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Abstract
Our main contribution in this paper is a new reduction from explicit two-source extractors for
polynomially-small entropy rate and negligible error to explicit t-non-malleable extractors with
seed-length that has a good dependence on t. Our reduction is based on the Chattopadhyay
and Zuckerman framework (STOC 2016), and surprisingly we dispense with the use of resilient
functions which appeared to be a major ingredient there and in follow-up works. The use of
resilient functions posed a fundamental barrier towards achieving negligible error, and our new
reduction circumvents this bottleneck.

The parameters we require from t-non-malleable extractors for our reduction to work hold in a
non-explicit construction, but currently it is not known how to explicitly construct such extractors.
As a result we do not give an unconditional construction of an explicit low-error two-source
extractor. Nonetheless, we believe our work gives a viable approach for solving the important
problem of low-error two-source extractors. Furthermore, our work highlights an existing barrier
in constructing low-error two-source extractors, and draws attention to the dependence of the
parameter t in the seed-length of the non-malleable extractor. We hope this work would lead to
further developments in explicit constructions of both non-malleable and two-source extractors.

1 Supported by the Israel Science Foundation grant no. 994/14.
2 Supported by NSF grants CCF-1526952, CCF-1412958 and the Simons Foundation. Part of this work

was done when the author was a graduate student in UT Austin and while visiting the Simons Institute
for the Theory of Computing at UC Berkeley.

3 Supported by the Israel Science Foundation grant no. 994/14. This work was done in part while visiting
the Simons Institute for the Theory of Computing at UC Berkeley.

4 Supported by NSF Grant CCF-1617713.
5 Supported by the Israel Science Foundation grant no. 994/14. This work was done in part while visiting

the Simons Institute for the Theory of Computing at UC Berkeley.

© Avraham Ben-Aroya, Eshan Chattopadhyay,
Dean Doron, Xin Li, and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eshanc@ias.edu
mailto:deandoron@mail.tau.ac.il
mailto:lixints@cs.jhu.edu
mailto:amnon@tau.ac.il
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


3:2 A New Approach for Constructing Low-Error, Two-Source Extractors

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandom-
ization

Keywords and phrases Two-Source Extractors, Non-Malleable Extractors, Pseudorandomness,
Explicit Constructions

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.3

Acknowledgements We are grateful to Gil Cohen for discussions regarding [20] in the early
stages of our work.

1 Introduction

A two-source extractor hashes samples from two independent weak sources into one output
whose distribution is close to uniform. Formally, we say a distribution X is an (n, k) source
if X is distributed over {0, 1}n and its min-entropy is at least k (i.e., all strings in its
support have probability mass at most 2−k). An ((n1, k1), (n2, k2), ε) two-source extractor
is a function E : {0, 1}n1 × {0, 1}n2 → {0, 1}m that maps any pair of independent (n1, k1)
and (n2, k2) sources X1, X2 to a distribution E(X1, X2) which is ε-close to Um, the uniform
distribution over {0, 1}m.

Non-explicitly there are ((n, k), (n, k), ε) two-source extractors as long as k ≥ logn +
2 log( 1

ε ) +O(1). More generally,

I Fact 1. Assume k1 + k2 ≥ log(2k1n1 + 2k2n2) + 2 log( 1
ε ) + O(1). Then, there exists a

(non-explicit) ((n1, k1), (n2, k2), ε) two-source extractor E : {0, 1}n1 × {0, 1}n2 → {0, 1}m.

Finding such explicit constructions is a long-standing, important and challenging problem.
A key parameter is the error ε obtained by the two-source extractor. Research in the area
can be divided into three regimes:

Very large error: Finding explicit two-source extractors with any error smaller than 1 (i.e.,
any non-trivial error) is already very challenging and is essentially equivalent to finding
an explicit bipartite Ramsey graph. A K Ramsey graph is a graph that contains no
monochromatic set (i.e., a clique or an independent set) of size K; a K bipartite Ramsey
graph is a bipartite graph with no bipartite monochromatic sets of size K. A K =
2k bipartite Ramsey graph over 2N = 2 · 2n vertices, is essentially equivalent to an
((n, k), (n, k), ε) two-source extractor, with ε = ε(n) < 1.
A long line of research was devoted to explicitly constructing Ramsey graphs [1, 30, 22, 12,
23, 31, 2, 24, 3], bipartite Ramsey graph [4, 5, 17], and two-source extractors [11, 34, 7].
Two years ago, Cohen [17] constructed a K bipartite Ramsey graph over 2N vertices with
logK = polylog(logN). This corresponds to an ((n, k), (n, k), ε) two-source extractor,
with k = polylogn and some non-trivial error ε. Independently, Chattopadhyay and
Zuckerman [10] gave another construction that gives about the same bipartite Ramsey
graphs, but with smaller error. We discuss this next.

Medium size error: Chattopadhyay and Zuckerman constructed an efficient ((n, k), (n, k), ε)
two-source extractor, with k = polylogn and running time polynomial in 1/ε. Several
improvements followed, including [29, 27]. Currently, following [6, 18, 28], the best explicit
construction achieves k = O(logn log logn) which is pretty close to the optimal Ω(logn)
bound.

http://dx.doi.org/10.4230/LIPIcs.CCC.2018.3
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All these constructions have running time which is at best polynomial in 1/ε, and as
we explain below this seems to be inherent to the approach that is taken. In contrast,
non-explicit constructions may have exponentially small error in the entropy k of the two
sources. Similarly, these constructions usually output few close-to-uniform bits, while
non-explicitly, almost all of the entropy can be extracted.

