
Analysis of Summatory Functions of Regular
Sequences: Transducer and Pascal’s Rhombus

Clemens Heuberger
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020
Klagenfurt am Wörthersee, Austria
clemens.heuberger@aau.at

https://orcid.org/0000-0003-0082-7334

Daniel Krenn
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020
Klagenfurt am Wörthersee, Austria
math@danielkrenn.at

https://orcid.org/0000-0001-8076-8535

Helmut Prodinger
Department of Mathematical Sciences, Stellenbosch University, 7602 Stellenbosch, South Africa
hproding@sun.ac.za

https://orcid.org/0000-0002-0009-8015

Abstract
The summatory function of a q-regular sequence in the sense of Allouche and Shallit is analysed
asymptotically. The result is a sum of periodic fluctuations multiplied by a scaling factor. Each
summand corresponds to an eigenvalues of absolute value larger than the joint spectral radius of
the matrices of a linear representation of the sequence. The Fourier coefficients of the fluctuations
are expressed in terms of residues of the corresponding Dirichlet generating function. A known
pseudo Tauberian argument is extended in order to overcome convergence problems in Mellin–
Perron summation.

Two examples are discussed in more detail: The case of sequences defined as the sum of
outputs written by a transducer when reading a q-ary expansion of the input and the number of
odd entries in the rows of Pascal’s rhombus.
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27:2 Analysis of Summatory Functions of Regular Sequences

1 Introduction

In this paper, we study the asymptotic behaviour of the summatory function of q-regular
sequences.1 Regular sequences have been introduced by Allouche and Shallit [2] (see also
[3, Chapter 16]); these are sequences which are intimately related to the q-ary expansion
of their arguments. Many special cases have been investigated in the literature; this is also
due to their relation to divide-and-conquer algorithms. Our goal is to provide a single result
decomposing the summatory function into periodic fluctuations multiplied by some scaling
functions and to provide the Fourier coefficients of these periodic fluctuations.

Note that it is well-known that the summatory function of a q-regular sequence is itself
q-regular. (This is an immediate consequence of [2, Theorem 3.1].) Similarly, the sequence of
differences of a q-regular sequence is q-regular. Therefore, we might also start to analyse a
regular sequence by considering it to be the summatory function of its sequence of differences.
However, when modelling a quantity by a regular sequences, its asymptotic behaviour is
often not smooth, but the asymptotic behaviour of its summatory functions is. Moreover, we
will see throughout this work that from a technical perspective, considering partial sums
is appropriate. Therefore, we adopt this point of view of summatory functions of q-regular
sequences in this paper. This also enlightens us about the expectation of a random element
of the sequence (with respect to uniform distribution on the non-negative integers smaller
than a certain N).

In the remaining paper, we first recall the definition of q-regular sequences in Section 1.1,
then formulate a somewhat simplified version of our main result in Section 1.2. In Section 1.3,
we give a heuristic non-rigorous argument to explain why the result is expected. We outline
the relation to previous work in Section 1.4. We give two examples in Sections 2 and 3.
In principle, these examples are straight-forward applications of the results, but still, we
have to reformulate the relevant questions in terms of a q-regular sequence and will then
provide shortcuts for the computation of the Fourier series. The first example is generic
and deals with sequences defined as the sum of outputs of transducer automata; the second
example—which motivated us to conduct this study at this point—is a concrete problem
counting the number of odd entries in Pascal’s rhombus.

The full formulation of our results is given in the appendix; their proofs are given in the
appendix of the arXiv version [17] of this extended abstract.

1.1 q-Regular Sequences
We start by giving a definition of q-regular sequences, see Allouche and Shallit [2]. Let q ≥ 2
be a fixed integer and (x(n))n≥0 be a sequence.

Then (x(n))n≥0 is said to be (C, q)-regular (briefly: q-regular or simply regular) if the
C-vector space generated by its q-kernel{(

x(qjn+ r)
)
n≥0 : integers j ≥ 0, 0 ≤ r < qj

}
has finite dimension. In other words, (x(n))n≥0 is q-regular if there is an integer D and
sequences (x1(n))n≥0, . . . , (xD(n))n≥0 such that for every j ≥ 0 and 0 ≤ r < qj there exist
integers c1, . . . , cD such that

x(qjn+ r) = c1x1(n) + · · ·+ cDxD(n) for all n ≥ 0.

1 In the standard literature [2, 3] these sequences are called k-regular sequences (instead of q-regular
sequences).
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By Allouche and Shallit [2, Theorem 2.2], (x(n))n≥0 is q-regular if and only if there exists
a vector valued sequence (v(n))n≥0 whose first component coincides with (x(n))n≥0 and
there exist square matrices A0, . . . , Aq−1 ∈ Cd×d such that

v(qn+ r) = Arv(n) for 0 ≤ r < q, n ≥ 0. (1.1)

This is called a q-linear representation of x(n).
The best-known example for a 2-regular function is the binary sum-of-digits function.

I Example 1. For n ≥ 0, let x(n) = s(n) be the binary sum-of-digits function. We clearly
have

x(2n) = x(n),
x(2n+ 1) = x(n) + 1

(1.2)

for n ≥ 0.
Indeed, we have

x(2jn+ r) = x(n) + x(r) · 1

for integers j ≥ 0, 0 ≤ r < 2j and n ≥ 0; i.e., the complex vector space generated by the
2-kernel is generated by (x(n))n≥0 and the constant sequence (1)n≥0.

