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Abstract
We propose a new framework for constructing pseudorandom generators for n-variate Boolean
functions. It is based on two new notions. First, we introduce fractional pseudorandom gener-
ators, which are pseudorandom distributions taking values in [−1, 1]n. Next, we use a fractional
pseudorandom generator as steps of a random walk in [−1, 1]n that converges to {−1, 1}n. We
prove that this random walk converges fast (in time logarithmic in n) due to polarization. As an
application, we construct pseudorandom generators for Boolean functions with bounded Fourier
tails. We use this to obtain a pseudorandom generator for functions with sensitivity s, whose seed
length is polynomial in s. Other examples include functions computed by branching programs
of various sorts or by bounded depth circuits.
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1 Introduction

Pseudorandom generators (PRG) are widely studied in complexity theory. There are several
general frameworks used to construct PRGs. One is based on basic building blocks, such
as small bias generators [15, 2], k-wise independence, or expander graphs [10]. Another
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approach is based on hardness vs randomness paradigm, which was introduced by Nisan and
Wigderson [17] and has been very influential. Many of the hardness results used in the latter
framework are based on random restrictions, and the analysis of how they simplify the target
class of functions. The number of papers in these lines of work is on the order of hundreds,
so we do not even attempt to give a comprehensive survey of them all.

The purpose of this paper is to introduce a new framework for constructing PRGs based
on polarizing random walks. We develop the theory in this paper and give a number of
applications; perhaps the most notable one is a PRG for functions of sensitivity s whose seed
length is polynomial in s. But, as this is a new framework, there are many questions that
arise, both technical and conceptual, and we view this paper as mostly preliminary, with the
hope that many more applications would follow.

1.1 PRGs and fractional PRGs
Let f : {−1, 1}n → {−1, 1} be a Boolean function. The standard definition of a PRG for f
with error ε > 0, is a random variable X ∈ {−1, 1}n such that

|EX [f(X)]− EU [f(U)]| ≤ ε,

where U denotes a random variable with the uniform distribution in {−1, 1}n. We relax this
definition by introducing a new object called a fractional PRG, defined in the next paragraph.

To prepare the notation for the definition, identify f with a real multi-linear polynomial,
namely its Fourier expansion. This extends f to f : Rn → R, although, we would only
be interested in inputs from [−1, 1]n. Observe that if x ∈ [−1, 1]n then f(x) = EX [f(X)]
where X ∈ {−1, 1}n is a random variable sampled as follows: for every i ∈ [n] sample
Xi ∈ {−1, 1} independently with E[Xi] = xi. In particular, f on [−1, 1]n is bounded, namely
f : [−1, 1]n → [−1, 1]. Also, f(0) = EU [f(U)]. The following is a key definition.

I Definition 1 (Fractional PRG). Let f : [−1, 1]n → [−1, 1] be multilinear. A fractional PRG
for f is a random variable X ∈ [−1, 1]n such that

|EX [f(X)]− f(0)| ≤ ε.

One trivial construction of a fractional PRG is X ≡ 0 but this is not going to be useful
for our purpose of constructing PRGs. To disallow such examples, we require each coordinate
of X to be far from zero with some noticeable probability. Formally, X ∈ [−1, 1]n is called
p-noticeable if E[X2

i ] ≥ p for all i = 1, . . . , n.
A good example to keep in mind is the following. Let G : {−1, 1}r → {−1, 1}n be a

(Boolean valued) function, and set X = pG(U), where U ∈ {−1, 1}r is uniform. Notice that
X is p2-noticeable. In this case we say X has seed length r. More generally, X has seed
length r if X = G(U) where G : {−1, 1}r → [−1, 1]n.

Fractional PRGs are easier to construct than standard PRGs, as they can take values in
[−1, 1]n. For example, assume that f has Fourier tails bounded in L1. That is, there exist
parameters a, b ≥ 1 for which∑

S⊂[n]:|S|=k

|f̂(S)| ≤ a · bk ∀k = 1, . . . , n.

We show (in Lemma 22) that if X ∈ {−1, 1}n is small-biased, then pX is a fractional PRG
for f with p ≈ 1/b. The reason is that this choice of p controls all the Fourier coefficients
of f with large Hamming weight, while X controls the ones with small weight. (In fact, to
optimize parameters one can choose X to be almost k-wise independent; see Lemma 22 for
details). In any case, note that pX is p2-noticeable as pX takes values in {−p, p}n.
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1.2 Fractional PRG as steps in a random walk
Let X ∈ [−1, 1]n be a fractional PRG for f with error ε. That is,

|EX [f(X)]− f(0)| ≤ ε.

The goal is to construct a random variable Y ∈ {−1, 1}n such that EY [f(Y )] ≈ f(0),
where the fractional PRG X provides a “small step" towards this approximation. If we can
combine these small steps in a way that they converge fast to {−1, 1}n, then we would be
done. To be a bit more precise, consider a random walk starting at 0 with the following
properties:
1. The value of f at each step typically does not change by too much.
2. The random walk converges fast to {−1, 1}n.

Observe that if we take X as the first step, then property 1 is satisfied for the first step.
Considering later steps leads to the following question: Given a point α ∈ [−1, 1]n, can we
find a random variable A = A(α,X) such that

|E[f(A)]− f(α)| ≤ ε,

and such that A takes values closer to Boolean values? We show that this is indeed the case
if we assume that X not only fools f , but also fools any possible restriction of f .

To formalize this, let F be a family of n-variate Boolean functions f : {−1, 1}n → {−1, 1}.
We say that F is closed under restrictions if for any f ∈ F , if we fix some inputs of f to
constants {−1, 1}, then the new restricted function is still in F . Most natural families of
Boolean functions studied satisfy this condition. Some examples are functions computed
by small-depth circuits, functions computed by bounded width branching programs, and
functions of low sensitivity.

We show that if X is a fractional PRG for such F , then it can be used to approximate
f(α) for any α ∈ [−1, 1]n. Define δα ∈ [0, 1]n by (δα)i = 1− |αi|. For x, y ∈ [−1, 1]n define
x ◦ y ∈ [−1, 1]n to be their coordinate-wise product, (x ◦ y)i = xiyi. Note that under this
definition, the sub-cube {α + δα ◦ y : y ∈ [−1, 1]n} is the largest symmetric sub-cube of
[−1, 1]n centered at α.

We show (Claim 15) that if X ∈ [−1, 1]n is a fractional PRG for F which is closed under
restrictions, then for any f ∈ F and any α ∈ [−1, 1]n it holds that

|E[f(α+ δα ◦X)]− f(α)| ≤ ε.

Technically, we need to also assume that X is symmetric, which means that Pr[X = x] =
Pr[X = −x] for all x. This is easy to achieve from any X which is not symmetric, for example
by multiplying X with a uniform bit (thus, increasing its seed length by 1 bit).

