        

such that  

            

 and  

            

 for all    .  
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Again         implies that there exist a homotopy  

        

such that     

            

and   

            

for all      

Define         by the rule 

         {
                                   

                          
 

for all    . 

            {
             

                
 

for all      Thus   is continuous by Pasting lemma.  

                   

and   

                   

for all      So      .         

 Hence   is an equivalence relation.                                                                                                              

2.1 Homotopy Equivalence 

Those spaces which can be deformed continuously into one another or can be 

transformed into one another by bending, shrinking and expanding operations are 

homotopically equivalent spaces. 
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2.2.1 Definition.  Two topological spaces   and   are said to be homotopically equivalent 

if and only if there exist maps       and       such that       and      . If 

  and   are homotopically equivalent then it is denoted as    .  

Here   and   are called homotopy equivalences.  

2.2.2 Examples.  We present some examples of homotopically equivalent spaces. 

(a) Let 

         ‖ ‖     

and 

            ‖ ‖      

Then  

             

(b) For any topological space  

       

(c) Let 

                   

and 

                   . 

Then 

            . 

2.3 Contractible Spaces 

A contractible space is a space which can be continuously shrunk to a point. 

2.3.1 Definition. [6] A space is contractible if it is homotopy equivalent to a one point 

space. If   is a point space say { } then   is said to be contractible. Contractible spaces 

can be characterized in terms of constant maps. Let       and    
     be defined 

by        
            for all    , i.e.,      

 is the constant map at     . 

2.3.2 Lemma.  A space   is contractible iff the identity map    is homotopic to    
 for 

some     . 
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Proof. Assume that   is contractible. So   is homotopically equivalent to a singleton 

space, i.e.,      .  Hence there exists  maps         and          such that 

      and        . For any    , 

                                                     for some         
    

implying        
. Here      . 

Hence        
 (by transitive property) for some     . 

Conversely, assume that       
    for some     . To show:   is contractible, i.e.,   is 

homotopically equivalent to a singleton space. It is enough to show       . 

Define          by the rule  

          for all     

  is continuous being a constant function. 

Define          by the rule         .    is continuous being inclusion map. 

            

and  

                

                  
    

 and   

                          

for all     .  

Hence 

       
 

and  

        . 

  But    
    (given).  Here       and together with          gives   {   . 

                           

2.4 Topological Pair  

In algebraic topology, topological pair is used to derive homotopy and homotopy 

exact sequences. 

http://en.wikipedia.org/wiki/Algebraic_topology
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2.4.1 Definition. [5] Let   be a topological space and   be a subspace of  , i.e.,     and 

the inclusion function        defined by           for all     is continuous.       is 

called a topological pair.  

Similarly,       is another topological pair i.e.,      and   is a topological 

space.  A map from  

             , 

      to       means  

       and          , 

 i.e.,       , in other words,       .  

  and   are said to be homotopic if and only if there exist a homotopy 

                     

such that   

              

  and  

               

  for all        

         i.e.,                     and written as      .   is called the 

homotopy.  

 

2.4.2 Note.  We will use the following notations.  

 [       ]       set of all homotopy classes in the set            

                             set of all homotopy classes of maps from       to        

[         ]    set of all homotopy classes of maps from the based space           

                             to the  based space        that maps    to     

[          ]   set of homotopy classes of based maps from         to the based   

                              space            

                      

         is called be called as     homotopy group of         

2.4.3 Note. The following are some important results: 

(a)   [            ]  [    ̇     ]. 

(b) [    ̇     ]  is a group for any based topological space       . 

(c) Let   be any path connected. For any                               
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(d) If                then                    

  

2.5 Lifting 

In homotopy theory the  lifting property is a condition on a continuous 

function from a topological space   to another one,    It supports the picture 

of    "above"    where it allows a homotopy taking place in   to be moved "upstairs" 

to  . 

2.5.1 Definition.  [5] Let        be a pointed space. A map 

                 

is said to have a lifting w.r.t the map 

exp                 

if and only if there exist  a map 

 ̃               

such that exp   ̃      

                                                      

2.5.2 Lemma. Any map                 has a unique lifting   ̃              w.r.t 

exp               . 

2.5.3 Lemma. The map                has a unique lifting   ̃                   w.r.t 

the map exp               . 

