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ZUSAMMENFASSUNG 
 

Die plasmaelektrolytische Oxidation (PEO) ist ein zur Erzeugung von stabilen, 

kompakten, keramikartigen und porösen Oxidschichten etabliertes elektrochemisches 

Verfahren und wurde im Laufe des 20ten Jahrhunderts vermehrt zur Strukturierung von 

Metalloberflächen wie Aluminium, Magnesium und Titan herangezogen. Speziell in den 

Bereichen des Wärmeschutzes und Korrosionsschutzes stieg die Verwendung des Verfahrens 

im industriellen Maßstab in den letzteren Jahren ebenso stark an wie der Einsatz zu 

dekorativen Aspekten. Ebenso ist die plasmaelektrolytische Oxidation aufgrund ihrer 

Möglichkeit der Variation der Oberflächeneigenschaften wie Porosität, Schichtdicke und 

Oberflächenzusammensetzung besonders für die Medizintechnik und Implantologie 

interessant geworden. Das PEO-Verfahren ermöglicht es, durch die Entstehung von 

energiereichen Plasmaentladungen kristalline Oxide, besonders auf Titanoberflächen, zu 

erzeugen. Diese Titandioxide ermöglichen wiederum die photokatalytische Aktivität der 

Oberflächen und können ebenso deren Verschleißfestigkeit deutlich steigern. Die ablaufenden 

physikalischen und chemischen Prozesse sind jedoch sehr komplex und für manche Metalle, 

wie hier für Titan, noch nicht vollständig verstanden. 

Eine der wichtigsten Fragestellungen für das Verständnis der ablaufenden Prozesse ist die 

Aufschlüsselung ausgesuchter Parameter, wie Elektrolytzusammensetzung, angelegte 

Spannung und der daraus ableitende Aufbau der Oxidstrukturen. Diese Einflussfaktoren 

wurden im Rahmen der vorliegenden Arbeit analysiert und der Strukturaufbau ebenso wie 

Oberflächeneigenschaften genauestens untersucht. Dazu wurden im Rahmen der Arbeit reine 

Titanwerkstoffe mit verschiedensten elektrolytischen Systemen behandelt, um eine 

Entschlüsselung der Unterschiede in Struktur, Aufbau und daraus resultierenden 

Eigenschaften zu ermöglichen. 

Deutliche Unterschiede der Oxidschichten in Phasenbildung und Aufbau wurden 

röntgenographisch und mikroskopisch nachgewiesen. Mit einer Erhöhung der Spannung und 

der richtigen Auswahl des Elektrolyten konnte der strukturelle Aufbau der Oxidschichten in 

Porengröße und Porenverteilung sowie Schichtdicken und Grad der Kristallisation der 

Titandioxidphasen deutlich variiert werden. Der Anteil an kristallinen Oxiden konnte im 

hohen Maße mit Hilfe dieses Verfahrens durch die Wahl der richtigen 

Elektrolytzusammensetzung und Steigerung der Spannung erhöht werden. 
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Mit einer Erhöhung der angelegten Spannung stiegen die Größen der Porenstrukturen und die 

Oxidschichtdicken signifikant an. Hohe verwendete Spannungen ebenso wie eine hohe 

Elektrolytleitfähigkeit steuerten zur Bildung von kristallinen Bestandteilen der Phasen Anatas 

und Rutil bei. Durch die Zugabe von organischen Substanzen ließ sich die 

Durchbruchsspannung der Plasmaentladungen herabsetzten und der daraus resultierende 

Energieeintrag im Laufe des Prozesses wurde intensiviert. Durch die hohen freigesetzten 

thermischen Energien wurde die Umwandlung des erzeugten Titandioxids in die 

thermodynamisch stabile Phase Rutil begünstigt. Beide polymorphen Modifikationen konnten 

mit Hilfe der Röntgendiffraktometrie in allen PEO-Oberflächen nachgewiesen werden. 

Aufgrund der gebildeten kristallinen Titandioxide entstand eine photokatalytische Aktivität 

der Oxidschichten, welche mittels UV-Vis-Spektroskopie untersucht wurde. Oberflächen mit 

einem hohen Anteil an Anatas und einer hohen Schichtdicke, sowie Oberflächen mit einem 

Verhältnis von Anatas zu Rutil von 1:1, zeigten die intensivsten photokatalytischen 

Eigenschaften. Die kleinen Kristallitgrößen im Bereich von 20 – 30 nm von Anatas und Rutil 

in Verbindung mit hohen Anteilen des kristallinen TiO2 wirkten sich weiterhin positiv auf die 

photokatalytische Aktivität der PEO-Schichten aus. Zudem ergab die Auswertung der 

Reflektionsspektren mit Hilfe der Tauc und DASF Methode einen direkten Übergang der 

TiO2-Phasen entgegen einer erwarteten indirekten Bandenlücke des TiO2. Dies ließ sich auf 

die kleinen Kristallitgrößen zurückführen, welche einen positiv Einfluss auf die Effizienz der 

photokatalytischen Eigenschaften der PEO-Oberflächen haben. 

Im darauffolgenden Teil der Arbeit wurde die Übertragung der hergestellten Schichten für 

eine Anwendung in der Implantat-Technik auf polymere Substrate hin untersucht. Eine mit 

Hilfe des PVD-Verfahrens aufgebrachte dünne Titanschicht wurde mittels des PEO-

Verfahrens oxidiert und mit der charakteristischen Porenstruktur versehen. Hierfür wurde ein 

bereits untersuchter Elektrolyt [1,2] zur Steigerung der Biokompatibilität und Bildung von 

knochenähnlichem Hydroxylapatit verwendet. Die notwendigen Bindungen zur Bildung des 

Hydroxylapatits konnten folgend mittels XPS-Untersuchungen auf den erzeugten Schichten 

nachgewiesen werden. Zu Beginn der Untersuchungen ergab sich die Notwendigkeit zur 

Verbesserung der Haftfestigkeit des Titans auf der polymeren Oberfläche, um eine geeignete 

Stabilität der PEO-Schichten für den Einbau in den menschlichen Körper zu gewährleisten. 

Die benötigte Haftfestigkeit konnte mittels einer SiO2-Zwischenschicht erzielt werden, 

welche im verwendeten Stirnabzugstest den gewünschten Kohäsionsbruch im Substrat 

verursachte. 
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Die so hergestellten PEO-Schichten auf polymerem Untergrund wurden weiterhin auf ihre 

Eignung der Zellanwachsung untersucht. Dabei zeigte sich jedoch keine eindeutige 

Abgrenzung der Zelladhäsion im Vergleich zum reinen Titanwerkstoff zeigte. Es wurde 

jedoch eine Verbesserung zum reinen polymeren Substrat erzielt. So wurde die Eignung des 

PEO-Verfahrens zur Modifizierung von polymeren Werkstoffoberflächen und der 

Verbesserung des Einwachsens in den menschlichen Körper aufgrund einer vermehrten 

Zelladhäsion im Laufe der Untersuchungen nachgewiesen. 

Durch die Ermittlung der Oberflächeneigenschaften und -zusammensetzungen der 

Oxidschichten wurden diese in ihrem strukturellen Aufbau tiefer greifend untersucht. Ziel war 

es hierbei, ein besseres Verständnis der Einwirkung der Plasmadurchbrüche auf die 

Schichtbildung zu erlangen. Mittels Raman-Spektroskopie und der EBSD-Technik wurden 

die kristallinen Bestandteile innerhalb der gesamten Oxidschicht nachgewiesen und 

identifiziert. Es zeigte sich, wie auch in den XRD-Messungen ersichtlich, eine Erhöhung der 

kristallinen TiO2-Phasen vom unteren Rand der Oxidschicht bis zur Schichtoberfläche. Des 

Weiteren wurde der Aufbau der PEO-Oxidschichten mit Hilfe einer detaillierten Analyse 

mittels STEM-Methode weiter entschlüsselt. Hierdurch wurden große Kristalle im oberen 

Bereich der Oxidschicht und kleinere Kristalle an der Grenzschicht zum Titansubstrat 

sichtbar. Diese Bereiche entstanden zum einen durch hohe Energien der Entladungen im 

späteren Verlauf der Oxidation, wohingegen die kleineren Kristalle am unteren Rand der 

Oxidschicht mit dem Einwirken der Entladungen bis zum Grund der Oxidschicht zu erklären 

sind. Rund um die erzeugten Porenstrukturen der Oxidschicht ließen sich amorphe TiO2-

Bereiche erkennen. Diese amorphen Bereiche führten zu dem Schluss, dass das entstehende 

TiO2 während des Prozesses in die flüssige und gasförmige Phase überführt werden kann. Die 

verminderte Leitfähigkeit in der Gasphase und der umgebende kältere Elektrolyt führten zu 

einer schnelleren Abkühlung des TiO2 im Bereich der Porenstrukturen und somit zu einer 

verminderten Bildung von kristallinen Strukturen. 

Die in dieser Arbeit vorgestellten Ergebnisse zeigen die Möglichkeit der Anpassung der 

Oberflächeneigenschaften, wie Morphologie, Kristallinität und photokatalytische Aktivität 

von PEO oxidierten Titandioxidschichten in einer Reihe von Anwendungsgebieten. Die 

Kristallinität der Titandioxide kann mit Hilfe des PEO-Verfahrens gezielt gesteuert werden 

und hilft die Stabilität, wie auch die photokatalytische Aktivität der Schichten anzupassen. 

Die Übertragung von dünnen PEO-Schichten auf polymere Substrate ebenso wie die 

Verbesserung der Haftfestigkeit von Titan auf polymerem Substrat mit einer speziellen 
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Haftvermittlerschicht konnten erfolgreich erzielt werden. Polymere Substrate werden in der 

Medizin neben Titan ebenfalls als Implantatwerkstoff eingesetzt, können aber den 

biokompatiblen Anforderungen oftmals nicht standhalten. Die Verbesserung der Zelladhäsion 

gegenüber reinen Polymeren, mittels der Aufbringung einer PEO-Schicht, konnte dagegen 

erfolgreich erzielt werden. Die weiteren intensiven Untersuchungen zum Aufbau der PEO-

Oxidschichten führte zu einem besseren Verständnis des Prozesses und der Einwirkungen der 

Plasmen Spezies auf die gesamte Schicht. Das Modell der plasmaelektrolytischen Oxidation 

wurde damit auf Titanwerkstoffe erweitert. 
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ABSTRACT 
 

Plasma electrolytic oxidation (PEO) is an established electrochemical process to 

produce of stable, compact, ceramic-like and porous oxide layers and was increasingly used 

during the 20th century for the structuring of metal surfaces such as aluminum, magnesium 

and titanium. On an industrial scale, especially in the fields of thermal protection and 

corrosion protection, the applications of the process have increased significantly in recent 

years, such as its use for decorative aspects. Likewise, PEO has become interesting for 

medical technology and implantology due to the diversity of its varying surface properties 

such as porosity, layer thickness and surface composition. The PEO-process makes it 

possible, especially on titanium surfaces, to produce crystalline oxides through the formation 

of high-energy plasma discharges. These titanium dioxides can in turn enable the 

photocatalytic activity of the surfaces and significantly increase their wear resistance. 

However, the ongoing physical and chemical processes are very complex and for some 

metals, as here for titanium, are not fully understood. 

One of the most important aspects to understanding the involved process events is the 

investigation into used parameters, such as electrolyte composition, applied voltage, and the 

resulting structure of the oxide layer. These influencing factors were analyzed in the present 

work, and both the structures and the surface properties were examined in detail. In this work, 

pure titanium materials were treated with various electrolytic systems to enable a decoding of 

differences in structure and the resulting properties. Distinct differences between the oxide 

layers in terms of phase formation and structure could be demonstrated by x-ray diffraction 

and microscopic examination. By increasing the voltage and choosing the right electrolyte, 

the structure of the oxide layers could be varied with regard to pore size and distribution as 

well as in layer thickness and the degree of crystallinity of the titanium dioxide phases. Using 

this method, the proportion of crystalline oxides in the PEO-layers could be adjusted through 

the right electrolyte composition and an increase in the applied voltage. 

With the increase in the applied voltage, the size of the pore structures and the thickness of 

the oxide layers also sharply increased. A high voltage as well as a high conductivity of the 

electrolyte contributed to the growth of the crystalline components anatase and rutile. 

Through the addition of organic substances, the breakdown voltage of the plasma discharges 

could be reduced and the resulting energy input was intensified during the process, whereby 

the high energy release promoted the conversion of the titanium dioxide into the 
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thermodynamically stable rutile phase. Both polymorphs could be detected by x-ray 

diffraction in all PEO-surfaces. Due to the resulting crystalline photoactive titanium dioxides, 

the photocatalytic activity of the oxide layers was investigated using UV-Vis reflectance 

spectroscopy. Surfaces with a high content of anatase and a high layer thickness, as well as 

surfaces with an anatase to rutile ratio of 1:1, showed the most intense photocatalytic 

properties. The small average crystallite sizes, in a range of 20 - 30 nm, of anatase and rutile 

in combination with high levels of crystalline TiO2 had a positive effect on the photocatalytic 

activity of the PEO-layers. Furthermore, the evaluation of the reflection spectra with the help 

of the TAUC and DASF methods revealed a direct transition of the TiO2 phases against an 

expected indirect band gap of TiO2. This can be attributed to the small crystallite sizes, which 

have a positive influence on the efficiency of the photocatalytic properties of the PEO-

surfaces. 

In the following part of this work, the transfer of the prepared layers to a polymeric substrate 

for use in implant technology was investigated. A thin titanium layer was applied by means of 

the PVD processes so that it could be oxidized with plasma electrolytic oxidation and the 

characteristic pore structure could be transferred. For this purpose, a previously investigated 

electrolyte [1,2] was used to increase the biocompatibility and formation of bone-like 

hydroxyapatite. The necessary bonds for the formation of the hydroxyapatite were 

subsequently detected on the produced layers by means of XPS measurement. At the 

beginning of the investigations, there was a need to improve the adhesion of titanium to the 

polymeric surface to ensure proper stability of the PEO-layers for incorporation into the 

human body. The required adhesive strength could be achieved with an SiO2 interlayer, which 

caused a desired cohesive failure in the substrate in the pull-off test used here. The as 

prepared PEO-layers on a polymeric substrate were further investigated for their cell growth 

suitability, with no clear improvement of cell adhesion compared to the pure titanium 

material. However, an improvement could be achieved compared to the pure polymeric 

substrate. Thus, during the course of the studies, it was possible to demonstrate the suitability 

of the PEO-process for modifying polymeric material surfaces and improving human 

ingrowth due to increased cell adhesion. 

By determining the surface properties and compositions of the oxide layers, it was possible to 

investigate these in more depth regarding their structural design, thus gaining a better 

understanding of the effect of the plasma discharges. Using Raman spectroscopy and the 

EBSD technique, the crystalline constituents could be detected and identified within the entire 
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oxide layer. Analogical to the XRD measurements, an increase in crystalline TiO2 phases was 

found from the lower part of the oxide layer to the surface of the layer. Furthermore, the 

structure of the PEO oxide layers could be decrypted because of a detailed analysis using the 

STEM method, whereby large crystals in the upper area of the oxide layer and smaller 

crystals at the boundary layer to the titanium substrate could be visualized. For the first case, 

these areas were created by the high energies of the discharges in the later course of the 

oxidation, whereas the smaller crystals at the lower part of the oxide layer could be explained 

by the effects of the discharges as far as the bottom of the oxide layer. Amorphous TiO2 was 

detected around the generated pore structures of the oxide layer. These amorphous regions led 

to the conclusion that the resulting TiO2 can be converted into the liquid and gaseous phases 

during the process. The reduced conductivity in the gaseous phase and the surrounding colder 

electrolyte led to a faster cooling of the TiO2 in the area of the pore structures and thus to a 

reduced formation of crystalline structures. 

The results presented in this work demonstrate the possibility of adapting the surface 

properties, such as morphology, crystallinity, and photocatalytic activity of PEO oxidized 

titanium dioxide layers for a variety of applications. The crystallinity of the titanium dioxides 

can be selectively controlled and helps to adjust the stability as well as the photocatalytic 

activity of the layers. The transfer of thin PEO-layers to polymeric substrates, as well as the 

improvement of the adhesion of titanium to polymeric substrates with a special adhesive 

layer, has thus been successfully achieved. In addition to titanium, polymer substrates are also 

used as an implant material in medicine, but they often cannot withstand the biocompatibility 

requirements. The improvement of cell adhesion to pure polymers by applying a PEO-layer 

was successfully achieved. Further intensive investigations into the structure of the PEO oxide 

layers led to a better understanding of the process and the effects of the plasma species on the 

entire layer. This helped to expand the model of plasma electrolytic oxidation on titanium 

materials. 
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1. INTRODUCTION AND MOTIVATION 
 
Plasma electrolytic oxidation (PEO) offers many possibilities to modify surfaces of 

lightweight metals, especially aluminum, titanium, and their alloys. Due to its variety of 

properties, such as biocompatibility and corrosion protection, titanium was chosen for the 

investigations in this study. Titanium forms compact and stable oxide films for several 

applications. Using PEO it is possible to form structured, thick and crystalline oxide films. 

One of the most important effects for the different film properties is the composition of the 

electrolytic system [3–5]. Different mixtures of acids and the applied voltages can form 

typical crater-like structures [6,7]. The type of the electrolytic system has an influence not 

only on the structure, but also on the crystallinity of the titanium dioxide phases contained. 

The effects of the electrolytic system and the applied voltage on the crystallinity of plasma 

electrolytic oxidized samples are two important factors for tuning the multiple properties of 

PEO-layers. Because of the high energies from the micro-discharges on the anode surface, the 

crystallinity of the formed oxide layer can be controlled. The crystallinity leads to an 

interesting property of TiO2, namely the photocatalytic activity. With the aim of producing an 

improved biocompatibility and a possible photocatalytic activity of TiO2, This study 

attempted to adjust and optimize the morphology and crystallinity of PEO-surfaces using 

different electrolytic systems. 

Due to its many useful properties, photo-catalysis has been the focus of scientific research. 

The high levels of energy consumption and the development of ecological disposal methods 

makes photo-catalysis necessary for new investigations as a gentle method for removing 

organic or inorganic pollutants [8–10] and to create renewable energies [11–14]. In this field, 

semiconducting compounds have proven to be particularly effective, whereby TiO2 is the 

most successful photo-catalyst due to its high photon-absorbing property. A number of 

parameters are important for photocatalytic activity such as phase composition, crystallite size 

and particle size, surface area, crystallinity, or impurities like the absorption and desorption of 

molecules [15,16]. Anatase seems to be the most active polymorph of TiO2, while the 

influence of rutile has also investigated over the last few years [17–22]. Most studies use 

nano-particulate crystalline powder samples with a high surface area, which enable a high 

absorption of photons [23,24]. The combination of crystallinity and a high surface area is 

purposefully used to strengthen photocatalytic activity. The photocatalytic activity of TiO2 on 

crystalline PEO-surfaces has been reported in several publications [4,7,25–27]. However, the 

effect of the electrolytic system on the crystallinity and the resulting photocatalytic activity 



 
INTRODUCTION AND MOTIVATION 
 

  - 9 - 

has not yet been fully investigated. The plasma electrolytic oxidation produces titania layers 

with a high porosity and crystallinity of anatase and rutile phases. The porous surfaces 

indicate an enlarged specific surface area, which leads to a strong potential to form 

photocatalytically active surfaces. Over the last few years, photo-catalysis and PEO have 

moved to the front of the discussion [4,25–28]. Therefore, the photocatalytic activity of 

different PEO-surfaces with different contents of crystalline phases and surface morphologies 

are to be investigated. 

Due to their range of properties, titanium materials are widely used in medicine as 

implantation materials. Its thin, natural oxide layer can have a positive effect on cell-adhesion 

[29]. With a controlled structuring of the titanium dioxide layers using PEO, the 

biocompatible properties can be improved even further [30,31]. In some medical applications, 

the brittle and rough properties of titanium polymer materials are used for implantation. The 

PEO-process modifies the surface of titanium into a pore-rich structured surface with an 

increased surface area and oxide layer thickness. With increased pore size and layer thickness 

the cell adhesion rate should be improved through the production of increased mechanical 

anchoring points. The combination of flexible polymers with the good properties of titanium 

through a metallization of the surface has, already been reported by Devine et al. [32], Han et 

al. [33], and Cook et al. [34]. The coating with titanium with different supporting materials 

and a subsequent PEO-surface treatment was reported by Martin et al. [35]. An application of 

TiO2 coatings without a surface treatment on PEEK implants has been published [36–38], but 

the combination of PEO-treatment on thin titanium layers on polymer substrates has not been 

fully investigated and will be examined in this study. 