Exponentially small error: There are several explicit two-source extractors constructions
with exponentially small error:
1. The inner-product function gives a simple construction when k > n/2 [11].
2. Bourgain [7] gave a two-source extractor construction for k =

( 1
2 − α

)
n, for some

small constant α > 0.
3. Raz [34] constructed an ((n1, k1), (n2, k2), ε) two-source extractor that has an unbal-

anced entropy requirement; the first source is long (of length n1) and very weak (k1
can be as small as log logn1 +O(1)), the second source is short (of length O(logn1))
and somewhat dense with k2 ≥ αn2, for some constant α > 1

2 .
On the positive side, all of these constructions have exponentially small error (in Raz’s
extractor, the error is exponentially small in the smaller entropy). On the negative side,
however, in all of these constructions one of the sources is required to have entropy rate
close to half, i.e., the entropy of the source has to be at least

( 1
2 − α

)
n > 0.49n.

To summarize:
Current explicit constructions of low-error, two-source extractors require one source to
have entropy rate close to half, and,
There are explicit two-source extractors that work with astonishingly small min-entropy,
but currently they only handle large error, or, more precisely, their running time is
polynomial in 1/ε.

As we shall see shortly, there is a good reason for the two barriers that are represented in
the above two items. The goal of this paper is to present a new approach for bypassing these
barriers.

1.1 Extractors and Entropy-Rate Half
Let us start with the rate-half barrier for low-error constructions. For that we compare
two-source extractors with strong seeded extractors.

I Definition 2. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) extractor if for every (n, k)
source X, (Y,E(X,Y )) is ε-close to Y × Um, where Y is uniformly distributed over {0, 1}d

and is independent of X.

A seeded extractor E must have seed length d ≥ logn+ 2 log( 1
ε )−O(1) [33]. In essence,

the error of a seeded extractor has two origins:
The fraction ε1 of bad seeds for which E(X, y) is ε2-far from uniform, and,
The distance ε2 between E(X, y) and Um for good seeds.

These two errors can be very different, for example, it might be the case that for half
the seeds the error is extremely small, and then ε1 is constant and ε2 is tiny, or vice versa.
In the terminology of a seeded extractor, these two errors are unified to one parameter ε.
In the two-source extractor notation these two errors are essentially separated, where 2k2 is,
roughly, the number of bad seeds making ε1 ≈ 2k2−n2 , where ε of the two-source extractor
represents the ε2 above. More formally:

CCC 2018



3:4 A New Approach for Constructing Low-Error, Two-Source Extractors

I Fact 3. Suppose E : {0, 1}n×{0, 1}d → {0, 1} is an ((n, k), (d, d′), ε2) two-source extractor.
Then, E is a strong (k, ε = ε1 + ε2) extractor, for ε1 = 2d′+1−d, and furthermore, for every
(n, k) source X,

Pr
y∈{0,1}d

[E(X, y) 6≈ε2 U1] ≤ ε1.

Proof. Let X be an (n, k) source and let B ⊆ {0, 1}d so that for every y ∈ B, E(X, y) 6≈ε2U1.
Partition B = B0∪B1 where y ∈ Bz if the ε2 bias is towards z. Assume towards contradiction
that |Bz| ≥ 2d′ for some z and consider the flat distribution Y over the set Bz. Thus,
H∞(Y ) ≥ d′ so E(X,Y ) ≈ε2 U1 but by our definition, E(X,Y ) is biased towards z – a
contradiction. Altogether, |B| ≤ 2d′+1 so ε1 ≤ |B|/2d = 2d′+1−d. J

The lower bound d ≥ logn+ 2 log( 1
ε )−O(1) imposed on extractors, does not reveal which

of the two errors forces d to be large. Stating it more precisely, define a (k, ε1, ε2) function
E : {0, 1}n×{0, 1}d → {0, 1}m so that for every (n, k) source X, Pry∈{0,1}d [E(X, y) 6≈ε2U1] ≤
ε1. What is the dependence of d on ε1 and ε2?

The existence of ((n, k), (d = n, d′ = O(logn)), ε) two-source extractors, implies that the
dependence of d on ε1 might be very close 1 · log 1

ε1
. On the other hand, the dependence

of d on ε2 is larger, d ≥ d′ ≥ 2 log 1
ε2
, since we can view E as a strong (d′, ε2) extractor

{0, 1}d×{0, 1}k → {0, 1} and d′ ≥ 2 log 1
ε2

is again a lower bound [33]. Thus, the two-source
extractor terminology allows a finer characterization of the quality of an extractor, separating
the two errors ε1 and ε2 above.

Looking at it that way we see why rate-half is a natural barrier: An extractor with
seed length dependence 2 log( 1

ε ) guarantees that out of the D = 2d possible seeds, at most
D

1
2 +β are D−β bad. Thus, one can get an explicit two-source extractor, where the seed

has some constant density 1
2 + β, and exponentially small error, by constructing an explicit

strong seeded extractor with seed length dependence (2 + γ) log( 1
ε ) for some small constant γ.

Constructing a two-source extractor with d′/d below half necessarily means using techniques
that do not apply to strong seeded extractors. Bourgain achieves that in an ingenious way,
by using additive combinatorics together with the inner product function, but, at least so
far, this approach can only handle min-entropies slightly below half.

1.2 The CZ Approach
We now explain the main ideas in the construction of the two-source extractor of [10] and the
bottleneck for achieving smaller error. The CZ construction builds upon two main ingredients:
the existence of explicit non-malleable extractors and resilient functions, and we recall both
now.

I Definition 4. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) t-non-malleable (n.m.)
extractor, if for every (n, k) source X and every t functions f1, . . . , ft : {0, 1}d → {0, 1}d with
no fixed-points6 it holds that

|(Y,E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )))− (Y, Um, E(X, f1(Y )), . . . , E(X, ft(Y )))| ≤ ε,

where Y is uniformly distributed over {0, 1}d and is independent of X and Um is the uniform
distribution over {0, 1}m.