 

 

 

 

http://en.wikipedia.org/wiki/Homotopy_theory
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Homotopy
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Chapter 3 

 

CW-COMPLEXES 

 

In this chapter we recall CW-complexes and present some examples. We need 

the following concept from general topology. 

3.1 Quotient Topology 

The motivation for quotient topology comes from geometry  where “cut and 

paste” technique is used to construct geometrical objects as surfaces  The surfaces such 

as torus can be constructed by taking a rectangle and “pasting” its edges together 

appropriately. 

3.1.1 Definition. [5] Let   be a topological space and let   be a partition of   into disjoint 

subsets whose union is  . Let  :    * be the surjective map that carries each point of 

  to the element of   containing it. In the quotient topology induced by  , the space   is 

called quotient space.  

3.1.2 Definition. [5]   If      is a space and   is a space and if        is a surjective 

map, then there exist exactly one topology T   on   relative to which   is a quotient map; 

it is called quotient topology induced by   . 

3.2 Adjunction Space 

An adjunction space (or attaching space) is a common construction in topology 

where one topological space is attached or “glued” onto another. 

3.2.1 Definition. [2] Let   and   be two topological spaces with   a subspace of Y. Let 

        be a continuous map (called the attaching map). An adjunction space       
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is formed by taking the disjoint union of   and   and identifying   with      for all   in 

 . 

    =              . 

Here   is being glued onto   via the map     

3.2.2 Examples 

(a)     is a closed  -ball, and  let      be the boundary of the ball, the       sphere. 

Inductively attaching cells along their spherical boundaries to this space results 

in an example of a CW-complex. 

(b) If      is one point space, then the adjunction is the wedge sum of     and    . 

(c) If      is one point space, then the adjunction is the quotient     . 

 

3.3 CW-complex  

A  concept of CW-complex  was introduced by  J.H.C. Whitehead to meet the 

needs of homotopy theory. This class of these spaces has some much better categorical 

properties and still retains a combinatorial nature that allows for computation. 

3.3.1 Definition.  A CW-complex   consists of 

1.   is a Haousdorff topological space. 

2.   has a structure of a cell-complex. 

(a) A cell complex on   is collection    
                is an indexing set of non 

negative integers} 

 (b)      -skeleton of   

        collection of all 0-cells, 1-cells, 2-cells        cells and   cells.              

 c)       ⋃   
 

       ⋃   
 

         ⋃   
 

         

in general,  for                      

⋃   
 

    

   

 (d) (i)   ⋃   
 

     , for       

  (ii)  ̇ 
    

         

           Boundary of   
  

http://en.wikipedia.org/wiki/J._H._C._Whitehead
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(iii)  ̃ 
    

    ̇ 
   

                               interior of   
  

   (iv)   ̃ 
    ̃ 

               

     (v)    ⋃  ̃ 
 

    , for       

      (vi) The cell    compact and hence closed in    

      (vii)                 

   is obtained from      by attaching  -cells by the characteristic map              

          .  

C  in CW-complex is for closure finite property, which states, for each cell   
   its closure 

 ̅ 
  meets (intersects) only at finite number of cells. 

W  in CW-complex is for the  weak topology, where a set   is open in   iff       
  is 

open in   
  for each    . 

3.3.2 Examples. [4]   (a) Spheres as a CW-complexes:  Points on the  -sphere 

             have coordinates of the form      . Let   
  be the images of the 

embeddings 

        (   √      )  

Then  

          
    

                    

is obtained from      by attaching two  -cells. The infinite spheres    is an infinite 

dimensional CW-complex. 

                    ⋃  

 

   

 

with two cells in each dimension. A subspace   of    is closed iff      is closed in    

for all  . 

(b) Quaternion projective spaces as CW space: Quaternion projective  -space     can 

be obtained from       by attaching one   -cell along the canonical quotient map  

      
          . 
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Thus 

         

  ⁄  

is a CW-complex with one cell in each of the dimension           In particular,     is a 

point and 

              

is a sphere.  

3.3.3 Definition. [4] If   is a cell complex on   and    , then   is called a subcomplex 

of   if and only if   
     which implies every face of   

  is in    

If   is a sub complex, then   is a cell complex on    , and if   is a CW-complex on   then 

  is a CW-complex on    . 

3.3.4 Lemma. [4] Any compact subspace of a CW-complex   is contained in a skeleton. 

Proof: Let   be a CW-complex and   be a compact subspace of  . Choose a point    in 

            for all   where this intersection is non-empty.  

