
Permutations in Binary Trees and Split Trees
Michael Albert
Department of Computer Science, Otago University, New Zealand
malbert@cs.otago.ac.nz

https://orcid.org/0000-0002-4587-1104

Cecilia Holmgren
Department of Mathematics, Uppsala University, Uppsala, Sweden
cecilia.holmgren@math.uu.se

https://orcid.org/0000-0003-0717-4671

Tony Johansson
Department of Mathematics, Uppsala University, Uppsala, Sweden
tony.johansson@math.uu.se

Fiona Skerman
Department of Mathematics, Uppsala University, Uppsala, Sweden
fiona.skerman@math.uu.se

https://orcid.org/0000-0003-4141-7059

Abstract
We investigate the number of permutations that occur in random node labellings of trees. This
is a generalisation of the number of subpermutations occuring in a random permutation. It
also generalises some recent results on the number of inversions in randomly labelled trees [3].
We consider complete binary trees as well as random split trees a large class of random trees
of logarithmic height introduced by Devroye [4]. Split trees consist of nodes (bags) which can
contain balls and are generated by a random trickle down process of balls through the nodes.

For complete binary trees we show that asymptotically the cumulants of the number of
occurrences of a fixed permutation in the random node labelling have explicit formulas. Our
other main theorem is to show that for a random split tree with high probability the cumulants
of the number of occurrences are asymptotically an explicit parameter of the split tree. For the
proof of the second theorem we show some results on the number of embeddings of digraphs into
split trees which may be of independent interest.
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1 Introduction and statement of results

Our main results are Theorem 2 on the distribution of the number of appearances of a fixed
permutation in a random labelling of a complete binary tree and Theorem 4 which shows
that for a random split tree with high probability (whp) the same result holds for the number
of appearances of a fixed permutation in a random labelling of the balls of the tree. We
write a complete introduction and statement of results in terms of complete binary trees first
before defining split trees and stating our results for split trees.
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9:2 Permutations in Binary Trees and Split Trees

Complete Binary trees

Let Vn denote the node set of the complete binary tree Tn of height m and n = 2m+1 − 1
nodes. Define a partial ordering on the nodes of the tree by saying that a < b if a is an
ancestor of b. Choose a uniform random labelling of the nodes π : Vn → [n].

We say that nodes a and b form an inversion if a < b and π(a) > π(b). The (random)
number of inversions in random node labellings of fixed trees as well as some random models
of trees were studied in a recent paper ([3]). This paper finds approximate extensions to
some of these results.

The (random) number of inverted triples is R(321, T ) =
∑
u1<u2<u3

1[π(u1) > π(u2) >
π(u3)] where the sum runs over all triples of nodes in T such that u1 is an ancestor of u2 and
u2 an ancestor of u3. In general, we say a permutation σ appears on the |σ|-tuple of vertices
u1, . . . , u|σ| , if u1 < . . . < u|σ| and the induced order on π(u) = (π(u1), . . . , π(u|σ|)) is σ.
Write π(u) ≈ σ to indicate the induced order is the same for example 527 ≈ 312. Define

R(σ, T ) def=
∑

u1<...<u|σ|

1[π(u) ≈ σ],

so in particular R(21, T ) counts the number of inversions in a random labelling of T .
We will generally be concerned with the centralised moments, e.g., E [(R(σ, T )− E [R(σ, T )])r].

Let d(v) denote the depth of v, i.e., the distance from v to the root ρ. For any u1 < . . . < u|σ|
we have P[π(u) = σ] = 1/|σ|! and so it immediately follows that,

E [R(σ, T )] =
∑

u1<...<u|σ|

E [π(u) = σ] = 1
|σ|!