1.3 Polarization and fast convergence
Our next goal is to show fast convergence of the random walk to {−1, 1}n. To that end, we
need to analyze the following martingale:

Y1 = X1

Yi = Yi−1 + δYi−1 ◦Xi

where X1, X2, . . . are independent copies of a fractional PRG. We show that for some t not
too large, Yt is close to a point in {−1, 1}n. But why would that be true? This turns out to
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be the result of polarization in the random walk. It suffices to show this for every coordinate
individually.

So, let Z1, Z2, . . . ∈ [−1, 1] be independent random variables (which are the i-th coordinate
of X1, X2, . . . for some fixed i), and define the following one-dimensional martingale:

W1 = Z1

Wi = Wi−1 + (1− |Wi−1|)Zi.

Claim 17 shows that if (i) Zi is symmetric, and (ii) E[Z2
i ] ≥ p (which follows from our

assumption that the fractional PRG is p-noticeable), then it holds that

Pr[|Wt| ≥ 1− δ] ≥ 1− δ

for t = O(log(1/δ)/p). Setting δ = ε/n guarantees that with probability 1 − ε all the
coordinates of Yt are ε/n close to {−1, 1}. Then a simple argument shows that rounding the
coordinates gives a PRG with error O(ε), as desired.

We now state our main theorem.

I Theorem 2 (Main theorem, informal version of Theorem 12). Let F be a family of n-variate
Boolean functions that is closed under restrictions. Let X ∈ [−1, 1]n be a symmetric p-
noticeable fractional PRG for F with error ε. Set t = O(log(n/ε)/p) and let X1, . . . , Xt be
i.i.d. copies of X. Define the following random variables taking values in [−1, 1]n:

Y0 = 0; Yi = Yi−1 + δYi−1 ◦Xi i = 1, . . . , t.

Let G = sign(Yt) ∈ {−1, 1}n obtained by taking the sign of the coordinates in Yt. Then G is
a PRG for F with error (t+ 1)ε.

1.4 PRG for functions with bounded Fourier tails
As mentioned above, the families of Boolean functions that are fooled by our PRG include
ones that satisfy the following two properties: (i) being closed under restrictions; (ii) having
bounded L1 Fourier tails. Tal [20] showed that the latter condition follows from a widely
studied condition, that of bounded L2 Fourier tails. Thus, using existing bounds for L2
Fourier tails, we get that our PRG fools several classes of Boolean functions. Below we list
the results for error ε = O(1), and refer the reader to the corresponding claims for the details
of the full range of parameters:
1. Functions of sensitivity s: seed length O(s3 log logn). The best previous construc-

tion [9] required seed length sub-exponential in s (concretely, their dependence on s is
exp(
√
s)).See Corollary 24 for details.

2. Unordered read-once branching programs of width w: seed length O(log2w+1 n ·
log logn). This is quadratically worse than the best known PRG [5]. However, our PRG
construction does not utilize the branching program structure at all, except to obtain the
Fourier tail bounds. See Corollary 25 for details.

3. Permutation unordered read-once branching programs of width w: seed length
O(w4 logn · log logn). This improves the dependence on n quadratically compared to the
previous best PRG [18]. See Corollary 26 for details.

4. Bounded depth circuits: if f is computed by AC0 circuits of depth d and size poly(n),
our PRG has seed length O(log2d−1 n · log logn). This is quadratically worse than the
best known PRG [20]. See Corollary 27 for details.



E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett 1:5

Other than the PRG for functions of low sensitivity, all the other PRGs are comparable
to the best known tailored PRG. However, the main message is that they are all the same
PRG. Our general theorem is the following.

I Theorem 3 (PRG for functions of bounded L1 Fourier tail, informal version of Theorem 23).
Let F be a family of n-variate Boolean functions closed under restrictions. Assume that there
exist a, b ≥ 1 such that for every f ∈ F ,∑

S⊂[n]:|S|=k

|f̂(S)| ≤ a · bk.

Then, for any ε > 0 there exists an explicit PRG X ∈ {−1, 1}n which fools F with error
ε > 0, whose seed length is O(log(n/ε)(log logn+ log(a/ε))b2).

We note again that by [20], Theorem 3 holds also if we instead assume a bound on the L2
Fourier tails (which are more common), namely if we assume that for every f ∈ F it holds
that ∑

S⊂[n]:|S|≥k

f̂(S)2 ≤ a · 2−k/b.

1.5 PRG for functions which simplify under random restriction

A major component in prior constructions of PRGs that are based on random restrictions is
finding a much smaller set of ‘pseudorandom retrictions’. Ajtai and Wigderson [1] proposed
such a PRG for low depth circuits based on Håstad’s switching lemma [8]. Many follow-up
works are based on this framework to build PRGs for various classes of functions including
low depth circuits, branching programs, low-sensitivity functions [21, 6, 18, 5, 9], and a major
component of the analysis is proving that the derandomized random restrictions work.

Our framework for constructing PRGs directly applies to function families that simplify
under random restrictions without the need to derandomize the restrictions. Let F be a
family of functions f : {−1, 1}n → {−1, 1} which are extended multilinearly to [−1, 1]n. Fix a
parameter 0 < p < 1 and define the p-averaged function of f , denoted fp : {−1, 1}n → [−1, 1],
as follows: sample A ⊂ [n] where Pr[i ∈ A] = p independently for i ∈ [n], and define

fp(x) = EA,U [f(xA, UAc)]

where xA ∈ {−1, 1}A is the restriction of the input x to the coordinates inA, and U ∈ {−1, 1}n
is independently and uniformly chosen. The crucial observation (Claim 28) is that for every
x ∈ {−1, 1}n it holds that

f(px) = fp(x).

Suppose now we have a standard PRG X for the class of p-averaged functions Fp = {fp :
f ∈ F}. Note a PRG for the p-random restriction of functions in F would do, as fp is a
convex combination of p-random restrictions of f (namely, averaging over U). Then, using
our observation above, this implies that X ′ = pX is a fractional PRG for the class F . Now
by using our framework of viewing this fractional PRG as a random walk step, one can derive
a standard PRG for F using O(log(1/ε)/p2) independent copies of X.
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1.6 Fourier tails of low degree F2 polynomials
Viola [22] gave a construction of a pseudorandom generator which fools n-variate polynomials
over F2. The construction is the XOR of d independent small-bias generators. We wonder
whether our framework can be used to achieve similar bounds. In particular, we raise the
following problem: does the class of low-degree polynomials over F2 have bounded L1 Fourier
tails? It’s trivially true for d = 1 and it can be shown to hold for d = 2. However, to the
best of our knowledge nothing was known for d ≥ 3.

We show (see Theorem 29 for more details) that for any Boolean function f : {−1, 1}n →
{−1, 1} computed by a F2-polynomial of degree at most d, the following L1 Fourier tail
bound holds:∑
|S|=k

|f̂(S)| ≤ kk23dk ∀k = 1, . . . , n.