6 That is, for every i and every x, we have fi(x) 6= x.
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In words and roughly speaking, this means that there are many good seeds, and for a good
seed y, E(X, y) is close to uniform even given the value of E on t other seeds f1(y), . . . , ft(y)
maliciously chosen by an adversary. Said differently, if we build a table with D = 2d rows, and
put E(X, i) in the i-th row, then rows of good seeds are close to uniform, and, furthermore,
those good rows are close to being t-wise independent, in the sense that every t good rows
are ≈ tε close to uniform (see Lemma 10).

A resilient function is a nearly-balanced function f : {0, 1}D → {0, 1} whose output
cannot be heavily influenced by any small set of q “bad” bits. We think of the bad bits as a
coalition of malicious players trying to bias the output after seeing the D − q coin tosses
of the honest players (the honest players toss independent random coin). The function f is
(q, t) resilient if it is resilient even when there are q bad players and even when the honest
players are only t-wise independent.

Now, let X1 and X2 be two independent (n, k) sources. The starting point of [10] is to
use a t-non-malleable extractor E with error ε1 and seed length d1 to produce a table T1 with
D1 = 2d1 entries, where the i-th entry is E(X1, i). Using the property of the non-malleable
extractor, one can show that (1−√ε1)-fraction of the rows are uniform and almost t-wise
independent (in the sense that any t good rows are close to uniform). The remaining rows
are, however, arbitrarily correlated with those rows. Then, they

Use the second source X2 to sample a sub-table T2 with some D2 rows of the table T1,
such that a fraction of at most ε2 of its rows are bad, and every t good rows are √ε1-close
to uniform, and,
Apply a resilient function f : {0, 1}D2 → {0, 1} on the sub-table T2. f has to be resilient
against √ε2D2 bad players, and should perform correctly even when the good players are
t-wise independent.

It turns out that the sub-table T2 is Dt
2t
√
ε1-close to a table where the good players are

truly t-wise independent (as required by f) and so it is enough to choose ε1 small enough so
that Dt

2t
√
ε1 is small, and this proves the correctness of the construction.

While this beautiful approach does give an unbiased output bit, it seems that it is
inherently bound to have running time polynomial in 1/ε. This is because no matter which
resilient function we use, even if there is just a single bad player among the D2 players, then
that player alone may have 1/D2 influence over the result (in fact, [25] showed there is a
player with Ω( logD2

D2
) influence) and therefore that player can bias the result by 1/D2. Thus,

the running time, which is at least D2, is at least Ω( 1
ε ), and this is indeed a common feature

of all the constructions so far that use the CZ approach.
One could have hoped to sample a sub-table T2 that w.h.p. avoids all bad players, thus

dispensing with the use of the resilient function. This approach is futile: If T2 avoids all
bad players then every row y of it will do, so indeed E(X, y) is close to uniform and we
can compute it fast, allowing for a small error. However, this brings us back to the seeded
extractors case, and we already saw this cannot handle densities above half.

1.3 Our Main Result
The main result in the paper is a reduction showing how to explicitly construct low-error two-
source extractors given explicit t-non-malleable extractors with small seed length dependence
on t. Formally,

I Theorem 5. Suppose for some constant α > 0 for every n1, k1, ε1 and t there exists an
explicit function

E : {0, 1}n1 × {0, 1}d → {0, 1}m

CCC 2018



3:6 A New Approach for Constructing Low-Error, Two-Source Extractors

that is a strong (k1, ε1) t-non-malleable extractor with d ≤ αt · log( 1
ε1

).
Then, there exists an explicit function

F : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = O( dα ), k2 = O(αn2)), 2√ε1) two-source extractor, where the constants
hidden in the big-O notation are independent of α.

We first remark that such non-malleable extractors non-explicitly exist. In fact, much
better parameters are possible:

I Theorem 6. Let n, k, t and ε be such that k ≥ (t + 1)m + 2 log 1
ε + log d + 4 log t + 3.

There exist a strong (k, ε) t-n.m. extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ 2 log 1
ε +

log(n− k) + 2 log(t+ 1) + 3.

The proof of the Theorem is based on [21], where they only handle the t = 1 case. The
Theorem was also independently proved by Cohen and Shinkar [20]. For completeness we
give the proof in Appendix A.

The currently best explicit construction of t-n.m. extractors is due to Li:

I Theorem 7 ([28]). For any integer n, t and ε > 0, there exists an efficiently-computable
function

nmEXT : {0, 1}n × {0, 1}d → {0, 1}

that is a strong (k = d, tε) t-non-malleable extractor with seed length d = O(t2(logn+ log 1
ε ·

log log 1
ε )).

So far the main focus in explicit constructions of t-non-malleable extractors has been
getting an optimal seed length dependence on n and ε. Thus, Chattopadhyay et al. has
d = log2(nε ) [8] and this has been improved in [15, 16, 9, 14] with the current best construction
being Theorem 7 of [28] with d = O(logn+log 1

ε log log 1
ε ). However, in all these constructions

t is treated as a constant. In fact, Cohen [15, Lemma 2.5] proved that if one constructs a
n.m. extractor for t = 1 then an explicit construction for t follows at the cost of multiplying
the seed by a t2 multiplicative factor.

There is a huge gap between the dependence of the seed length on t in the non-explicit
construction of Theorem 6, where t contributes an additive 2 log t factor to the seed length,
and the explicit Theorem 7 where t contributes a multiplicative t2 factor to the seed length.7
Correspondingly, the quality of the two source construction we give significantly improves
with a better dependence of the seed on the parameter t. In Table 1 we list the two-source
extractors constructions we get for:

The current best explicit constructions (we get nothing),
A quadratic improvement over currently best explicit (we improve upon Raz’s extractor),
and,
A further polynomial improvement.