Alternatively, we set v(n) = (x(n), 1)> and have

v(2n) =
(
x(n)

1

)
=
(

1 0
0 1

)
v(n),

v(2n+ 1) =
(
x(n) + 1

1

)
=
(

1 1
0 1

)
v(n)

for n ≥ 0. Thus (1.1) holds with

A0 =
(

1 0
0 1

)
, A1 =

(
1 1
0 1

)
.

We defer the discussion of other examples, both generic such as sequences defined by
transducer automata as well as a specific example involving the number of odd entries in
Pascal’s rhombus to Sections 2 and 3.

At this point, we note that a linear representation (1.1) immediately leads to an explicit
expression for x(n) by induction.

I Remark. Let r`−1 . . . r0 be the q-ary digit expansion2 of n. Then

x(n) = e1Ar0 · · ·Ar`−1v(0)

where e1 =
(
1 0 . . . 0

)
.

2 Whenever we write that r`−1 . . . r0 is the q-ary digit expansion of n, we mean that rj ∈ {0, . . . , q − 1}
for 0 ≤ j < `, r`−1 6= 0 and n =

∑`−1
j=0 rjq

j . In particular, the q-ary expansion of zero is the empty
word.

AofA 2018



27:4 Analysis of Summatory Functions of Regular Sequences

1.2 Main Result
We are interested in the asymptotic behaviour of the summatory function X(N) =∑

0≤n<N x(n).
At this point, we give a simplified version of our results. We choose any vector norm

‖ · ‖ on Cd and its induced matrix norm. We set C :=
∑q−1
r=0 Ar. We choose R > 0 such

that ‖Ar1 · · ·Ar`‖ = O(R`) holds for all ` ≥ 0 and 0 ≤ r1, . . . , r` < q. In other words, R
is an upper bound for the joint spectral radius of A1, . . . , Aq−1. The spectrum of C, i.e.,
the set of eigenvalues of C, is denoted by σ(C). For λ ∈ C, let m(λ) denote the size of the
largest Jordan block of C associated with λ; in particular, m(λ) = 0 if λ /∈ σ(C). Finally, we
consider the Dirichlet series3

X (s) =
∑
n≥1

n−sx(n), V(s) =
∑
n≥1

n−sv(n)

where v(n) is the vector valued sequence defined in (1.1). Of course, X (s) is the first
component of V(s). The principal value of the complex logarithm is denoted by log. The
fractional part of a real number z is denoted by {z} := z − bzc.

I Theorem 2. With the notations above, we have

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk({logq N})

+ O
(
N logq R(logN)max{m(λ) : |λ|=R}) (1.3)

for suitable 1-periodic continuous functions Φλk. If there are no eigenvalues λ ∈ σ(C) with
|λ| ≤ R, the O-term can be omitted.

For |λ| > R and 0 ≤ k < m(λ), the function Φλk is Hölder continuous with any exponent
smaller than logq(|λ|/R).

The Dirichlet series V(s) converges absolutely and uniformly on compact subsets of the
half plane <s > logq R+ 1 and can be continued to a meromorphic function on the half plane
<s > logq R. It satisfies the functional equation

(I − q−sC)V(s) =
q−1∑
n=1

n−sv(n) + q−s
q−1∑
r=0

Ar
∑
k≥1

(
−s
k

)(r
q

)k
V(s+ k) (1.4)

for <s > logq R. The right side converges absolutely and uniformly on compact subsets of
<s > logq R. In particular, V(s) can only have poles where qs ∈ σ(C).

For λ ∈ σ(C) with |λ| > max{R, 1/q}, the Fourier series

Φλk(u) =
∑
`∈Z

ϕλk` exp(2`πiu)

converges pointwise for u ∈ R where

ϕλk` = (log q)k

k! Res
((

x(0) + X (s)
)(
s− logq λ− 2`πi

log q
)k

s
, s = logq λ+ 2`πi

log q

)
(1.5)

for ` ∈ Z, 0 ≤ k < m(λ).

3 Note that the summatory function X(N) contains the summand x(0) but the Dirichlet series cannot.
This is because the choice of including x(0) into X(N) will lead to more consistent results.
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This theorem is proved in the arXiv version [17, Appendix G] of this extended abstract.
Note that we write Φλk({logq N}) to optically emphasise the 1-periodicity; technically, we
have Φλk({logq N}) = Φλk(logq N). Note that the arguments in the proof could be used to
meromophically continue the Dirichlet series to the complex plane, but we do not need this
result for our purposes. See [1] for the corresponding argument for automatic sequences.

We come back to the binary sum of digits.

I Example 3 (Continuation of Example 1). We have C = A0 + A1 =
(

2 1
0 2
)
. As A0 is the

identity matrix, any product Ar1 · · ·Ar` has the shape Ak1 =
(

1 k
0 1
)
where k is the number of

factors A1 in the product. This implies that R with ‖Ar1 · · ·Ar`‖ = O(R`) may be chosen
to be any number greater than 1. As C is a Jordan block itself, we simply read off that the
only eigenvalue of C is λ = 2 with m(2) = 2.