Plasma electrolytic oxidation is a complex and difficult process and it is not yet fully 

understood for titanium materials. Because of the multiple varieties of the properties of 

titanium dioxide and its modifications, it is increasingly important to go deeper into the whole 

PEO-process to understand oxide layer formation. In general, the process is based on the 

interaction at the solid-liquid interface and on some electrical, mechanical, and thermal 

theories [39–41]. The mechanical effects depend on the defects in the formed oxide layer, 

while the thermal effects are due to the high current densities that are formed by the plasma 

discharges during the process. These effects lead to an increased electrical conductivity [42]. 

The discharge formation has been described by previous researchers as glow discharge 

electrolysis, electronic avalanche, and electronic tunneling [41,43–45]. Also, the state of the 

appearance of the plasma discharges has been investigated in several reports in detail for 
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aluminum and magnesium alloys [46–49]. In this case, the investigations into PEO plasma 

discharges, especially for titanium and its alloys, are still quite new, and some models for 

layer growth in order to obtain oxide layer formation has been reported in the last few years 

[50–53]. Using the different PEO-layers produced here, the entire inner oxide structure can be 

considered in order to more closely understand the complex influence of the plasma and the 

oxide layer formation during the PEO-process. 
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2. THEORETICAL BACKROUND

 Surface treatment of metals 
 
The targeted adaptation of the properties of a metal or metallic material, like its 

adhesion promotion, corrosion resistance, or improved biocompatibility, can be achieved 

through a variety of surface treatments. Various methods and techniques are used for this 

purpose (Tab. 1). 

Tab. 1 Surface treatment methods for the structuring of metal surfaces and the magnitude of the modification [54–56] 

Type of treatment Process Modification of surface 

Mechanically grinding 100 μm - 1 mm 
polishing 
sandblasting 

Physically PVD/CVD coating (sputtering) 0.2 - 50 μm 
laser, electron beam 
plasma etching 

Chemically anodization Up to 100 nm 
ion implantation 
sol-gel-coating, dip-coating 

 

The structures of surfaces can be roughened using a mechanical method, but the adjustment of 

the chemical composition of the surface is not possible, therefore a combination of chemical 

and physical surface treatment methods must be used [55]. Where mechanical methods cause 

structuring through the action of force onto the surface, metal surfaces are modified by 

thermal, kinetic, or electrical energies [29] in a physical treatment by applying layers or 

coatings. Thin layers of atoms, ions, or molecules are applied to the surface by gas phase 

deposition, and hence evaporation or sputtering, where they can react with the atoms of the 

crystal lattice of the metal and thus bind to the surface. By means of these thin-film 

technologies, high-purity coatings with a targeted chemical composition can be produced in a 

vacuum. These can be, on the one hand, merely decorative, but functional layers for 

protection against corrosion or wear protection can also be achieved. The adhesion strengths 

and layer thicknesses are markedly higher in contrast to the chemical surface treatment [56]. 

Chemical surface treatments, such as sol-gel coatings or electrochemical treatments are based 

on the reaction of the metal substrate with used medium, whereby wet-chemical processes 

through oxidizing reactions of the metal with an acid or lye are the most established ones. 

Various electrolytes, such as HNO3, H2SO4, HCl, NaOH, KOH as well as additions of HF, are 

used for the production of thin, porous layers [29]. In such electrochemical processes, the 

metals are connected into the system as anode (Fig. 1), and the surface is treated by applying a 
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voltage between the working electrode (anode) and a counter electrode (cathode). Hereby, the 

conversion of the metal-substrate-ions into a very hard, scratch-resistant metal oxide layer 

occurs [57]. Through the electrolyte, the generated ion-flux allows the growth of an oxide 

layer and the associated change in the topography [55]. 

2.1.1 Electrochemical anodization of titanium 
 
Electrochemical processes with oxidizing reactions of the metal surface produced by a 

foreign current are summarized by the term "anodizing" or "anodization". This method is 

mainly used for aluminum, but the valve metals magnesium, zinc and titanium, and their 

alloys, can also be used. By adjusting the different parameters, such as the electrolyte or 

electrical parameters (voltage, current) used, layer thickness, composition, and morphology 

can be varied significantly. 

 

Fig. 1 Schematic illustration of a classical bath anodization with two electrode circuits with (1) a working electrode (anode) 
(2) counter electrode (cathode) (3) aqueous electrolyte bath (4) DC power supply, voltage source, potentiostat, and (5) water 
cooling 

These valve metals have the property of forming a natural oxide layer a few nanometers thick 

at the atmosphere, which can be significantly increased through the anodization process. The 

method of anodization also includes the method of “eloxation”, which is especially applied to 

aluminum and is derived from the abbreviation "eloxal" (electrolytic oxidation of aluminum). 

The reactions at the anode and cathode are shown in Fig. 2 [57]. 
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Fig. 2 Illustration of oxide growth in an acidic electrolyte and the reaction processes at the anode surface and the reactions at 
the cathode surface, according to [58] 
 

Anode reactions: 

→ ݁ܯ ଶା݁ܯ + 2݁ି 

→ ଶܱܪ 3 ܱଶି +  ଷܱାܪ 2

Cathode reactions: 

ଶା݁ܯ + → ଶܱܪ 3 ܱ݁ܯ +  ଷܱାܪ 2

ଷܱାܪ 6  + 6 ݁ି  → ଶܱܪ 6 + ଶܪ 3  ↑ 

The thickness x of the oxide layer depends on the potential or the applied voltage ΔU, on the 

duration t of anodization and on temperature T. The voltage difference across the oxide results 

in an electric field strength E, which regulates the mass transport during the process. The 

current density i decreases with time as a result of the decreasing field strength of the growing 

oxide layer until the outgoing reaction almost comes to a stop (A, β= const.) [58]. 

݅ = · ܣ ݁ఉ∙ாೀೣ೔೏೐ 

(ݐ)ܧ =  
∆ܷ

(ݐ)ݔ
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In electrochemistry, a distinction is made between active and passivated materials that tend to 

form oxide layers (Fig. 3). Both material groups undergo different electrochemical reactions. 

In both cases, the anodic current density increases sharply in the first region and an active 

dissolution of the metal takes place. In the case of passivated substances, an adsorption of 

dissolution products on the surface begins until it is saturated in the second region and the 

current density reaches a maximum. These adsorbates form a solid oxide layer and the current 

strength drops sharply until a passive layer is formed. In the third area (passive area), the 

resolution of the metal is reduced. The current strengths for active materials remain virtually 

constant in these areas and only increase with increasing potential [59]. 

 

Fig. 3 Current-density-potential-curve of active and passive materials and the three stages of the anodizing process  according 
to [59] 

An increase in the specific surface area can be achieved through a variety of different 

anodizing processes. One of these possibilities is the production of a highly porous layer by 

means of nano-structuring, the result is, referred to as "nanotubes". The electrochemical 

formation of such nano-porous layers is mainly applied to aluminum, but more recently to 

titanium materials as well [60–62]. These nanotubes are open at the surface of the material 

and are closed at the bottom. The basic structure is highly ordered, and the diameter and wall 

thickness have the same value for all tubes. Due to this regularity, the specific surface area 

greatly increases. To produce this controlled, porous structure, the electrolyte fractions of 

fluorides are added in order to ensure an equilibrium between anodic oxide layer formation 

and chemical dissolution. The reactions that take place are shown in Fig. 4 for the example of 

titanium: 
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Fig. 4 Growing and dissolution of the oxide layer in fluoride-containing electrolytes with the transport of mobile ions through 
the oxide layer, according to [63] 

Due to the simultaneous formation and dissolution, a new increase in the current density is 

generated in the current-density-potential curve. After the formation of a barrier layer, the 

local dissolution of the oxide layer and the formation of randomly arranged pores occur. After 

some time, an equilibrium of the current between the pores occurs and a self-organized 

growth of the nanotube layers results [63]. In Fig. 5, the individual phases of the formation of 

the nanotubes are shown. 

 

Fig. 5 Three typical phases of the formation of a TiO2 nanotube layer with the three typical forming processes and the final 
self-organization according to [63], (I) first stage of forming an amorphous and compact oxide layer, (II) growth of an oxide 
layer and the formation of pore structures and defects in the layer, (III) self-organization of TiO2 during the anodization 
process 

Such structured and organized layers also have a positive influence on the biocompatibility of 

the surfaces, depending on crystallinity and morphology, because these accelerate the 

formation of hydroxyapatite [64]. The relatively "new" established method of plasma 

electrolytic oxidation (PEO), with high voltages of up to 1000 V, high layer thicknesses of up 

to 100 μm and a very high porosity of the surface, is a special case of anodizing like the 

formation of nanotubes. In contrast to the nanotubes, however, there is no dissolution of the 

formed oxide layer during plasma electrolytic oxidation and thus there is a continuous growth 

of these layers. 
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2.1.2 Plasma electrolytic oxidation 
 
In addition to anodization, another special method exists to apply oxide layers to 

metals. In contrast to the anodization process, plasma electrolytic oxidation (PEO), also 

known as micro arc oxidation (MAO), anodic spark deposition (ASD), and plasma chemical 

oxidation (PCO), is a high-voltage anodic oxidation process for the surface modification of 

lightweight and valve metals like aluminum, zirconium, magnesium, and titanium because 

these metals can form adherent and electrically isolating anodic oxide films [65].  

The PEO-process has a long history of development. The technique was first mentioned in 

1880 by Sluginov et al. [66] and then further developed in 1937 by Schulze and Betz [67] for 

the development of capacitors. Up until this century the discharge phenomena had not been 

studied in detail. Only in the course of the 1960s was the PEO-process used to form oxide 

layers on different metals [68–71]. During the 1980s, the poor quality of the produced 

coatings was improved with more efficient electrolytic systems and the use of a pulsed current 

instead of DC processes. This made the commercialization of the PEO-process possible by 

companies such as Keronite (UK) [72], Metaker® (Germany) [73] and Magoxide-coat 

(Germany) [74] on light-weight metals [53,75,76]. In the last few years, the PEO-process has 

received more attention for its use on light-weight metals in transportation, the construction 

industry, and aerospace because of its ability to form stable oxides and high layer thicknesses, 

improving corrosion protection [77–79]. PEO combines chemical, electrochemical, and 

thermodynamic reactions with thermal diffusions in an aqueous solution. The local 

temperatures at the surfaces can reach 103 and 104 K due to the plasma micro-discharges 

[47,53,80]. The process is typically carried out in a range of voltage from 100 V up to  

1000 V, and the setup is similar to a common anodization setup as seen in Fig. 1. The setup 

consists of a typical power supply in DC- or AC-mode. Similar to the “normal” anodization 

processes a two-electrode-setup is used. The detailed mechanism of the PEO-process, is not 

fully understand, but there exists a principle overview of the four typical stages during the 

plasma coating process, as seen in Fig. 6 [47,65,81,82]. 
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Fig. 6 Schematic representation of the four different stages of the PEO-process, according to [65] and described further in the 
text 

Stage I  During the first stage, the voltage increases up to the breakdown voltage of the 

used system and a thin insulating oxide film grows on the surface of the chosen 

metal. Some oxygen bubbles form around the natural anodic oxide layer, 

similar to the traditional anodizing process. 

Stage II When the applied voltage reaches a critical point of the breakdown voltage an 

electric breakdown takes place, due to the growing oxide layer and its isolating 

property. The oxide film growth rate then decreases. In the growing layer, 

some regions are prone to breakdowns because of a shrinking resistance due to 

some defects. 

Stage III In the third stage, there is a spark discharge formation with small white sparks 

occurring randomly over the whole anode surface, while there is also an 

increase in the current density. The evaporation of the metal and the electrolyte 

enables the formation of the ceramic-like PEO-treated surface. With an 

increase in voltage, the sparks grow and change their color from white to 

orange or red, whereby the micro-arcs become plasma arcs. 
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Stage IV  The gas evolution of the metal and the electrolyte contents leads to a porous 

morphology and thermal cracking of the oxide film. The structure of the PEO-

coating has a two-layered morphology with a barrier inner layer and a porous 

outer layer. The thickness varies from 1 to 100 μm [65,76,83]. 

These four phases of PEO reflect the basic understanding of the mechanism based on 

electrical breakdowns at the boundary layer from the solid to the liquid electrolyte. Thermal 

electron emission causes, discharges on the dielectric oxide surface. Tunneling effects and the 

ionization of other constituents from the electrolyte or the metal lead to an electron current 

along the dielectrica. This impact ionization leads to the formation of the plasmas, which in 

turn leads to the formation of a characteristic crater-like surface structure [84]. For aluminum 

substrates three types of discharges can be explained. A-type and C-type discharges are 

gaseous discharges in the micro pores, whereby A-types occur at the surface and C-types 

occur in the deeper pores. B-type discharges, on the other hand, are dielectric breakdowns in 

the electric field [83,85], that occur in the later stage with a high intensity. The individual 

reactions of the plasma electrolytic oxidation at the anode and the cathode can be represented 

as in Fig. 7: 

 

Fig. 7 Reactions during PEO-treatment of metals with a schematic illustration according to [52] 
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The PEO-coating grows due to different mechanisms. There is outward growth from the 

substrate towards the electrolyte and inner growth with a transfer of oxygen ions into the 

coating which react with the metal cations. There, they form the oxide ceramic coating [52]. 

If different ions, like calcium- or phosphate ions, are dissolved in the electrolyte, these are 

incorporated into the oxide layer due to high temperatures and electric breakdowns. These 

high temperatures follow from the strong and intense discharges in the final fourth stage of 

the PEO-process, forming discharge channels where the electrolyte contents move into the 

oxide under an electric field. Due to the high temperatures, the substrate material melts and 

diffuses into the channels and is solidified by the cooler electrolyte. The gaseous phases 

escape through the channels to the surface and result in the characteristically crater-like 

structures (volcano). All complex processes, such as, melting, solidification, and evaporation, 

occur simultaneously during PEO and form the volcano-like structures at the surfaces 

[47,83,86–90]. The PEO-morphology for aluminum, magnesium, and titanium is shown in 

Fig. 8. 

a) b) c) 

 
Fig. 8 SEM micrographs of PEO-coatings formed on a) magnesium alloy AZ31[91], b) aluminum alloy 2024 [92], and c) 
titanium grade 1 [93] 

Due to the high temperatures and high cooling rates at the coating/substrate interface, 

crystalline parts can form in the oxide layer [94]. The PEO-process and the coating 

morphology are dependent on such parameters as electrolyte composition, substrate material, 

and current mode (voltage). The electrolyte composition is one of the most important 

influences on the PEO-coatings. The electrolyte induces the metal passivation and transmits 

the necessary energy for oxidation. The components of the electrolyte, which will be 

incorporated into the coating, are also necessary for the corresponding properties of the oxide 

layer. Morphology, adhesion strength, micro-hardness, and tribological properties can be 

affected by the electrolyte [1,95–98]. Organic or inorganic additives are used to improve the 

conductivity and the coating thickness and thus corrosion protection. Coatings containing 

TiO2, ZrO2, and Al2O3 nanoparticles have a higher adhesion to the substrate as well as, wear 
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resistance and scratch hardness [99–102]. The multiple properties of the PEO-coatings and 

how they are affected are shown in Tab. 2. 

 
Tab. 2 The properties and the impacts of PEO-layers 

Property of the PEO-coating Influence/ impact Literature 

Mechanical Phase composition/phase transformation [103] 

 Crystallinity [104] 

Wear resistance Porosity [105] 

 Hardness 

Corrosion resistance Thickness of barrier layer [106] 

 Number, size of defects 

 Porosity, size of pores 

Thermal protection Additives [107] 

 

Also, the composition of the substrate can affect the properties of the PEO-coating with a 

different coating thickness and porosity level [106]. The PEO-coating contains three different 

layers, from the bottom of the substrate (1), to a thin inner layer (barrier layer) (2), followed 

by an intermediate layer, known as the “functional layer” (3). The functional layer has a sub-

micrometer porosity, which is the result of dissolved and trapped oxygen in the molten oxide 

layer, see Fig. 9 [108]. 

a) b) 

  
Fig. 9 Focused ion beam cross-section micrographs of a typical PEO titanium dioxide layer described in the literature; PEO 
TiO2 layer with three components: a) Titanium dioxide PEO-layer with characteristic pore structure, b) porous titanium 
dioxide PEO-layer; (1) titanium substrate (2) barrier layer (3) functional layer (4) conductive Pt-layer from the FIB-
preparation setup 
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 Titanium dioxide modifications and their properties 
 
Titanium and its alloys form a thin protective oxide layer under atmospheric conditions. 

The composition of these thin oxide layers consists of largely amorphous, unordered titanium 

dioxide, while specifically produced oxide layers can consist of crystalline phases of titanium 

dioxide [109,110]. Amorphous TiO2 crystallizes at an approximate temperature of 350 °C. In 

nature, titanium dioxide exists in three crystalline modifications, namely anatase, rutile, and 

brookite. All three modifications have distorted oxygen octahedra, while anatase and rutile are 

associated with the tetrahedral crystal system and brookite with orthorhombic. The oxygen 

atoms in rutile form a hexagonal clostest packing, whereas in anatase and brookite they form 

a cubic clostest packing. The polymorph rutile is the thermodynamically stable form, in 

contrast to the other two modifications, due to its structure. Brookite and anatase can thereby 

convert to rutile after a temperature of 750 °C [111–113]. 

Tab. 3 Crystallographic parameter of the titanium dioxide phases [113] 

Phase Crystal system Space group Lattice parameter /Å Frequent crystal surface 
   a b c  
Anatase Tetragonal I41/amd 3.78 3.78 9.51 [0 0 1] [1 1 0] [0 1 0] 

Rutile Tetragonal P42/mnm 4.59 4.59 2.96 [1 1 0] [0 1 0] 

Brookite Orthorhombic Pbca 9.174 5.45 5.14 - 

 

In Tab. 3 the crystal parameters associated with the oxide modifications is shown and the unit 

cells are shown in Fig. 10 to Fig. 12 [113]. Due to the natural stability and advantageous 

properties, only anatase and rutile are of technical relevance. The different crystal structures 

of the polymorphs are shown in the x-ray diffraction pattern in Fig. 13 by their reflection 

positions. 
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Fig. 10 Illustration of one unit cell and the crystal structure of anatase, (left) polyhedral structure (right) atomic bonding 
structure 

 

Fig. 11 Illustration of one unit cell and the crystal structure of rutile, (left) polyhedral structure (right) atomic bonding 
structure 

 

Fig. 12 Illustration of one unit cell and the crystal structure of brookite, (left) polyhedral structure (right) atomic bonding 
structure 
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Fig. 13 XRD-diagram of the three main TiO2-phases with their main reflection signals and its crystal orientation marked at 
the associated reflections in square brackets 

The two oxide modifications anatase and rutile are stable in their crystal structure and do not 

undergo any changes under normal conditions, but both polymorphs, particularly anatase, 

exhibit a certain photocatalytic activity, which is important in many applications in medicine 

as well as in the construction industry. Furthermore, the three oxide modifications differ in 

their density, while rutile is the only thermodynamically stable form (anatase: 3.88 g/cm3, 

rutile: 4.26 g/cm3, brookite: 4.1 g/cm3). In addition to its high oxidation capability, TiO2 is 

generally chemically inert and non-toxic, and in addition to its photocatalytic properties it is 

widely used as a pigment in paints, textiles, toothpastes, cosmetics, foodstuffs, and medical 

products. Because of the high refractive indices of anatase (n = 2.55) and rutile (n = 2.7), both 

modifications are used as white pigments in such application areas [111]. The most 

commonly used commercially available titanium dioxide mixture is AEROXIDE® TiO2 P25 

from Evonik. It consists of 70 - 80% anatase and 20 - 30% of rutile and is produced 

industrially by flame pyrolysis of titanium tetrachloride (TiCl4). Due to the high 

photocatalytic activity of the product, it is used as a standard in many studies [114,115]. 
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 Photocatalysis 

 

In general, photochemical reactions are those in which the necessary activation energy 

is not required in the form of heat but in the form of radiation as light. Among such light-

induced reactions are, on the one hand, chemiluminescent reactions and, on the other hand, 

physically supported processes of fluorescence, phosphorescence, photovoltaics, and 

photoelectrochemical reactions such as photocatalysis. Photoreactions play one of the most 

important roles on Earth. They are the basis of life as they are used in the process of 

photosynthesis to form and decompose organic molecules. In many subsequent studies, small 

photochemical reactions, such as the reddish discoloration of nitric acid by sunlight, the 

blackening of silver chloride, the development of oxygen from carbonic acid by plant parts, 

and numerous photoinduced reactions for the synthesis of organic compounds, were 

discovered. Most of the time, thermally induced reactions have predominated in chemical 

research [116]. 