The parameters in the second row (and Theorem 5) resemble those of Raz’s extractor:
one source is long with very low entropy, the other is short with constant entropy rate. The

7 It is worth mentioning that an early construction of Cohen, Raz and Segev [19], although not explicitly
stating it, does get a very good dependence of d on t with d = O(log n

ε + t). However, their construction
only works for high min entropy and so does not imply a two-source extractor for densities below half.
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Table 1 Bounds for ((n, k), (n2, k2), ε) two-source extractors assuming an explicit t n.m. extractor
with various seed length d dependence on t. In all cases, the error ε is low.

Dependence on t k n2 k2

ω
(
t log 1

ε

)
The approach fails

αt log( 1
ε
) arbitrary O( d

α
) O(α)n2 α is any constant

tα log( 1
ε
) or better arbitrary polyα,β(d) nβ2 For some constants α, β < 1

tα log( 1
ε
) or better small enough n nβ For some constant β < 1

main difference is that in Raz’s extractor the entropy rate has to be above half, whereas here,
assuming the existence of the appropriate explicit non-malleable extractors, the entropy rate
can be an arbitrarily small constant.

By allowing the seed-length of the n.m. extractor to have an even better dependence on
t (and non-explicitly it does), we succeed in supporting polynomially-small min-entropies.
More specifically, if the seed length dependence on t is tα log( 1

ε ) for a small enough constant
α, then we can support min-entropy of k2 = nβ2 where β = β(α) is another constant.

Also, in that regime of dependence, we can set the error ε to be small enough so that
n2 = n, in which case we get a balanced two-source extractor supporting some polynomially-
small min-entropy (see Corollary 19).

We believe this clearly demonstrates that the dependence of the seed length on t in
non-malleable extractors is directly related to the required density of the seed (i.e., second
source) in low-error, two-source constructions. We believe this understanding is an important,
qualitative understanding. We believe our work is the first to draw attention to this important
question and we hope it will facilitate further research on achieving the correct dependence
of the seed on the non-malleability parameter t.

1.4 Our Technique
In the CZ construction we have the following ingredients:
1. The use of the first source to construct a table with many good rows (every row in the

table corresponds to applying an extractor on the first source, with some fixed seed).
2. The use of t-non-malleable extractors to get local t-wise independence, where every t

good rows are close to uniform.
3. The use of the second source to sample a sub-table of the table constructed from the first

source.
4. The realization that with the right choice of parameters the sub-table is globally close to

a table where the good rows are perfectly t-wise.
5. The use of resilient functions.

In our solution we keep (1)-(3) and completely dispense with (4) and (5), i.e., we do not
use resilient functions and we do not try to achieve a sub-table that is globally close to a truly
t-wise independent distribution. Instead, we work with the much weaker local guarantee that
every t good rows are close to uniform.

Thus, our construction is as follows. We are given two samples from independent sources
x1 ∼ X1 and x2 ∼ X2. Then:
1. We use a t-non-malleable extractor E with error ε1 and seed length d1 to construct a

table with D1 = 2d1 entries, where the i-th entry is E(X1, i). Using the property of

CCC 2018



3:8 A New Approach for Constructing Low-Error, Two-Source Extractors

non-malleable extractors one can show that (1 − √ε1)-fraction of the rows are good
in the sense that a good row is close to uniform even conditioned on t − 1 other rows.
The remaining rows are arbitrarily correlated with the good ones. So far, everything is
identical to the [10] construction.

2. We use the second sample x2 to sample t rows from that table, with the property that
with high probability (over the choice of x2 ∼ X2) at least one of the t samples is a
good row (in the table with D1 rows).
We note that this is very different from the [10] construction, where the requirement is
that with high probability (over the choice of x2 ∼ X2) the fraction of bad rows in the
sub-table is about the same as the fraction of bad rows in the original table.

3. We then take the parity of the t strings written in the t rows we sampled.
This is again very different from the [10] construction, where a resilient function is applied
on the sub-table (and notice that the parity function is not resilient at all).

Conceptually, what happened is that we take a dramatically smaller sample set than
before. Specifically, in [10, 6] the sample set is much larger than t, whereas in our algorithm
the sample size is t. Accordingly, we replace the requirement that the fraction of bad players
in the sample set is small, with the weaker requirement that not all of the players in the
sample set are bad. If the sample size is t and not all the players in the sample are bad, then
every good player (and even if there is just a single good player) is almost independent of
the other t− 1 players, and therefore we can just apply the parity function on the t bits in
the sample. Thus, we can also dispense with the resilient function f and just use the parity
function instead.

Notice that by doing so we also get rid of the annoying (and expensive) requirement that
Dt

2ε1 < 1, because we no longer need to convert a table where every t rows are locally close
to uniform, to a table that is globally close to being perfectly t-wise independent.

There is still a fundamental question we need to answer. Inspecting the argument, we
see that there is a circular dependency in the construction: The sample size of the sampler
determines the required t-non-malleability of the extractor, which then affects the parameters
of the extractor, and in particular the number of bad rows, which, in turn, affects the required
degree of the sampler. It is therefore, offhand, not clear whether such a construction is
possible at all even assuming the best possible non-malleable extractors.

The above inquiry raises the question of what is the dependence of the seed length of
non-malleable extractors on the non-malleability parameter t. This question was considered
before by several people. In particular, Cohen and Shinkar [20] independently investigated
this. As we explained before, it turns out that in non-explicit constructions the dependence
is very mild, and such an approach can be easily supported.

In the paper we analyze what is the threshold beyond which such an approach cannot
work. Roughly speaking, non-malleable extractors with seed length below t log(nε ) work
well, while non-malleable extractors with seed length above it do not. In Section 3 we
demonstrate how the dependence of the seed length d on t affects the parameters of the
two-source extractor construction.