Thus Theorem 2 yields

X(N) = N(log2 N) Φ21({log2 N}) +N Φ20({log2 N})

for suitable 1-periodic continuous functions Φ21 and Φ20.
In principle, we can now use the functional equation (1.4). Due to the fact that one

component of v is the constant sequence where everything is known, it is more efficient to
use an ad-hoc calculation for X by splitting the sum according to the parity of the index
and using the recurrence relation (1.2) for x(n). We obtain

X (s) =
∑
n≥1

x(2n)
(2n)s +

∑
n≥0

x(2n+ 1)
(2n+ 1)s

= 2−s
∑
n≥1

x(n)
ns

+
∑
n≥0

x(n)
(2n+ 1)s +

∑
n≥0

1
(2n+ 1)s

= 2−sX (s) + x(0)
1s +

∑
n≥1

x(n)
(2n)s +

∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)

+ 2−s
∑
n≥0

1(
n+ 1

2
)s

= 21−sX (s) + 2−s ζ
(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)

where the Hurwitz zeta function ζ(s, α) :=
∑
n+α>0(n+ α)−s has been used. We get

(1− 21−s)X (s) = 2−s ζ
(
s, 1

2
)

+
∑
n≥1

x(n)
( 1

(2n+ 1)s −
1

(2n)s
)
. (1.6)

As the sum of digits is bounded by the length of the expansion, we have x(n) = O(logn).
By combining this estimate with

(2n+ 1)−s − (2n)−s =
∫ 2n+1

2n

( d
dt t
−s
)

dt =
∫ 2n+1

2n
(−s)t−s−1 dt = O(|s|n−<s−1),

we see that the sum in (1.6) converges absolutely for <s > 0 and is therefore analytic for
<s > 0.

Therefore, the right side of (1.6) is a meromorphic function for <s > 0 whose only pole
is simple and at s = 1 which originates from ζ

(
s, 1

2
)
. Therefore, X (s) is a meromorphic

function for <s > 0 with a double pole at s = 1 and simple poles at 1 + 2`πi
log 2 for ` ∈ Z \ {0}.

AofA 2018



27:6 Analysis of Summatory Functions of Regular Sequences

Thus

Φ21(u) = ϕ210 = (log 2) Res
(X (s)(s− 1)

s
, s = 1

)
= (log 2) Res

(2−s(s− 1)
1− 21−s ζ

(
s, 1

2
)
, s = 1

)
= 1

2

(1.7)

by (1.5) and (1.6).
We conclude that

X(N) = 1
2N log2 N +N Φ20({log2 N}).

We refrain from computing the Fourier coefficients of Φ20(u) explicitly at this point; numeric-
ally, they could be computed from (1.6). However, an explicit expression can be obtained by
rewriting the residues of X (s) in terms of shifted residues of

∑
n≥1
(
x(n)− x(n− 1)

)
n−s and

computing the latter explicitly; see [18, Proof of Corollary 2.5]. This yields the well-known
result by Delange [6].

It will also turn out that (1.7) being a constant function is an immediate consequence of
the fact that

(
0 1

)
is a left eigenvector of both A0 and A1 associated with the eigenvalue 1.

1.3 Heuristic Approach: Mellin–Perron Summation
The purpose of this section is to explain why the formula (1.5) for the Fourier coefficients
is expected. The approach here is heuristic and non-rigorous because we do not have the
required growth estimates. See also [7].

By the Mellin–Perron summation formula of order 0 (see, for example, [12, Theorem 2.1]),
we have∑

1≤n<N
x(n) + x(N)

2 = 1
2πi

∫ max{logq R+2,1}+i∞

max{logq R+2,1}−i∞
X (s)N

s ds
s

.

By Remark 1.1 and the definition of R, we have x(N) = O(Rlogq N ) = O(N logq R). Adding
the summand x(0) to match our definition of X(N) amounts to adding O(1). Shifting the
line of integration to the left—we have no analytic justification that this is allowed—and
using the location of the poles of X (s) claimed in Theorem 2 yield

X(N) =
∑

λ∈σ(C)
|λ|>R

∑
`∈Z

Res
(X (s)Ns

s
, s = logq λ+ 2`πi

log q

)

+ 1
2πi

∫ logq R+ε+i∞

logq R+ε−i∞
X (s)N

s ds
s

+ O(N logq R + 1)

for some ε > 0. Expanding Ns as

Ns =
∑
k≥0

(logN)k

k! N logq λ+ 2`πi
log q

(
s− logq λ−

2`πi
log q

)k
and assuming that the remainder integral converges absolutely yields

X(N) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mλ`

(logq N)k
∑
`∈Z

ϕλk` exp
(
2`πi logq N

)
+ O(N logq R+ε + 1)
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where mλ` denotes the order of the pole of X (s)/s at logq λ+ 2`πi
log q and ϕλk` is as in (1.5).