It was only at the beginning of the 20th century that photochemistry achieved a clear advance 

with a focus on the versatile applications of photocatalysis. The term photocatalysis is defined 

as a change or an initiation of a chemical reaction in the presence of a catalyst by means of 

ultraviolet, visible, or infrared radiation [117,118]. A substance is referred to as a catalyst 

when it accelerates a chemical reaction without being consumed as well as reduces the free 

activation enthalpy [119]. After the radiation has been absorbed, the catalyst is found in an 

excited state and is thus capable of transforming the reaction partners. In this state, the 

catalyst is repeatedly capable of reacting with other substances and regenerates itself. 

Semiconductor materials, which have a band gap between the valence and the conduction 

band, have proven to be particularly useful for this purpose [120]. 

The process of photocatalysis has become the focus of scientific research over the years due 

to the high level of energy consumption and its associated pollution in the world as well as 

emerging ecological developments. The fields of the degradation reactions of organic and 

inorganic contaminants with the help of sunlight and the generation of renewable energies 

play an important role [8,9,11,12,121]. Hereby, not only can various compounds be degraded 

by a photocatalytic reaction, pollutants can also be removed from the air or water 

[10,13,14,122]. In most cases, the catalysts can be improved in their activity and properties by 

doping, modifying, or changes to particle size [123–125]. Doped compounds of hybrid metal 

oxides have a certain photocatalytic activity because of a shift in the band gaps [123,126]. The 
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possibilities of the application of photocatalysts are very diverse and are not limited to the 

environmental and energy industry, but are also used in medicine and surface engineering. In 

medicine, the photocatalytic effect is not only used in the removal of bacteria [4,127–129], it 

is also used for cancer cell treatment [130,131]. The versatile application of photocatalytic 

degradation is also used in surface technology for self-cleaning surfaces or so-called anti-fog 

coatings [15]. A large number of materials and their composites are available for these 

applications, including zirconium oxides, tungsten-molybdenum oxides and, the most 

common material, titanium dioxide [123,126]. 

2.3.1 Photocatalytic properties of titanium dioxide and mechanism 
 
The photocatalytic activity of TiO2 was first reported by Fujishima et al. [132,133] in 

the form of various applications for the splitting of water and other inorganic and organic 

substances [15]. At the end of the last century, between 1995 and the beginning of the 2000s, 

TiO2 was increasingly the subject of research on the basis of a large number of emerging 

publications and patents in the field of pollutant degradation [134,135]. The photocatalytic 

properties of titanium dioxide are due to its semiconducting properties. The electrons of the 

semiconductors can pass into an excited state by the absorption of photons from light quanta 

of the near IR- and visible UV-region, resulting in a so-called “hole” to the electron in the 

ground state. Inorganic semiconductor compounds have, in addition to localized atomic 

orbitals, crystal orbitals, which are called energy bands, and these contain the energy states of 

the electrons. In these energy bands there are forbidden zones for the occupation by electrons, 

which are called “gaps”. Depending on the number of freely available valence electrons, 

corresponding valence bands VB are formed. Similarly, there are empty conduction bands CB. 

These “bands” have a defined distance with a certain value (Eg = xy eV), depending on the 

solid. As the number of atoms increases, Eg becomes smaller and the absorption shifts into the 

longer wavelength. The following Tab. 4 shows some values for typical semiconductors. 

Tab. 4 Values for the photocatalytic activity and associated band gaps of selected inorganic semiconductors [116] 

semiconductor Valence band VB /V vs. NHE Conduction band LB /V vs. NHE Eg /eV λ /nm 

TiO2 + 2.6 -0.6 3.2 390 

CdS + 1.5 -0.9 2.4 520 

ZnS + 1.84 -1.84 3.6 340 
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The top valence band edge is responsible for the oxidation potential of a substance and the 

lowest conduction band edge is responsible for the reduction potential [116]. During the 

absorption of photons, electrons are excited from the uppermost occupied valence band into 

the lowest unoccupied conduction band into a higher energy state. This way an electron-hole-

pair will be generated in the valence band (exiton). The absorption of the radiation energy 

must correspond to the energy of the band gap Eg of the substance. The band gaps of the two 

active oxide modifications of TiO2 have a relatively small value of Eg = 3.2 eV for anatase 

and Eg = 3.0 eV for rutile [15]. The photocatalysis and the ligand model as well as the related 

reactions of TiO2 are shown in Fig. 14 and Fig. 15. 

 

Fig. 14 Illustration of the band gap model of titanium dioxide in the presence of oxygen, water and organic substances, 
according to [136] 

 

TiOଶ + ℎݒ →  TiOଶ  + eି 

Oଶ  +  eି →  Oଶ
ି 

 HଶO ↔  Hା  + OHି 

H•  +  OHି  →  OH• +  ାܪ

OH• + OH•  →  HଶOଶ 

Oଶ
ି  +  Hା   ↔  HOଶ 

Fig. 15 Possible reactions of the photocatalysis of titanium dioxide [19] 
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In the series of semiconductor compounds, titanium dioxide (TiO2) has emerged as one of the 

most promising photocatalysts due to its high oxidation ability and the rapid formation of 

exitons (electron-hole-pairs). Due to these defects in the valence band, the resulting positive 

charge is available for the adsorption of organic or inorganic compounds. It is formed a high 

redox potential of +2.53 V vs. SHE (standard hydrogen electrode) in the band gap, and the 

electrons only have a potential of -0.52 V vs. SHE. This leads to the splitting of water and the 

formation of hydroxyl ions and the oxidation to hydroxyl radicals (OH•). This leads to the 

generation of active superperoxide radicals (O2
•-) and the formation of hydrogen peroxide. 

The formed radicals can thus directly react with adsorbed compounds at the surface 

(heterogeneous catalysis) or initiate the decomposition of gaseous compounds from the 

gaseous phase (homogeneous catalysis) [19,137]. A schematic representation of such catalysis 

is shown in Fig. 16. 

 
Fig. 16 Schematic representation of photocatalysis on semiconductor particles with the formation of donors B and acceptors 
A at the band gaps (left) homogeneous catalysis and (right) heterogeneous catalysis with two selective catalysts according to 
[116,138] 

The energy level of anatase often corresponds to the redox potential of the adsorbed 

molecules, whereby electrons can be transmitted more easily. Therefore, anatase is mainly 

used for photocatalytic applications. The influence of rutile and brookite has only been 

partially investigated [139,140]. The commercially available AEROXIDE® TiO2 P25 from 

Evonik with a composition of approx. 80% anatase and 20% rutile and a very small particle 

size of 21 – 35 nm is used as an excellently photocatalytically active substance. For 

photocatalytic applications, many anatase-rich substances exist with a wide range of particle 

sizes of 5 nm to 35 nm and a composition of anatase to rutile of 100% anatase to 75% anatase 

and 25% rutile (AEROXIDE® TIO2 P25), which strongly influences the photocatalytic 

activity. 
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 Biocompatibility of biomaterials in medical technology 
 
Biomaterials are those materials that have a similarity or a certain affinity to a living 

organism and may include a wide range of materials that come into contact with different 

biological areas [141]. An important aspect of biomaterials is their biocompatibility or 

biotolerance. They are in direct contact with the living organism and its electrolytes, such as 

blood, hard, and soft tissue as well as the cells. If the biocompatibility of a material is 

available or can be produced, then that material is suitable for a use in the human organism. 

Biocompatibility includes, on the one hand, high corrosion and wear resistance and, on the 

other hand, an affinity with the surrounding cells to ensure their growth [29,142]. The most 

common places for the application of biomaterials are hard tissue, primarily bones, which can 

be replaced by supporting implants. The trend towards higher ages across the world will lead 

to an increased need for tissue or organ replacement in humans over the next decades, while 

the need for biological implants due to worsening bone quality and increasing life expectancy 

is increasing annually in Germany alone [143,144]. 

As early as in 1775, an implant in the form of a wire was documented for the fixation of an 

upper arm bone. In 1840, the American surgeon John Murrey Carnochan replaced part of a 

human jawbone with a piece of wood. During 19th century, the first investigations into the 

compatibility of metals were carried out. In 1906, for the first time, materials such as silver, 

magnesium, zinc, ivory, and gold were used to correct slight bone defects, and the noble 

metals produced the fewest problems [54,145]. The first publication on the use of prostheses 

was in 1939 in the “Journal of Bone and Joint Surgery” [146]. Owing to long-lasting high 

stresses and aging, hard tissue such as bones, teeth, and hip- or knee joints can be damaged 

and are being replaced by medicine in modern times using many interventions. In this case, 

the materials used may not be damaged or altered by the endogenous substances. Hereby, a 

large number of chemical, physical, or biological factors play key roles (see Tab. 5) [147]. 

Tab. 5 Requirements and influencing factors for an implant for use in the body [148] 

Physically Chemically Biologically 

Flexibility Phase transition Bioadhesion 

Hardness Toxicity (inert, poisoning) Biocorrosion (toxic ions) 

Resistance Metallosis Compatibility with tissues and fluids 

Durability Allergy  
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The compatibility and stability of the implants depend on the structure and surface properties 

due to the adsorption of cell-specific proteins. On the other hand, they are also dependent on 

subjective factors such as the body fluids (saliva, blood, lymph) and habits of the patient. 

Basic, acidic and salty constituents in body fluids and foodstuffs can initiate or catalyze 

electrolytic processes on metallic materials. At the interfaces of the tissue to the substrate 

surface, chemical interactions can take place through the exchange of ions following partial 

reactions: 

Oxidation:  ݁ܯ → ା݁ܯ  +  ݁ି  

Reduction:  2ܪା + 2݁ି  →  ଶ   (acidic surrounding)ܪ 

   ܱଶ + ଶܱܪ2 + 4݁ି  →  (neutral/ alkaline surrounding)  ିܪ4ܱ

In order to prevent these effects, different actions are taken on the different implant materials, 

such as coatings, additives in alloys, or certain surface treatments [149]. A large number of 

biomaterials can be classified according to their degree of biocompatibility (Tab. 6). 

 

Tab. 6 Classification of biomaterials and their application in medical technology [145] 

Biomaterial Biodynamic Application 

Ceramics 

Aluminiumoxide Bioinert Middle ear implants 

Dental implants 

Hydroxyapatite Bioactive Filling material for bone defects 

Dental implants 

Metals 
FeCrNi-steel alloy 

CoCr-alloy 

Biotolerant Bone plates- and screws 

Wires 

Titanium and titanium-alloys Bioconductive Implants with bone contact 

Coating of implants 

Polymers 

Polypropylene (PP) Bioinert Sutures 

Polyethylenterephthalate (PET) 

Polyurethane (PU) 

Polytetrafluorethylene (PTFE) 

Bioinert Artificial blood vessels 
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A material is always classified as ”bioinert” when it does not release any influencing or toxic 

substances into the body, and this should be the case for any implant. A material is referred to 

as “bioconductive” if an integration of the tissue into the structure of the material takes place, 

while a “bioactive” material is completely enclosed by the tissue. These ratings are important, 

depending on the application of the implants, to promote the patient's healing process and 

well-being [145]. In medical technology, various biomaterials such as metals, ceramics, and 

polymers are used that fulfill these biological requirements. Due to their metallic and non-

metallic constituents and the associated crystalline structure, ceramics have a strong ionic 

bond, which makes them very popular for implants with a high pressure and wear resistance. 

These include the bone-like hydroxyapatite HA (Ca5 (PO4)3OH), which has a similar chemical 

composition to the mineral phase of bone (60 - 70%) and the tooth enamel (98%) [150]. 

2.4.1 Titanium and titanium alloys 
 
Metals and various metal alloys are important components in implant preparation and 

are always used when a high mechanical resistance is required. All metals consist of 

crystallites, which are arranged in a specific crystal lattice and their composition, size and 

arrangement in this lattice determine the mechanical properties. The deformability and 

alloying properties of a metal are further determined by the free moving electrons within the 

crystal lattice [150]. Not only pure metals are used in medical technology, there is also a wide 

variety of alloys that are selected according to the application due to the multitude of 

adjustable properties. 

Titanium and its alloys have emerged as very versatile materials due to their very high 

biocompatibility, which makes their integration into the organism very easy. In the 1950s, 

titanium was used as an implant material in medicine. Since the middle of the last century, 

titanium has also been used outside the aerospace industry due to its high modulus of 

elasticity and corrosion resistance [151]. The alloys TiAl6V4 and TiAl6Nb7 and pure 

titanium (cp-Ti, grade 1 and 2) have proven to be suitable biomaterials. On the titanium metal 

surface different species can be generated, which can facilitate the absorption of different 

molecules (Fig. 17). These processes can be accelerated by methods for surface modification, 

whereby, instead of a thin amorphous oxide layer, also crystalline layers can be produced 

from the various oxide polymorphs anatase, rutile, or brookite. 
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Fig. 17 Formation of possible products on titanium oxide layers with inorganic and organic substances 

2.4.2 Polymers 
 
Polymers are molecules that are generated from a mostly covalent bonding of building 

blocks. These building blocks are called monomers and consist of hydrocarbon chains. These 

monomers are linked in a continuous repeating unit to form a chain with the number n (degree 

of polymerization). A typical sequence is shown in Fig. 18. There is no exact definition for the 

number of repeating units n, but this number must be large enough so that the addition of 

another unit does not change the physical or chemical properties of the material [152]. 

 

Fig. 18 Schematic illustration of a polymer structure with a theoretical monomer and structural linkage according to [152] 

The most common materials, such as metals and ceramics, have a relatively high weight and 

very low deformability, which is not suitable for some applications where a heavy loading and 

mobility of the implant are required. Therefore, and because of their similarity to natural-type 

biopolymers, some polymeric materials have also been used. The first combination, an 

implant of polytetraflourethylene and 316L stainless steel, was developed in 1960 by  

J. Charnley [150]. The biocompatibility of polymeric materials is determined for the most part 

by their functional groups, and their structure from mostly simpler structural units. In contrast, 

the human body consists of very complex biopolymers such as proteins, DNA/RNA and 

polysaccharides, which often makes integration into the body very difficult. Therefore, 

medically used polymers should have sufficient mechanical strength and sterilization and be 

as free as possible of non-toxic additives [147,153]. The classification of the polymeric 
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materials (Tab. 7) is diverse and can be used and classified according to their properties in 

various areas. 

Tab. 7 Classification of polymers and application in medical technology [154,155] 

Polymer classification Polymer Properties Application 

Thermoplastic Polyethylene Linear Membrane 

  Flowable Blood vessel replacement 

  Flexible  

Duroplastic Amorphous silicones Strongly cross-linked Dentistry 

 Epoxide resins Hard Joint replacement 

 Polyester- ,phenol-, amino-resins Brittle  

Elastomer Silicones Low cross-linkage Tubes 

 Polyurethane  Catheters 

 

A special high-performance polymer with very high biocompatibility and good mechanical, 

thermal, and chemical properties is polyetheretherketone (PEEK). Due to this variety of 

properties, PEEK has also recently been used for the first time in medical technology [156]. 

PEEK belongs to the class of thermoplastics and is a very tough crystalline polymer with a 

high melting temperature, for this group, of 607 K. The good mechanical properties of the 

polymer are maintained even at very high temperatures, which make it very flexible in 

processing. The water absorption in the polymer is very low in comparison to other 

thermoplastics. Another important point for medical technology is its high resistance to 

solvents and strong acids, which makes it very stable and interesting for incorporation into the 

human body, where a high resistance to any body fluids is required. PEEK also has a high 

tensile strength and impact resistance as well as a strong resistance against hydrolysis 

(sterilization/ autoclaving) at high temperatures due to its low water absorption. PEEK is 

produced by polycondensation by two synthetic routes, One of  is shown in Fig. 19. 

 

Fig. 19 Schematic illustration of the most common production of PEEK by nucleophilic substitution of hydrochinon and  

4,4-difuorbenzophenone according to [157] 
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PEEK can be prepared by nucleophilic aromatic substitution or by electrophilic substitution 

on the aromatic (Friedel-Crafts acylation) and is further processed by injection molding and 

extrusion. Due to its poor solubility, very high temperatures of 573 K to 673 K are used for 

processing and synthesis. The cooling rates during the processes are designed to be slow in 

order to increase the crystallinity and biocompatibility [158]. 

2.4.3 Cell adhesion and cell attachment at biomaterials  
 

Cells have a variety of components that play an important role in the communication 

between the cell and the adjacent materials and ensure the absorption of proteins, the transport 

of liquid, and the mechanical attachment of the cell. One part of these components are the 

receptors, which are responsible for binding specific molecules and directing the signals to the 

body. After signal processing, proteins are adsorbed onto the entire surface of the substrate to 

be grown and in most cases the structure determines the strength of the adhesion [159]. The 

adhesive strength can be strongly influenced by the following factors: 

 Chemical binding of the signaling substances and proteins (covalent, ionic bond) 
 Electrostatic interaction 
 Hydrogen bonding and hydrophilic groups (-OH, -COOH, -NH2) 
 Hydrophobic groups (wettability and contact angle) 
 Van der Waals forces 

Cell binding on surfaces can be strongly influenced and strengthened by a high hydrophilicity 

and positively charged groups or hydroxyl and oxygen groups. In addition to these properties, 

the surface topography with a defined porosity can also favor the strength of cell attachment. 

Porous structures increase the specific surface area of the substrate and allow the possibility 

of cell adhesion [160]. The modification of a surface can be carried out by various techniques 

by means of texturing, either dependently through the base material or independently by 

various surface structuring methods, with a suitable coating on the surface. By applying a 

coating, the properties of the biomaterial are to be maintained, while only the interfacial 

properties, such as adsorption, corrosion resistance, or electrical properties, are varied or 

improved. This could be achieved, for example, by coating with the metal titanium or its 

modification titanium dioxide, with the adhesion strength of the coating being one of the 

requirements. Not only must a mechanical anchoring between the base material and the 

coating be produced, the chemical bonds between the two substrates must also be created 

[161]. The binding of tissue to a surface is based exclusively on mechanical interlocking, 
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whereby the structuring at the micrometer scale can have a positive effect on the growth 

behavior [55,162]. Likewise, depositions of hydroxyapatite layers on the surfaces of the 

biomaterials have a strong influence on successful ingrowth into the human body and are state 

of the art in a large number of publications [163–165]. Several physical methods such as 

plasma spraying [166], dip coating [167] or ion implantation [168], can be used to apply these 

bioactive layers. Chemical and electrochemical processes can also be used to deposit apatite 

compounds by means of the sol-gel processes [169] as well as electrophoresis [170], 

electrocrystallization [171] and plasma electrolytic oxidation [2,172–174] (see 2.1.2). 
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3. EXPERIMENTAL PROCEDURE

 Chemicals 
 
All technical chemicals were in quality p. a. and were used in the process without prior 

purification. The reagents for the bioanalytical investigation of the surfaces were available in 

the quality required for these studies until ultrapure (see Tab.8 and Tab.9). The commercially 

purchased titanium and polymer substrates were used in the so-called grade 1 and medical 

grade, respectively. 

Tab. 8 Used chemicals and declaration of purity and manufacturer 

Substance Chemical formula Purity 

SurTec 1521 (alkaline degreasing) - < 5% Fatty alcohol ethoxylate 
20% Na2CO3 
< 5% Cocooil aminox ethylate 

Turco 55782 (alkaline stains) - 10-30% NaOH 
1-10% Triethanol amine 
1-10% Sodium gluconate 

Sulfuric acid3 H2SO4 95 - 97% 

Phosphoric acid3 H3PO4 85% 

2-propanol (iso-propanol)3 C3H8O 99,9% 

Ethanol3 C2H6O 99% 

Calcium acetate4 Ca(C2H3O2)2 ≥ 99% 

Sodium-β-glycerophosphate NaC3H7O6P - 

Sodium chloride3 NaCl min. 99,9% 

Sodium tartrate4 C4H4Na2O6 ≥99% 

Sodium hydroxide10  NaOH Mind. 99%

Sodium hydrogen carbonate9 NaHCO3 - 

Potassium chloride8 KCl > 99,5% 

Di-potassium hydrogen phosphate3  K2HPO4 mind. 98 - 100,5% 

Magnesium chloride9 MgCl - 

Calcium chloride9 CaCl 98% 

Sodium sulfate3 NaSO4 p.A. 