Finally, we are left with two questions regarding explicitness:
We ask whether the sampler can be made explicit, i.e., whether we can find a sampler with
such a small sample size that except for very few x2-s always sees at least one good row.
This question readily translates to the existence (or the explicit existence) of dispersers
that are good against small tests. Remarkably, Zuckerman [35] gave a beautiful explicit
construction with nearly optimal bounds, and we show the dispersers he constructed
work well for us.
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Current explicit constructions of non-malleable extractors [13, 8, 15, 14, 9, 18, 28] for
small entropies are above that threshold. This is mainly due to the use of alternating
extraction techniques which treat the seed and the source symmetrically. Thus, this paper
raises the challenge of explicitly constructing non-malleable extractors with better seed
length dependence on t.

We believe identifying the connection between the seed length dependence on t and low
error, two-source extractors is important on its own, and is a major contribution of the
paper. We hope this work would lead to further developments in explicit constructions of
both non-malleable and two-source extractors.

1.5 Related work

Li [26] showed how to build a ((n, 0.499n), (n, k), 2−Ω(n)) two-source extractor assuming a
1-non-malleable extractor with seed-length d = 2 log(1/ε) + o(n). Li’s work is orthogonal
to ours. First, it asks for small seed dependence on the error: the seed-length of the non-
malleable extractor has to be at most 2.001, while we look on the dependence on t. Also,
it achieves limited parameters (even assuming non-explicit constructions) that are close to
those in Bourgain’s construction, and it is also close in spirit to Bourgain’s construction.

As we said before, we believe our work reveals an intrinsic connection between the
dependence of the seed length of a non-malleable extractor on the non-malleability parameter
t and the quality of low-error two-source extractors, and is the first work to draw attention
to the important problem of the dependence of the seed length on t in explicit construction.
We hope, and believe, this approach may lead to getting better explicit, low-error, two source
extractors, which is a fundamental problem and a long standing barrier in TCS.

2 Preliminaries

Throughout the paper we have the convention that lowercase variables are the logarithm
(in base-2) of their corresponding uppercase variables, e.g., n = logN , d = logD, etc. The
density of a set B ⊆ [D] is ρ(B) = |B|

D .

2.1 Random Variables, Min-Entropy

The statistical distance between two distributions X and Y on the same domain D is defined
as |X − Y | = maxA⊆D(Pr[X ∈ A]− Pr[Y ∈ A]). If |X − Y | ≤ ε we say that X is ε-close to
Y and denote it by X ≈ε Y . We will denote by Un a random variable distributed uniformly
over {0, 1}n and which is independent of all other variables. We also say that a random
variable is flat if it is uniform over its support.

For a function f : D1 → D2 and a random variable X distributed over D1, f(X) is
the random variable, distributed over D2, which is obtained by choosing x according to
X and computing f(x). For a set A ⊆ D1, we simply denote f(A) = {f(x) | x ∈ A}. It is
well-known that for every f : D1 → D2 and two random variables X and Y , distributed over
D1, it holds that |f(X)− f(Y )| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log 1
Pr[X = x] .
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A random variable X distributed over {0, 1}n with min-entropy at least k is called
an (n, k)-source. Every distribution X with H∞(X) ≥ k can be expressed as a convex
combination of flat distributions, each with min-entropy at least k.

2.2 Extractors
I Definition 8. A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is an ((n1, k1), (n2, k2), ε)
two-source extractor if for every two independent sources X1 and X2 where X1 is an (n1, k1)
source and X2 is an (n2, k2) source, it holds that 2Ext(X1, X2) ≈ε Um.

I Definition 9. E : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) t-non-malleable (n.m.)
extractor, if for every (n, k) source X and every functions f1, . . . , ft : [D] → [D] with no
fixed-points it holds that,∣∣∣(Y,E(X,Y ), {E(X, fi(Y ))}ti=1)− (Y, Um, {E(X, fi(Y ))}ti=1)

∣∣∣ ≤ ε,

where Y is uniformly distributed over {0, 1}d and is independent of X.

A simple consequence, proved in [10], is:

I Lemma 10 ([10], Lemma 3.4). Let E : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k, ε) t-non-
malleable extractor. Let X be any (n, k) source. Then there exists a set BAD ⊆ [N ] with
ρ(BAD) ≤

√
ε such that for every y 6∈ BAD, and every y′1, . . . , y′t ∈ [D] \ y,∣∣∣(E(X, y), {E(X, y′i)}i∈[t]

)
−
(
Um, {E(X, y′i)}i∈[t]

)∣∣∣ ≤ √ε.
2.3 Dispersers
I Definition 11. A function Γ: [N ]× [D]→ [M ] is a (K,K ′) disperser if for every A ⊆ [N ]
with |A| ≥ K it holds that

∣∣∣⋃i∈[D] Γ(A, i)
∣∣∣ ≥ K ′.

Zuckerman showed the following remarkable explicit construction:

I Theorem 12 ([35], Theorem 1.9). There exists a constant cdisp such that the following
holds. For every constants 0 < a, b < 1, every N , K = Na, M ≤ K1−b and K ′ < M there
exists an efficient family of (K,K ′) dispersers

Γ: [N ]× [D]→ [M ]

with degree D = cdisp ·
log N

K

log M
K′

.

The parameters in Theorem 12 are tight up to a constant factor:

I Theorem 13 ([33], Theorem 1.5). There exists a constant c0 such that the following
holds. Let Γ: [N ]× [D]→ [M ] be a (K,K ′) disperser where K < N and K ′ < M/2. Then,
D ≥ c0 ·

log N
K

log M
K′

.

3 The Construction

3.1 The Overall Structure
Given:

E : {0, 1}n1 × [D]→ {0, 1}m

Γ: {0, 1}n2 × [t+ 1]→ [D]
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We define 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m by

2Ext(x1, x2) =
⊕

y : ∃i s.t. Γ(x2, i) = y

E(x1, y).

I Theorem 14. Assume E is a strong (k1, ε1) t-n.m. extractor and Γ is a (B2,
√
ε1D)

disperser. Then, for every k2, 2Ext is a
(

(n1, k1), (n2, k2), B2
K2

+√ε1

)
two-source extractor.