∑
v

(
d(v)
|σ| − 1

)
. (1)

For length two permutations, e.g. inversions, E [R(21, T )] = 1
2 Υ(T ) where Υ(T ) def=

∑
v d(v)

is called the total path length of T . We state our results in terms of a tree parameter Υk
r (T )

which generalises the notion of total path length.
We define Υk

r (T ) which allows us to generalize (1) to higher moments of R(σ, T ). For r
nodes v1, . . . , vr (not necessarily distinct), let c(v1, . . . , vr) be the number of ancestors that
they share c(v1, . . . , vr)

def= |{u ∈ V : u ≤ v1, v2, . . . , vr}| which is also the depth of the least
common ancestor plus one. That is c(v1, . . . , vr) = d(v1 ∨ . . . ∨ vr) + 1 where we write d(v)
for the depth of v and v1 ∨ v2 for the least common ancestor of v1 and v2. The ‘off by one
error’ is because the root is in the set of common ancestors for any subsets of nodes but we
use the convention the root has depth 0. Also define

Υk
r (T ) def=

∑
v1,...,vr

c(v1, . . . , vr)
r∏
i=1

(
d(vi)
k − 2

)
, (2)

where the sum is over all ordered r-tuples of nodes in the tree and with the convention
(
x
0
)

= 1.
For a single node v, d(v) = c(v)− 1, since v itself is counted in c(v). So Υ(T ) = Υ2

1(T )− |V |;
i.e., we recover the usual notion of total path length. The k = 2 case recovers the r-total
common ancestors defined in [3], Υ2

r(T ) =
∑
v1,...,vr

c(v1, . . . , vr).
Indeed the distribution of the number of permutations in a fixed tree has already been

studied in [3]. Let κr = κr(X) denote the r-th cumulant of a random variable X (provided
it exists); thus κ1(X) = E [X] and κ2(X) = Var (X).
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I Theorem 1 (Thm 1 of Cai et al. [3]). Let T be a fixed tree. Let κr = κr(R(21, T )) be the
r-th cumulant of R(21, T ). Then for r ≥ 2,

κr = Br(−1)r

r

(
Υ2
r(T )− |V |

)
where Br denotes the r-th Bernoulli number.

For the case of T a complete binary tree on n vertices we asymptotically recover this
result for large n. Moreover we extend it to cover any fixed permutation σ for complete
binary trees.
I Remark. In essence Theorem 1 of [3] shows the r-th cumulant of the number of inversions
is a constant times Υ2

r(T ). Our main result on fixed trees, Theorem 2 (resp. Theorem 4 on
split trees), shows that for any fixed permutation σ of length k for complete binary trees
(and whp for split trees) the r-th cumulant is a constant times Υk

r (Tn) asymptotically. The
exact constant is defined below and is a little more involved than for inversions but observe it
is a function only of the moment r and the length of k = |σ| together with the first element
σ1 of the permutation σ = σ1 . . . σk. With some work one can show D12,r = Br(−1)r/r and
so Theorem 2 does asymptotically recover Theorem 1 for complete binary trees.

We now state our first main result.

I Theorem 2. Let Tn be the complete binary tree of depth n and fix a permutation σ =
σ1 . . . σk of length k. Let κr = κr(R(σ, Tn)) be the r-th cumulant of R(σ, Tn). Then for
r ≥ 2,

κr = Dσ,rΥk
r (Tn) + o

(
Υk
r (Tn)

)
(3)

where

Dσ,r
def=

r∑
j=0

(−1
k!

)r−j(r
j

) (
j(σ1 − 1)

)
!
(
j(k − σ1 − 1)

)
!(

j(k − 1) + 1
)
!
(
(σ1 − 1)!(k − σ1)!

)j . (4)

This implies the following corollary.

I Corollary 3. Let Tn be the complete binary tree of depth n. For permutations σ of length 3,

V(R(σ, Tn)) =
{

1
45 Υ3

2(Tn)(1 + o(1)) for σ = 123, 132, 312, 321
1

180 Υ3
2(Tn)(1 + o(1)) for σ = 213, 231

and more generally for σ = σ1σ2 . . . σk,

V(R(σ, Tn)) =


1

((k−1)!)2

(
1

2k−1 −
1
k2

)
Υk

2(1 + o(1)) for σ1 ∈ {1, k}(
1

(2k−1)(k−σ1)!(k+σ1−2)! −
1

(k!)2

)
Υk

2(1 + o(1)) .

I Remark. The methods of proof are very different for inversions and general permuta-
tions. In [3], the method takes advantage of a nice independence property of permuta-
tions. For a node u let Iu be the number of inversions involving u as the top node:
Iu = |{w : u < w, π(u) > π(w)}|. Then the {Iu}u are independent random variables and Iu
is distributed as the uniform distribution on {0, . . . , |Tu|}, see Lemma 1 of [3].