This bound however falls short of implying a PRG using our techniques, and we conjecture
that the correct bound is ckd, for some constant cd = 2O(d).

1.7 PRGs with respect to arbitrary product distributions
We note the following interesting generalization of our results that is almost direct from
our techniques. Consider the problem of ‘fooling’ a family of functions with respect to an
arbitrary product distribution D on {−1, 1}n (the uniform distribution being a special case).
More formally, given a distribution D on {−1, 1}n and a family of functions F , we say that
a random variable X is a PRG for F (with respect to D) if |E[f(D)]− E[f(X)]| ≤ ε.

We show a way to fool functions with respect to arbitrary product distributions.

I Corollary 4. Let F be a family of n-variate Boolean functions which is closed under
restrictions and let D be any product distribution on {−1, 1}n. Let X ∈ [−1, 1]n be a
symmetric p-noticeable fractional PRG for F with error ε and seed length `. Let t =
O(log(n/ε)/p). Then there exists an explicit PRG for F with respect to D with error tε and
seed length t`.

Proof sketch. If D is a product distribution on {−1, 1}n, then E[f(D)] = f(α), where
α = E[D] ∈ [−1, 1]n. Thus, we now start our random walk (defined by the fractional PRG)
from the point α instead of from 0, and the convergence follows from polarization in exactly
the same way. J

Thus all our PRG results in fact generalize to PRGs with respect to arbitrary product
distributions. To the best of our knowledge, we are not aware of any non-trivial PRGs
against arbitrary product distributions for the classes of functions we study. We wonder if
this notion of fooling arbitrary product distributions has interesting applications.

1.8 Related works
The line of research closest in spirit to our work, and which motivated our work, is that of
using random and pseudo-random restrictions to construct PRGs. A good example is [6]
which uses pseudo-random restrictions to construct PRGs. Our framework can be seen
as extending this, as we do not need to analyze pseudo-random restrictions; instead, we
analyze fractional PRGs, where the restriction happens automatically from the fractional
PRG structure, and no derandomization is necessary.
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Another line of work is the use of random walks in combinatorial optimization, for example
in the algorithmic versions of Spencer’s theorem [3, 12] and follow up works. It would be
interesting to see if polarization can be used to speed up random walks in combinatorial
optimization as well.

1.9 Open problems
As we give a new framework for constructing PRGs, there are many open problems that
arise, both conceptual and technical.

1.9.1 Early termination
Our analysis requires a random walk with t = O(log(n/ε)/p) steps, each coming from a
p-noticeable fractional PRG. We believe that for some natural families of functions shorter
random walks might also suffice, but we do not know how to show this. We discuss this
further in Section 7.

I Open problem 5. Find conditions on classes of Boolean functions so that short random
walks can be used to construct PRGs. In particular, are there nontrivial classes where the
number of steps is independent of n?

1.9.2 Less independence
Our analysis of Theorem 12 currently requires to assume t independent copies of a fractional
PRG X. It might be possible that they copies can be chosen in a less independent form,
where the analysis still holds.

I Open problem 6. Can the fractional PRGs X1, . . . , Xt in Theorem 12 be chosen not
independently, such that the conclusion still holds? Concrete examples to consider are k-wise
independence for k � t, or using an expander random walk.

1.9.3 More applications
Our current applications follow from the construction of a fractional PRG for functions
with bounded Fourier tails. The fractional PRG itself follows from standard constructions
in pseudo-randomness (almost k-wise independent) adapted to our scenario. It will be
interesting to try and find other classes of Boolean functions for which different constructions
of fractional PRG work.

1.9.4 Gadgets
We can view the random walk as a “gadget construction". Given independent p-noticeable
fractional PRGs X1, . . . , Xt ∈ [−1, 1]n, view them as the rows of a t× n matrix, and then
apply a gadget g : [−1, 1]t → {−1, 1} to each column to obtain the outcome in {−1, 1}n.
We show that the random walk gives such a gadget which converges for t = O(log(n/ε)/p).
Many constructions of PRGs can be viewed in this framework, where typically Xi ∈ {−1, 1}n.
Ours is the first construction which allows Xi to take non-Boolean values. It is interesting
whether other gadgets can be used instead of the random walk gadget, and whether there
are general properties of gadgets that would suffice.

CCC 2018
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1.9.5 Low degree polynomials
As discussed above, we wonder if our techniques can be used to construct a PRG for low
degree F2 polynomials. In particular, we ask if one could improve the bounds we obtain (see
Theorem 29) on the L1 Fourier tails of low degree F2 polynomials.

I Open problem 7. Let f = (−1)p where p : Fn2 → F2 is a polynomial of degree d. Is there
a constant cd such that

∑
S:|S|=k |f̂(S)| ≤ ckd which is independent of n? In particular, we

conjecture that cd = 2O(d) should work.

Note that the exponential dependence on k is needed, as witnessed from the following example:
consider the quadratic F2 polynomial q(x) =

∑n/2
i=1 x2i−1x2i. Then (−1)q has Fourier L1

weight
(
n
n/2
)
· 2−n/2 = 2Ω(n) on the (n/2)-th level.

1.10 Paper organization
We describe the general framework in detail in Section 2. We prove Theorem 12 in Section 3.
We describe applications in Section 4. Our framework also applies to function families that
simplify under random restrictions. We describe this in Section 5. We prove L1 Fourier tail
bounds for low degree F2 polynomials in Section 6. We try to partially answer the question
related to early termination of the random walk in Section 7.

2 General framework

2.1 Boolean functions
Let f : {−1, 1}n → [−1, 1] be an n-variate Boolean function, identified with its multi-
linear extension, also known as its Fourier expansion. For x ∈ [−1, 1]n define f(x) =∑
S⊆[n] f̂(S)

∏
i∈S xi. As f is multilinear, a convenient viewpoint is to view f(x) as

computing the expected value of f on a product distribution on {−1, 1}n. That is, let
W = W (x) ∈ {−1, 1}n be a random variable, where W1, . . . ,Wn are independently chosen
so that E[Wi] = xi. Then f(x) = Ef(W ). In particular, f(0) = Ef(U), where U ∈ {−1, 1}n
is uniformly chosen.

A family F of n-variate Boolean functions is said to be closed under restrictions if for
any f ∈ F and any function f ′ : {−1, 1}n → {−1, 1} obtained from f by fixing some of its
inputs to {−1, 1} it holds that also f ′ ∈ F .

2.2 Pseudorandom generators
Let F be a family of n-variate Boolean functions. The following is the standard definition of
a pseudorandom generator (PRG) for F , adapted to our notation.

I Definition 8 (PRG). A random variable X ∈ {−1, 1}n is a PRG for F with error ε, if for
any f ∈ F it holds that

∣∣f(0)− Ef(X)
∣∣ ≤ ε.