Proof. Let X1 be an (n1, k1) source and X2 an (n2, k2) source. W.l.o.g. X1 and X2 are flat.
As E is t-n.m., by Lemma 10 there exists a set BAD1 ⊆ [D] with ρ(BAD1) ≤ √ε1 such that
for every y 6∈ BAD1 and every y′1, . . . , y′t ∈ [D] \ {y},∣∣∣(E(X, y), {E(X, y′i)}i∈[t]

)
−
(
Um, {E(X, y′i)}i∈[t]

)∣∣∣ ≤ √ε1.

Let BAD2 ⊆ [N2] be

BAD2 = {x2 ∈ {0, 1}n2 : Γ(x2) ⊆ BAD1} .

Thus, Γ(BAD2) ⊆ BAD1. Since |BAD1| ≤
√
ε1D and Γ2 is a (B2,

√
ε1D) disperser, it

follows that |BAD2| ≤ B2. However, for any x2 ∈ {0, 1}n2 \BAD2, there exists an i ∈ [t+ 1]
such that y = Γ(x2, i) 6∈ BAD1. Hence,∣∣∣(E(X, y), {E(X, yj)}yj∈Γ(x2)\{y}

)
−
(
Um, {E(X, yj)}yj 6=Γ(x2)\{y}

)∣∣∣ ≤ √ε1.

Thus,∣∣∣∣∣∣
⊕

y : ∃i s.t. Γ(x2, i) = y

E(x1, y) − Um

∣∣∣∣∣∣ ≤ √ε1.

Altogether, the error is at most |BAD2|
K2

+√ε1 and the proof is complete. J

3.2 The Activation Threshold
In the previous subsection we assumed the existence of a (B2,

√
ε1D) disperser Γ and a t-n.m.

extractor E. However,
The degree D2 of the disperser Γ affects the non-malleability parameter t of the extractor,
because the argument requires t ≥ D2 − 1,
The non-malleability parameter t affects the degree 2d = D of the extractor, because
intuitively, the greater t is the greater the degree has to be,
The degree D determines |BAD1| =

√
ε1D, and,

The size B1 of the set BAD1 determines the degree of the disperser Γ as D2 = O

(
log N2

B2
log D

B1

)
,

and up to a multiplicative factor this is also a lower bound on D2.

Thus we have a circular dependence and it is not clear at all that such a construction is
even possible. Indeed, as we shall see, if the seed length of E is larger than t log( 1

ε1
) such a

construction is impossible. However, at least non-explicitly, better non-malleable extractors
exist that comfortably suffice for the construction. Our goal in this section is to determine
which dependence of the seed length on t and ε1 suffices for the construction.
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3.3 The analysis fails when d ≥ ct log(1
ε
) for some constant c

I Lemma 15. Suppose

E : {0, 1}n1 × [D]→ {0, 1}m

Γ: {0, 1}n2 × [t+ 1]→ [D]

are such that E is a strong (k1, ε1) t-n.m. extractor and Γ is any (B2, B1 = √ε1D) disperser,
as required by Theorem 14. Suppose Theorem 14 gives that

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is an ((n1, k1), (n2, k2), 2√ε1) two-source extractor with K2 <
√
N2. Then, log1/ε1 D ≤

t+1
c0

,
where c0 is the constant guaranteed by Theorem 13.

Proof. We first give some easy bounds on the parameters:
B2 ≤ K2, for otherwise Theorem 12 constructs 2Ext with the trivial error 1.
Also, tB2 ≥ B1, for otherwise we can take a set A ⊆ {0, 1}n2 of cardinality B2 and the
size of its neighbor set is at most B2t < B1 violating the disperser property.
Finally, B1

t ≥
√
B1 because otherwise

√
B1 < t and then

D1 = B1√
ε1

<
t2
√
ε1
≤ n2

1√
ε1
≤ 1
ε2

1
,

where the last inequality follows from the assumption on ε1. This contradicts the
lower-bound for extractors [33].

Together, N2
B2
≥ N2

K2
≥ K2 ≥ B2 ≥ B1

t ≥
√
B1 = √ε1D and D

B1
= 1√

ε1
. Now, Γ: {0, 1}n2×

[t+ 1]→ [D] is a (B2, B1 = √ε1D) disperser and therefore by Theorem 13 it has degree at

least c0 ·
log N2

B2
log D

B1
for some constant c0. Therefore,

t+ 1 ≥ c0 ·
log N2

B2

log D
B1

≥ c0 ·
log√ε1D

log 1√
ε1

= 2c0 · log1/ε1(
√
ε1D) = 2c0 · (log1/ε1 D − 1/2) ≥ c0 log1/ε1 D. J

The analysis in the above proof is quite tight and in the next subsection we prove the
converse (which also entails Theorem 5).

3.4 When d = O(t log(1
ε
))

I Lemma 16. Let ε1 ≤ 1
n . Suppose there exists an explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ α
8cdisp t for some constant α > 0,

some constant t and some k1. Then there exists an explicit

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = 4
αd1, k2 = αn2), 2√ε1) two-source extractor.
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Proof. Fix t as in the hypothesis of the lemma. Set D such that log1/ε1 D = αt
8cdisp . Let

Γ: [N2 = D4/α]× [D2]→ [D]

be the (B2 = D2, B1 = √ε1D) disperser promised to us by Theorem 12 for a = α
2 (because

B2 = Na
2 ) and b = 1

2 (because D = Bb2). By Theorem 12 the degree D2 of Γ is

D2 = cdisp ·
log N2

B2

log D
B1

= cdisp ·
4(1−a)
α logD
log 1√

ε1

= cdisp ·
(

1
α
− 1

2

)
8 logD
log 1/ε1

= cdisp ·
(

8
α
− 4
)

log1/ε1 D

= cdisp ·
(

8
α
− 4
)

αt

8cdisp
=
(

1− α

2

)
t < t.