Without an obvious similar independence property for general permutations our route
instead uses nice properties on the number of embeddings of small digraphs in both binary
trees and, whp, in split trees. This property allows us to calculate the centralised r-th

AofA 2018



9:4 Permutations in Binary Trees and Split Trees

moment of R(σ, T ) directly from a sum of products of indicator variables as most terms in
the sum are zero or negligible by the embedding property. The centralised r-th moment is
then approximately a function of the j-th cumulants for j ≤ r and we are able to deduce the
r-th cumulant by induction.

We now define a particular notion of embedding small digraphs into a tree which will be
important as discussed in the previous remark.

In the complete binary tree we have a natural partial order, the ancestor relation, where
the root is the ancestor of all other nodes. Any fixed acyclic digraph also induces a partial
order on its vertices where v > u if there is a directed path from v to u. Define [ ~H]Tn to
be the number of embeddings ι of ~H to distinct nodes in Tn such that the partial order of
vertices in ~H is respected by the embedding to nodes in Tn under the ancestor relation.

[ ~H]Tn
def= |{ι : V ( ~H)→ V (Tn) such that if u < v in ~H then ι(u) < ι(v) in Tn}|

Observe the inverse of embedding ι−1 need not respect relations. If u ⊥ v in ~H, i.e. u, v
are incomparable in ~H then we can embed so that ι(u) < ι(v), ι(u) > ι(v) or ι(u) = ι(v)
in Tn. For an example of this take the digraph and denote by P` the rooted path on `
nodes. Notice that in two of the vertices are incomparable but the vertices of the digraph
can be embedded into the nodes of a path which are completely ordered. The counts are
[ ]P4 = 2 and in general [ ]P` = 2

(
`
4
)
.

A particular star-like digraph ~Sk,r will be important. This is the digraph obtained
by taking r directed paths of length k and fusing their source vertices into a single vertex.
Alternatively we can state the theorem in terms of star counts as [~S|σ|,r]Tn = Υ|σ|r (Tn)(1+o(1)).
See the beginning of the proof of the theorem for details.

Split trees

Split trees were first defined in [4] and were introduced to encompass many families of trees
that are frequently used in algorithm analysis, e.g., binary search trees [6], m-ary search
trees [8] and quad trees [5].

The random split tree Tn has parameters b, s, s0, s1,V and n. The integers b, s, s0, s1 are
required to satisfy the inequalities

2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (5)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b
i=1 Vi = 1.

We may now define the random split tree as follows. Consider an infinite b-ary tree U .
The split tree Tn is constructed by distributing n balls (pieces of information) among nodes
of U . For a node u, let nu be the number of balls stored in the subtree rooted at u. Once nu
are all decided, we take Tn to be the largest subtree of U such that nu > 0 for all u ∈ Tn.
Let Vu = (Vu,1, . . . , Vu,b) be the independent copy of V assigned to u. Let u1, . . . , ub be the
child nodes of u. Conditioning on nu and Vu, if nu ≤ s, then nui = 0 for all i; if nu > s, then

(nu1 , . . . , nub) ∼ Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (5). Note
that

∑b
i=1 nui ≤ n (hence the “splitting”). Naturally for the root ρ, nρ = n. Thus the

distribution of (nu,Vu)u∈V (U) is completely defined. For this paper we will also require that
the internal node capacity s0 is at least one so that there are some internal balls to receive
labels.

This next theorem is our other main result.
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Figure 1 An example of a directed acyclic graph ~H with ‘sink’ (green), ‘ancestor’ (blue) and
‘common-ancestor’ (red) nodes indicated by colour. This particular digraph is in G4,7 and it appears
in the seventh moment calculations of R(σ, T ) for |σ| = 4.

I Theorem 4. Fix a permutation σ = σ1 . . . σk of length k. Let Tn be a split tree with split
vector V = (V1, . . . , Vb) and n balls. Let κr = κr(R(σ, Tn)) be the r-th cumulant of R(σ, Tn).
For r ≥ 2 the constant Dσ,r is defined in line (4). Whp the split tree Tn has the following
property.

κr = Dσ,rΥk
r (Tn) + o

(
Υk
r (Tn)

)
.

Our theorem says the following. Generate a random split tree Tn, whp it has the property
that the random number of occurrences of any fixed subpermutation in a random ball
labelling of Tn has variance and higher cumulant moments approximately a constant times a
‘simple’ tree parameter of Tn.