We introduce the notion of a fractional PRG. It is the same as a PRG, except that the
random variable is allowed to take values in [−1, 1]n, instead of only Boolean values.

I Definition 9 (Fractional PRG). A random variable X ∈ [−1, 1]n is a fractional PRG for F
with error ε, if for any f ∈ F it holds that

∣∣f(0)− Ef(X)
∣∣ ≤ ε.
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Our main goal will be to “amplify” fractional PRGs for F in order to obtain PRGs for F .
To that end, we need to enforce some non-triviality conditions on the fractional PRG. For
example, X = 0 is a fractional PRG for any function. We require that for any coordinate
i ∈ [n], the value of Xi is far from zero with noticeable probability. Formally, we require a
noticeable second moment.

IDefinition 10 (p-noticeable random variable). A random variableX ∈ [−1, 1]n is p-noticeable
if for every i ∈ [n], E[X2

i ] ≥ p.

For technical reasons, we would also need X to be symmetric, which means that the
distribution of −X is the same as the distribution of X. This is easy to achieve, for example
by multiplying all elements of X with a uniformly chosen sign.

2.3 Polarizing random walks
The main idea is to view a fractional PRG as steps in a random walk in [−1, 1]n that
converges to {−1, 1}n. To that end, we define a gadget that implements the random walk;
and moreover, that allows for fast convergence. As we will see later, the fast convergence is
an effect of polarization.

I Definition 11 (Random walk gadget). For any t ≥ 1 define the random walk gadget
gt : [−1, 1]t → [−1, 1] as follows. Let a1, . . . , at ∈ [−1, 1]. Define g1(a1) := a1 and for t > 1,

gt(a1, . . . , at) := gt−1(a1, . . . , at−1) + (1− |gt−1(a1, . . . , at−1)|)at.

We extend the definition to act on bit-vectors. Define gnt : ([−1, 1]n)t → [−1, 1]n as follows.
For x1, . . . , xt ∈ [−1, 1]n define

gnt (x1, . . . , xt) = (gt(x1,1, . . . , xt,1), . . . , gt(x1,n, . . . , xt,n)) .

Equivalently, we can view gnt as follows: construct a t× n matrix whose rows are x1, . . . , xt;
and then apply gt to each column of the matrix to obtain a resulting vector in [−1, 1]n.

The following theorem shows how to “amplify" fractional PRGs using the random walk
gadget to obtain a PRG. Below, for x ∈ [−1, 1]n we denote by sign(x) ∈ {−1, 1}n the Boolean
vector obtained by taking the sign of each coordinate (the sign of 0 can be chosen arbitrarily).

I Theorem 12 (Amplification Theorem). Let F be a family of n-variate Boolean functions
which is closed under restrictions. Let X ∈ [−1, 1]n be a symmetric p-noticeable fractional
PRG for F with error ε. Set t = O(log(n/ε)/p) and let X1, . . . , Xt be iid copies of X. Define
a random variable G ∈ {−1, 1}n as follows:

G := G(X1, . . . , Xt) = sign(gnt (X1, . . . , Xt)).

Then G is a PRG for F with error (t+ 1)ε.

3 Proof of Amplification Theorem

We prove Theorem 12 in this section. From here onwards, we fix a family F of n-variate
Boolean functions which is closed under restrictions. The proof is based on the following
two lemmas. The first lemma amplifies a p-noticeable fractional PRG to a (1− q)-noticeable
fractional PRG. The second lemma shows that setting q = ε/n, the latter fractional PRG
can be rounded to a Boolean-valued PRG without incurring too much error.

CCC 2018
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I Lemma 13 (Amplification lemma). Let X1, . . . , Xt ∈ [−1, 1]n be independent symmetric
p-noticeable fractional PRGs for F with error ε. Define a random variable Y ∈ [−1, 1]n as

Y := gnt (X1, . . . , Xt).

Then Y is a (1− q)-noticeable fractional PRG for F with error tε, where q = 2−Ω(pt).

I Lemma 14 (Rounding lemma). Let Y ∈ [−1, 1]n be a (1− q)-noticeable fractional PRG for
F with error ε. Then sign(Y ) ∈ {−1, 1}n is a PRG for F with error ε+ qn.

Theorem 12 follows directly by applying Lemma 13 with t = O(log(n/ε)/p) to obtain
q = ε/n and then applying Lemma 14.

3.1 Proof of Lemma 13
We prove Lemma 13 in this section. We need to prove two claims: that gnt (X1, . . . , Xt) is a
fractional PRG for F with error εt, and that it is (1− q)-noticeable. This is achieved in the
following sequence of claims.

First we need some notations. For y ∈ [−1, 1]n define δy ∈ [−1, 1]n by (δy)i := 1− |yi|.
For two vectors x, y ∈ [−1, 1]n define x ◦ y ∈ [−1, 1]n to be their pointwise product, namely
(x ◦ y)i := xiyi. Observe that {y + δy ◦ x : x ∈ [−1, 1]n} is the largest symmetric sub-cube in
[−1, 1]n centered at y.

I Claim 15. Let X ∈ [−1, 1]n be a fractional PRG for F with error ε. Then for any f ∈ F
and any y ∈ [−1, 1]n,

|f(y)− Ef(y + δy ◦X)| ≤ ε.

Proof. Consider a distribution over F ∈ F obtained from f by fixing the i-th input to
sign(yi) with probability |yi|, independently for each i. That is,

F (x) := f(R(x)),

where R(x) ∈ {−1, 1}n is a random variable obtained by sampling R1, . . . , Rn independently
where Pr[Ri = sign(yi)] = |yi| and Pr[Ri = xi] = 1− |yi|. By the multi-linearity of f , and as
R(x) is a product distribution,

EF [F (x)] = ER[f(R(x))] = f(ER[R(x)]) = f(y + δy ◦ x).

Setting x = X and averaging over X gives

|f(y)− EX [f(y + δy ◦X)]| =
∣∣EFF [(0)]− EF,X [F (X)]

∣∣ ≤ EF
∣∣F (0)− EX [F (X)]

∣∣ ≤ ε,
since F ∈ F with probability one and X is a fractional PRG for F with error ε. J

I Claim 16. Let X1, . . . , Xt ∈ [−1, 1]n be independent fractional PRGs for F with error ε.
Then for any f ∈ F ,∣∣f(0)− EX1,...,Xt [f(gnt (X1, . . . , Xt))]

∣∣ ≤ tε.
Proof. The proof is by induction on t. The base case t = 1 follows by definition as
gn1 (X1) = X1. For t > 1 we will show that∣∣E[f(gnt−1(X1, . . . , Xt−1))]− E[f(gnt (X1, . . . , Xt))]

∣∣ ≤ ε,
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from which the claim follows by the triangle inequality. In fact, we will show a stronger
inequality: for any fixing of x1, . . . , xt−1 ∈ [−1, 1]n, it holds that∣∣f(gnt−1(x1, . . . , xt−1))− EXt

[f(gnt (x1, . . . , xt−1, Xt))]
∣∣ ≤ ε.