Let        be the space of these points. For all  ,      is a finite and hence 

closed in   since points are closed in  . Thus   is closed since   has the coherent 

topology, (any subspace   is closed). As a closed subspace of the compact space     is 

compact. Thus   is compact and discrete. Hence   is finite.          
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Chapter 4 

 

HOMOTOPY THEORY FOR CW-COMPLEXES 

 

 

4.1 Retraction 

Let   be a topological spaces and   a subspace of   and        be the inclusion map. 

 

4.1.1 Definition.  [4]   is called a retract of   if there exist a map        such that 

       

4.1.2 Definition. [4]   is called a deformation retract of X if  there exist a map       

such that 

      and         rel    

4.2 Mapping cylinder 

The mapping cylinder of a continuous map is a fruitful notion. It was introduced 

by J. H. C. Whitehead in 1939.  

 
4.2.1 Definition.[2] For a map      , the mapping cylinder    is the quotient space of 

the disjoint union          obtained by identifying each           with       . 
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A mapping cylinder    deformation retracts to the subspace   by sliding each point  

      along the segment            to the end point       . 

The cylinder of  , 

     
         

          
 

is obtained by gluing one end of cylinder on   onto   by means of  . 

 
4.3 Fibration 

Fibration is an important concept in algebraic topology. The subsequent chapters deal 

with many applications of fibrations. 

4.3.1 Definition. [3] A map        is said to have a homotopy lifting property (HLP) 

w.r.t a space   if for each map       and homotopy          of     there is a 

homotopy         with      and          is said to be a lifting of  ) 

  

where                  . 

  is called a fibration it is has the HLP for all spaces  , and a weak fibration if it has the 

HLP for all disk       . 

If      is the based point, then the space           is called the fibre of  . 

4.3.2 Theorem. If (X,A) is a relative CW-complex then the inclusion       is a 

cofibration. 

Proof: For each  , the space        is obtained from           by attaching  -cells,  

                is a co-fibration. 

Given       and         a homotopy of       we can construct              

  satisfying 
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(i)       

(ii)   
           

(iii)                    

We then define         by the rule  

                 if            for all    . 

  is well defined because of (iii) and continuous because       
         

   . By (ii) 

    .  And         by (i).           

4.3.3 Theorem. If     is a cofibration and   is contractible then the projection 

                is a homotopy equivalence.  

Proof: Let         be a contracting homotopy i.e.,              and 

           for all     . Since       is a cofibration we can extend     to a 

homotopy         with           and            .  Then                 for 

all    . So    induces a map 

                 

such that       . 

Then   is a homotopy and       . 

Since            for all     and      so     induces a homotopy 

            

such that 

            

Thus for every 

   ,   (    )     ̅                             

And 

 ̅ (    )     ̅                                             
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  is surjective, so 

 ̅      ,  ̅     . 

Thus         . Hence   is a homotopy inverse for  .      
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Chapter 5 

 

WHITEHEAD THEOREM 

 

In homotopy theory , the Whitehead theorem was proved by J. H. C. Whitehead in 

two landmark papers published in 1949 and provides a justification for working with 

the CW complex concept that he introduced there. 

5.1 Cellular map 

The notion of cellular map is widely used in proving the Whitehead theorem. 

5.1.1 Definition. A map       where,   and   are CW complexes, satisfying       

   for all   is called a cellular map. Here    and    are the  -skeletons. 

An exact sequence can either finite or infinite, of objects and morphisms between 

them such that the image of one morphism equals the kernel of the next. 

5.1.2 Definition. [2] A sequence of homomorphisms 

      

    
→    

  
→        

is said to be an exact sequence if              for each  . The inclusions 

             are equivalent to          

5.1.3 Compression Lemma.[2] Let       be a CW pair and let       be any pair with 

     For each    assume that              for all       Then every map 

              is homotopic       to a map      When           is 0-connected. 

 

 

http://en.wikipedia.org/wiki/Homotopy_theory
http://en.wikipedia.org/wiki/J._H._C._Whitehead
http://en.wikipedia.org/wiki/CW_complex
http://en.wikipedia.org/wiki/Morphism
http://en.wikipedia.org/wiki/Image_(mathematics)
http://en.wikipedia.org/wiki/Kernel_(algebra)
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5.2 Homotopy Extension Property (HEP) 

A topological pair       has the Homotopy extension property (HEP) if for any 

partial homotopy       of a map     into any space   can be extended to a (full) 

homotopy of the map. 