Summarising, this heuristic approach explains most of the formulæ in Theorem 2. Some
details (exact error term and order of the poles) are not explained by this approach. A result
“repairing” the zeroth order Mellin–Perron formula is known as Landau’s theorem, see [4,
§ 9]. It is not applicable to our situation due to multiple poles along vertical lines which then
yield the periodic fluctuations. Instead, we prove a theorem which provides the required
justification (not by estimating the relevant quantities, but by reducing the problem to higher
order Mellin–Perron summation). The essential assumption is that the summatory function
can be decomposed into fluctuations multiplied by some growth factors such as in (1.3).

1.4 Relation to Previous Work
Sequences defined as the output sum of transducer automata in the sense of [18] are a special
case of regular sequences; these are a generalisation of many previously studied concepts. In
that case, much more is known (variance, limiting distribution, higher dimensional input).
See [18] for references and results. A more detailed comparison can be found in Section 2.
Divide and Conquer recurrences (see [19] and [8]) can also be seen as special cases of regular
sequences.

The asymptotics of the summatory function of specific examples of regular sequences has
been studied in [14], [15], [11].

Dumas [9, 10] finally proved the first part of Theorem 2. We re-prove it here in a self-
contained way because we need more explicit results than obtained by Dumas (e.g., we need
explicit expressions for the fluctuations) for proving Hölder continuity and to explicitly get the
precise structure depending on the eigenspaces. Notice that Dumas’ paper introduces linear
representations as we do in (1.1), but then the order of factors is reversed in his equivalent
of Remark 1.1, which means that some transpositions have to be silently introduced.

The first version of our pseudo-Tauberian argument was provided in [12]: there, no
logarithmic factors were allowed and the growth conditions on the Dirichlet series were
stronger.

2 Sequences Defined by Transducer Automata

Let q ≥ 2 be a positive integer. We consider a complete deterministic subsequential transducer
T with input alphabet {0, . . . , q − 1} and output alphabet C, see [5, Chapter 1] and [18].
Recall that a transducer is said to be deterministic and complete if for every state and every
digit of the input alphabet, there is exactly one transition starting in this state with this
input label. A subsequential transducer has a final output label for every state.

For a non-negative integer n, let T (n) be the sum of the output labels (including the final
output label) encountered when the transducer reads the q-ary expansion of n. This concept
has been thoroughly studied in [18]: there, T (n) is considered as a random variable defined
on the probability space {0, . . . , N − 1} equipped with uniform distribution. The expectation
in this model corresponds (up to a factor of N) to our summatory function

∑
0≤n<N T (n).

We remark that in [18], the variance and limiting distribution of the random variable T (n)
have also been investigated. Most of the results there are also valid for higher dimensional
input.

The purpose of this section is to show that T (n) is a q-regular sequence and to see that
our results here coincide with the corresponding results in [18]. We note that the binary sum
of digits considered in Example 1 is the special case of q = 2 and the transducer consisting
of a single state which implements the identity map. For additional special cases of this

AofA 2018



27:8 Analysis of Summatory Functions of Regular Sequences

concept, see [18]. Note that our result here for the summatory function contains (fluctuating)
terms for all eigenvalues λ of the adjacency matrix of the underlying digraph with 1 < |λ|
whereas in [18] only contributions of those eigenvalues λ with |λ| = q are available, all other
contributions are absorbed by the error term there.

By a component of a digraph we always mean a strongly connected component. We call
a component final if there are no arcs leaving the component. The period of a component is
the greatest common divisor of its cycle lengths. The final period of a digraph is the least
common multiple of the periods of its final components.

We consider the states of T to be numbered by {1, . . . , d} for some positive integer
d ≥ 1 such that the initial state is state 1. We set Tj(n) to be the sum of the output labels
(including the final output label) encountered when the transducer reads the q-ary expansion
of n when starting in state j. By construction, we have T (n) = T1(n) and Tj(0) is the final
output label of state j. We set y(n) = (T1(n), . . . , Td(n)). For 0 ≤ r < q, we define the
(d× d)-{0, 1}-matrix Pr in such a way that there is a one in row j, column k if and only if
there is a transition from state j to state k with input label r. The vector or is defined by
setting its jth coordinate to be the output label of the transition from state j with input
label r.

For n0 ≥ 1, we set

X (s) =
∑
n≥1

n−sT (n), Yn0(s) =
∑
n≥n0

n−sy(n), ζn0(s, α) =
∑
n≥n0

(n+ α)−s.

The last Dirichlet series is a truncated version of the Hurwitz zeta function.

I Corollary 4. Let T be a transducer as described at the beginning of this section. Let M
and p be the adjacency matrix and the final period of the underlying digraph, respectively. For
λ ∈ C let m(λ) be the size of the largest Jordan block associated with the eigenvalue λ of M .

Then (T (n))n≥0 is a q-regular sequence and∑
0≤n<N

T (n) = eTN logq N +NΦ(logq N)

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk(logq N)

+O
(
(logN)max{m(λ) : |λ|=1})

(2.1)

for some continuous p-periodic function Φ, some continuous 1-periodic functions Φλk for
λ ∈ σ(M) with 1 < |λ| < q and 0 ≤ k < m(λ) and some constant eT .