Let

E : {0, 1}n1 × [D1]→ {0, 1}m

be the explicit, strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ α
8cdisp t = log1/ε1 D promised

by the hypothesis of the lemma. As 1
ε > 1, we see that D1 ≤ D and we may take D1 larger

so that it equals D.
Now let

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

be constructed from E and Γ as above. As E is a strong (k1, ε1) t-n.m. extractor and Γ is a
(B2,

√
ε1D1) disperser, Theorem 14 tells us that for every k2, 2Ext is a ((n1, k1), (n2, k2), B2

K2
+√

ε1) two-source extractor. Taking k2 = αn2,

B2

K2
+
√
ε1 = D2

1
D4

1
+
√
ε1 = 1

D2
1

+
√
ε1.

But D1 ≥ 1
ε21

(this is true for any seeded extractor [33]). Altogether the error is at most
√
ε1 + 1

ε21
≤ 2√ε1. J

3.5 When d = O(tα log(1
ε
))

A careful examination of the parameters shows that if the dependence of d1 on t is better,
our scheme yields a two-source extractor that supports even smaller min-entropies. Roughly
speaking, if log1/ε1 D1 = tα for some α < 1 we can support some polynomially-small
min-entropy k2 = nβ2 , instead of only supporting min-entropies of constant rate. Specifically:

I Lemma 17. Let ε1 ≤ 1
n . There exists a constant β0 < 1 such that for every β0 < β < 1

there exist constants α < 1 and γ > 1 so that the following holds. Suppose there exists an
explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα for some k1, and t which is a
large enough polynomial in log 1

ε1
. Then there exists an explicit

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

that is a ((n1, k1), (n2 = dγ1 , k2 = nβ2 ), 2√ε1) two-source extractor.
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The proof is similar to the proof of Lemma 16. However, it is no longer true that K2 is
a constant power of N2, so we should be more careful with the parameters of Zuckerman’s
disperser. Particularly, in this regime of parameters, the degree D2 (and consequently t)
is no longer constant but will be poly-logarithmic in 1

ε . The following Theorem extends
Theorem 12 for the more general case.

I Theorem 18 ([35], Theorem 1.9). There exist constants c1, c2 > 1 such that the following
holds. For every 0 < δ < 1, N , K = Nδ, M ≤ Nδc2 and K ′ < M there exists an efficient
family of (K,K ′) dispersers

Γ: [N ]× [D]→ [M ]

with degree D =
( 1
δ

)c1 · n
log M

K′
.

We are now ready to prove Lemma 17.

Proof of Lemma 17. Let c1 and c2 be as in Theorem 18. Set β0 = 1 − 1
c2

and fix some
β0 < β < 1. Fix t as in the hypothesis of the lemma. Set D such that log1/ε1 D = tα for
α = α(β) we will soon explicitly determine. Let

Γ: [N2 = D1/δc2 ]× [D2]→ [D]

be the (B2 = Nδ
2 , B1 = √ε1D) disperser promised to us by Theorem 18, for δ = 1

2n
−(1−β)
2 .

Notice that b2 = δn2 = 1
2n

β
2 and set k2 = 2b2 = nβ2 . Also, observe that n2 = 1

δc2 d = (2c2d)γ′

for

γ′ = 1
1− c2(1− β) .

As β > β0 we see that γ′ > 1. It follows that n2 = dγ for some γ′ < γ < 2γ′.
By Theorem 18, the degree D2 of Γ is

D2 =
(

1
δ

)c1
· n2

log D
B1

=
(

1
δ

)c1
· 2n2

log(1/ε1)

=
(

2n1−β
2

)c1
· 2 · n2

log(1/ε1) = 2c1+1 · n
1+c1(1−β)
2

log(1/ε1) = 2c1+1 · (logD)γ(1+c1(1−β))

log(1/ε1) .

Set ξ = γ(1 + c1(1− β)) > 1 and α = 1
2ξ (note that α is in fact a function of β). We get that:

D2 = 2c1+1 logξD
log(1/ε1) = 2c1+1

(
logξ−1 1

ε1

)(
log1/ε1 D

)ξ
= 2c1+1

(
logξ−1 1

ε1

)
tαξ.

Now, note that tαξ =
√
t, so D2 < t as long as t > 4c1+1 log2(ξ−1) 1

ε1
.

Let

D : {0, 1}n1 × [D1]→ {0, 1}m

be the explicit, strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα = log1/ε1 D promised
by the hypothesis of the lemma. Again, we can take D1 = D.

Now let

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m
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be constructed from E and Γ as in Section 3.1. We have that E is a strong (k1, ε1) t-n.m.
extractor and Γ is a (B2,

√
ε1D1) disperser, so by Theorem 14 2Ext is a ((n1, k1), (n2, k2), B2

K2
+√

ε1) two-source extractor.
In our case, B2

K2
= 2b2−k2 = 2−b2 . We stress that b2 ≥ 1

2 log 1
ε1
. To see this, note that

2b2 = nβ2 = dβγ1 . As βγ ≥ βγ′ = β
1−c2(1−β) ≥ 1, and d1 ≥ 2 log 1

ε1
(again, this is true for any

seeded extractor), we finally have that 2b2 ≥ d1 > log 1
ε1
. Overall,

B2

K2
+
√
ε1 ≤ 2

√
ε1

and we are done. J

Next, we show that we can balance the above two-source extractor (i.e., n1 = n2) by
choosing the error ε1 appropriately and assuming k1 is small enough. The resulting two-source
extractor supports polynomially-small min-entropies from both sources. Formally:

I Corollary 19. Let ε1 ≤ 1
n . There exists a constant β0 < 1 such that for every β0 < β < 1

there exits a constant α < 1 so that the following holds. Suppose there exists an explicit

E : {0, 1}n1 × [D1]→ {0, 1}m

that is a strong (k1, ε1) t-n.m. extractor with log1/ε1 D1 ≤ tα for some k1 ≤ d1, and t which
is a large enough polynomial in log 1

ε1
. Then there exists an explicit

2Ext : {0, 1}n × {0, 1}n → {0, 1}m

that is an ((n, k = k1), (n, k), ε) two-source extractor for k = nβ and ε = 2−nΩ(1) .