Tris(hydromethyl)aminomethane4 NH2C(CH2OH)3 ≥ 99,9% 

Hydrochloric acid9 HCl 37% 
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Tab. 9 Substances and reagents of the bioanalytical investigations with their manufacturer´s instructions and purity 

Substance Composition 

Mc Coy´s 5A with L-Glutamine5  Osteoblasts MG-63 

RPMI 1640 with L-Glutamine5 Mouse fibroblasts L929 

Phosphate buffer saline solution (PBS)5 140 mM NaCl 
10 mM Na2HPO4 × 2H2O 
2.7 mM KCl 
1.8 mM KH2PO4 

NucBlue® Live ReadyProbesTM Reagent (R37605)6 Nuclear blue: Hoechst 33342 0.1 – 1.0% (w/v) 

Trypsin solution 10x (porcine pancreas)4 2.5% solution of 1:250 tryptic activity (quality level: GMP)  

Penicillin-streptomycin (sterile filtered 100x)4 10000 units penicillin  
10 mg/ml streptomycin 

Cell culture medium5 80 ml fetales bovines serum (FBS) 
10 ml antibiotic (penicillin, streptomycin) 

Formaldehyde-solution4 36.5 – 38% in H2O 

4´,6-diamidin-2-phenylindol (DAPI) hydrochloride6 5 mg/ml stock 

Alexa Fluor 568 Phalloidin6 300 units 60 - 100% (w/v) 

Carbol-fuchsin solution 1:2 in PBS 

1 Sur Tec (Bernsheim, Germany) 

2 Henkel (Düsseldorf, Germany) 

3 AppliChem (Darmstadt, Germany) 

4 Sigma Aldrich Co. LL (Steinheim, Germany) 

5 Bio Whittaker Lonza (Verviers, Belgium) 

6 Life Technologies Corporation (Eugene, USA) 

7 Roche Diagnostics GmbH (Mannheim, Germany) 

8 Fluka Analytical (Steinheim, Germany) 

9 Merck KGaA (Darmstadt, Germany) 

10 VWR International GmbH (Darmstadt, Germany) 
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 Analytical methods 

3.2.1 Scanning electron microscopy (SEM) and focused-ion-beam (FIB) 
 
The studies on the PEO-surfaces were carried out on a scanning electron microscope 

using a FEI Helios 600 (DualBeam) field-scanning electron microscope (FESEM) (Thermo 

Fisher Scientific, Hillsboro, USA). The images were generated at an acceleration voltage of 

0.35 - 30kV at a working distance of 1 - 10 mm. The specified resolution of the device was 

0.9 nm at 15 kV and optimum working distance or 1 nm at 15 kV at the coincidence point. 

For imaging, an Everhart-Thornley- or InLense-detector was used for the secondary or back-

scattering electrons. 

The micrographs of the layer thicknesses were represented by using the focused-ion-beam 

technique of the DualBeam (FEI Helios 600) of the scanning electron microscope with 

gallium ions from a liquid metal ion source (LMIS). The resolution of the FIB was 5 nm at  

30 kV at the coincidence point and the maximum ion current was 20 nA. An Everhardt-

Thornley detector and a CDEM detector (Channel Detection Electron Multiplier) were 

available for recording the secondary electrons, thus the secondary ions could also be 

detected. The eucentric height of the FIB was 4 mm. Platinum was used as a deposition 

materials for the protection of the surfaces. This can be seen on the layer thickness images as 

the uppermost layer. 

3.2.2 X-ray diffraction (XRD) 
 
The x-ray analytical measurements were carried out on a Xpert MPD powder 

diffractometer (PANalytical, Kassel, Germany) with Ni-filtered Cu-Kα1,2-radiation ( Kα1 = 

154.05929(5) pm, Kα2 = 154.4414(2) pm) in Bragg-Brentano geometry (θ/2θ). The data were 

collected from 20° to 100° 2θ with a step-size of 0.0167° per 3 seconds. 

3.2.3 Band gap measurement 
 

The band gaps of the produced PEO-samples were determined from UV-Vis diffuse 

reflectance spectra. A Shimadzu UV-Vis spectrophotometer UV-2600 (Duisburg, Germany) 

equipped with an ISR-2600 plus a two-detector integrating sphere recorded the spectra. 

Barium sulfate was used as a reference and was measured before the series to smooth the 

background. The data were collected from 200 to 1400 nm in 0.5 nm steps. 
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3.2.4 X-ray-photoelectron spectroscopy 
 
The XPS measurements were performed with a VG 220i-XL-system in magnetic lens 

mode. The decrease angle of the photoelectrons was 0° with monochromatic AlKα-stimulation. 

The surfaces were irradiated and measured in Constant Analyser Energy-Mode (CAE) with 

70 eV pass energy for overview spectra and with 20 eV in the energetic high resolution line 

spectra. The analyzed area had a diameter of 0.65 mm and the neutralization of electric not 

conductive samples was carried out with low energetic electrons with an energy of 4 eV. 

3.2.5 Electron backscatter diffractometry (EBSD) 
 
The EBSD measurements were carried out on a Zeiss Supra 55 VP FEG-scanning 

electron microscope (Zeiss, Oberkochen, Germany) with variable pressure Mode. The 

imaging was performed under the pressure of a high vacuum at about 1·10-6 mbar with a SE-

detector. A Nordlys detector from Oxford Instruments (Abingdon, UK) was chosen for EBSD 

measurement with an accelerating voltage for SEM between 10 and 20 kV, and the samples 

were tilted to a standard angle of 70°. The elemental and crystallographic phase and 

orientation was made with the analysis system by Oxford Instruments (Abingdon, UK) and 

the program utilized the AZTec software for the evaluation of the results. 

3.2.6 RAMAN Spectroscopy 
 
The micro-Raman spectrometer LabRam ARAMIS (Horiba Jobin Yvon, Bensheim, 

Germany) was equipped with 532 nm (Nd: YAG), 633 nm (He-Ne) and 785 nm (diode laser) 

lasers and a He-Ne-Laser of 633 nm was chosen. The samples were focused with a 50x lens 

from Olympus (Olympus Europa SE & CO. KG, Hamburg, Germany) with a numerical 

aperture setting of 0.75 with a dot setting of 865 nm. The spectra were acquired in a range of 

100 cm-1 to 1000 cm-1 with a resolution of 3.2 cm-1 by a CCD detector. The settings and 

position of the spectra were calibrated and measured against the Raman signal of a Si wafer at 

520.7 cm-1. 

3.2.7 Scanning transmission electron microscopy (STEM) 
 
The TEM imaging was carried out using an FEI Tecnai TF20 S-TWIN (Thermo Fisher 

Scientific, Hillsboro, USA) with a field emission gun operated at 200kV in scanning-mode 

(STEM). An HAADF-STEM detector (Model FP-5360/20, Fischione Instruments, Export, 

USA) was used to acquire the images. To map the distribution of the crystallites, the camera 

length was adjusted to the system, and the dominating diffraction ring was placed onto the 
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detector ring. This led to a good visibility of the crystallites with varying intensities depending 

on the crystal structure and orientation. TEM samples were prepared with standard focused-

ion-beam procedures in a FEI Helios 600 machine (Thermo Fisher Scientific, Hillsboro, 

USA), as described in [175]. 

3.2.8 Physical vapor deposition (PVD) 
 
The application of the titanium layer to a polyetheretherketone base body (PEEK) was 

carried out by means of an ion-assisted high-frequency (HF) plasma polymerization process 

in a plasma reactor with a volume of 50 cm × 50 cm × 50 cm. The reactor was evacuated with 

a turbodraging pump (520 l/s) and the substrate was fixed onto the 30 cm × 20 cm electrode 

plate. In a preceding step, the polymer substrate had been provided with an adhesion-

promoting layer in the same reactor. Hexamethyldisiloxane (HMDSO) and oxygen were used 

as precursors for the primer layer. The sputter etching process (O2 = 80 sccm, UBIAS = 800 V, 

t = 60 s) was carried out at a base pressure of 1 * 10-4 mbar. The HMDSO could flow into the 

reactor at a flow rate of 2 sccm with a coating time of 300 seconds, and after switching off, 

the surface was activated for 30 seconds. The metallization of the precoated PEEK substrate 

was performed by RF magnetron sputtering. The used target material was metallic titanium 

(purity: 99.9%) with a distance of 45 cm from the substrate. Argon was fed into the chamber 

with a flow of 120 sscm at a base pressure of 1 * 10-6 mbar, and the sputtering power at  

2000 W was kept constant. After a processing time of 2 hours, a 4 μm thick titanium layer 

was obtained on the PEEK substrate. 

3.2.9 Fluorescence measurement 
 

The optical representation of the cells was carried out with a Zeiss Axio Imager M1 

microscope with the integrated camera AxioCam MRn and recorded in digital form with the 

software Axio Vision. The cells were optically displayed on the microscope with a mercury 

vapor lamp (X-Cite 120 series) in a wavelength range of 400 - 600 nm. The representations of 

the cell nuclei and cell filaments were shown individually and were pictured with an 

overlapping function with a 2/3 "CCD sensor (6.45 μm x 6.45 μm pixels) with RGB color and 

respective UV filters. The reflector module FL P & C with a free setup of ≥ 22 mm contains a 

filter set with the modules 450 - 490 nm, 530 - 885 nm and 750 - 790 nm. The relative 

spectral sensitivity of the emission dye for the red dye Alexa Fluor 568 was at a wavelength 

of 603 nm and, for the blue dye DAPI, at 461 nm. 
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 Working regulations 

3.3.1 Plasma electrolytic oxidation 
 
The titanium samples with grade 1 purity were cut into 1.5 cm x 1 cm rectangular 

plates, see Tab. 10. The TiO2 layers were produced in different acidic, alkaline, and neutral 

aqueous electrolytes, as listed in Tab. 11. For the investigations into biocompatibility, 

electrolyte E5 was chosen with the aim of forming hydroxyapatite on the surfaces. The 

titanium samples were pretreated with Sur Tec®152 and Turco®7758 (Tab. 8) to remove 

impurities and the natural oxide layer. An experimental setup for performing the PEO-process 

with a ramp of 3 min and a subsequent holding time of 15 min was set for all samples. The 

oxidation process using a two-electrode circuit was carried out in an ice-cooled glass beaker 

where the temperature was held between 290 K and 303 K. A titanium plate was used as the 

permanent counter electrode and the titanium sample was the working electrode. The solution 

was stirred on a digital magnetic stirrer (IKA-Werke GmbH & Co. KG, Staufen, Germany). A 

commercially available power supply EA PS 8360 15T (0-360 V, 0-15 A, 1500 W, EA 

Elektro-Automatik GmbH & Co. KG Viersen, Germany) was used and the setup was set 

using the UTA 12 software (Fraunhofer IFAM). After the PEO-process, the samples were 

rinsed in demineralized water and air dried at room temperature. 

Tab. 10: Chemical composition in atomic percent of pure titanium plates grade1 (cp-Ti) 

Element Fe O N C H 

Atom-% 0.20 0.18 0.03 0.10 0.015 

 

Tab. 11 Chemical contents of the used electrolytes 

 

 

 

 

 

 

 

 

Electrolyte Concentration/ components Discharge voltages/ V 

E1 0.3 M H3PO4, 1.5 M H2SO4 100 - 280 

E2 0.2 M Ca(C2H3O2)2, 0.02 M NaC3H7O6P 180 - 320 

E3 1.5 M H2SO4 80 - 220 

E4 1.5 M H3PO4 180 - 320 

E5 0.5 M NaOH, 0.2 M Na-Tartrate 50 - 140 
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3.3.2 Photocatalytic measurement 
 
Using a Cary®50 Conc UV/Vis-spectrometer (Varian Inc., Agilent Technologies, 

Santa Clara, USA), the photocatalytic activity was measured by observing the degradation of 

methylene blue (MB, 37 mM, AppliChem GmbH, Darmstadt, Germany) and rhodamine B 

(RB, 0.005 mM, AppliChem GmbH, Darmstadt, Germany) in an aqueous solution. The 

UV/Vis measurements of methylene blue were performed in the region from 450 nm to  

800 nm because of an absorption peak maximum at 664 nm [26,176]. For rhodamine B the 

region of 400 nm to 700 nm was taken with an absorption peak maximum at 554 nm [177]. 

The PEO titanium samples were immersed in the dye solution and irradiated under UV light 

(black light, 25 W, Phillips, Germany). After a selected treatment time, the dye solutions were 

measured with the UV/Vis-spectrometer. To exclude adsorption or desorption effects, an 

untreated titanium plate was also measured. Furthermore, an additional PEO-treated sample 

was left in the dark, while the dye solutions were irradiated without a sample as references. 

3.3.3 X-ray diffraction (XRD) and Rietveld refinement 
 
The obtained diffractograms of the PEO-surfaces were examined by Rietveld 

refinement (DiffracPlus, TOPAS 4.2, Bruker AXS Karlsruhe, Germany). The refinement 

included the filtering of the phase compositions, the average crystallite sizes and the preferred 

orientations of the oxide phases on the produces surfaces. The phase compositions could be 

determined by the reflection intensities as well as the preferred orientations of the crystallites, 

which were determined by Rietveld refinement for the corresponding direction in the crystal 

lattice. The average crystallite sizes of the phases could be determined during the refinement. 

3.3.4 Spectroscopic investigations on the plasma electrolytic discharges 
 
The additions to the PEO-process model were supported by some of the spectroscopic 

measurements of the plasma discharges that appeared during the PEO-process. Therefore, an 

USB4000-spectrometer (Ocean Optics, Inc., USA) with a linear silicon CCD array detector 

(Toshiba, TCD1304AP, 3648 pixels) and a wavelength response of 200-1100 nm suitable for 

Vis and shortwave NIR was used. The spectrometer was focused on the titanium surfaces and 

one spectrum was measured for every one second during the whole PEO-process. At the start 

of the plasma discharges, the spectra of resulting gaseous phases were detected. The related 

spectral peaks were analyzed by hand. 
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3.3.5 Seeding of cell culture 
 
The cell cultures were handled under sterile conditions and all consumables were 

sterilized before usage. The experiments were executed on an MG-63 osteoblast-like cell line 

(CLS no: 800125, Eppelheim Germany) and they grew at 37 °C in a humidified atmosphere 

with 5% CO2 in 75 cm3 cell culture flasks for 2 days. Prior to the seeding procedure, the 

sample surfaces were sterilized by washing with 70% isopropanol and a subsequent  

UV-treatment for at least 30 min and were then washed with medium (Mc Coys 5A with L-

glutamine). The cells were seeded at a density of 1 x 105 cells/ mL into each well of the  

12-well plates with 1 mL cell suspension. The seeding was conducted on the samples within 

the wells. 

3.3.6 Cell adhesion with vertical flow assay 
 

The strength of the cell adhesion was investigated with a special setup [178]. Using a 

syringe pump, a PBS solution was injected vertically to the samples through a tube with a 

previously investigated flow rate. The diameter of the cannula was 0.6 mm and the sample 

was set at 6 mm under the cannula. This distance remained constant due to the developed 

setup, using two titanium plates with the dimensions 10 cm x 10 cm and fixed with screws. 

The PBS (PBS, 1% (v/v) in H2O) was prewarmed to 37 C and the syringe was filled with 

approx. 8-9 mL prewarmed PBS and attached to the pump. A flow rate of 1800 mL/h was set, 

the pump was started, and the water flow stopped after the whole tube was filled with liquid. 

Afterwards, the sample was taken out of the 12 - well plate and placed in the middle of the 

metal device and the flow of 5 mL PBS was started. The diameter of the syringe was 15.8 mm 

and the treatment time was 12-15 s. Afterwards, the samples were incubated for 20 min in  

1 mL 2.5% glutaraldehyde. The cells were stained with carbol-fuchsin (1:2 in PBS). Of this 

staining mixture, 1 mL was added to each sample and incubated for 5 min at room 

temperature. Then, the cells were washed two times with 1 mL PBS for 5 min. The sample 

surfaces were dried, and images were taken. 
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4. RESULTS AND DISCUSSION

Chapter 1: Characterization 
 Oxide layer modification by plasma electrolytic oxidation with variation of 

the electrolytic system 
 

This chapter is based on the investigations published in [93]. The plasma electrolytic 

oxidation was used to produce porous and crystalline titanium dioxide layers in different 

electrolytes. The plasma electrolytically oxidized titania layers were investigated with regards 

to their morphology and corresponding to the electrolytic system. Different morphologies and 

the influence of the electrolytic system on pore size and layer thickness were examined. 

4.1.1 Electrolytic systems 
 
To investigate the influence of the electrolyte composition on the morphology and the 

plasma electrolytic oxidation process five different electrolytes were used, as shown  

in Tab. 11. The titanium samples were prepared according to section 3.3.1. In the first step, 

the influence on the breakdown voltages was investigated, and Fig. 20 shows the measured 

breakdown voltages. 

 
Fig. 20 Current density of the different electrolytic systems with the characteristic breakdown voltage where the PEO-process 
starts, “Reprinted with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 
Surface & Coatings Technology.” 
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The graph shows the characteristic current flows of the plasma electrolytic oxidation process 

for each electrolytic system. During the voltage ramp and starting at the breakdown voltage 

the current density starts to fluctuate, which is related to the start of the micro-discharges. 

This fluctuation represents the inhomogeneous process and layer growth. The current density 

grows until the end value is reached and decreases at the holding time. Each composition of 

the electrolyte catalyzes a different breakdown voltage value. The acidic electrolytes E1 and 

E3 both have similar and low breakdown voltages between 80 and 90 V. In contrast to these 

two acidic electrolytes, electrolyte E4 shows the same breakdown voltage as E2 at 180 V. The 

last electrolyte, E5, has the lowest breakdown voltage of 40 V, this contains an organic 

compound (tartaric acid). Venkateswarlu et al. [179] described a dependency of the 

breakdown voltage on its conductivity and Ikonopisov et al. [44] developed an equation for 

this correlation, which shows the linearity to each other. 

௕ܸ = ܽ஻ + ܾ஻ ∙ ݃݋݈
1
ߢ

 

Vb is the breakdown voltage, aB and bB are constant values for the electrolyte composition and 

κ is the electrolyte conductivity. If the conductivity κ of the electrolyte decreases, Vb 

increases. The conductivities of the electrolytes were measured and are summarized in  

Tab. 12. 

Tab. 12 Conductivities of the used electrolytic systems at room temperature, “Reprinted with permission from Journal 
Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings Technology.” 
 

Electrolyte E1 E2 E3 E4 E5 

Conductivity κ/ mS·cm-1 6311 16.812 6111 40.42 101.92 
1CRC Handbook of Chemistry and Physics, W. M. Haynes, 96th Edition, 2015-2016 
2WTW Cond 315i/ SET, Weilheim, Germany 

 

Electrolytes E1 and E3 show the highest conductivity above 600 mS•cm-1. Both electrolytes 

contain sulfuric acid, which increases the charge transfer, and a decrease in the breakdown 

voltage follows. H2SO4 can provide a slow metal dissolution rate and a subsequent fast 

increase in current density over a small voltage range. In contrast, the electrolytes E2 and E4 

both contain phosphate-ions. Kern et al. [180] describe an inhibition effect of phosphoric acid 

on the plasma electrolytic oxidation process. Phosphate-containing electrolytes increase the 

breakdown voltage because of a less oxidizing behavior, while the ions promote metal 

passivation on the surface. These inhibit the micro discharges [53,180]. 
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The extremely low conductivity of electrolyte E2 can be explained on the one hand by the 

phosphate it contains and on the other hand by the lower oxidation ability of alkaline 

electrolytes because of an increased gas evolution at the anode surface. Therefore, the 

dissolution of the metal is preferable to the growth of the oxide layer, and this leads to a 

higher breakdown voltage [181]. According to Venkateswarlu et al. [179], organic 

compounds can decrease the breakdown voltage like in electrolyte E5 with tartaric acid. This 

can be seen for electrolyte E5, which has a very low breakdown voltage of 40 V. 