Furthermore,

Φ(u) =
∑
`∈Z

ϕ` exp
(2`πi

p
u
)

with

ϕ` = Res
(X (s)

s
, s = 1 + 2`πi

p log q

)
for ` ∈ Z. The Fourier series expansion of Φλk for λ ∈ σ(M) with 1 < |λ| < q is given in
Theorem 2.
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The Dirichlet series Yn0(s) satisfies the functional equation

(I − q−sM)Yn0(s) =
∑

n0≤n<qn0

n−sy(n) + q−s
∑

0≤r<q
ζn0

(
s, rq
)
or

+ q−s
∑

0≤r<q
Pr
∑
k≥1

(
−s
k

)(r
q

)k
Yn0(s+ k).

Sketch of the Proof. The proof is split into several steps.

Recursive Description. We set v(n) =
(
T1(n), . . . , Td(n), 1

)>. For 1 ≤ j ≤ d and 0 ≤ r < q,
we define t(j, r) and o(j, r) to be the target state and output label of the unique transition
from state j with input label r, respectively. Therefore,

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) (2.2)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q with qn+ r > 0.
For 0 ≤ r < q, define Ar = (arjk)1≤j, k≤d+1 by

arjk =


[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[k = d+ 1] if j = d+ 1

where we use Iverson’s convention [expr ] = 1 if expr is true and 0 otherwise; see Graham,
Knuth, and Patashnik [16]. Then (2.2) is equivalent to

v(qn+ r) = Arv(n)

for n ≥ 0, 0 ≤ r < q with qn+ r > 0.

q-Regular Sequence. If we insist on a proper formulation as a regular sequence, we rewrite
(2.2) to

Tj(qn+ r) = Tt(j,r)(n) + o(j, r) + [r = 0][n = 0](Tj(0)− Tt(j,0)(0)− o(j, 0)) (2.3)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q. Setting ṽ(n) = (T1(n), . . . , Td(n), 1, [n = 0]) and
Ãr = (ãrjk)1≤j, k≤d+2 with

ãrjk =



[t(j, r) = k] if j, k ≤ d,
o(j, r) if j ≤ d, k = d+ 1,
[r = 0](Tj(0)− Tt(j,0)(0)− o(j, 0)) if j ≤ d, k = d+ 2,
[k = d+ 1] if j = d+ 1,
[k = d+ 2][r = 0] if j = d+ 2,

the system (2.3) is equivalent to

ṽ(qn+ r) = Ãrṽ(n)

for n ≥ 0, 0 ≤ r < q.
The rest of the proof (relating the eigenvalues of M with those of C) can be found in the

arXiv version [17, Appendix H] of this extended abstract. J
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Figure 3.1 Pascal’s rhombus modulo 2.

3 Pascal’s Rhombus

We consider Pascal’s rhombus R which is, for integers i ≥ 0 and j, the array with entries
ri,j , where

r0,j = 0 all j,
r1,0 = 1 and r1,j = 0 for all j 6= 0,
and

ri,j = ri−1,j−1 + ri−1,j + ri−1,j+1 + ri−2,j

for i ≥ 1.

Let X be equal to R but with entries takes modulo 2; see also Figure 3.1. We partition X

into the four sub-arrays
E consisting only of the rows and columns of X with even indices, i.e., the entries r2i,2j ,
Y consisting only of the rows with odd indices and columns with even indices, i.e., the
entries r2i−1,2j ,
Z consisting only of the rows with even indices and columns with odd indices, i.e., the
entries r2i,2j−1, and
N consisting only of the rows and columns with odd indices, i.e., the entries r2i−1,2j−1.

Note that E = X and N = 0; see [13].

3.1 Recurrence Relations and 2-Regular Sequences
Let X(N), Y (N) and Z(N) be the number of ones in the first N rows (starting with row
index 1) of X, Y and Z respectively.

Using results by Goldwasser, Klostermeyer, Mays and Trapp [13] leads to recurrence
relations for the backward differences x(n) = X(n)−X(n− 1), y(n) = Y (n)− Y (n− 1) and
z(n) = Z(n)− Z(n− 1), namely

x(2n) = x(n) + z(n), x(2n+ 1) = y(n+ 1), (3.1a)
y(2n) = x(n− 1) + z(n), y(2n+ 1) = x(n+ 1) + z(n), (3.1b)
z(2n) = 2x(n), z(2n+ 1) = 2y(n+ 1) (3.1c)

for n ≥ 1, and x(0) = y(0) = z(0) = 0, x(1) = 1, y(1) = 1 and z(1) = 2. (See the arXiv
version [17, Appendix I.1] of this extended abstract for details.) These x(n), y(n) and z(n)
are the number of ones in the nth row of X, Y and Z respectively.



C. Heuberger, D. Krenn, and H. Prodinger 27:11

Figure 3.2 Fluctuation in the main term of the asymptotic expansion of X(N). The figure shows
Φ(log2 N) (blue) approximated by its trigonometric polynomial of degree 99 as well as X(N)/Nκ

(green).