5.2.1 Theorem. A pair       has the homotopy extension property if and only if 

          is a retract of     . 

 

Proof: For one implication, the homotopy extension property for       implies that the 

Identity 

                     

extends to a map 

             . 

So            is a retract of    . 

 The converse is easy when   is closed in  . Then any two maps          and 

        that agree on map       combine to give a map                

which is continuous since it is continuous on the closed sets         and     .  By 

composing this map              with a retraction                we 

get an extension          so       has the homotopy extension property. 

If             is a retract of        and   is Hausdorff, then   must in fact be closed 

in  . For if               is a retraction onto          , then the image of   is 

the set of points       with      , a closed set if   is Hausdorff. So           

is closed in      and hence   is closed in  .           

 

5.2.2 Example. A simple example of a pair       with   closed for which the homotopy 

extension property fails is the pair       where 

  {    
 

 
 
 

 
 
 

 
  }  

It can be shown that there is no retraction 

              

which is continuous.   
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5.3 Whitehead’s Theorem. 

 This theorem was given by J. H. C. Whitehead in 1939. 

5.3.1 Basic Construction 

(a)  Let    be   dimensional unit cube, the product of   copies of the interval [   ] and  

    be boundary of     is the subspace consisting of points with at least one coordinate 

equal to 0 or 1. 

For a space    with base point     ,  define            to be the set of homotopy 

classes of maps                         where homotopies      are required to satisfy 

     
      for all     . 

(b) A map                       induces maps                             

which are homomorphisms for     and have properties 

          ,         

and 

       if                           

Here          are relative homotopy groups for a pair       with a base point     . 

These relative groups              fit into a long exact sequence.  

         
  
         

  
           

 
                        

Here   and   are the inclusions                        and                           . 

The map   comes from restricting maps                            to           or   by 

restricting maps                          to     . The map, called the boundary 

map, is a homomorphism when     . 

The above sequence is exact.  The reduced mapping cylinder    of   is the space 

obtained from 

               

by identifying    

[   ]              

with         for all    .  

                  ̃  

is the projection. Denote by [   ] the image   [   ]  for all [   ]               and 

[ ] the image      for all    .  
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Define 

         (    ) 

by 

     [ ] 

and 

   (    )         

by 

  [ ]   ,  [   ]        

we have 

          [ ]     [ ]                                           

   [ ]     [ ]             [ ]      
[ ]                         

From (1) and (2)          and        
[ ], which implies     . i.e.,   and   are 

homotopy equivalences. 

5.3.2 Whitehead’s Theorem  [2] If a map       between connected CW-complexes 

induces isomorphism               for all   , then   is a homotopy equivalence.  

In case   is the inclusion of a subcomplex    , the conclusion is stronger:   

is a deformation retract of  . 

Proof: In the special case that   is the inclusion of a subcomplex, consider the long exact 

sequence of homotopy groups for the pair        Since   induces isomorphisms on all 

homotopy groups, the relative groups         are zero. Applying the compression  

lemma to the identity map             then yields a deformation retraction of    

onto  .  

The general case can be proved using mapping cylinders. Recall that the mapping 

cylinder    of a map       is the quotient space of the disjoint union of     and   

under the identifications             Thus    contains both        and   as 

subspaces, and    deformation retracts onto. The map   becomes the composition of 

the inclusion      with the retraction     . Since this retraction is a homotopy 

equivalence, it sufficient to show that    deformation retracts onto   if   induces 

isomorphisms on homotopy groups, or also if the relative groups   (    ) are all zero. 
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 If the map   is cellular, taking the   skeleton of   to the   skeleton of Y for all n, then 

(    ) is a CW pair. Then there is nothing is proof.  

If   is not cellular, then   is homotopic to a cellular map, or using compression lemma, 

we can obtain a homotopy       of the inclusion map                 to a map into 

 .(      )  Obviously this satisfies the homotopy extension property. This homotopy 

extends to a homotopy from the identity map of    to a map         taking     

into    

Again applying the compression lemma to the composition 

(                 )   (      )  (    ) 

we get the construction of a deformation retraction of    onto      
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