4.1.2 Morphology of the PEO oxide layers 

4.1.2.1 Surface thickness, surface topography, pore sizes 
 

Because of the differences in the breakdown voltages of the electrolytic systems, the resulting 

morphologies of the produced samples were investigated. Two different applied voltages were 

investigated for each electrolyte. One value close to the breakdown voltage and one high 

voltage were used to observe the differences between pore sizes and layer thickness. The 

highest voltage refers to the highest possible voltage of the power supply (EA PS 8360 15T 

(0–360 V, 0–15 A, 1500 W). The SEM images of the surfaces and some FIB-cuts of the layer 

thicknesses are shown in Fig. 21 and Fig. 22. On the left side, the lowest applied voltages are 

illustrated, while the highest applied voltages are given on the right side. 
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Fig. 21 SEM micrographs showing the surface topographies of the PEO-treated Ti-plates in the different electrolytes (E1 – 
E5), “Reprinted with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 
Surface & Coatings Technology.” 
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Fig. 22 SEM micrographs showing the oxide layer thickness of the PEO-treated Ti-plates in the different electrolytes (E1 – 
E5), “Reprinted with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 
Surface & Coatings Technology.” 

 

 



 
Chapter 1: Characterization 

  - 49 - 

Surface morphologies with the typical porous and rough circular or elliptical pore shape 

formed on the titanium dioxide surfaces with the help of the PEO-process and the micro 

discharges. The morphology of the titanium dioxide layer for low applied voltages is not yet 

distinctive. The PEO-surfaces are covered with a large number of small pores. With higher 

applied voltages, more larger pores appear on the surfaces. This corresponds with the PEO-

process and the different stages of the micro discharges. In the later PEO stages, the 

discharges become more intense, which leads to the bigger pore sizes [65,76]. Additionally, 

with higher applied voltages the energy input on the surface is much higher and greater pore 

sizes follow. With the increase in the voltage, the oxide layer grows continuosly, which can 

be seen in Fig. 23, whereby the layer thicknesses from the lowest applied voltages are on the 

left side and the highest thicknesses are on the right side. The pore sizes and the layer 

thicknesses of the as-prepared PEO-samples are summarized in Tab. 13 and Fig. 23. They 

were analyzed with the image editing Freeware software ImageJ (National Institutes of 

Health, USA). 

Tab. 13 Pore sizes and oxide layer thickness of the PEO-surfaces treated in the different composited electrolytes “Reprinted 
with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149, Copyright 2017 Surface & Coatings 
Technology.” 

Electrolyte E1 E2 E3 

Applied voltage/ V 100 280 180 300 80 220 

Pore size/ μm 0.43 ± 0.02 2.99 ± 0.5 0.77 ± 0.16 1.9 1± 0.7 - 0.96 ± 0.05 

Oxide layer thickness/ μm 0.4 ± 0.17 14.15 ± 1.2 0.37 ± 0.14 3.86 ± 1.32 0.14 ± 0.01 11.38 ± 0.64 

Electrolyte E4 E5   

Applied voltage/ V 220 300 50 140   

Pore size/ μm 0.51 ± 0.05 1.12 ± 0.21 - 1.27 ± 0.6   

Oxide layer thickness/ μm 0.39 ± 0.06 1.79 ± 0.72 1.32 ± 0.13 3.19 ± 0.65   
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Fig. 23 Pore sizes and oxide layer thickness of the PEO-surfaces treated in the different composited electrolytes “Reprinted 
with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings 
Technology.” 

The start of the micro-discharges on the oxide surface is enhanced by a significantly sharp rise 

in current density at a characteristic breakdown voltage until the end voltage is reached. After 

the end value has been reached, the current density decreases to a constant current flow and 

the oxide layer growth ceases. The growing oxide layer impedes the electron flow through the 

electrodes, which causes the local breakdowns. Because of a diffusion of H2O and O2 towards 

the bulk metal, the layer growth is kinetically slowed down. Some defects in the titanium 

surface lead to breakdowns and the characteristic pores [26,30]. This correlation between the 

applied voltage and the morphology and layer thickness of the PEO-surfaces has been 

reported in several publications [26,182,183]. 

With increasing applied voltages, an increase in pore size and number of pores could be 

determined for all of the electrolytes. The higher applied voltages resulted in a higher current 

density and also in an increase in the energy of the discharges, which produced more and 

larger pores and was also mentioned by Frauchiger et al. [165]. This also happens to the layer 

thickness. Sul et al. [181] described a linear growth with regards to the applied voltage with 

the following equation (α: growth constant nm/V): 

݀ = ߙ  ∙ ܸ 

A lower oxide layer thickness of 3 μm can be found for alkaline electrolytes E2 and E5, in 

contrast to the acid electrolytes, with a thickness of 10 - 15 μm. The oxide layer growth rate in 

acidic electrolytes is higher than the dissolution rate. This results in a higher layer thickness. 

[184]. Alkaline electrolytes have a higher gas evolution at the anode surface due to the 

hydroxyl ions. This leads to a lower current yield due to the reduction of the surface area and 

a resulting lower oxide layer growth rate [185,186]. Electrolyte E4 only reached a layer 

thickness of 1.79 μm ± 0.72 μm. Phosphoric acid causes a lower current density which can 
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result in a lower layer thickness. For each electrolyte, a change in the appearance of the 

surface could be observed. In general, all surfaces have a characteristic rough and porous 

structure. The surface morphologies produced in electrolytes E1, E2, and E4 are quite similar 

to each other, with the expected typical “crater-like” structure. The pores are quite big and 

isolated from each other with compact titanium dioxide in between. All three electrolytes 

contain phosphate-ions (PO4
3-) and the pores have a round shape, which is in contrast to the 

findings by Venkateswarlu et al. [179], who created a round, isolated pore shape for PEO-

surfaces produced in borate (B4O7
2-) and silicate (SiO3

2-)-containing electrolytes. These 

anions are twofold negatively charged like phosphate ions, and the resulting morphology can 

be explained with the molecular charge of the components. The charged anions can influence 

the type of micro-discharge and thus the shape of the pores. For the electrolytes E3 and E5 the 

pores show a flower-like structure with a connection inside the pore network. The pores of 

electrolyte E5 have nearly the same shape but are slightly smaller and not as pronounced as in 

the other electrolytes. Electrolyte E5 contains the organic compound tartaric acid (C4H4O6
2-). 

Venkateswarlu et al. [179] also used an electrolyte with an organic compound, namely citric 

acid (C6H5O7
3-). Those surfaces look similar to those produced in electrolyte E5. Organic 

molecules can have a significant influence on the volcano structure and build a more plane 

and flatter surface. Unlike these structures, electrolyte E3 produces a non-typical PEO-

surface. These pores can be described as having a stacked oxide layer with cavities between 

the layers. These cavities can behave like pores comparable to the results of Oh et al. [6], who 

described the same pore shape for a 1.5 M H2SO4 electrolyte with a stack- like structure of the 

pore layers. 

With plasma electrolytic oxidation it is possible to produce individual morphologies of porous 

and simultaneously compact titania layers. The process allows pore size and oxide layer 

thickness to be adjusted for any desired application. The breakdown voltages for alkaline 

electrolytes can be found at a lower level, in contrast to acidic electrolytes, due to a lower 

conductivity and a higher gas evolution and the resulting reduction in the anode area. These 

two effects have an influence on the layer thickness. The phosphate (PO4
3-)-containing 

electrolytes, in comparison to the alkaline electrolytes (OH-), form the characteristically round 

PEO-pores, whereby the pores in alkaline electrolytes become more linear. Sulfuric acid 

(H2SO4) produces a stacked cavity-containing pore structure. By altering the composition and 

nature of the electrolytic system, the morphology, layer thickness, and appearance of the 

pores can be changed.  
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Chapter 2: Crystallinity 
 Crystallinity of PEO oxide layers 

 
This chapter is based on the investigations published in [93]. Due to a high energy input 

from the resulting plasma discharges the produced titania layers were investigated regarding 

their crystallinity. The electrolyte should influence the crystallinity of TiO2 and the amounts 

of the related phases of anatase and rutile. These properties of the layers were varied with 

regard to a possible photocatalytic activity of the crystalline phases. 

4.2.1 Degree of crystallinity and phase composition of PEO-layers 
 
Su et al. [187] reported a correlation between the surface crystallinity of PEO-layers 

and the oxidative behavior of the electrolyte. The crystalline parts can be improved through 

more aggressive contents. The crystallinity of the as-prepared PEO-layers was examined 

using x-ray diffraction. The resulting pattern can be seen in Fig. 24 and were refined with 

Rietveld refinement (Diffrac Plus TOPAS, Bruker AXS GmbH, Karlsruhe, Germany). 

 

Fig. 24 XRD-pattern of PEO-layers produced in the different electrolytes with the highest and the lowest applied voltage 
(important reflection peaks are marked; A: Anatase, R: Rutile and Ti: Titanium), “Reprinted with permission from Journal 
Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings Technology.” 
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The applied voltages as well as the electrolyte composition have a strong influence on the 

crystallinity of the PEO-surfaces. With a higher applied voltage, the reflection intensities of 

titanium decrease whereas the reflections of the crystalline TiO2 phases appear. An increase in 

crystallinity due to the dominant anatase reflection at 25° 2θ (1 0 1) of the samples E1 280 V 

and E2 320 V can be seen. Also, the appearing rutile reflection at 27° 2θ (1 1 0) for samples 

E1, E3, and E5 increase with higher applied voltages. For all samples, a lower crystallinity at 

lower applied voltages could be detected. A linear increase in crystallinity with the applied 

voltage was reported in [25,28,187,188]. In general, an increase in crystallinity is a result of 

the high energy input [28,49,50,187–190] and the local rise in temperature [47,80] of the 

intensified discharges during the PEO-process. On the surface of sample E1 280 V, both 

crystalline phases anatase and rutile can be seen. From the measured x-ray data the phase 

composition of both crystalline phases was refined with the commercial available software 

TOPAS. The percentages of the phases are shown in Fig. 25. 

Fig. 25 Amounts in % of anatase and rutile on the treated PEO-surfaces for different voltages (remaining share up to 100% is 
titanium substrate), “Reprinted with permission from Journal Surface and Coatings Technology, 315 (2017) 139–149. 
Copyright 2017 Surface & Coatings Technology.” 
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The low oxidizing nature of the electrolytes E2 and E4 produces an anatase-covered oxide 

surface without rutile contents. In contrast to electrolyte E5 with a similar low conductivity, 

E5 produces a mainly anatase-covered surface at low voltages. Rutile is formed at 115 V in a 

very high amount. The pure sulfuric acid electrolyte E3 forms a large amount of rutile with 

low applied voltages, whereas a mixture of sulfuric acid and phosphoric acid produces mainly 

anatase amounts. With a higher applied voltage, some rutile amounts appear on the surfaces 

of electrolyte E1 and the oxide layer thickness increases (Fig. 23, Fig. 25). The increase in 

layer thickness is caused by an intensity regression of the main refection peaks because the 

titanium substrate will be covered with TiO2, while the x-ray beam is mainly absorbed by the 

TiO2 and primarily oxide is detected. The decreasing titanium amount in the XRD-pattern 

with higher voltages indicates a growing layer thickness comparable with the SEM 

micrographs. The increase in crystallinity and layer thickness of the PEO-surfaces may affect 

the lattice parameters of the include anatase and rutile phases. The refined lattice parameters 

are plotted in Fig. 26. 

  

  
Fig. 26 Lattice parameter of anatase and rutile on the PEO-surfaces of the different electrolytes, “Reprinted with permission 
from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings Technology.” 
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No significant change in the lattice parameters a and c of the anatase phase for all electrolytic 

systems was observed. However, an exponential change in the lattice parameters a and c for 

rutile was clear for all electrolytes. The increase in value for lattice parameter a is very clear 

for electrolyte E1, whereas lattice parameter c decreases. The changes appear in the upper 

voltage range. For anatase, a lattice expansion at small crystallite sizes has been reported 

[191–194]. Kuznetsov et al. [195] discovered a lattice expansion for the rutile phase with a 

decrease in crystallite size. This leads to an anisotropic size-dependent variation of the unit-

cell. The crystallite sizes of electrolyte E1 are very small, between 20 and 30 nm, in contrast 

to the other electrolytes with a crystallite size of 35 to 70 nm (Tab. 14). These small crystallite 

sizes of all oxide layers suggest that the rutile phase is subject to lattice expansion. 

Tab. 14 Average crystallite sizes (LVol(IB)) of rutlie for the used electrolytes, “Reprinted with permission from Journal 
Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings Technology.” 

Electrolyte Applied voltage /V Middle crystallite size /nm 

E1 230 - 280 21 - 38 

E2 180 - 320 No rutile 

E3 80 - 220 35 - 62 

E4 180 - 320 No rutile 

E5 50 – 160 45 - 70 

 

In addition, from the results of the PEO-process a preferred orientation of the crystallites for 

both polymorphs and the titanium bulk material could be determined. The preferred 

orientations of the crystals increase the intensity of the main reflection in each direction. 

Titanium has a preferred orientation in [0 0 2], [0 1 2] and [0 1 3] direction, anatase has a 

preferred orientation in [0 1 1] and [0 0 4] direction and rutile in [0 1 1], [1 1 0] and [1 1 1] 

direction. Because of the complex behavior of the preferred orientations, spherical harmonics 

were used for the Rietveld refinement and the XRD-pattern, whereby the marked orientations 

can be seen in Fig. 27. The preferred orientation of titanium results from the rolling process of 

the pure titanium plate. The preferred orientation in [0 0 4] direction of the anatase crystals is 

the result of a frequent crystal surface in [0 0 1] direction, which is accompanied by the 

general extinction of the space group I41/amd. This preferred orientation of anatase is related 

to the orientation of titanium in [0 0 2] direction. Comparatively, [0 1 1] direction of anatase 

as well as of rutile also relates to the [0 1 2] and [0 1 3] directions of titanium. As a result, the 

growth of the TiO2 crystals is dependent on that of the titanium bulk material. Rutile has a 

second orientation in [1 1 0] direction which is one of the frequent crystal surfaces. 
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Fig. 27 Preferred orientations of titanium, anatase and rutile on the anodized TiO2 PEO-surfaces, “Reprinted with permission 
from Journal Surface and Coatings Technology, 315 (2017) 139–149. Copyright 2017 Surface & Coatings Technology.” 

The variation of the applied voltage and electrolytic system influences the crystallinity of the 

PEO oxide layers with a high amount of anatase and rutile phases. The crystallinity can be 

controlled and increased with high applied voltages. A high amount of rutile can be produced 

in the oxide layer with the right electrolyte composition and a high conductivity. These rutile 

phases can improve a number of properties of the oxide layer, such as aging stability and 

especially the photocatalytic activity of TiO2. Furthermore, the ratio of anatase to rutile can be 

optimized similarly to the photocatalytic active AEROXIDE© TiO2 P25. Thus, a preferred 

orientation in crystallites for all phases titanium, anatase, and rutile was discovered in [0 k l] 

and [0 0 l] preferred directions of growth. Based on all these results, it is possible to tune the 

crystalline TiO2 surface using plasma electrolytic oxidation within one synthesis step, and the 

high crystallinity rate on all measured surfaces can be an indication for a photocatalytic 

activity of the compact PEO-surfaces. 
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Chapter 3: Photocatlytic activity 
 Photocatalytic activity of PEO-layers 

 
Chapter three is based on the investigations published in [196]. After the investigations 

into the crystallinity and phase compositions of the as-prepared PEO-layers in the various 

chosen electrolytes, the possibility of photocatalytic active reactions was investigated. For the 

examination, surfaces which had a good crystallinity and a promising phase composition of 

anatase and rutile inside the surface and which were almost identical to the commercially 

available AEROXIDE® P25 were chosen. For this reason, electrolyte E4 was not considered 

in the investigations because of the very low crystallinity and anatase content (Fig. 24 and 

Fig. 25). The titanium samples were prepared in a manner equal to that of all other PEO-

samples, according to section 3.3.1, and the compositions of the electrolytes are shown in 

Tab. 11. The associated SEM-micrographs of the surfaces and the layer thicknesses of the 

chosen samples are given in Fig. 28. The SEM micrographs show the expected characteristic 

rough and pore-rich topography, as discussed in section 4.1.2, while the summarized pore 

sizes and layer thicknesses can be seen in Tab. 13. 
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Fig. 28 SEM micrographs of the surface topographies of the PEO-treated titanium plates in the different electrolytes (E1 – 
E5): (left side) top view on the surface morphology with the characteristically pore-structures (magnification 10 μm) (right 
side) FIB cross-section of the as produced PEO-layers (different magnifications), “Reprinted with permission from Journal 
Surface and Coatings Technology, 344 (2018) 710–721. Copyright 2018 Surface & Coatings Technology.” 
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Tab. 15 Surface morphology and amounts in % of anatase and rutile of the PEO-treated surfaces (the remaining share up to 
100% is titanium substrate) fabricated in different electrolytic systems 
 

Electrolyte Applied voltage /V Pore size /μm Layer thickness /μm Phase amount 

anatase : rutile /% 

E1 
220 1.58 ± 0.31 6.29 ± 1.87 71(3) 
280 2.99 ± 0.51 14.37 ± 1.43 64(12) : 34(7) 

E2 300 1.9 ± 0.7 3.86 ± 1.32 70(11) 

E3 
130 0.27 ± 0.09 1.04 ± 0.15 37(4) : 15(2) 
140 0.37 ± 0.11 1.69 ± 0.06 28(8) : 32(3) 

E5 
105 0.16 ± 0.02 0.22 ± 0.03 16.1(6) 
115 0.29 ± 0.09 0.5 ± 0.03 16.8(7) : 5(2) 

 

The phase compositions of the chosen surfaces were measured, like the above described 

surfaces before from the XRD data with Rietveld refinement (Tab. 15). These samples were 

chosen because of an anatase-rich surface and a ratio of anatase to rutile ranging from 1:1 to 

2:1. In the diffraction pattern in Fig. 29, crystalline parts could be easily identified by the 

main reflections of anatase 25.3 ° 2θ and rutile 27.4° 2θ for electrolytes E1 and E3. The 

highest rutile reflection can be seen for sample E1 280 V with a phase composition of 2:1 of 

anatase to rutile. This could indicate a high photocatalytic activity. 

 

Fig. 29 XRD patterns of PEO-layers produced in the different electrolytes with the highest and the lowest applied voltage 
(important reflection peaks are marked; * anatase, + rutile and ° titanium) 
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4.3.1 Band gap measurements of PEO-surfaces 
 
The XRD results show a crystallinity of anatase and rutile phases on the surface of all 

produced PEO-samples (Fig. 29). Therefore, some band gap measurements were performed 

using UV-Vis diffuse reflectance spectroscopy. The expected band gaps of the included TiO2 

polymorphs were investigated for all the chosen samples, these are shown in Fig. 30. To 

interpret the reflectance spectra, two systems, the so-called TAUC-method [197] and DASF-

method [198], were used. In the first step, the reflectance spectra were transformed into an 

absorbance spectra with the use of the Kubelka-Munk equation [199,200]. Out of these 

absorbance spectra, the band gaps were then calculated with the TAUC and DASF equations 

to determine the width and the band gap type (indirect or direct) of the titania layers seen in 

Fig. 30 and Fig. 31 [201,202]. 
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Fig. 30 UV/Vis absorbance spectra of the band gap measurement: Reflectance spectra, evaluated using the TAUC-method. 
Plots of all measured PEO-layers: a) and b) samples of electrolyte E1, c) sample of electrolyte E2, d) and e) samples of 
electrolyte E3, f) and g) samples of electrolyte E5 
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Fig. 31 DASF calculated band gap spectra of the PEO-layers for all electrolytes and the investigates applied voltages; the 
band gap was analyzed with the peak positions 
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The TAUC-plots of the samples prepared in electrolytes E1, E2, and E4 show clearly defined 

expected band gaps. In addition, the calculated DASF-plots have a band gap value for these 

three electrolytes, that are consistent with the calculation by Souri et al. [198]. Both plots are 

illustrated in Fig. 30. The samples prepared in electrolyte E5 cannot be refined due to a slight 

coloration of the surfaces. The rutile phase has a high influence on the band gap values. With 

a higher rutile content on the surface, the band gap shifts to the rutile value of Eg = 3.0 eV. 

The calculated band gaps of all samples are shown in Tab. 16, whereby the indirect and direct 

gaps of both methods are summarized. 

Tab. 16 Defined band gaps with the TAUC and DASF method for the PEO-treated surfaces for all electrolytes and applied 
voltages, “Reprinted with permission from Journal Surface and Coatings Technology, 344 (2018) 710–721. Copyright 2018 
Surface & Coatings Technology.” 