Let use write our coefficients as the vector

v(n) =
(
x(n), x(n+ 1), y(n+ 1), z(n), z(n+ 1)

)>
. (3.2)

It turns out that the components included into v(n) are sufficient for a self-contained linear
representation of v(n). In particular, it is not necessary to include y(n). By using the
recurrences (3.1), we find that

v(2n) = A0v(n) and v(2n+ 1) = A1v(n)

for all4 n ≥ 0 with the matrices

A0 =


1 0 0 1 0
0 0 1 0 0
0 1 0 1 0
2 0 0 0 0
0 0 2 0 0

 and A1 =


0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 2 0 0
0 2 0 0 0

 ,

and with v(0) = (0, 1, 1, 0, 2)>. Therefore, the sequences x(n), y(n) and z(n) are 2-regular.

3.2 Asymptotics
I Corollary 5. We have

X(N) =
∑

1≤n≤N
x(n) = Nκ Φ({log2 N}) +O(N log2 N) (3.3)

with κ = log2
(
3 +
√

17
)
− 1 = 1.83250638358045 . . . and a 1-periodic function Φ which is

Hölder continuous with any exponent smaller than κ− 1.
Moreover, we can effectively compute the Fourier coefficients of Φ.

We get analogous results for the sequences Y (N) and Z(N) (each with its own periodic
function Φ, but the same exponent κ). The fluctuation Φ of X(N) is visualized in Figure 3.2
and its first few Fourier coefficients are shown in Table 3.1.

At this point, we only prove (3.3) of Corollary 5. We deal with the Fourier coefficients
in the arXiv version [17, Appendix I.2] of this extended abstract. As in the introductory
example of the binary sum-of-digits functions (Example 1), we could get Fourier coefficients by

4 Note that v(0) = A0v(0) and v(1) = A1v(0) are indeed true.
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Table 3.1 Fourier coefficients of Φ (Corollary 5). All stated digits are correct.

` α`
0 0.6911615112341912755021246
1 −0.01079216311240407872950510− 0.0023421761940286789685827i
2 0.00279378637350495172116712− 0.00066736128659728911347756i
3 −0.00020078258323645842522640− 0.0031973663977645462669373i
4 0.00024944678921746747281338− 0.0005912995467076061497650i
5 −0.0003886698612765803447578 + 0.00006723866319930148568431i
6 −0.0006223575988893574655258 + 0.00043217220614939859781542i
7 0.00023034317364181383130476− 0.00058663168772856091427688i
8 0.0005339060804798716172593− 0.0002119380802590974909465i
9 0.0000678898389770175928529− 0.00038307823285486235280185i

10 −0.00019981745997355255061991− 0.00031394569060142799808175i

Theorem 2 and the 2-linear representation of Section 3.1 directly. However, the information
in the vector v(n) (see (3.2)) is redundant with respect to the asymptotic main term as it
contains x(n) and z(n) as well as x(n+ 1) and z(n+ 1); both pairs are asymptotically equal
in the sense of (3.3). Therefore, we head for an only 3-dimensional functional system of
equations for our Dirichlet series of x(n), y(n) and z(n) (instead of a 5-dimensional system).

Proof of (3.3). We use Theorem 2.

Joint Spectral Radius. First we compute the joint spectral radius ρ of A0 and A1. Both
matrices have a maximum absolute row sum equal to 2, thus ρ ≤ 2, and both matrices have 2
as an eigenvalue. Therefore we obtain ρ = 2. Moreover, the finiteness property of the linear
representation is satisfied by considering only products with exactly one matrix factor A0 or
A1.

Thus, we have R = ρ = 2.

Eigenvalues. Next, we compute the spectrum σ(C) of C = A0 + A1. The matrix C has
the eigenvalues λ1 =

(
3 +
√

17
)
/2 = 3.5615528128088 . . ., λ2 = 2, λ3 = −2, λ4 = −1 and

λ5 =
(
3−
√

17
)
/2 = −0.5615528128088 . . . (each with multiplicity one). (Note that λ1 and

λ5 are the zeros of the polynomial U2 − 3U − U .)

Asymptotic Formula. By using Theorem 2, we obtain an asymptotic formula for X(N − 1).
Shifting from N − 1 to N does not change this asymptotic formula, as this shift is absorbed
by the error term O(N log2 N). J

3.3 Dirichlet Series and Meromorphic Continuation
Let n0 ≥ 2 be an integer and define

Xn0(s) =
∑
n≥n0

x(n)
ns

, Yn0(s) =
∑
n≥n0

y(n)
ns

, Zn0(s) =
∑
n≥n0

z(n)
ns

.
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I Lemma 6. Set

C = I −

 2−s 2−s 2−s
21−s 0 21−s

21−s 21−s 0

 .

Then

C

Xn0(s)
Yn0(s)
Zn0(s)

 =

Jn0(s)
Kn0(s)
Ln0(s)

, (3.4)

where

Jn0(s) = 2−s Σ(s,− 1
2 ,Yn0) + IJn0

(s),

IJn0
(s) = − y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

x(n)
ns

,

Kn0(s) = 2−s Σ(s, 1,Xn0) + 2−s Σ(s,− 1
2 ,Xn0) + 2−s Σ(s, 1

2 ,Zn0) + IKn0
(s),

IKn0
(s) = x(n0 − 1)

(2n0)s − x(n0)
(2n0 − 1)s +

∑
n0≤n<2n0

y(n)
ns

,

Ln0(s) = 21−s Σ(s,− 1
2 ,Yn0) + ILn0

(s),

ILn0
(s) = − 2y(n0)

(2n0 − 1)s +
∑

n0≤n<2n0

z(n)
ns

,

with

Σ(s, β,D) =
∑
k≥1

(
−s
k

)
βkD(s+ k)

provides meromorphic continuations of the Dirichlet series Xn0(s), Yn0(s), and Zn0(s) for
<s > κ0 = 1 with the only possible poles at κ+ χ` for ` ∈ Z, all of which are simple poles.