We may contrast this with Theorem 4 of [3]. This theorem states the distribution of
the number of inversions in a random split tree; where the distribution is expressed as the
solution of a system of fixed point equations. It is work in progress to find the distribution
of Υk

r (Tn). This would extend Theorem 4 of [3] about inversions to general permutations.

2 Embeddings of small digraphs into the complete binary tree

Certain classes of digraphs will be important in the proof of Theorem 2, loosely those that
may be obtained by taking r copies of the path ~Pk and iteratively fusing pairs of vertices
together. It will also matter how many embeddings each digraph has into the complete
binary tree. In Proposition 9 we show the counts for most digraphs in such a class are
dwarfed by the counts of a particular digraph in the class. The main work in the proof of
this proposition is to show that the number of embeddings of any digraph ~H, up to a factor
of n, depends only on the numbers of two types of vertices in ~H. We separate this result out
as a lemma, Lemma 5, which we show first before proving the proposition.

A vertex in a directed graph is a sink if it has zero out-degree. For a directed acyclic
graph ~H we define Ai ⊆ V ( ~H) to be the vertices with exactly i descendents in ~H which are
sinks. In particular A0 is the set of sink vertices. We will call vertices in A1 ancestors as
they are ancestors of a single sink and those in Ai for i ≥ 2 common-ancestors as they are
the common ancestor of at least two sinks (see Figure 1). Observe if ~H is a directed forest
then the sinks are the leaves but a sink may have indegree more than one as in the rightmost
sink in Figure 1

AofA 2018



9:6 Permutations in Binary Trees and Split Trees

The next lemma shows that the numbers of sinks and ancestors in ~H determine the
number of ways to map ~H into the complete binary tree Tn on n vertices to within a factor
of lnn.

I Lemma 5. Let ~H be a fixed directed acyclic graph and let Tn be the complete binary tree
of height m with n = 2m+1 − 1 vertices. Then writing |A0| = |A0( ~H)| for the number of sink
(green) vertices and |A1| = |A1( ~H)| for the number of ancestor (blue) vertices

Ω(n|A0|(lnn)|A1|) = [ ~H]Tn = o(n|A0|(lnn)|A1|+1).

Proof of upper bound. The key observation is that for most pairs of nodes in Tn their least
common ancestor is very near the root. Let the nodes at depth d be w1, . . . , w2d . Fix a node
u in the tree. Provided the depth of node u is at least d, i.e. h(u) ≥ d then if c(u, v) ≥ d it
must be that u and v are in the same subtree Twi for some i. If h(u) ≥ d let w(u) be the
node at depth d which is either node u itself or an ancestor of u. Thus∑

u,v

1[c(u, v) ≥ d] ≤
∑
v

1[v ∈ Tw(u))]
∑
u

1[d(u) ≤ d]

≤ 2(m+ 2m−d+1 − 1)(2m+1 − 1)
≤ 22m−d+2+1 +m2m+1 + 22d+2

= n22−d+3 +mn (6)

Fix ε > 0 such that |A2|ε < 1/2. LetB be the set of |A0|-tuples of vertices so that some pair
of them have an ancestor at depth > nε. By (6) the set is B is small: |B| ≤ |A0|2n|A0| · 2−nε .

Given an embedding of A0 into Tn the number of ways to extend an embedding of ~H into
Tn is at most m|A1|+|A2|. This is because each vertex in A1 ∪A2 must be embedded as an
ancestor of the embedding of a vertex in A0 and each vertex in Tn has at most m ancestors.
And in particular, if A0 is embedded to a |A0|-tuple not in B there are at most m|A1|+ε|A2|

ways to extend to an embedding of ~H. Thus

[ ~H]T ≤ n|A0|m|A1|+ε|A2| + n|A0|−εm|A1|+|A2| = o(n|A0|(lnn)|A1|+1),

where the second inequality follows because m = Θ(lnn). J

Proof of lower bound. We restrict attention to embeddings where all common-ancestors are
embedded very near the root of Tn, the sink vertices are embedded to leaves of Tn and the
ancestor vertices are placed on the path between the root of Tn and the leaf in to which their
descendent sink was embedded (see Figure 2). There are sufficiently many such embeddings
to obtain the lower bound. In fact we restrict a little further to make it easy to check all the
embeddings are valid.