Electrolyte E1 E2 E3 E5 

Voltage /V 220 280 300 130 140 105 115 

TAUC indirect /eV 2.76(1) 2.80(10) 2.90(1) 2.27(3) 2.71(1) n.d. n.d. 

TAUC direct /eV 3.17(1) 3.05(10) 3.24(1) 2.96(3) 3.05(1) n.d. n.d. 

DASF /eV 3.23(2) 3.07(2) 3.24(2) 3.13(2) 3.11(2) n.d. n.d. 

n.d.: not definable 

The PEO titania layers show a clear direct band gap, which is in contrast to the reported 

indirect band gap of TiO2. The calculated indirect band gaps of the TAUC plots do not fit to 

the data from the literature, while the direct band gaps are closer to these reported values [15]. 

Madhusudan Reddy et al. [203] reported a direct band gap of anatase nanoparticles with a 

particle size of 5-10 nm, which results in an even smaller crystallite size. The crystallite sizes 

of the measured samples were refined to a size of 20-30 nm, these are summarized in Tab. 17. 

Tab. 17 Average crystallite sizes (LVol(IB)) of rutile and anatase on the PEO-samples, “Reprinted with permission from 
Journal Surface and Coatings Technology, 344 (2018) 710–721. Copyright 2018 Surface & Coatings Technology.” 

 

A small crystallite size results in an increased specific surface area and the band gap can shift 

to a direct transition. Semiconductors with a direct band gap can have a greater efficiency in 

energy absorption because they contain an allowable transition from the conduction band to 

the valance band. These materials can be much more purposeful for specific applications 

[203]. 

Electrolyte  E1 E2 E3 E5 
Applied voltage /V  220 280 300 130 140 105 115 

Average crystallite size /nm Anatase 30.9(3) 28.3(6) 29.4(6) 33.5(6) 34.1(5) 27.9(10) 25.4(9) 
Rutile - 38.1(10) - 34.5(10) 40.4(10) - 45.2(40) 
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4.3.2 Methylene blue/rhodamine B degradation 
 
For the investigation into the photocatalytic activity of the PEO-samples, two aqueous 

dye solutions were chosen. The widely used dyes methylene blue (MB) and rhodamine B 

(RB) were measured under UV irradiation by absorption spectroscopy and the degradation 

reactions of both dyes are shown in Tab. 18. The results from the photocatalytic experiments 

and the decrease in intensity are seen in Fig. 32 to Fig. 35. Two different dyes were chosen to 

compare the different degradations of absorption intensity and to exclude adsorption and 

desorption effects at the PEO-surfaces in the two different systems. As a reference material, 

one which shows a good photocatalytic behavior, the commercially available photocatalyst 

AEROXIDE® TiO2 P25 was used. The P25 is available as a nanoscale powder oxide, while 

the PEO-surfaces represent oxide films. Despite the differences in texture, the P25 was used 

as a reference because it consists of pure parts of anatase and rutile and its photocatalytic 

activity is of the highest top standard. Furthermore, it is used in a wide range of studies 

researches because of its above-mentioned commercial availability and its wide-ranging 

investigated photocatalytic activity. 

Tab. 18: Degradation reactions of methylene blue (MB) and rhodamine B (RB) 

Dye Degradation reaction λmax /nm 

Methylene blue 
(MB) 

 

664 

Rhodamine B 
(RB) 

 

554 
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Fig. 32 Degradation curves for methylene blue for the maximum illumination time of 4 days for all electrolytes and applied 
voltages 
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Fig. 33 Degradation rate of the absorption intensity of MB: Values of the measured absorption maximum at 664 nm for the 
used electrolytes and the applied voltages a) E1 b) E2 c) E3 and d) E5 
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Fig. 34 Degradation curves of rhodamine B for the maximum illumination time of 24 hours and 5 days for the references for 
all electrolytes and applied voltages 
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Fig. 35 Degradation rate of the absorption intensity of RB: Values of the measured absorption maximum at 554 nm for the 
used electrolytes and the applied voltages a) E1 b) E2 c) E3 and d) E5 

The used reference AEROXIDE® P25 shows the highest degradation rate, as expected, with a 

disappearance of the absorption intensity already after already 3 hours. This fast reaction 

under UV-light depends on the interaction of the rutile and anatase quantities and the optimal 

crystallite size of almost 35 nm. There is an ongoing discussion regarding the photocatalytic 

measurements of adsorption as well as the splitting effects at the soaked surfaces of the used 

dyes. PEO-samples have a highly porous surface, as seen in the shown SEM micrographs 

shown here. To exclude adsorption and splitting effects at the surfaces two reference samples 

were examined. One PEO-treated sample without UV irradiation and a pure dye solution 

under illumination were both investigated. For both references, a slight degradation of the 

intensity appeared after the illumination times, which does not indicate a clear activity under 

UV-light. This allows any absorption and desorption effects of the dyes at the surfaces to be 

exclude. 

The samples prepared in electrolytes E2, E3, and E5 showed the highest degradation rates in 

the methylene blue concentration after a 1-day illumination time. The same can be observed 

for the samples soaked in rhodamine B. After 24 hours, both dyes showed a clear degradation 

in intensity and therefore in photocatalytic activity. The samples prepared in electrolytes E1 

and E5 showed a slightly lower activity in comparison to all other investigated samples, 
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which becomes clearer for rhodamine B solution. After 24 hours the absorption intensity of 

rhodamine B solution is lowered to 25% of the starting intensity. Mirelman et al. [27] reported 

a correlation between high quantities of anatase and high coating thicknesses of PEO-surfaces 

with a high photo degradation rate. This increases the surface area, and the absorption of UV-

photons becomes more likely. The samples produced with higher applied voltages show the 

highest photocatalytic activity because of increased layer thickness and the presence of 

quantities of anatase and rutile amounts. The strongest photo activity is seen for sample E3 

140 V and sample E5 115, both of which exhibit the two desirable properties of a high anatase 

content and an increased layer thickness. The samples of electrolyte E3 contain a rutile 

amount of 15% (130 V) and 31% (140 V) with a ratio of anatase to rutile of 2 : 1 (130 V) and 

1 : 1 (140 V) against the optimal ratio of 3 : 1 in comparison to P25. In the case of electrolyte 

E1, the layer thickness becomes favourable for the activity, while for electrolyte E5 it is not. 

The PEO-surfaces produced in electrolyte E5 have a lower layer thickness in comparison to 

other electrolytes. However, there is a similar strong photocatalytic activity of surfaces for 

electrolyte E5. Sample 115 V E5 shows the presence of rutile already at a low layer thickness, 

and in this case the crystallinity of anatase and rutile predominates over the effect of the 

increased specific surface area, which predominates in samples of electrolyte E1. These 

effects lead to an indication that the presence of rutile phases plays an important role for the 

photocatalytic activity for PEO-surfaces. In this case, the crystallinity of the surfaces seems to 

be more purposeful. 
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Fig. 36 Average crystallite sizes for anatase and rutile phases on the PEO-surfaces produced in the electrolytes for each 
applied voltage a) E1 b) E2 c) E3 and d) E5, “Reprinted with permission from Journal Surface and Coatings Technology, 344 
(2018) 710–721. Copyright 2018 Surface & Coatings Technology.” 

The high applied voltages and the resulting micro-discharges lead to a low crystallite size of 

the TiO2 phases. It has been reported that an optimum crystallite size for TiO2 to show high 

photocatalytic activity is between 30 and 40 nm [28,204]. The crystallite sizes of all produced 

PEO surfaces were investigated with Rietveld refinement and plotted in Fig. 36. The samples 

of electrolyte E3 demonstrate an average crystallite size of the anatase and rutile phases of 

nearly 35 nm, in contrast to the other PEO-samples with an average crystallite size below 30 

nm or above 40 nm. Nanoparticulate crystallite sizes (approx. under 20 nm) gave fewer 

possibilities for photo-excited interfaces, thus resulting in less photocatalytic activity 

[205,206]. Therefore, the surface area of “higher” crystallite sizes decreases because of the 

adsorption of other molecules and the fact that the photo-excited charges cannot reach the 

surface [28,207]. The occurrence of high amounts of crystalline phases in connection with a 

crystallite size of 30 to 40 nm has the strongest effect on the photocatalytic behaviour of PEO-

surfaces. Kominami et al. [139] have shown that, by increasing the crystallinity and 

improving the adsorption capacity by increasing the surface properties, it is also possible that 

brookite act as a photocatalyst. Brookite is the polymorph with the least photocatalytic 

behavior. In the photocatalytic tests, rhodamine B had a stronger photo degradation rate in 

contrast to methylene blue, already after 24 hours. In this case, it may be better suited for 
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checking the photocatalytic activity of PEO-layers after a shorter time period (Fig. 37), and 

therefore the illumination time could be reduced. 

 

Fig. 37 Comparison of the two degradation spectra of sample E3 140 V (left side) MB (right side) RB, “Reprinted with 
permission from Journal Surface and Coatings Technology, 344 (2018) 710–721. Copyright 2018 Surface & Coatings 
Technology.” 

The use of different electrolytic systems largely affects the crystallinity and phase 

composition of the PEO TiO2 surfaces. Through the type of the electrolyte, the phase 

composition could be controlled between a ratio of anatase to rutile from 100% anatase to 

75% anatase and 25% rutile phases. The different amounts of crystalline anatase and rutile 

influence the photocatalytic activity, such as the crystallite sizes of both phases. The measured 

band gaps revealed a direct transition contrary to the expected reported indirect transition of 

TiO2, which can be shown by the DASF method. This direct transition resulted in a small 

crystallite size of 20-30 nm of anatase and rutile. As a result, the band gap shifts to a direct 

transition. All PEO-surfaces show a photocatalytic activity caused by the high crystallinity of 

the anatase and rutile phases, and also by the increased surface area. The specific surface area 

increases because of the small crystallite sizes and the high TiO2 layer thicknesses as well as 

the porosity of the PEO-structure. It could also be seen that parts of rutile phases are mnore 

favourable for photocatalytic activity, in the cases of samples E1 280 V and E5 115 V. 

However, a combination of a high amount of anatase and the optimal crystallite size of 30 nm 

appears to be the most effective combination for increasing the photocatalytic activity. Both 

can be controlled using the PEO-process in a simple way. 
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Chapter 4: Biocompatibility 
This chapter is based on the investigations shown in the submitted patent in [208]. 

 Transfer of surface modification using PEO on titanium-coated polymer 
surfaces 
 
Titanium is a highly biocompatible metal and is used in many applications in medicine, 

such as for bone or teeth implants. Due to the successful production of pore-rich titanium 

dioxide structures using plasma electrolytic oxidation and the production of crystalline 

anatase and rutile phases, the method was also applied to titanium-sputtered substrates. The 

biocompatibility was investigated with cell adhesion tests to prove the strength of the 

attachment to the PEO-surfaces. Because of its very suitable mechanical properties, such as a 

high temperature and chemical resistance, the polyetheretherketone (PEEK) was chosen as a 

polymer substrate was chosen. PEEK also has a wide range of applications in medicine as an 

implant material and it is available at a medical grade. Fig. 38 shows the planed application of 

titanium dioxide layers onto the PEEK substrates and the assessment of the biocompatible 

properties after plasma electrolytic oxidation. 

 

Fig. 38 Schematic illustration for the application of titanium coating and plasma electrolytic oxidation of polymer substrate 
followed by cell adhesion onto the oxide surface 
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4.4.1 Bonding strength of the polymer/titanium interface 
 
The application of titanium onto polymer substrates requires a suitable bonding 

strength of the titanium to the substrate. To optimize the bonding strength, various 

pretreatments of the polymer surface were investigated. The widely used and certificated pull-

off test was chosen to prove the strength of the bond to the surface and the test was conducted 

according to DIN EN ISO 4624 [231]. Different pretreated PEEK samples with applied 

titanium coating were selected to measure the adhesion forces of the polymer to the metal 

coating. This test requires a thermally curable epoxy adhesive (Araldite® 2000+, Huntsman, 

Swiss), which was attached to the surface, and a circular metal stud with a diameter of 20 mm 

was chosen. Surface contaminants at the studs were removed using Si-carbide abrasive paper 

(400 and 2400 grain size), and afterwards the studs were cleaned in isopropanol in an 

ultrasonic bath. The adhesive was hardened in an oven for up to 48 h at 120 °C. The 

mechanical strengths were measured by determining the needed force required to break the 

bond between the coating and substrate using an automatic pull-off machine (PosiTest AT-A, 

DeFelsko, USA). All pull-off forces for each pretreatment were an average of six single 

measurements, and four different pretreatments were chosen to strengthen the bonding of the 

titanium to the polymer surface (Tab. 19). An illustration of a stud applied to the surface can 

be seen in Fig. 39. The four pretreatment procedures were produced with a special plasma 

technique and were carried out in an ion-supported high-frequency (HF) plasma 

polymerization process in a plasma reactor with variable voltages and primer flow. For the 

subsequent biological investigations, the electrolyte E2 was used for the PEO-process due to 

the possibility of hydroxyapatite formation in the surface structure during the PEO-process, 

this is a component of the human bone structure. 

Tab. 19: Pretreatment techniques for PEEK with the adhesion strength to the applied titanium layer 

Pretreatment Pull off strength /MPa 

PEEK without pretreatment 1,71 ± 0,12 

PEEK+ titanium layer without pretreatment 3,45 ± 0,45 

Plasma activation 3,05 ± 0,90 

Plasma etching 3,54 ± 0,46 

SiO2 layer 4,55 ± 0,32 

SiO2 layer (BIAS) > 4,25 ± 0,29 
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Fig. 39 Pull-off test arrangement for measuring thin film adhesion strength 

For the plasma activation technique, the PEEK molecules were activated into ion species with 

the plasma species generated in the reactor. With these activated ions, the titanium layer 

should be chemically bonded to the PEEK molecules. With the plasma etching process, the 

surface of the PEEK substrate was roughened on a micrometer scale, as seen in Fig.40. The 

last two pretreatments are performed in a similar way with hexamethyldisiloxane (HDMSO) 

and oxygen as a precursor. The difference in the process was the applied voltage, whereby the 

second process was carried out with very high voltage of 800 V, which is known as BIAS. For 

this BIAS SiO2 coating, Fig. 40 shows a clear SiO2 layer thickness with a mechanical 

anchoring to the PEEK substrate. 
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Plasma etching 

 
SiO2-layer 

 
BIAS SiO2-layer 

 

Fig. 40 Pretreatment of the PEEK substrate with plasma etching (first row), SiO2-layer (middle row), and BIAS SiO2 layer 
with the mechanical interlocking in the substrate (last row) 
 

 

g

y
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In Tab. 19 it can be observed that there is no difference in the pull-off strength of plasma 

activation and plasma etching to the PEEK substrate without any pretreatment with a 

measured pull-off force of 3.0 to 3.5 MPa. The plasma activation and etching process 

roughened the PEEK surface, which is why the roughness is not sufficient to strengthen the 

attachment of the titanium coating. In comparison, both SiO2 layers show a relatively high 

pull-off force of approx. 4 MPa from the PEEK substrate. After the test, the pretreatments 

showed an adhesion break between the titanium layer and the PEEK substrate (Fig. 41). 

Hereby, the BIAS layer showed a clearly visible cohesion break with the PEEK substrate, as 

seen in Fig. 42, and should be marked as a value of over >4.25 MPa. The combination of SiO2 

bonding to the titanium atoms and the mechanical anchoring to the PEEK substrate seems to 

be the reason for the strong adhesion of titanium to PEEK. The cohesion break indicates an 

acceptable bonding strength of the BIAS layer as an adhesion promoter for medical 

applications. Therefore, this kind of interlayer was used for the subsequent PEO-process 

between titanium and PEEK. 

 
PEEK without pretreatment PEEK with titanium layer without pretreatment 

 
PEEK with plasma activation PEEK with plasma etching 

y
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PEEK with an SiO2 layer PEEK with a BIAS SiO2 layer 

 
Fig. 41 Images of the pull-off tests of various pretreatment techniques of PEEK: Pretreated PEEK substrates at the bottom of 
the pictures and on top the pulled studs; the round areas are the pulled-off areas 

 

Fig. 42 Cohesion fracture in the substrate (marked with arrows) 
 

4.4.2 Plasma electrolytic oxidation on titanium coatings on PEEK substrates 
 
Before starting the oxidation process, the PEEK substrates were grinded with SiC-

paper (grit: 320, 2400, 4000) and cleaned with isopropanol. The PEEK substrates were coated 

with titanium on one side, according to section 3.2.8, and the plasma electrolytic oxidation 

was performed on the PEEK substrates, according to section 3.3.1 at the PEEK substrates. 

The substrates were metallized in the plasma reactor within 2 h with a layer thickness of 

nearly 4 μm. This layer thickness value was chosen based on the micrographs of the layer 

thicknesses produced on the titanium substrates in Fig. 22. Thus, the layer thickness at 300 V 

for E2 reaches almost 4 μm, which is necessary to form the titanium dioxide layer without 

reaching the PEEK substrate during the PEO-process. For the following investigations on 

biocompatibility, only electrolyte E2, with the composition of 0.2 M Ca(C2H3O2)2 and 0.02 M 
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NaC3H7O6P, was used. This electrolyte is known in the literature to form hydroxyapatite in 

the oxide layer during the PEO-process [165,172,209]. 

For the oxidation processes, another experimental setup was used with a two-electrode circuit 

was used. The used measuring cell was made of a PTFE tube with a hole of 1 cm in diameter. 

This tube was placed on the titanium-sputtered side of the PEEK substrate and strongly 

pressed between two plates with four screws. The sputtered PEEK side was connected as the 

working electrode with a thin steel plate, and a platinum plate which was soaked into the 

electrolyte was used as the counter electrode. The PTFE tube was filled with approx. 11 ml of 

electrolyte solution. Afterwards, the titanium dioxide layers were produced using the plasma 

electrolytic oxidation procedure on the coated substrates. A schematically illustration of the 

PEO-setup is shown in Fig. 43. 

 

Fig. 43 Setup for the PEO-process at the coated PEEK substrates, 1) plates with screws for fixing, (2) PTFE tube filled with 
electrolyte solution, (3) PEEK substrate, (4) steel plate as a connection to the PEEK substrate, (5) cable to counter electrode, 
(6) power supply 

4.4.3 Aging resistance of the titanium coating 
 
After a successful application of a resistant adhesion promoter to the PEEK surface, 

the aging resistance of the titanium coating was investigated for an aqueous solution and 

under human body conditions. For this, the simulated body fluid solution was used according 

to Kokubo et al. [210]. The solution contained similar inorganic ion concentrations as the 

extracellular body fluid and simulated human body conditions. The compositions in 

comparison to the blood plasma as well as the used amounts are listed in Tab. 20. The 

samples were outsourced in SBF solution for six months in a closed beaker filled in a warmed 

oven at 310 K. 
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Tab. 20 Comparison of the composition of simulated body fluid and human blood plasma with the as used chemicals 

Ion Concentration /mmol·dm-3 Ammount /g·L-1 

 Human blood plasma SBF Chemical  

Na+ 142 142 NaCl 7.669 

K+ 5 5 KCl 0.224 

Mg2+ 1.5 1.5 MgCl·6H2O 0.305 

Ca2+ 2.5 2.5 CaCl2 0.278 

Cl- 147.8 103 NaCl, KCl, CaCl2 - 

HCO3- 4.2 27 NaHCO3 0.350 

HPO42- 1 1 K2HPO4·3H2O 0.174 

SO42- 0.5 0.5 Na2SO4 0.071 

(CH2OH)3CNH2 Tris(hydroxymethyl)aminomethan: Buffer for pH 6.057 

 

The four pretreated PEEK samples after six months are shown in Fig. 44. After six months, all 

the samples with a previous pretreatment of the PEEK substrates showed no visible spalling 

of the titanium coating. Without any pretreatment, the titanium coating clearly pulls off from 

the surface of the PEEK substrate. This indicates the necessity of pretreatment before an 

application of titanium. A pretreatment promotes a successful implantation due to a failure of 

wear to appear after implantation. PEEK includes ether- and carbonyl groups, which can 

improve the bonding of titanium ions. Titanium has a high affinity to oxygen molecules, 

which can catalyze the bonding of titanium to the functional groups of PEEK and the added 

SiO2 layer. 