The proof of Lemma 6 can be found in the arXiv version [17, Appendix I] of this extended
abstract. The idea is to rewrite the Dirichlet series corresponding to (3.1a), (3.1b) and (3.1c)
to obtain the functional equation. The poles in the meromorphic continuation come from

∆(s) = detC = 2−3s(22s − 3 · 2s − 2)(2s + 2).

The Fourier coefficients (rest of Corollary 5) can then be computed by applying Theorem 2.
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A.1 Problem Statement
Let q ≥ 2, d ≥ 1 be fixed integers and A0, . . . , Aq−1 ∈ Cd×d. We investigate the sequence
(f(n))n≥0 of d× d matrices such that

f(qn+ r) = Arf(n) for 0 ≤ r < q, 0 ≤ n with qn+ r 6= 0 (A.1)

and f(0) = I.
Let n be an integer with q-ary expansion r`−1 . . . r0. Then it is easily seen that (A.1)

implies that

f(n) = Ar0 . . . Ar`−1 . (A.2)

We are interested in the asymptotic behaviour of F (N) :=
∑

0≤n<N f(n).

A.2 Definitions and Notations
In this section, we give all definitions and notations which are required in order to state the
results.

The following notations are essential:
Let ‖ · ‖ denote a fixed norm on Cd and its induced matrix norm on Cd×d.
We set Br :=

∑
0≤r′<r Ar′ for 0 ≤ r < q and C :=

∑
0≤r<q Ar.

The joint spectral radius of A0, . . . , Aq−1 is denoted by

ρ := inf
`

sup
{
‖Ar1 . . . Ar`‖1/` : r1, . . . , r` ∈ {0, . . . , q − 1}

}
.

If the set of matrices A0, . . . , Aq−1 has the finiteness property, i.e., there is an ` > 0 such
that

ρ = sup
{
‖Ar1 . . . Ar`‖1/` : r1, . . . , r` ∈ {0, . . . , q − 1}

}
,

then we set R = ρ. Otherwise, we choose R > ρ in such a way that there is no eigenvalue
λ of C with ρ < |λ| ≤ R.
The spectrum of C, i.e., the set of eigenvalues of C, is denoted by σ(C).
For a positive integer n0, set

Fn0(s) :=
∑
n≥n0

n−sf(n)

for a complex variable s.
Set χk := 2πik

log q for k ∈ Z.

In the formulation of Theorem 7 and Corollary 8, the following constants are needed
additionally:

Choose a regular matrix T such that TCT−1 =: J is in Jordan form.
Let D be the diagonal matrix whose jth diagonal element is 1 if the jth diagonal element
of J is not equal to 1; otherwise the jth diagonal element of D is 0.
Set C ′ := T−1DJT .
Set K := T−1DT (I − C ′)−1(I −A0).
For a λ ∈ C, let m(λ) be the size of the largest Jordan block associated with λ. In
particular, m(λ) = 0 if λ 6∈ σ(C).
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For m ≥ 0, set

ϑm := 1
m!T

−1(I −D)T (C − I)m−1(I −A0);

here, ϑ0 remains undefined if 1 ∈ σ(C).5
Define ϑ := ϑm(1).

All implicit O-constants depend on q, d, the matrices A0, . . . , Aq−1 (and therefore on ρ)
as well as on R.

A.3 Decomposition into Periodic Fluctuations
Instead of considering F (N), it is certainly enough to consider wF (N) for all generalised
left eigenvectors w of C, e.g., the rows of T . The result for F (N) then follows by taking
appropriate linear combinations.

I Theorem 7. Let w be a generalised left eigenvector of rank m of C corresponding to the
eigenvalue λ.
1. If |λ| < R, then

wF (N) = wK + (logq N)mwϑm +O(N logq R).

2. If |λ| = R, then

wF (N) = wK + (logq N)mwϑm +O(N logq R(logN)m).

3. If |λ| > R, then there are 1-periodic continuous functions Φk : R→ Cd, 0 ≤ k < m, such
that

wF (N) = wK + (logq N)mwϑm +N logq λ
∑

0≤k<m
(logq N)kΦk({logq N})

for N ≥ qm−1. The function Φk is Hölder-continuous with any exponent smaller than
logq|λ|/R.
If, additionally, the left eigenvector w(C − λI)m−1 of C happens to be a left eigenvector
to each matrix A0, . . . , Aq−1 associated with the eigenvalue 1, then

Φm−1(u) = 1
qm−1(m− 1)!w(C − qI)m−1

is constant.
Here, wK = 0 for λ = 1 and wϑm = 0 for λ 6= 1.

Note that in general, the three summands in the theorem have different growths: a constant,
a logarithmic term and a term whose growth depends essentially on the joint spectral radius
and the eigenvalues larger than the joint spectral radius, respectively. The vector w is not
directly visible in front of the third summand; instead, the vectors of its Jordan chain are
part of the function Φk.