By an abuse in notation denote by A2 the union ∪i≥2Ai. As ~H is an acyclic digraph the
directed edges define a partial order on all vertices of ~H and in particular for those in A2.
Thus this relation can be extended to a total order. Fix some total order <∗ on V ( ~H) and
relabel vertices in A2 so that v1 <∗ . . . <∗ v|A2|. Thus we may embed v1 to the root ρ in Tn
and each vi+1 to a child of the node to which vi was embedded and the relation between
vertices in ~H will be preserved by their embedding in Tn; i.e. we may embed A2 to the nodes
on the path from ρ to some u∗ at depth |A2| − 1. Fix such a node u∗ and let T ∗ be the
subtree of Tn from u∗.

Label the sinks A0 = {s1, . . . , s|A0|} and vertices in A1 according to which sink they are
the ancestors of Ai1

def= {v ∈ A1 : v < si}.
We obtain a subcount of [ ~H]Tn by embedding A2 onto the path from ρ to u∗, embedding

A0 to leaves of T ∗ and then for each i in turn embedding vertices in Ai on the path from u∗



M. Albert, C. Holmgren, T. Johansson, and F. Skerman 9:7

u∗

ρ

|A2|

m− |A2|

2m−|A2| leaves

T ∗

Figure 2 Schematic for the lower bound construction in Lemma 5. The colours indicate the
positions in the binary tree to which the common-ancestor (red), ancestor (blue) and sink (green)
vertices are embedded. Recall A2 = A2( ~H) denotes the set of common-ancestor vertices of ~H.

to the embedding of si. There are m− |A2| − 1 vertices on the path from si to u∗ and at
most |A1| of them already have an ancestor vertex embedded onto to them (i.e. from Aj1 for
some j < i). Thus

[ ~H]Tn ≥
(

2m−|A2|

|A0|

)∏
i

(
m− |A2| − |A1| − 1

|Ai1|

)
where the first binomial counts the number of ways to embed A0 and the i-th binomial in
the product counts the ways to embed Ai1. Now because ~H is fixed |A2| = O(1) and the
product over i is at least

(
m−|A2|−1
|A1|

)
so the lower bound follows. J

3 Embeddings of small digraphs into the split trees

In this section we show upper and lower bounds on the number of embeddings of a fixed
digraph ~H, thought of as constant, into a random split tree with n balls. We begin by briefly
listing some results on split trees from the literature that will be useful for us.

For split vector V define µ =
∑
i E [Vi lnVi]. The average depth of a ball is ∼ 1

µ lnn [7][Cor
1.1]. Moreover almost all balls are very close to this depth. Define a ball v to be good if it
has depth

|d(v)− 1
µ

lnn| ≤ ln0.6 n

and then whp n− o(n) of the balls in the split tree are good [2][Thm 1.2]. That whp in a
split tree all good balls have a Θ(n) depth and almost all balls are good is the only result
about split trees required for the proof of the lower bound on [ ~H]Tn in Lemma 8. For the
upper bound we need a bit more.

It is known that the height of a split tree with split vector V is whp (c+ o(1)) lnn for a
(known) constant c; for details see [1][Thm 2]. We write Tu to denote the subtree from bag
(node) u and |Tu| the number of balls in the subtree.

AofA 2018



9:8 Permutations in Binary Trees and Split Trees

I Lemma 6. Fix k. Let U be the set of bags at depth bα ln lnnc for some large enough
constant α = α(k). Then whp

∑
u∈U
|Tu|2 = o

(
n2

(lnn)k

)
.

We omit the proof of the lemma but note that it follows the same steps as Lemma 3.5
of [2].

Similarly for binary trees we show that the number of embeddings of a fixed acyclic
digraph ~H, to a good approximation, depends only on the number of ‘sink’ and ‘ancestor’
vertices in ~H. It is a little trickier to prove the corresponding statement to the upper bound
Lemma 5 in the case of split trees. However, we are rewarded by a tighter bound on the
number of embeddings is determined by the numbers of ‘sink’ and ‘ancestor’ vertices up to
ln lnn factors.