The first inequality then follows by averaging over x1 = X1, . . . , xt−1 = Xt−1. To see why
this latter inequality holds, set y = gnt−1(x1, . . . , xt−1). Then by definition,

gnt (x1, . . . , xt−1, Xt) = y + δy ◦Xt.

The claim now follows from Claim 15. J

We have so far proved that gnt (X1, . . . , Xt) is a fractional PRG for F with slightly worse
error. Although we do not need it, it is worth noting that it is symmetric since X1, . . . , Xt

are symmetric and −gnt (X1, . . . , Xt) = gnt (−X1, . . . ,−Xt). To conclude, we show that it
converges fast to a value close to {−1, 1}n. This is the effect of polarization. It will be enough
to analyze this for one-dimensional random variables.

I Claim 17. Let A1, . . . , At ∈ [−1, 1] be independent symmetric random variables with
E[A2

i ] ≥ p. For i = 1, . . . , t define

Bi := gi(A1, . . . , Ai) = Bi−1 + (1− |Bi−1|)Ai.

Then E[B2
t ] ≥ 1− q where q = 3 exp(−tp/8).

Proof. Let Ci := 1− |Bi| be the distance to {−1, 1} at step i. We show that Ci converges
to 0 exponentially fast. Observe that Ci satisfies the following recursive definition:

Ci =
{
Ci−1(1−Ai) if Ci−1(1−Ai) ≤ 1
2− Ci−1(1−Ai) if Ci−1(1−Ai) > 1

.

In either case one can verify that Ci ∈ [0, 1] and that

Ci ≤ Ci−1(1−Ai).

As Ci−1 and Ai are independent we obtain that

E
[√

Ci

]
= E

[√
Ci−1

]
E
[√

1−Ai
]
.

We now use the assumption that the Ai are symmetric. The Taylor expansion of
√

1− x in
[−1, 1] is

√
1− x = 1− x

2 −
x2

8 −
x3

16 − . . .

In particular, all the coefficients except for the constant term are negative. As Ai is symmetric,
E[Aki ] = 0 for any odd k, so

E
[√

1−Ai
]
≤ 1− E[A2

i ]
8 ≤ 1− p

8 ≤ exp(−p/8).

Thus

E
[√

Ct

]
≤

t∏
i=1

E
[√

1−Ai
]
≤ exp(−tp/8).
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By Markov’s inequality, Pr[Ct ≥ exp(−tp/2)] ≤ exp(−tp/8). If Ct ≤ exp(−tp/2) then
1 − B2

t ≤ 2 exp(−tp/2). If not, then we can trivially bound 1 − B2
t ≤ 1. Putting these

together gives

E[1−B2
t ] ≤ 2 exp(−tp/2) + exp(−tp/8) ≤ 3 exp(−tp/8). J

To provide a piece of intuition explaining the fast convergence of this random walk, notice
that once Ci becomes sufficiently small, it gets more and more difficult to inrease the value
of Ci again. This could be best explained with an example. Suppose all Ai’s take value in
{−0.5, 0.5}. We start at B0 = 0 and take a step, say A1 = 0.5, and therefore B1 = 0.5. Now
observe that the length of the next step would be only (1 − |B1|)|A2| = 0.25. So even if
A2 = −0.5, we get B2 = 0.25, which means we still need to take one more step to become
less than 0. In other words, once we get close to the boundary {−1, 1}, the random walk
converges faster as it gets more difficult to move away from the boundry.

I Corollary 18. Let X1, . . . , Xt ∈ [−1, 1]n be independent symmetric p-noticeable random
variables. Define Y = gnt (X1, . . . , Xt). Then Y is (1− q)-noticeable for q = 3 exp(−tp/8).

Proof. Apply Claim 17 to each coordinate of Y . J

Lemma 13 follows by combining Claim 16 and Corollary 18.

3.2 Proof of Lemma 14
We prove Lemma 14 in this section. Let x ∈ [−1, 1]n be a potential value obtained by X.
Let W := W (x) ∈ {−1, 1}n be a random variable, where W1, . . . ,Wn are independent and
E[Wi] = xi. Then EW [f(W )] = f(x). As f takes values in [−1, 1], we can upper bound
|f(x)− f(sign(x))| by

|f(x)− f(sign(x))| = |EW [f(W )]− f(sign(x))| ≤ Pr[W 6= sign(x)].

The last term can be bounded by the union bound,

Pr[W 6= sign(x)] ≤
n∑
i=1

Pr[Wi 6= sign(xi)] = 1
2

n∑
i=1

1− |xi|.

Setting x = X and averaging over X gives

|EX [f(X)]− EX [f(sign(X))]| ≤ EX |f(X)− f(sign(X))| ≤ 1
2

n∑
i=1

E[1− |Xi|].

As X is (1−q)-noticeable it satisfies E[X2
i ] ≥ 1−q for all i. As 1−z ≤ 1−z2 for all z ∈ [0, 1]

we have

E[1− |Xi|] ≤ E[1−X2
i ] ≤ q.

This concludes the proof as

|f(0)− EX [f(sign(X))]| ≤ |f(0)− EX [f(X)]|+ |EX [f(X)]− EX [f(sign(X))]| ≤ ε+ qn,

where the first inequality follows as X is a fractional PRG with error ε, and the second by
the discussion above.
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4 PRGs for functions with bounded Fourier tails

Several natural families of Boolean functions have bounded Fourier tails, such as: AC0 circuits
[11, 14]; functions with bounded sensitivity [7, 13]; and functions computed by branching
programs of various forms [18, 5]. Our goal is to construct a universal PRG which fools any
such function. We consider two variants: L1 bounds and L2 bounds.

I Definition 19 (L1 bounds). For a, b ≥ 1, we denote by Ln1 (a, b) the family of n-variate
Boolean functions f : {−1, 1}n → {−1, 1} which satisfy∑

S⊂[n]
|S|=k

|f̂(S)| ≤ a · bk ∀k = 1, . . . , n.

I Definition 20 (L2 bounds). For a, b ≥ 1, we denote by Ln2 (a, b) the family of n-variate
Boolean functions f : {−1, 1}n → {−1, 1} which satisfy∑

S⊂[n]
|S|≥k

f̂(S)2 ≤ a · 2−k/b ∀k = 1, . . . , n.

Tal [20] showed that L2 bounds imply L1 bounds: if f ∈ L2(a, b) then f ∈ L1(a, b′) for
b′ = O(b). The reverse direction is false, as can be witnessed by the PARITY function. So,
the class of functions with L1 bounded Fourier tails is richer, and we focus on it.

In the following lemma, we construct a fractional PRG for this class, which we will then
amplify to a PRG. We note that this lemma holds also for bounded functions, not just
Boolean functions. The construction is based on a scaling of almost d-wise independent
random variables, whose definition we now recall.