 

Fig. 44 Different pretreated PEEK substrates outsourced in simulated body fluid (SBF) for six months at 37 °C in an 
atmospheric oven 
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Plasma electrolytic oxidation is a high-energy performing surface treatment due to the 

resulting micro-discharges on the surface. These energy-rich discharges have a strong 

influence on the surface composition, which can also have an influence on the polymer 

substrate underneath the titanium layer. Therefore, the PEO-treated sputtered PEEK substrate 

was measured with XPS measurement with regards to the molecules on the surface. The XPS 

measurement can help to exclude a transport of PEEK molecules into the titanium oxide layer. 

Three samples were measured: A pure PEEK substrate, a titanium-sputtered PEEK substrate, 

and a PEO-treated PEEK substrate (electrolyte E2, 300 V). The XPS spectra can be seen in 

the following figures (Fig. 45 - Fig. 47), and the atomic compositions at the top of the 

surfaces are summarized in the following tables (Tab. 21 - Tab. 23). The important atoms are 

marked in the tables. 

 

Fig. 45 XPS spectra of C1s (left) and O1s (right) mode of a pure PEEK-substrate and the molecular structure of 
polyetheretherketone (bottom) 
 

Tab. 21 Atomic percent of the included atoms on the measured pure PEEK substrate: Marked columns show the important 
atoms for the sought substance 

(at %) 
C O N Si Ti Ca P Cl S Na K 

Position 1 82.4 15.1 0.9 0.4 - 0.7 - 0.1 0.3 0.2 - 

Position 2 82.5 14.2 1.1 0.5 - 1.0 - 0.2 0.2 0.2 - 
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Fig. 46 XPS spectra of C1s (left), O1s (right), and Ti2p (bottom) modes of a PEEK substrate with an applied titanium layer 
 

Tab. 22 Atomic percent of the included atoms on the measured PEEK substrate with the applied titanium layer: Marked 
columns show the important atoms for the sought substance 

(at %) 
C O N Si Ti Na K 

Position 1 24.7 50.5 1.2 0.2 22.7 0.4 0.3 

Position 2 24.6 50.1 1.3 0.5 22.8 0.4 0.3 
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Fig. 47 XPS spectra of and O1s (left, bottom), C1s (right)  modes of the PEEK-substrate with a PEO oxide layer and a 
reference spectra, according to Barker et al. [164] (bottom) 
 

 

Fig. 48 Crystal structure of hydroxyapatite with the natural and synthesized ratio of calcium and phosphorus contained in the 
oxide layer 
 

Tab. 23 Atomic percent of the included atoms on the measured PEEK substrate with the treated PEO-coating: Marked 
columns show the important atoms for s the sought substance 

(at %) 
C O N Si Ti Ca P 

Position 1 23.3 52.5 0.2 0.2 6.7 8.9 7.6 

Position 2 23.4 51.5 0.6 0.3 10.7 6.3 6. 
5 
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The XPS spectra for the pure PEEK substrate show all structure related organic bonds. The 

characteristic carbonyl group at 289 eV and the ether bonds at 286 eV in the C1s spectra can 

be observed. The O1s spectra of the PEEK substrate show the related C-O bonding at 532 eV 

and the carbonyl group band at 533 eV. These peaks show the corresponding bonds in a 

PEEK molecule and should not be identified in the XPS spectra of the PEO-treated samples. 

However, an absence of other atoms, except oxygen and carbon, leads to a pure PEEK 

substrate. In the next step, a PEEK substrate with a sputtered titanium coating was measured 

and the resulting XPS spectra of the C1s, O1s, and Ti2p modes and the atomic-% of the 

contained atoms on the surface can be seen in Fig. 46 and Tab. 22. The spectra of the C1s and 

O1s modes show no organic compounds on the surface of the sample. The visible and 

measured carbon atomic percent represents an acceptable amount of impurities over the entire 

treatment time. The oxygen atomic percent in Tab. 22 show a titanium to oxygen ratio of 1:2 

and the Ti2p spectra show Ti4+ bonds at 458 eV and 464 eV at top of the surface. A naturally 

formed titanium dioxide bonding can still be confirmed with the O2--peak in the O1s spectra 

at 530 eV. The titanium spectra also show a metallic titanium peak at 453 eV, which relates to 

the sputtered coating. In the measurement of the PEO-treated PEEK substrates, there a C1s 

spectra similar to those of the pure PEEK substrate can be seen. On the other hand, the O1s 

spectra contain a shifted double peak with a shoulder at the left side of the peak. The shoulder 

at 533 eV normally relates to the organic C-O double bond. However, the peak at 530 eV 

relates to an O2--species that is the part of the titanium dioxide layer. In comparison with some 

XPS measurements by Baker et al. [164], the shoulder at 533 eV relates to some H2O on the 

surface, which can be explained by the occurrence of some stored water molecules inside of 

the PEO-pores due to the high hydrophilicity of titanium dioxide. The O1s peak at 531 eV 

shows the OH- and PO4
3- species at the surface. Therefore, the whole O1s spectrum isn’t 

similar to the organic compounds of the PEEK substrate. The O1s spectra show the presence 

of hydroxyapatite at the PEO-surfaces, which can be also seen in Tab. 23.  

ଶାܽܥ 10 + 6 ܲ ସܱ
ଷି + ିܪܱ 2  → ܲ)ଵ଴ܽܥ  ସܱ)଺(ܱܪ)ଶ  (1) 

The surface contains calcium and phosphate atoms, which confirm the assumption of the 

presence of hydroxyapatite. the formation of hydroxyapatite HA is shown in equation (1) and 

illustrated in Fig. 48. The measured ratio of calcium to phosphate atoms is nearly 1.0 whereby 

natural stoichiometric HA has a ratio of Ca/P of 1.67 [211]. At the very least, the PEO-

process produces HA in the titanium dioxide layer which can improve its biocompatibility. 
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4.4.4 Cell morphology and settling on PEO-surfaces 
 
The biocompatibility of the produced thin PEO-coatings on PEEK was first 

investigated with the application to humanoid osteoblasts MG-63. The morphologies and the 

amount of these applied bone cells were documented after 24 h of incubation time. The cell 

cultures were settled on the different surfaces and the cell counts were performed with nine 

similar samples at three different points on the sample surface. The cell counting area of each 

sample amounted to 0.6 mm2. The fluorescence micrographs of an exemplary sample of each 

status are shown in Fig. 49. Because of the auto-fluorescence of the PEEK substrates, the 

required micrographs have been produced in a different light mode of the used microscope. 
This auto-fluorescence is an inherent property of the polymer and is caused by some 

fluorescent additives [212]. 

The PEEK samples were stained by adding 2 mL H+E (Hoechst 33342 special formulation) 

and 10 min of incubation time. In Fig. 49 the cell filaments are colored green while the nuclei 

are blue. In addition to the fluorescence micrographs, the cell spread along with the 

calculation of the cell´s covered area was analyzed. Titanium substrates are used in medicine 

because of their good biocompatible properties, which is why titanium was used as a positive 

reference to show a desirable adhesion to the surface. The pure PEEK substrate was used as a 

negative reference. The seeded cell density was 1•105 cells per well. The PEEK samples had a 

greater height (5 mm) than the titanium samples (1 mm) and therefore 2 mL cell suspension 

was used instead of 1 mL for the thin titanium samples were used. The cell numbers and 

covered surface areas were measured with the commercially available software ImageJ 

(Version 1.48v National Institute of Health, USA). 

 
Titanium 
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Titanium + PEO 

 
PEEK 

 
PEEK + Titanium 
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PEEK + Titanium + PEO 
 
Fig. 49: Fluorescence micrographs of the attached osteoblasts at the different surfaces in two magnifications (left 
micrograph) 50x, (right micrograph) 200x; (nucleus: blue, cell body: green); micrographs show the five different conditions 
of the investigated surfaces: (first row) pure titanium substrate, (second row) titanium substrate with applied PEO-layer, 
(third row) pure PEEK substrate, (fourth row) PEEK substrate with applied titanium layer, (fifth row) PEEK substrate with 
applied PEO-layer 
 

 

Fig. 50 Nuclei counting of the cell seeding on the five different surfaces; error bars show the divergence of attached cells on 
the different surfaces 
 

On all surfaces, the cell morphology looked similar, and the cell bodies are completely spread 

across the surface while the cell filaments seem to be anchored with the surface. Apart from 

the PEEK surfaces, the cell number seems to be less than on the other surfaces, as can be seen 

in the micrographs. From the micrographs, no concrete statement about the difference of the 

surfaces can be made because of a complete spread of the cell filaments onto the different 

surfaces. Therefore, the number of cell nuclei was counted. The counting of the cell nuclei 

seen in Fig. 50 did not lead to a meaningful result for the cell attachment. The counting 
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showed a high cell number for the titanium and titanium PEO-surfaces. The PEEK surfaces 

with titanium and with PEO-coating showed an almost identical cell number to each other. 

Only the pure PEEK surfaces showed a clearly reduced cell number due to the lower 

biocompatibility of polymer substrates in contrast to metallic surfaces. The very low 

difference in cell number can be an indication that all surfaces have no negative influence on 

cell behavior. After the counted nuclei, the covered surface area of the samples was measured 

(Fig. 51). 

 

Fig. 51 Covered surface area in % of the examined PEEK samples 

 

The covered surface areas of titanium-coated PEEK, PEO-treated PEEK, and a titanium 

sample as reference material were measured. Eight samples from each state were measured 

respectively. There were also no clear differences between each state, including the resulting 

error. All samples were in a range of ±20% of the covered surface area of the titanium 

reference. Regardless of the consideration of the individual value of the PEO-treated PEEK 

substrate in electrolyte E2 300 V, a higher covered surface area of the seeded cells of +15% 

can be seen. This slight tendency can be explained by the fact that the composition of the 

titanium dioxide layer includes some HA phases, which are similar to those of the bone 

structure. The proteins of the osteoblasts first come into contact with the surface for adhesion 

first. Furthermore, Kim et al. [213] found an improved cell adhesion on PEO-treated surfaces 

with amounts of HA in comparison to pure titanium surfaces. Electrolyte E2 produces 
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amounts of HA on the PEO-surfaces, and this hydroxyapatite can have a positive effect on 

cell adhesion. 

More or less structured and rough surfaces enable the cells to attach to the surface structure as 

well as to adhere stronger at those surfaces. Urselmann et al. [214] compared the cell 

morphologies at different metal surfaces and found that the cell filaments on smooth surfaces 

show a small star-like structure, whereby the cells have to spread across the whole surface for 

adhesion similar to surfaces of titanium and PEEK. On rough surfaces the cells spread 

irregularly and can anchor to the surface structures, which are represented by the PEO-pores 

[215]. In addition, a long-termed adhesion can be achieved with a structured and rough PEO-

surface [216]. 

4.4.4.1 Strength of cell-adhesion on PEO-surfaces (vertical flow assay) 
 

Due to incomplete results of the cell counts, a different test for evaluating the cell 

adhesion was chosen. Hereby, a newly developed method (vertical flow assay) was used 

[178]. The setup of the vertical flow assay has been investigated in a previous study by 

N. Suter and B. Heim [217,218]. The setup used is shown in Fig. 52. As according to  

section 3.3.6, a PBS solution was pressed through a tube with a constant flow rate by means 

of a syringe pump vertical to the sample surface. The optimal flow rate and the distance of the 

cannula to the sample was set as 1800 mL/h and 6 mm, respectively, and were developed in a 

previous study [218]. At a low distance of 3 mm and a low flow rate of 1200-1500 mL/h, the 

sample surfaces were rinsed irregularly, and the errors were spread across a high range of 

values. 

 

Fig. 52 Setup of the vertical flow assay established in a research work and master thesis (1) syringe pump (2) syringe with 
PBS solution (3) cannula (4) titanium holder with cell sample according to [217,218] 
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For the vertical flow assay, the same cell cultures of osteoblasts MG-63 were used as for the 

fluorescence investigations, with a seeded cell number of 1•105 cells per mL. The cells were 

incubated for 48 h in a humanoid atmosphere. The cytoskeletons were colored with the red 

dye carbol-fuchsin and the cells at the surfaces were imaged with a Carl-Zeiss ImagerM1 

microscope with EXFO fluorescence light and an Axio CamMRc camera. The images were 

investigated with the software AxioVision and a 10x objective, and the rinsed area was 

measured with the commercially available software ImageJ (Version 1.48v National Institute of 

Health, USA). For each status, nine different samples in three different passages were prepared 

and the rinsed areas were measured. The related micrographs are shown in Fig. 53 and the 

corresponding graph is shown in Fig. 54. 

 
Titanium 

 
Titanium + PEO 
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PEEK 

 
PEEK + Titanium 

 
 

PEEK + Titanium + PEO 
 

Fig. 53 Rinsed samples of all investigated combinations and the references with the vertical flow assay; brighter spots show 
the rinsed area of cells: (first row) pure titanium substrate, (second row) titanium substrate with applied PEO-layer, (third 
row) pure PEEK substrate, (fourth row) PEEK substrate with applied titanium layer, (fifth row) PEEK substrate with applied 
PEO-layer 
 



 
Chapter 4: Biocompatibility 

  - 92 - 

 

Fig. 54 Rinsed area of the investigated samples during the vertical flow assay for different stages of pure titanium and PEEK 
 

The micrographs of the rinsed surface areas and the investigation into the area sizes show 

differing results. With a large rinsed area, it can be concluded that the cell adhesion on the 

surface is decreased, while with a small area the adhesion strength increases. The measured 

areas within a sample series scatter across a wide range, which leads to a very high error. All 

errors are not significant for the measured values in a comparison of all samples. This 

becomes clear in case of the PEEK substrates, where the error (± 12.3 mm2) becomes higher 

than the measured value of 10.7 mm2. A strong fluctuation around the measured value can be 

observed, which leads to a very high error. For the PEEK samples, the very high error can be 

explained with a resulting worse cell adhesion to the PEEK surfaces because of the more or 

less smooth and plane surface and a lower biocompatibility. In a comparison of PEEK with 

titanium coating (14.07 ± 8.43 mm2) and pure PEEK, an improvement in cell adhesion with 

the PEO can be seen because of a more stable value in the rinsed area. In the comparison of 

the rinsed titanium surfaces (5.01 ± 4.26 mm2) to the titanium samples with a PEO-coating 

(12.27 ± 7.11 mm2), no improvement with a PEO-coating could be achieved. However, the 

related error for the titanium samples is also almost as high as the measured value. 

Furthermore, the cells on the titanium samples in Fig. 53 look somewhat peeled in other 

positions next to the rinsed areas. This leads to a lower cell adhesion in comparison to the 

PEO-treated surfaces. The last important area value belongs to the PEO-treated PEEK 

substrates (6.37 ± 4.42 mm2). These values scatter at every measurement, which leads to a 
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very high error. In a comparison with the pure PEEK substrate, with its high error rate and 

high number of rinsed areas, an improvement in cell adhesion using the PEO-coating on 

PEEK can be concluded. 

The PEO-pores in electrolyte E2 300 V reached a size of nearly 2 μm (Tab. 13). Tian et al. 

[215] observed an increased cell adhesion on micro-structured TiO2 surfaces with a pore size 

of approx. 3 μm, which is quite similar to the pores of the examined PEO-surfaces. For a pore 

diameter under  a value of 70 nm, Leoni et al. [219] showed a decreased adhesion because of 

an affinity of the MG-63 cells, which have a size of 30 μm, to settle at pores with a likewise 

diameter [220]. In addition, a production of poruos structures concludes with an increased 

hydrophilic character of the surfaces, which leads to an increased adhesion of cell proteins 

and cells [215,221]. The PEO-surface contains hydroxyl- and oxygen groups, as well as the 

HA species. At the surfaces, in addition to these chemical bonding possibilities for the cell 

proteins, the mechanical anchoring of the cell filaments plays an important role in adhesion 

strength. Cells produce small filopodia to anchor to the pores [220]. Zinger et al. [220] were 

able to show that a combination of micro- and nano-structuring the titanium surfaces can have 

a positive effect on cell adhesion. The properties of both chemical bonding and micro-

structures are present at the PEO-surfaces and offer optimal conditions for cell adhesion. 

Human cells react to surface structures and prefer rough and porous surfaces over the nearly 

smooth surface of the pure PEEK substrate. This can be shown in the case of a slight 

improvement in adhesion strength of the titanium-sputtered PEEK substrates and the PEO-

treated PEEK surfaces in contrast to the pure PEEK surface. An improvement in the cell 

adhesion onto polymer substrates can be achieved with a coating of titanium and a subsequent 

PEO-treatment. Thus, a short conclusion can be drawn for the biocompatibility of PEEK. This 

can be improved with a titanium coating and a subsequent PEO-coating. In some medicine 

applications, where an elastic property of the polymer substrates is necessary, the 

biocompatibility can be improved with a PEO-coating on polymer substrates. 
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Chapter 5: PEO model 
This chapter is based on the investigations published in [222]. 

 Investigations for the understanding of the PEO process model 
 
A lot of publications are focused on the investigations of the modification, morphology, 

and chemical composition of PEO-surfaces [5,223–225]. On basis of the investigated PEO-

structures and the crystalline layer compositions, the whole oxide layer was examined 

regarding its internal structure. These results should create a deeper understanding of the layer 

formation and the influences of the plasma discharges on the oxide layer formation. 

4.5.1 Investigations into the oxide layer crystallinity 
 
To investigate the oxide layer structure and the crystallinity throughout the layer one 

sample with a high content of anatase and rutile was chosen. The sample oxidized in 1.5 M 

H2SO4 and 0.3 M H3PO4 at 280 V contains both polymorphs at a ratio of a  

64(12)% : R 34(7)% (Fig. 25). A cross-section was taken from the prepared PEO-sample. 

Before preparation, the sample was embedded in the three-component embedding resin 

Demotec 10 (Demotec, Nidderau, Germany; 3 parts powder, 2 parts syrup and 1 part liquid). 

Afterwards, the cross-section was extracted from the epoxy resin and was then embedded 

again between two pure titanium holders. To achieve a very smooth surface of the cross-

section, the whole sample was mechanically grinded and polished. The schematic for the 

sample preparation is shown in Fig. 55. 

 

Fig. 55: Mechanically cut and ion-polished cross-section of the PEO-treated titanium sample embedded around two titanium 
holders, “Reprinted with permission from Applied Surface Science, 443 (2018) 467–474. Copyright 2018 Applied Surface 
Science.” 
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For a deeper view into the layer phase composition structure, the cross-section was scanned 

using the Raman spectroscopy mapping method. The chosen He-Ne-Laser (633 nm) was 

scanned over the cross-section in 1 μm steps and 11 rows up to 121 scans. Therefore, the laser 

generated a mapping through the oxide layer from the bottom to the top. In Fig. 56 and  

Fig. 58, the mapping through the layer and the resulting Raman spectra can be seen. A 

theoretical Raman spectrum of anatase and rutile is shown in Fig. 57. The spectrum was 

obtained by measuring the pure powder AEROXIDE® TiO2 P25 which contains amounts of 

anatase and rutile phases [226]. 

 

Fig. 56 SEM micrograph of the embedded PEO oxide layer and the Raman scanned area with 11 mapping rows from the 
bottom to the top of the oxide layer, “Reprinted with permission from Applied Surface Science, 443 (2018) 467–474. 
Copyright 2018 Applied Surface Science.” 
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Fig. 57 Theoretical Raman shifts of crystalline anatase (A) and rutile (R); symmetry classes: (Eg) double degenerated (A1g) 
symmetric and (B1g) antisymmetric 

 

Fig. 58 Raman mapping of the PEO oxide layer from the bottom to the top of the layer with an increase in anatse (140, 198, 
395 and 635 cm-1) and rutile (445 cm-1) peaks, “Reprinted with permission from Applied Surface Science, 443 (2018) 467–
474. Copyright 2018 Applied Surface Science.” 
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The Raman spectra from row 1 to row 11 in Fig. 58 show a clear increase in intensity for all 

anatase and rutile peaks. The highest intensity, and thus the highest crystallinity in the surface 

region can be seen for the mapping row 11, which is the last mapping row on top of the oxide 

layer. The first mapping row is measured at the bottom of the oxide layer, and the Raman 

spectra show a very low intensity maxima in these regions. This leads to an amorphous or 

lower crystalline TiO2 structure in this region. This assumption of a nanocrystalline or nearly 

amorphous oxide layer in the lower part can be confirmed by the first Raman mapping row in 

Fig. 59. For small crystals, the surface effects predominate and the variance of bond lengths is 

increased, resulting in a diffuse background and broadened peaks. Titanium is a passivating 

metal, which forms thin amorphous passivation layers while the metal dissolution decreases 

during the anodization process. The oxide layer of titanium grows from the bottom to the top 

[59]. This thin amorphous layer grows without any interaction with the micro-discharges, 

which appear at a later stage during plasma electrolytic oxidation [65]. The PEO-process 

comprises four different stages, whereby the first stage simulates the growing of the thin 

anodization oxide layer. In the second stage, the dielectric breakdowns occur, with the 

resulting micro-discharges at the surface. At stage III and IV, the discharges become more 

intense [65,76]. With this knowledge it can be seen that the PEO micro-discharges appear 

during the later stages of the oxidation process and have a longer impact on the already 

formed layer. This leads to a higher energy input on top of the layer because of the discharges 

and their high temperatures [47,53]. 