I Lemma 7. Let ~H be a fixed directed acyclic graph and let Tn be a split tree with split
vector V and n balls. Then writing |A0| = |A0( ~H)| for the number of sink (green) vertices,
|A1| = |A1( ~H)| for the number of ancestor (blue) vertices and |A2| = |A2( ~H)| for the number
of common-ancestor (red) vertices whp

[ ~H]Tn = O(n|A0|(lnn)|A1|(ln lnn)|A2|).

Proof. The idea of the proof is to show that any way of embedding A0( ~H) into the tree can
only be extended to an embedding of all the vertices in ~H in a limited number of ways. Note

[ ~H]Tn =
∑

v=v1,...,v|A0|

f(v) (7)

where f(v) is the number of ways to extend an embedding of A0( ~H) to an embedding
V ( ~H)→ V (Tn). Formally label the vertices in A0( ~H) by s1, . . . , s|A0| and define

f(v) def= |{ι : ι(sj) = vj for each j = 1, . . . , |A0| and
ι : V ( ~H)→ V (Tn) such that if u < v in ~H then ι(u) < ι(v) in Tn}|.

We claim first that for any v, whp f(v) = O
(
(lnn)|A1|+|A2|

)
and indeed will later show a

stronger bound holds for most v.
To see this first claim recall that whp the height of a split tree on n balls is Θ(lnn).

In particular the depth of each ball vj is O(lnn) and so vj has O(lnn) balls as ancestors.
Each vertex in A1( ~H) ∪A2( ~H) must be embedded to a ball which is the ancestor of some vj
(and possibly further restricted to balls which are ancestors of some set of vj ’s but we will
not need this). Hence there are at most O(lnn) choices of where to embed each vertex in
A1( ~H) ∪A2( ~H) which finishes the claim.

Similarly to the proof for the case of binary trees we now exploit the fact that in split
trees most pairs of balls have their least common ancestor in a bag very near the root. This
will allow us to define a large set of v for which f(v) is small.

Say a tuple of balls v is inbred if some pair of balls has a common ancestor at depth
greater than L def= bα ln lnnc for some α such that Lemma 6 holds with k = |A2|. Denote the
set of these tuples by I. We claim that whp

|I| ≤ |A0|2n2(lnn)−|A2|. (8)
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Before proving claim (8) let us show that it implies the theorem. If a tuple of balls is
not inbred, v /∈ I, then any ancestor of any pair of balls has depth at most L = O(ln lnn).
Thus whp there are at most O(ln lnn) choices of where to embed each vertex in A2( ~H) when
extending an embedding in which A0( ~H) was embedded to v /∈ I. So for non inbred v,

max
v/∈I

f(v) = O((lnn)|A1|(ln lnn)|A2|).

We are almost finished (modulo the claim). By (9) and recalling there are less than n|A0|

possible tuples of balls we get

[ ~H]Tn =
∑
v∈I

f(v) +
∑
v/∈I

f(v) ≤ |I|O
(
(lnn)|A1|+|A2|

)
+O(n|A0|(lnn)|A1|(ln lnn)|A2|) (9)

and so the claim |I| = O(n|A0|(lnn)−|A2|) does imply the theorem.
It now remains to prove the claim. Let c(v1, v2) be the depth of the bag which is the

least common ancestor of balls v1 and v2. To prove the claim it suffices to show∑
v1,v2

1[c(v1, v2) ≥ L] ≤ n2

(lnn)|A2|
.

Trivially, if c(v1, v2) ≥ L then both v1 and v2 must be at depth at least L. Also notice
if v1 and v2 have their least common ancestor at depth at least L they must have some
common ancestor, u say, at depth exactly L. Let U be the set of bags at depth L. Then

1
[
c(v1, v2) ≥ L

]
= 1

[
v1, v2 ∈ Tu for some u ∈ U

]
and so we may apply Lemma 6 directly∑

v1,v2

1
[
c(v1, v2) ≥ L

]
≤
∑
u

|Tu|2 ≤
n2

(lnn)|A2|

which establishes the claim. J

I Lemma 8. Let ~H be a fixed directed acyclic graph and let Tn be a split tree with split
vector V = {V1, . . . , Vb} and n balls. Then writing |A0| = |A0( ~H)| for the number of sink
(green) vertices and |A1| = |A1( ~H)| for the number of ancestor (blue) vertices whp

[ ~H]Tn = Ω(n|A0|(lnn)|A1|).