I Definition 21 (Almost d-wise independence). A random variable Z ∈ {−1, 1}n is ε-almost
d-wise independent if, for any restriction of Z to d coordinates, the marginal distribution
has statistical distance at most ε from the uniform distribution on {−1, 1}d.

Naor and Naor [15] gave an explicit construction of an ε-almost d-wise random variable
Z ∈ {−1, 1}n with seed length O(log logn+ log d+ log(1/ε)). We note that this seed length
is optimal, up to the hidden constants.

I Lemma 22. Fix n, a, b ≥ 1 and ε > 0. There exists a fractional PRG X ∈ [−1, 1]n that
fools Ln1 (a, b) with error ε, such that
(i) X is p-noticeable for p = 1

4b2 .
(ii) The seed length of X is O(log logn+ log(a/ε)).

Proof. Fix f ∈ Ln1 (a, b). Set d = dlog 2a/εe, δ = ε/2a, β = 1/2b. Let Z ∈ {−1, 1}n be
an δ-almost d-wise independent random variable, and set X = βZ which takes values in
{−β, β}n. We claim that X satisfies the requirements of the lemma. Claim (i) clearly holds,
and claim (ii) holds by the Naor-Naor construction. We thus focus on proving that X fools
F with error ε.

Fix f ∈ F and consider its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)xS .

We need to show that E[f(X)] is close to f(0). Averaging over X gives

|E[f(X)]− f(0)| ≤
∑
|S|>0

|f̂(S)| · |E[XS ]| =
∑
|S|>0

|f̂(S)| · β|S||E[ZS ]|.
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We next bound |E[ZS ]|. If |S| ≤ d then by the definition of Z we have |E[ZS ]| ≤ δ. If |S| > d

we bound trivially |E[ZS ]| ≤ 1. Let Wk =
∑
S:|S|=k |f̂(S)|, where by assumption Wk ≤ a · bk.

Thus

|E[f(X)]− f(0)| ≤ δ
d∑
k=1

Wkβ
k +

∑
k>d

Wkβ
k ≤ δa

d∑
k=1

(βb)k + a
∑
k>d

(βb)k ≤ δa+ 2−da

where we used the choice of β = 1/2b. The claim follows as we set δ = ε/2a and 2−d ≤
ε/2a. J

Applying Theorem 12 using the fractional PRG constructed in Lemma 22 gives the
following PRG construction. Note that we still need to require that F is closed under
restrictions.

I Theorem 23. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that F ⊂ Ln1 (a, b) or that F ⊂ Ln2 (a, b). Then, for any ε > 0 there exists an explicit
PRG X ∈ {−1, 1}n which fools F with error ε > 0, whose seed length is O(log(n/ε)(log logn+
log(a/ε))b2).

4.1 Applications
We apply our PRG from Theorem 23 to several well studied classes of Boolean functions
that are known to satisfy a Fourier tail bound.

4.1.1 Functions of bounded sensitivity
Let f : {−1, 1}n → {−1, 1} be a Boolean function. Its sensitivity at an input x ∈ {−1, 1}n is
the number of neighbors x′ of x (that is, x′ and x differ at exactly one coordinate) such that
f(x′) 6= f(x). The (max) sensitivity of f is s(f) = maxx s(f, x). The sensitivity conjecture
speculates that functions of sensitivity s can be computed by decision trees of depth poly(s).
A corollary would be that almost poly(s)-wise distributions fool functions of low sensitivity.
So, one may ask to construct comparable PRGs for functions of low sensitivity.

This question was first considered by Hatami and Tal [9]. They constructed a PRG with
sub-exponential seed length exp(O(

√
s)). Theorem 23 gives an improved construction that

essentially matches the consequence of the sensitivity conjecture. Our PRG uses the recent
bounds of Gopalan et al. [7] on the Fourier tail of functions of low sensitivity. Concretely,
Gopalan et al. [7] show that if s(f) = s then f ∈ L1(1, t) for t = O(s). It is straightforward
to verify that a restriction can only decrease the sensitivity of the function, so that the class
of functions of sensitivity at most s is closed under restrictions. A direct application of
Theorem 23 gives a PRG with seed length O(s2 log(n/ε)(log log(n) + log(1/ε))).

To get a somewhat improved bound, one can apply a result of Simon [19] that shows
that if s(f) = s then f depends on at most m = 4s many inputs. In this case, the analysis
of Theorem 12 can be applied with m variables instead of n variables , so that we only
need O(logm/ε) iterations. Note that the fractional PRG still requires a seed length which
depends on the original n. We obtain:

I Corollary 24. For any n, s ≥ 1 and ε > 0, there exists an explicit PRG which fools n-variate
Boolean functions with sensitivity s with error ε, whose seed length is O(s3 log(1/ε)(log logn+
log(1/ε))).

We note that the log logn term cannot be removed. Indeed, even if we restrict attention
to functions which are XOR of at most 2 bits (for which s = 2) the seed length required is
Ω(log logn+ log(1/ε)).
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4.1.2 Unordered branching programs

An oblivious read-once branching program (abbrv ROBP) B of width w is a non-uniform
model of computation, that captures randomized algorithms with space logw. A branching
program B maintains a state in the set {1, . . . , w} and reads the input bits in a known fixed
order. At time step i = 1, . . . , n, B reads a bit and based on the time step, the read bit
and the current state it transitions to a new state. Thus, B can be thought of as a layered
directed graph, with w nodes in each layer, and two edges going out of each node to the
immediately next layer, one labeled with a 1 and the other labeled with a −1.

Let Bn(w) be the class of n-variate Boolean functions computed by read-once oblivious
branching programs of width w, where the order of the inputs is arbitrary. A recent work
of Chattopadhyay et al. [5] showed that these functions have L1 bounded Fourier tails.
Concretely, Bn(w) ⊂ Ln1 (t) for t = (logn)w. They used this to construct a PRG with seed
length O(logn)w−1 log2(n/ε) log logn. Using our PRG from Theorem 23 we get a comparable
(although slightly worse) seed length. Note that Bn(w) is closed under restrictions.

I Corollary 25. Fix n,w ≥ 1 and ε > 0. There is an explicit PRG which fools Bn(w) with
error ε > 0, whose seed length is O(log(n/ε)(log logn+ log 1/ε)(logn)2w).

4.1.3 Permutation branching programs

A special case of read-once branching programs are permutation branching programs, where
the transition function from level i to level i + 1 in the graph is a permutation for every
choice of the input bit. We denote it by Bnperm(w) ⊂ Bn(w). Reingold et al. [18] showed
that if a Boolean function is computed by a permutation branching program of width w,
then it has L2 bounded Fourier tails with parameter 2w2. Note that permutation branching
programs are also closed under restrictions. Thus we obtain the following result:

I Corollary 26. Fix n,w ≥ 1 and ε > 0. There is an explicit PRG which fools Bnperm(w)
with error ε > 0, whose seed length is O(log(n/ε)(log logn+ log 1/ε)w4).