 

Fig. 59 Raman spectra of the bottom of the amorphous part of the oxide layer 
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4.5.1.1 PEO layer structure and phase composition 
 

The Raman spectra show the first layer structure of the PEO oxide layer. To look 

deeper inside the layer, the entire structure and into the phase composition, the EBSD method 

was chosen. The corresponding software AzTec compares the measured Kikuchi pattern with 

theoretical ones to identify the crystal phase (α-Ti, Anatase, Brookite, Rutile) and orientation 

(Indexing). The scan of the layer revealed an increased and predominant distribution of rutile 

diffraction on top of the layer, showing the corresponding Kikuchi pattern of rutile phases 

with reasonable intensities fitting to the theoretical pattern. Towards the bottom of the layer, 

only anatase and brookite diffractions with a poor agreement between measured and 

theoretical pattern could be detected. The EBSD micrographs with the resulting orientations 

of the crystallites for all three spatial directions are shown in Fig. 60. 

 

Fig. 60 EBSD micrographs of the PEO oxide layer and the titanium substrate; a) upper oxide layer, b) whole surface area, c) 
titanium substrate, d) titanium holder 
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In the lower parts of the oxide layer, the signal strength decreases and only a low number of 

Kikuchi pattern for anatase or brookite phases showing a low intensity could be detected. This 

could be an indication of a predominant amorphous part with partially crystalline phases. 

Towards the boundary layer of the oxide, mainly pore structures occur, which impairs the 

polymorph band indexing and influences the signal quality. The introduced electrons leave the 

oxide through the pores, whereupon the scattered background decreases sharply. The brookite 

diffractions should be carefully interpreted. The brookite structure is unsymmetrical and 

includes nearly 60 possible reflectors (bands). In this regions of brookite detection there are 

only 8 bands with a deviation of 1° match to the theoretical pattern. The poor quality of the 

measured pattern in this region of the oxide layer and the strong deviations from the 

theoretical brookite pattern make it more likely that actually overlapping rutile and anatase 

crystallites were measured. In the undefined regions (black), some polymorph bands, as well 

as partially no polymorph bands, could be detected. These bands cannot be assigned to any of 

the three oxide crystal structures (Ti4+). This can be a consequence of overlapping crystals or 

an insufficient ratio of band contrast to scattered background. Here, it is not possible to 

distinguish between produced bands with a bad contrast (small grain size), an amorphous 

material or an increased surface roughness (pore structure), whereby the scattered background 

increases and the band signal is no longer recognizable. 

The indexing of the all measured spots is rather low compared to the surrounding titanium 

holder as seen in Fig. 60 d). This poor indexing could normally be explained by an 

unsatisfactory pretreatment of the cross-section before the EBSD measurement. To exclude an 

unsatisfactory pretreatment, the titanium substrate was measured, which should have a 

comparable surface roughness comparable to the oxide layer. The indexing ratio of the 

substrate in Fig. 60 c) has the same resolution as the oxide layer. For the titanium substrate, a 

few crystalline bands could also be detected. Every sample surface underwent the same 

preparation conditions and the excellent indexing ratio of the titanium holder results in a 

sufficient preparation for the titanium metal phase. Therefore, the poor indexing of the 

titanium substrate is not caused by the surface roughness and the band qualities of the 

corresponding Kikuchi pattern are similar to those of the lower part of the oxide layer. The 

upper part of the oxide layer shows an adequate indexing and therefore the preparation of this 

region is at least sufficient for the EBSD measurement. 
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Overall, the explanation for the poor indexing of the lower part of the oxide layer and the 

titanium substrate is a small crystallite size of the TiO2 phases. The average crystallite sizes 

were analyzed with Rietveld refinement (Diffrac Plus TOPAS, Bruker AXS GmbH, 

Karlsruhe, Germany) and they are plotted in Fig. 36 as 30 - 40 nm for sample electrolyte E1 at 

280 V while titanium also showed a small average crystallite size of 100 nm. The contrast 

between band and background in the Kikuchi pattern is low and the electron beam spreads 

across several crystallites. The signal cannot be assigned unambiguously to a titanium dioxide 

phase. However, the larger average crystallite sizes of the rutile phases of 40 nm offer a better 

resolution and a higher crystallinity in this area can be concluded. 

4.5.1.2 Mechanism and growing process of PEO-layers 
 

Due to the results of the previous Raman- and EBSD measurements, another high-

resolution method was chosen to obtain more information about the crystallinity throughout 

the layer. A part of the cross-section was prepared as a TEM lamella with a thickness of 

approx. 50 nm, according to [175]. The lamella was scanned via the scanning transmission 

electron microscopy (STEM), and the corresponding micrograph can be seen in Fig. 61. 
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Fig. 61 STEM micrographs of a TEM lamella of the PEO oxide layer with the characteristically pore structures: a) Titanium 
substrate and the crystalline boundary layer of the oxide layer, b) crystalline upper part of the oxide layer, c) entire PEO-
layer, (left) lower part of the oxide layer, (right) upper part of the oxide layer, “Reprinted with permission from Applied 
Surface Science, 443 (2018) 467–474. Copyright 2018 Applied Surface Science.” 

The scanning of the cross-section shows clear crystalline parts throughout the whole oxide 

layer. The upper part of the PEO-layer at the right side of the micrograph shows areas with 

quite large crystallites, whereas in the part at the boundary layer on the left side smaller 

crystals could be identified. The differences in crystallite sizes can also be observed in the 

Raman spectra in Fig. 58. Therefore, the reduction in the intensity results from the decrease in 

the average crystallite size. In the middle part of the oxide layer, the formed PEO-pores can 

be seen. Around these pores, gray regular areas are visible, which may indicate an amorphous 

TiO2 phases or one large single crystal around the pores. TEM diffraction pattern around the 

pores did not show any reflection, which indicates an amorphous phase composition and 

allows a single crystal to be excluded. 
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The results of all measurements of the cross-section of the PEO-layer lead to a number of 

conclusions regarding the layer formation and the resulting structures. In most cases, the 

crystallinity of the oxide layer depends on the energy input from the micro-discharges 

[25,28,187–190]. The layer growth starts with the applied voltages, whereby amorphous TiO2 

growth results in a moderate crystalline oxide layer. After the increase in voltage, the plasma 

breakdowns follow and the characteristic PEO crater-like structure is formed on the surface 

[30,40,182,183]. In this stage, the titanium dioxide is liquefied and bulges until the TiO2 

crystallizes at these sites and the craters are formed. The molten TiO2 solidifies due to a high 

cooling rate at the coating/substrate interface in the cold surrounding electrolyte [83,94]. 

Following this effect, there is a recrystallization at the TiO2 surface due to the intensifying 

micro-discharges. The crystals achieve more time for organization and growing during this 

process, and larger crystals can be formed in the upper part of the oxide layer. In the lower 

part of the oxide layer, crystalline parts with smaller particles can be seen. These particles are 

also achieved through the plasma breakdown fractions. The channels of the PEO-pores can 

become very deep and can reach the bottom near to the boundary layer to the titanium 

substrate. In Fig. 62 shows an FIB cut into a PEO-pore that reaches to the bottom of the oxide 

layer. This sample cut was created with the focused ion beam (FIB) method as described in  

section 3.2.1. 

 

Fig. 62 Characteristic crater-like pore in a FIB-cross-section that reaches to the boundary layer of the substrate, “Reprinted 
with permission from Applied Surface Science, 443 (2018) 467–474. Copyright 2018 Applied Surface Science.” 
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The following illustration in Fig. 63 shows the influences of the micro-discharges on the 

structure of the oxide layer during the PEO-process. Because of the high dielectric strength of 

the plasma discharges at the bottom of the oxide layer, the energy and heat inputs can act up 

to the bottom of the oxide layer resulting in small TiO2 crystallites. This also leads to a partial 

recrystallization of the titanium particles, which results in a small average crystallite size 

(titanium 101(11) nm). These parts with small crystallites and the amorphous phases around 

the pores clearly shows that the titanium dioxide can be converted into the gaseous phase 

formed by the micro-discharges with a resulting TiO2 gas cloud. Liu et al. [80] and Hussein et 

al. [47] reported local discharge temperatures by the discharges of 103 to 104 K, which is the 

reason for the liquefying and evaporation of the produced TiO2 phases. Anatase and rutile 

have a melting point of about 2130 K and a boiling point of around 3173 K, far below 104 K. 

The formed gas cloud has a reduced thermal conductivity, which leads to a rapid cooling and 

a reduced crystallization rate of the TiO2 promoting the formation of an amorphous phase. In 

addition, the cold electrolyte reduces the crystallization in regions around the produced pores 

because of a high temperature difference between the molten TiO2 and cold electrolyte. The 

oxide cooled down rapidly, and the particles do not receive enough time to order themselves. 

 

Fig. 63 Model of the discharges during the PEO-process and the influences of the energies on the oxide layer formation, 
“Reprinted with permission from Applied Surface Science, 443 (2018) 467–474. Copyright 2018 Applied Surface Science.” 
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The assumption that TiO2 is also present in the gaseous phase during the appearance of the 

plasma discharge leads to another used spectroscopic analytical spectroscopic technique. This 

method measures the spectroscopic information of the produced plasma species of the 

included atoms. Due to the plasma discharges of the PEO-process, the resulting atoms and 

gaseous phases can be identified using a spectroscopic detector; the resulting spectra for the 

two different electrolytes E1 and E2 are shown in Fig. 64. 

 

Fig. 64 Detected spectroscopic information of the included atoms on the surface during the PEO-process 

 

Tab. 24 Wavelength of the detected atoms in the LIBS spectra 

Element Titan I Na I Ca TiO 
Wavelength /nm 461 493 527 552 588 602 613 706 
 

The Tab. 24 gives the resulting molecules and elements of the plasma discharges during the 

PEO-process. Both spectra in Fig. 64 were measured during the plasma discharge phase, 

when the discharges become very intense. The calcium peaks at 602 nm and 612 nm originate 

from the electrolyte E2, which contains calcium acetate. The peak at 588 nm is related to the 

included sodium molecules, which are present in any atmospheric measurement. In both 

spectra, a lot of peaks of titanium phases are visible, especially the peak at 706 nm, which 

belongs to the titanium monoxide phase and is visible in both electrolytes. This leads to the 

conclusion that titanium and titanium oxide pass over into the gaseous phase because of the 

plasma discharges, which explains the high crystallinity of the oxide layer. 

The investigations of the PEO oxide layer gave a more detailed understanding of the structure 

throughout this layer. The Raman measurements gave an indication of the increasing 

crystallinity from the bottom of the oxide layer to the top, which was confirmed in the EBSD 

measurements. The EBSD pattern show a clenched concentration of crystalline rutile phases 
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at the top of the oxide layer, which decreases to the bottom. The investigation into the small 

average crystallite sizes of both the anatase and rutile phases resulted in a deeper 

understanding of the PEO-procedure. The recorded STEM micrographs showed bigger 

crystallites at the top of the layer, which leads to the supposition that the high temperatures of 

the acting plasma discharges result in both a liquid and a gaseous TiO2 phase. Due to the high 

energy input, large crystallites can be formed at the top of the oxide layer and by the colder 

electrolyte, and the gaseous phase amorphous TiO2 is left around the PEO-pores. As with the 

Raman spectra, it is apparent that small crystallites can be formed at the bottom. This is 

because of the PEO pore structure and the plasma discharges, which reach to the bottom of 

the boundary layer of the titanium substrate. 

  



 
CONCLUSION 
 

  - 106 - 

5. CONCLUSION 
 
The modification of parameters of plasma electrolytic oxidation for a classification of 

titanium dioxide layer properties (structure, crystallinity, photocatalytic activity and 

biocompatibility) as well as a subsequent expansion of the oxide layer formation were carried 

out in the present work. The layers were prepared in various electrolytic systems and were 

examined for their structure and crystallinity without further treatment. The different 

electrolytic systems had a strong influence on the structure and crystallinity of the surfaces, 

which were analyzed using SEM and XRD. It could be shown that higher electrolyte 

conductivity increased the pore size and oxide layer thicknesses as well as strongly influenced 

the proportions of the crystalline phases anatase and rutile inside the oxide layer. The different 

conductivities of alkaline electrolytic systems impacted on the breakdown voltages due to an 

increased gas formation at the anode surface and a consequently reduced surface area. These 

phenomena affected the layer thicknesses, which were lowered in comparison to the acidic 

electrolytes. Significant differences in the oxide surface structures were observed between 

phosphate-containing (PO4
3-) solutions, which produced round pore structures, and solutions 

with hydroxide anions (OH-), which produced linear pore structures. Electrolytic systems with 

sulfuric acid (H2SO4) produced a novel stacked structure, which resulted in an increased 

surface area due to more distributed small pores inside the layer structure. The process of 

plasma electrolytic oxidation allows the properties of TiO2 surfaces to be adjusted in any 

direction, such as with regard to pore size and layer thickness as well as the adjustment of the 

ratio of the crystalline components anatase and rutile. 

Inside the oxide layer of all PEO-samples, high crystalline fractions of anatase and rutile were 

detected using x-ray diffraction, which increased markedly with an increase in the 

conductivity or the oxidizing capacity of the electrolyte and the applied voltage. Very high 

levels of crystalline rutile phases can be seen with a treatment in highly conductive H2SO4 

containing electrolytes. Compared to the strongly photocatalytic active reference material 

P25, a ratio of anatase to rutile of almost 3 : 1 could be established on some PEO-surfaces. 

PEO-films with a predominantly crystalline anatase content and a high layer thickness, as 

well as layers with a high rutile content of 2 : 1 or 1 : 2 and a lower layer thickness showed 

the highest photocatalytic activity. In these cases, the contained rutile phases provided an 

increase in photocatalytic activity. Similarly, the determination of a direct band gap of the 

PEO-layers suggested an increased efficiency of the photocatalytic activity in a comparison 

with conventionally used layers and coatings. 
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The investigations into the modification of titanium dioxide surfaces, showed the possibility 

of adjusting porosity and layer thickness, such as the crystallinity of PEO-layers. PEO-

coatings can help to strengthen the cell adhesion and the durability of implants in the human 

body, due to a better attachment of cell proteins and filaments at the characteristic PEO pore 

structure. The adjustment of different pore sizes using the plasma electrolytic oxidation can 

help to create ideal conditions for different cell types. Cells prefer to attach to structures 

similarly to their own size, because of an optimal anchoring to the structure. This adjustment 

can be provided by the PEO-process. 

The results of the oxide layer structure demonstrate an ability to further develop the 

theoretical PEO-layer growth and to forecast the influences of the plasma discharges on the 

PEO-structure. Producing of highly crystalline oxide layers makes the process of plasma 

evolution and its actions clearer. The high energies of the plasma discharges form high 

crystalline parts at the top of the oxide layer. Further crystalline regions can be recognized at 

the bottom of the oxide layer and in the titanium substrate by the pore structures extending to 

the substrate. The high energy input of the plasma discharges thus affects the bottom of the 

oxide layer and also forms crystallites in these regions of the titanium substrate. The high 

temperatures of the plasma discharges result in a melting and evaporating of the TiO2, and the 

gaseous phases cool down rapidly around the pore structures. This results in amorphous TiO2 

phases around the pore structures, contrary to the expected high crystallinity due to the plasma 

influence. 

Through the development of the crystalline TiO2 surfaces, it was possible to detect the 

photocatalytic activity of these structures and predict a high efficiency of such surfaces in the 

catalytic domain. The formation of the highly structured TiO2 surfaces also allows a transfer 

to polymeric substrates. The detection of an improvement in biocompatibility and suitability 

as an implant material compared to pure polymer substrates could be proven. The production 

of the different surface structures and compositions show a not yet fully exploited potential of 

these structures to further optimize the possibilities of applications, and especially regarding 

the photocatalytic activity of PEO-coatings. 
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6. OUTLOOK 
 
The successful adjustment of special PEO TiO2 surface properties, such as a high 

crystallinity of the TiO2 phases and noticeable photocatalytic behavior, as well as the slight 

improvement of biocompatibility of polymeric substrates, by applying of PEO-coatings has 

been demonstrated in this work. In different electrolytic systems, it is possible to produce 

various structures and oxide layer thicknesses. It could also be detected an effect of the 

electrolyte components on the breakdown voltages. However, for a better understanding other 

influencing factors, in a simple alkaline or acidic electrolyte, on the breakdown voltage and 

structure of the PEO-layers, should be investigated. The generation of defined anatase and 

rutile amounts in the oxide layers with the electrolytes containing H2SO4 (E1, E3) and 

NaOH/Na-tartrate (E5) seems to be most efficient, and this method could lead to a controlled 

crystallinity [93]. These results opened the way for the complex possibility of creating highly 

crystalline and porous TiO2 structures. For this purpose, further studies on the influence of the 

electrolyte and its composition on the formation of the crystalline phases should be done. For 

PEO-structures, other electrolytic systems with a different composition and conductivity will 

be also interesting for new TiO2 phase compositions. The produced PEO-layers in this study 

showed a preferred orientation of the crystalline oxide phases and the titanium substrate. This 

effect could be further examined relating to the used titanium substrate and its main crystal 

growth direction. Investigations could be determined on polished or molded samples where 

these factors can be neglected. 

Another important investigation could focus on the surface structure as well as the pore sizes 

and shapes. The increased pore size or number, such as through a changed shape, could have 

an influence on the surface area, which can be increased with more pores inside the surface 

structure. All produced PEO-structures showed a photocatalytic activity for all used 

electrolytic systems [196]. The surface area, such as the composition of crystalline phases and 

the crystallite sizes, can have an influence on the photocatalytic activity of PEO-surfaces. One 

of the most important parameters for photocatalytic activity is the layer thickness, which also 

increases the specific surface area. The layer thicknesses, in combination with the 

composition of the crystalline phases, should be examined in greater detail for an example 

electrolytic system. For this purpose, several samples should be analyzed in a selected 

electrolyte with different layer thicknesses and crystallinities in order to determine the 

influence of these parameters on the photocatalytic activity. All parameters should be 

investigated separately to clarify the influence on the photocatalytic properties more clearly. 
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Furthermore, it might be interesting to investigate the mechanism of photocatalysis on PEO-

layers compared to powder samples or TiO2 composites, which can make the effectiveness of 

the layers obvious. Similarly, a more useful system for investigating photocatalytic activity 

should be used. For this, some preliminary experiments could be performed with citric acid 

and oxalic acid based on some literature data [227–230] as an alternative to the used dyes. 

With the application of a PEO-coating to polymeric substrates, a slight improvement in cell 

adhesion could be shown. For further investigations, an additional development of the used 

vertical-flow-assay should be done. The different pore sizes of the PEO-layers could also 

have an influence on the cell adhesion, for which a systematic examination of small and large 

pores in connection with the cell size should be considered. Some preliminary experiments 

were carried out with the help of a selected electrolyte [218]. Likewise, an additional use of 

PEO-layers in medicine and biology of absorption capacities and storing functions could be 

conceivable. 

The extensive investigations on the structure of PEO-layers using TEM and EBSD methods 

provided a broader understanding of the formation PEO oxide layers. However, subsequent 

investigations into the influence of the plasma discharges and their species on the PEO-layers 

and their crystalline constituents should be made. Thermal imaging cameras could record the 

nature and temperature outputs to the oxide layers of the discharges during the process, which 

could make temperature gradients during layer growth visible. 

For a far-reaching investigation, a Pair Distribution Function (PDF) calculation of the PEO-

layers is conceivable. With this calculation, the individual titanium dioxide particles within 

the oxide layers can be simulated and a spatial packing of the TiO2 phases can be decrypted. 

A detailed investigation into the TiO2 layers and the whole structure would lead to the 

creation of a further model of the PEO-process and the impact of the plasma discharge, which 

would create a better understanding of the PEO coatings. 
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