Proof. (sketch) We describe a strategy to embed ~H into Tn. The details of the proof are
then to show that whp this strategy can be followed to obtain a valid embedding of ~H and
that there are sufficiently many different such embeddings to achieve the lower bound.

First embed ‘common-ancestor’ vertices along a path to some node u∗ with ñ = Ω(n)
balls. Now consider a split tree with ñ balls and embed ‘ancestor’ and ‘sink’ vertices into that.
Embed ‘sink’ vertices to ‘good’ balls in the tree (i.e. depth very close to the expected depth)
and the ‘ancestor’ vertices to balls which along the path between u∗ and the embedding of
their descendent. See Figure 3.

We embed the common-ancestor vertices, A2( ~H), to the balls in the nodes on the path
between a node, u∗ say, at depth |A2| − 1 and the root, using one ball per node. This is
so far effectively the same as in the binary case. And we will later embed the ‘sink’ and
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9:10 Permutations in Binary Trees and Split Trees

u∗, ñ balls

ρ, n balls

|A2|

1
µ

ln ñ

ln0.6 ñ

ln0.6 ñ

T ∗

Figure 3 Schematic for the construction in Lemma 8. The colours indicate the positions in
the split tree to which the common-ancestor (red), ancestor (blue) and sink (green) vertices are
embedded. Recall A2 = A2( ~H) denotes the set of common-ancestor vertices of ~H.

‘common-ancestor’ vertices to balls in the subtree Tu∗ . We need to confirm there is some
node u∗ at depth L = |A2| − 1 with ñ balls in its subtree. Each node (bag) has capacity at
most s0 or s and at most (bL+1 − 1) nodes, a constant number, at depth less than L, so
n−O(1) balls remaining. These balls are shared between bL, a constant, number of subtrees
Tu. Hence by pigeon-hole principle some vertex u∗ has ñ = Θ(n) balls in its subtree.

Now work in the split tree Tñ. Embed the ‘sink’ vertices to any good balls v1, . . . , v|A0| in
the split trees. There are Θ(ñ|A0|) ways to embed them. Label the ‘sink’ vertices s1, . . . , s|A0|

and Aj1 ⊂ A
j
1( ~H) to be the ‘ancestor’ vertices with sj as their lone descendent. Vertices in

Aj1 can be embedded to balls anywhere between vj and u∗ and so there are Θ((ln ñ)|A
j
1|)

ways to do that for each j. All up there are Ω(ñ|A0|(ln ñ)|A1|) ways to embed A0( ~H)∪A1( ~H)
into balls of Tñ. But now as ñ = Θ(n) we are done. J

4 Star counts

After having proved the required properties of our two classes of trees, binary trees and split
trees, we show these imply the desired results on cumulants of the number of appearances of
a permutation in the node labellings of binary trees, respectively ball labellings in split trees.

Say a sequence of trees Tn with n nodes (resp. balls) is explosive if for any fixed acyclic
digraph ~H

Ω(n|A0|(lnn)|A1|) = [ ~H]Tn = o(n|A0|(lnn)|A1|+1).

Thus Section 2 was devoted to showing binary trees are explosive and Section 3 to
showing split trees are explosive whp. This section proves the cumulant results using only
this explosive property of the tree classes.

Now we introduce some notation in order to state Proposition 9. We use a notion
of subgraph on an ordered set of vertices. For a k-tuple of vertices Vi = (v1

i , . . . , v
k
i )
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Figure 4 The set G′3,2. Labels of the first path V1 = (v1
1 , v

2
1 , v

3
1) indicated by black arrows between

the nodes and respectively brown arrows for labels of the second path V2 = (v1
2 , v

2
2 , v

3
2). Colours

of nodes indicate ‘sink’ (green), ‘ancestor’ (blue) and ‘common-ancestor’ (red) nodes respectively.
These labelled directed acyclic graphs appear in variance calculations of R(σ) for |σ| = 3.

we say ~H|Vi = ~Pk if the subgraph of ~H induced on Vi has precisely the directed edges
v1
i v

2
i , v

2
i v

3
i , . . . , v

k−1
i vki .