The dependence on n in our PRG is better than in the previous work of [18], as they
obtained seed length O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε)).

The work of [18] actually shows the Fourier tail bounds for a more general class of
branching programs, called regular branching programs. However, these are not closed under
restriction, and hence our PRG construction fails to work (the same problem occurs also in
the construction of [18]).

4.1.4 Bounded depth circuits

The class of bounded-depth Boolean circuits AC0 has been widely studied. In particular,
Linial, Mansour and Nisan [11] showed that it has bounded L2 Fourier tails. Tal [20] obtained
improved bounds. If f is an n-variate Boolean function computed by an AC0 circuit of depth
d and size s, then f ∈ L2(n, t) for t = 2O(d) logd−1 s. Theorem 23 provides a new PRG for
AC0 which is comparable with the existing PRGs of Nisan [16] and Braverman [4].

I Corollary 27. Fix n, s ≥ 1 and ε > 0. There is an explicit PRG which fools n-variate
functions which can be computed by AC0 circuits of size s and depth d, with error ε > 0,
whose seed length is O(log(n/ε)(log logn+ log 1/ε) log2d−2 s).
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5 PRG for functions which simplify under random restriction

Another generic application of our framework is constructing PRGs for classes that simplify
under random restriction. Let F be a family of functions f : {−1, 1}n → {−1, 1} which are
extended multilinearly to [−1, 1]n. Fix a parameter 0 < p < 1 and define the p-averaged
function of f , denoted fp : {−1, 1}n → [−1, 1] as follows: sample A ⊂ [n] where Pr[i ∈ A] = p

independently for i ∈ [n], and define

fp(x) = EAEU [f(xA, UAc)]

where xA ∈ {−1, 1}A is the restriction of the input x to the coordinates inA, and U ∈ {−1, 1}n
is independently and uniformly chosen.

I Claim 28. fp(x) = f(px).

Proof. Let A,U be random variables as defined above. Define a random variable Y ∈
{−1, 1}n as follows:

Yi =
{
xi if Ai = 1
Ui if Ai = 0

.

Note that Y is a product distribution. By definition of fp, fp(x) = E[f(Y )]. By multilinearity
of f , E[f(Y )] = f(E[Y ]) = f(px). J

Suppose that we have a standard PRG X for the class of p-averaged functions Fp = {fp :
f ∈ F}. Claim 28 implies that X ′ = pX is a fractional PRG for the class F . Theorem 12
then constructs a PRG for F using O(log(1/ε)/p2) independent copies of X.

6 Spectral tail bounds for low degree F2-polynomials

In this section, we prove L1 Fourier tail bounds for functions computed by low degree
polynomials on F2. However, our bounds fall short of implying PRGs for the class of
low-degree F2 polynomials in our framework.

I Theorem 29. Let p : Fn2 → F2 be a polynomial of degree d, and let f(x) = (−1)p(x). Then∑
S⊂[n]
|S|=k

|f̂(S)| ≤ (k23d)k ∀k = 1, . . . , n.

We note that L2 bounds do not hold for low-degree polynomials, as can be witnessed by
taking a high-rank quadratic polynomial. We prove Theorem 29 in the remainder of this
section.

We first introduce some notation to simplify the presentation. Define

Wk(f) :=
∑
|S|=k

|f̂(S)|

denote the weight of the level-k Fourier coefficients of a Boolean function f , and let

W (d, k) := max{Wk(f) : f = (−1)p, deg(p) ≤ d}

be the maximum ofWk over degree d polynomials. Note that we do not make any assumption
on the number of variables n. We prove the following lemma from which Theorem 29 follows
relatively easily.
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I Lemma 30. For any d, k ≥ 1,

W (d, k)2 ≤ 22kW (d− 1, 2k) +W (d, k) ·
k∑
`=1

(
k

`

)
W (d, k − `).

We first show that Theorem 29 follows easily from Lemma 30.

Proof of Theorem 29 given Lemma 30. The proof of Theorem 29 is by induction, first on
d and then on k. The base case of d = 1 is straightforward, so assume d ≥ 2. By Lemma 30
we have

W (d, k)2 ≤ 22k
(

2k · 23(d−1)
)2k

+W (d, k)
k∑
`=1

(
k

`

)(
(k − `)23d)k−`

≤
(
k · 23d−1)2k +W (d, k)

k∑
`=1

(
k

`

)(
(k − 1)23d)k−`

=
(
k · 23d−1)2k +W (d, k)

((
(k − 1)23d + 1

)k − ((k − 1)23d)k) .
Assume towards a contradiction that W (d, k) > (k23d)k. Dividing by W (d, k) on both sides
gives

W (d, k) ≤
(
k · 23d−1)k +

(
(k − 1)23d + 1

)k − ((k − 1)23d)k .
If k = 1 then we reach a contradiction as 23d−1 +1 ≤ 23d. If k > 1 then as (k−1)23d ≥ k23d−1

the first term gets canceled by the third term, and the second term is at most (k23d)k. In
either case, we reached a contradiction. J

From now on we focus on proving Lemma 30. To that end, fix f computed by a polynomial
of degree d which maximizes Wk(f). We shorthand g(S) = |f̂(S)|. The following claims are
used in the proof of Lemma 30.

I Claim 31. For any 0 ≤ a < b ≤ n and A ⊂ [n] of size |A| = a,∑
B:|B|=b,A⊂B

g(B) ≤W (d, b− a).

I Claim 32.∑
S,T :|S|=|T |=k,S∩T=∅

g(S)g(T ) ≤ 22kW (d− 1, 2k).

I Claim 33. For any 1 ≤ ` ≤ k,

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T ) ≤
(
k

`

)
W (d, k)W (d, k − `).

We first show how to prove Lemma 30 using the above claims.
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Proof of Lemma 30. We have,

W (d, k)2 =
∑

S,T :|S|=|T |=k

g(S)g(T )

=
k∑
`=0

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T )

=
∑

S,T :|S|=|T |=k,S∩T=∅

g(S)g(T ) +
k∑
`=1

∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T )

≤ 22kW (d− 1, 2k) +W (d, k) ·
k∑
`=1

(
k

`

)
W (d, k − `),

where the last inequality follows by using the bounds from Claim 32 and Claim 33. J

We now proceed to prove the missing claims.

Proof of Claim 31. We use induction on a and b. The claim is direct for a = 0 and any
b > a. Thus suppose b > a > 0 and let i ∈ A. Let A′ = A \ {i}. We have∑

B:|B|=k,A⊂B

g(B) =
∑

B′⊂[n]\{i}:|B′|=b−1,A′⊂B′
g(B′ ∪ {i})

=
∑

B′⊂[n]\{i}:|B′|=b−1,A′⊂B′
|f̂(B′ ∪ {i})|.