Expressing the identity matrix as linear combinations of generalised left eigenvalues and
summing up the contributions of Theorem 7 essentially yields the following corollary.

5 If 1 ∈ σ(C), then the matrix C − I is singular. In that case, ϑ0 will never be used.
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I Corollary 8. With the notations above, we have

F (N) =
∑

λ∈σ(C)
|λ|>ρ

N logq λ
∑

0≤k<m(λ)

(logq N)kΦλk({logq N}) + (logq N)m(1)ϑ+K

+ O
(
N logq R(logN)max{m(λ) : |λ|=R})

for suitable 1-periodic continuous functions Φλk. If 1 is not an eigenvalue of C, then ϑ = 0.
If there are no eigenvalues λ ∈ σ(C) with |λ| ≤ ρ, then the O-term can be omitted.

For |λ| > R, the function Φλk is Hölder continuous with any exponent smaller than
logq(|λ|/R).

A.4 Dirichlet Series
This section gives the required result on the Dirichlet series Fn0 . For theoretical purposes,
it is enough to study F := F1; for numerical purposes, however, convergence improves for
larger values of n0.

I Theorem 9. Let n0 be a positive integer. Then the Dirichlet series Fn0(s) converges
absolutely and uniformly on compact subsets of the half plane <s > logq ρ+ 1, thus is analytic
there.

We have

(I − q−sC)Fn0(s) = Gn0(s) (A.3)

for <s > logq ρ+ 1 with

Gn0(s) =
qn0−1∑
n=n0

n−sf(n) + q−s
q−1∑
r=0

Ar
∑
k≥1

(
−s
k

)(r
q

)k
Fn0(s+ k). (A.4)

The series in (A.4) converge absolutely and uniformly on compact sets for <s > logq ρ. Thus
(A.3) gives a meromorphic continuation of Fn0 to the half plane <s > logq ρ with possible
poles at s = logq λ + χ` for each λ ∈ σ(C) with |λ| > ρ and ` ∈ Z whose pole order is at
most m(λ).

Let δ > 0. For real z, we set

µδ(z) = max{1− (z − logq ρ− δ), 0},

i.e., the linear function on the interval [logq ρ + δ, logq ρ + δ + 1] with µδ(logq ρ + δ) = 1
and µδ(logq ρ+ δ + 1) = 0. Then

Fn0(s) = O
(
|=s|µδ(<s)) (A.5)

holds uniformly for logq ρ+ δ ≤ <s and |qs − λ| ≥ δ for all eigenvalues λ ∈ σ(C). Here, the
implicit O-constant also depends on δ.

I Remark. By the identity theorem for analytic functions, the meromorphic continuation
of Fn0 is unique on the domain given in the theorem. Therefore, the bound (A.5) does
not depend on the particular expression for the meromorphic continuation given in (A.3)
and (A.4).
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A.5 Fourier Coefficients
As discussed in Section 1.3, we would like to apply the zeroth order Mellin–Perron summation
formula but need analytic justification. In the following theorem we prove that whenever
it is known that the result is a periodic fluctuation, the use of zeroth order Mellin–Perron
summation can be justified. In contrast to the remaining paper, this theorem does not
assume that f(n) is a matrix product.

I Theorem 10. Let f(n) be a sequence, let κ0 ∈ R \ {0} and κ ∈ C with <κ > κ0 > −1,
δ > 0, q > 1 be real numbers with δ ≤ π/(log q) and δ < <κ − κ0, and let m be a positive
integer. Moreover, let Φk be Hölder-continuous (with exponent α with <κ − κ0 < α ≤ 1)
1-periodic functions for 0 ≤ k < m such that

F (N) :=
∑

1≤n<N
f(n) =

∑
0≤k<m

Nκ(logq N)kΦk({logq N}) +O(Nκ0) (A.6)

for integers N →∞.
For the Dirichlet series F(s) :=

∑
n≥1 n

−sf(n) assume that
there is some real number σa ≥ <κ such that F(s) converges absolutely for <s > σa;
the Dirichlet series F(s) can be continued to a meromorphic function for <s > κ0 − δ
such that poles can only occur at κ+ χ` for ` ∈ Z and such that these poles have order at
most m;
there is some real number η > 0 such that for κ0 ≤ <s ≤ σa and |s− κ− χ`| ≥ δ for all
` ∈ Z, we have

F(s) = O
(
|=s|η

)
(A.7)

for |=s| → ∞.
All implicit O-constants may depend on f , q, m, κ, κ0, α, δ, σa and η.

Then

Φk(u) =
∑
`∈Z

ϕk` exp(2`πiu)

for u ∈ R where

ϕk` = (log q)k

k! Res
(F(s)(s− κ− χ`)k

s
, s = κ+ χ`

)
(A.8)

for ` ∈ Z and 0 ≤ k < m.
If −1 < κ0 < 0 and κ /∈ 2πi

log qZ, then F(0) = 0.

The theorem is more general than necessary for q-regular sequences because Theorem 9
shows that we could use some 0 < η < 1. However, it might be applicable in other cases, so
we prefer to state it in this more general form.
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