The set Gk,r is the set of acyclic digraphs which may be obtained by taking r copies of
the path ~Pk and iteratively fusing pairs of vertices together such that each path is involved
in at least one fusing operation. Likewise labelled ~H ′ in G′k,r are those obtained by fusing
together j labelled paths ~Pk keeping both sets of labels when a pair of vertices are fused.
The set G′4,2 is illustrated in Figure 4.

Formally let Gk,r be the set of directed acyclic graphs ~H such that we can find (non-
disjoint) vertex subsets V1, . . . , Vr where for each i we have ~H|Vi = ~Pk and ∃j 6= i with
Vi ∩ Vj = ∅. (The second condition is to ensure each i-th path is involved in a fusing
operation.) For ~H ∈ Gk,r write ~H ′ for ~H together with a labelling V1, . . . , Vr (note some
vertices have multiple labels). Likewise write G′k,r for the labelled set of graphs.

Denote by ~Sk,j the digraph composed by taking j copies of the path ~Pk and fusing the j
source vertices into a single vertex. Also define S∗k,r = ∪i~Sk,ri where the disjoint union is
over all Sk,ri with

∑
i ri = r and ri ≥ 2. Observe Sk,r ⊂ Gk,r.

I Proposition 9. Fix k, r and let ~H ∈ Gk,r. Suppose Tn is explosive. If ~H /∈ Sk,r then

[ ~H]Tn = o
(

[~Sk,r]Tn
)
.

Proof. First observe that ~Sk,r has r sink vertices, (k − 2)r ancestor vertices and exactly one
common-ancestor vertex. Thus by the explosive property of Tn

[~Sk,r]Tn = Ω(nr(lnn)(k−2)r).

Fix ~H ∈ Gk,r\Sk,r and fix a labelling V1, . . . , Vr on ~H. Again by the explosive property

[ ~H]Tn = o(n|A0( ~H)|(lnn)|A1( ~H)|+1). (10)

Hence if |A0( ~H)| ≤ r − 1 then [ ~H]Tn = o([~Sk,r]) and so we would be done. Thus we
may assume that A0( ~H) = r and it will suffice to show that A1( ~H) < (k − 2)r. Consider
the path labelled V i = (vi1, . . . , vik). We know vik is a sink vertex and not fused with any
other vertex otherwise we would have A0( ~H) < r. If vertex vij is fused with another vertex,
it must be a vertex on a different path to avoid a cycle, and so vij and vij−1, . . . , v

i
1 would
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9:12 Permutations in Binary Trees and Split Trees

become common-ancestors. Thus if vij is fused to another vertex there are at most (k− j− 1)
ancestor vertices in path Vi. Hence if A1( ~H) = (k − 2)r then we must have only fused the
source vertices of each path but this means that ~H ∈ Sk,r and so we are done. J

By exploiting only the explosive property of binary and (whp) of split trees we prove
the moments result for both classes at once. In particular observe that Theorems 2 and 4
are both implied by taking Proposition 10 along with the lemmas proving binary trees are
explosive and split trees are whp explosive.

I Proposition 10. Suppose Tn is explosive. Let κr = κr(R(σ, Tn)) be the r-th cumulant of
R(σ, Tn). Then for r ≥ 2,

κr = Dσ,rΥ|σ|r (Tn) + o(Υ|σ|r (Tn)).

Proof sketch. The proof proceeds by induction on r with r = 2, the variance, as the base
case. The variance calculation is also a simpler version of the calculations for higher r and
so illustrates the key steps we use for the inductive step.

We give a rough idea of these steps. The variance (and higher centralised moments) can
be written as a sum over indicator random variables for a subpermutation occuring on a set
of |σ| nodes. Almost all terms in this sum are zero or negligible. Firstly if the indicators
concern disjoint sets of vertices they are independent and because we calculate centralised
moments these terms drop away. This leaves only terms in the sum in which the nodes of
indicator variables overlap. We group the terms by how the vertices in these sets overlap
and the results about numbers of embeddings then show most groups are negligible.

For the variance only one group is non-negligible and so we will be done at this step. In
the inductive step the centralised r-th moment has only one ‘new’ group (not occuring in
smaller moment calculations) which is non-negligible as well as non-negligible groups which
appeared in smaller cumulants for j ≤ r. This occurs in such a way that we can prove this
new group approximates the r-th cumulant. J
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