Let fi→1 and fi→−1 be the functions obtained from f by setting the i’th bit to 1 and −1,
respectively. It is easy to verify that |f̂(B∪{i})| ≤ 1

2 (f̂i→1(B)+ f̂i→−1(B)). Thus, continuing
with our estimate, we have∑

B:|B|=b,A⊂B

g(B) ≤ 1
2

∑
B′:|B′|=b−1,A′⊂B′∪{i}

(
|f̂i→1(B′)|+ |f̂i→−1(B′)|

)
≤W (d, (b− 1)− (a− 1)) = W (d, b− a),

where the last inequality follows from induction hypothesis. J

Proof of Claim 32. For any S ⊂ [n], let eS ∈ {−1, 1} be the sign of f̂(S), so that g(S) =
eS · f̂(S). Let X,Y, Z be independent uniform distributions on {−1, 1}n. We have∑

S,T :|S|=|T |=k,S∩T =∅

g(S)g(T ) =
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEY [f(Y )Y S ] · EZ [f(Z)ZT ]

=
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEY,Z [f(Y )Y Sf(Z)ZT ]

=
∑

S,T :|S|=|T |=k,S∩T =∅

eSeTEX,Y,Z [f(X ◦ Y )f(X ◦ Z)XS∪T Y SZT ].

This follows as (Y,Z) and (X ◦Y,X ◦Z) are identically distributed. Now consider any fixing
of Y = y and Z = z. Define the function hy,z(x) = f(x ◦ y)f(x ◦ z). Recall that f = (−1)p
where p is a F2-polynomial of degree d. Thus h = (−1)q where q is the derivative of f in
direction y ◦ z. In particular, its degree is at most d− 1. Thus we have∑

S,T :|S|=|T |=k,S∩T=∅

eSeT y
SzTE[f(X ◦ y)f(X ◦ z)XS∪T ] ≤

(
2k
k

) ∑
R:|R|=2k

∣∣∣E[h(X)XR]
∣∣∣

≤ 22kW (d− 1, 2k).
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The proof follows now by noting that the above bound holds for any choice of y and z, and
then averaging over y = Y, z = Z. J

Proof of Claim 33. We have,∑
S,T :|S|=|T |=k,|S∩T |=`

g(S)g(T ) ≤
∑

L:|L|=`

( ∑
S:|S|=k,L⊂S

g(S)
)2

≤
(

max
L:|L|=`

∑
S:|S|=k,L⊂S

g(S)
)( ∑

L,S:|L|=`,|S|=k,L⊂S

g(S)
)

≤W (d, k − `) ·
( ∑
S:|S|=k

∑
L:L⊂S,|L|=`

g(S)
)
((using Claim 31))

≤W (d, k − `) ·
(
k

`

)
·W (d, k). J

7 Smoothness

In this section we provide a partial answer for Open Problem 5, regarding early termination
of the random walk. Let Yt ∈ [−1, 1]n be the location of the random walk at time t. We
would like to guarantee that if Yt is close enough to sign(Yt) then we can round Yt to sign(Yt)
without changing the value of f by too much. Therefore, given f : [−1, 1]n → [−1, 1], it
would be desirable to show f is “smooth" enough: there is a bound W such that

∀α, β ∈ [−1, 1]n, |f(α)− f(β)| ≤W‖α− β‖∞.

Observe that should such W exists, then if at some step t we have ‖Yt − sign(Yt)‖∞ ≤
ε/W , then we can terminate the random walk immediately and guarantee that ‖f(Yt)−
f(sign(Yt))‖∞ ≤ ε. We show that such smoothness property holds for functions with bounded
sensitivity.

7.1 Bounded sensitivity functions.
We show that smoothness follows from a bound on the (maximum) sensitivity of a boolean
function.

I Lemma 34. Let f : {−1, 1}n → [−1, 1] be a boolean function with maximum sensitivity s.
Then, for any α, β ∈ [−1, 1]n it holds that

|f(α)− f(β)| ≤ 4s‖α− β‖∞.

We first consider the case that ‖α− β‖∞ is very small.

I Claim 35. Let f : {−1, 1}n → [−1, 1] be a boolean function with maximum sensitivity s.
Let α, β ∈ [−1, 1]n such that ‖α− β‖∞ ≤ 1/n2. Then

|f(α)− f(β)| ≤ 4s‖α− β‖∞.

To prove the result for arbitrary α, β ∈ [−1, 1]n using Claim 35, consider the line segment
from α to β and integrate f along that line segment. Thus, Lemma 34 follows directly from
Claim 35.
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Proof of Claim 35. Let δ = ‖α − β‖∞. We first consider the easier case of α ∈ {−1, 1}n.
Pick b ∈ {−1, 1}n randomly by flipping each coordinate of α independently with probability
|αi − βi|/2 so that Ef(b) = f(β). Note that f(b) 6= f(α) if either exactly one sensitive
coordinate of α is flipped, which occurs with probability at most sδ, or if at least two
coordinates get flipped, which occurs with probability at most (nδ)2. Therefore

|f(α)− Ef(b)| ≤ sδ + n2δ2 ≤ 2sδ

given our assumption on δ.
Next, consider the general case of α ∈ [−1, 1]n. This case requires introducing an extra

point γ ∈ [−1, 1]n in a way that allows us to prove

|f(α)− f(γ)| ≤ 2s · ‖α− γ‖∞ (1)

and

|f(β)− f(γ)| ≤ 2s · ‖β − γ‖∞ (2)

separately. We choose γ in a way that ∀i ∈ [n], γi = αi or γi = βi. These equations altogether
give the claim. To choose γ, let S ⊂ [n] be the set of coordinates that |αi| < |βi| and pick
γi = αi if i ∈ S, and γi = βi otherwise.

We next prove Equation (1). The proof of Equation (2) is analogous. Consider a joint
random variable (a, c) that satisfies the following properties:
1. a ∈ {−1, 1}n, c ∈ [−1, 1]n, Ea = α, and Ec = γ.
2. The marginal distributions of a and c are product distributions.
3. ‖a− Ec[c|a]‖∞ ≤ ‖α− γ‖∞ holds with probability one.

Observe that given such (a, c),

|f(α)− f(γ)| = |Ea,c[f(a)− f(c)]| ≤ Ea |f(a)− Ec[f(c)|a]| ≤ 2s · ‖α− γ‖∞,

where the last inequality uses the first case in the proof, as a ∈ {−1, 1}n.
Now let us construct the joint random variable (a, c). Fix i ∈ [n] and suppose without

loss of generality that αi ≥ 0. Note that by construction −αi ≤ γi ≤ αi. First sample ai so
that E[ai] = αi. If ai = −1 then set ci = −1, otherwise set ci = 2γi+1−αi

1+αi
. It’s easy to check

that this choice of (a, c) satisfies the required conditions, finishing the proof. J
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