Proof. Following the notations of Lemma 17, let β0, α, γ be the constants set according to β.
Let 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m be the explicit ((n1, k1), (n2 = dγ1 , k2 = nβ2 ), 2√ε1)
that is guaranteed to us.

We require n = n1 = n2 = dγ1 , so as d1 = tα log 1
ε1
≤ t log 1

ε1
and t is polynomial in log 1

ε1
,

denote t log 1
ε1

= logη
′ 1
ε1

and n = logη 1
ε1

for some large enough constants η′, η = γη′. This
guarantees that ε = 2√ε1 = 2−nΩ(1) .

Next, note that k1 ≤ d1 and d1 = n
1
γ . Indeed, n

1
γ ≤ nβ since we already observed in

the proof of Lemma 17 that γβ ≥ 1. Overall k1 ≤ nβ for every β > β0. As by construction
k2 = nβ2 for every β > β0 as well, the proof is concluded. J
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A The dependence of the seed on the non-malleability degree

In this section we extend the [21] result, where non-malleability was considered only in the
case of t = 1. We repeat Theorem 6 and prove:

I Theorem 20. Let n, k, t and ε be such that k ≥ (t + 1)m + 2 log 1
ε + log d + 4 log t + 3.

There exist a strong (k, ε) t-n.m. extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ 2 log 1
ε +

log(n− k) + 2 log(t+ 1) + 3.

This was also independently proved by Cohen and Shinkar [20].

Proof. Choose a function E : [N ]× [D] → [M ] uniformly at random. Fix a flat source X
(which we identify with a subset X ⊆ [N ] of size K), t functions f1, . . . , ft : [D]→ [D] with
no fixed-points and a distinguisher function D : {0, 1}(t+1)m+d → {0, 1}. We want to bound
the probability (over E) that

Pr[D(E(X,Y ), E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1]−
Pr[D(Um, E(X, f1(Y )), . . . , E(X, ft(Y )), Y ) = 1] > ε.

For every y ∈ [D] and z1, . . . , zt ∈ [M ], define

Count(y, z1, . . . , zt) = |{z ∈ [M ] : D(z, z1, . . . , zt, y) = 1}| .
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For every x ∈ X and y ∈ [D], define the following random variables (where the randomness
comes from E):

L(x, y) = D(E(x, y), E(x, f1(y)), . . . , E(x, ft(y)), y),

R(x, y) = 1
M
· Count(y,E(x, f1(y)), . . . , E(x, ft(y))),

Q(x, y) = L(x, y)−R(x, y),

Q = 1
KD

∑
x∈X,y∈[D]

Q(x, y).

As we mentioned above, we want to bound Pr[Q > ε]. Notice that for every x ∈ X and y ∈ [D],
due to the fact that f1, . . . , ft have no fixed points, we have that E[L(x, y)] = E[R(x, y)] and
thus E[Q] = 0. However, the values of Q on different inputs are not independent.

To see why the Q-s are not independent, think for example about the case where t = 2
and y is such that f2(f1(y)) = y. In such a scenario,

L(x, y) = D(E(x, y), E(x, f1(y)), E(x, f2(y)), y),
L(x, f1(y)) = D(E(x, f1(y)), E(x, f1(f1(y))), E(x, y), f1(y)),

so, depending on D, Q(x, y) and Q(x, f1(y)) may not be independent. Luckily, it is sufficient
to disregard such cycles in order to obtain sufficient “independence”.

Let G = (V = [D], E) be a directed graph (multiple edges allowed) such that

E = {(y, fk(y)) : y ∈ [D], k ∈ [t]} ,

so the out-degree of every vertex is exactly t.

I Lemma 21. Assume that there exists a subset V ′ ⊆ V such that the induced subgraph
G′ ⊆ G is acyclic. Then, the set {Q(x, y)}x∈X,y∈V ′ can be enumerated by Q1, . . . ,Qm=K|V ′|
such that

E[Qi | Q1, . . . ,Qi−1] = 0

for every i ∈ [m].

Proof. G′ is acyclic so it induces a partial order on V ′. Use this partial order to induce
a total order on {1, . . . ,m} such that if (y, y′) ∈ E and Qj = Q(x, y′), Qi = Q(x, y) then
j ≤ i.

Fix some i ∈ [m] and assume Qi = Q(x, y). The key point is that the variables
Q1, . . . ,Qi−1 never query E on the input (x, y). Conditioned on any choice of the value of
E for all points other than (x, y), denote them by e1, . . . , et, we have that

E[Qi] = E
[
D(E(x, y), e1, . . . , et, y)− 1

M
· Count(y, e1, . . . , et)

]
= 0,

and as we noted, Q1, . . . ,Qi−1 are deterministic functions of E and independent of E(x, y).
J

We now need a partition of the vertices of G into acyclic induced subgraphs. The following
lemma shows that such a partition exists with a small number of sets.

I Lemma 22 ([32, Corollary 4]). For any directed graph G = (V,E) with maximum out-degree
t (multiple edges allowed), there exists a partition V = V1 ∪ . . . ∪ Vt+1 such that for every
i ∈ [t+ 1], the subgraph of G induced by Vi is acyclic.
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In light of the above two lemmas, there exists a partition of {Q(x, y)}x∈X,y∈[D] to
t + 1 sets

{
Q1

1, . . . ,Q1
s1

}
, . . . ,

{
Qt

1, . . . ,Qt
st

}
such that for every k ∈ [t + 1] and i ∈ [sk],

E[Qk
i | Qk

1 , . . . ,Qk
i−1] = 0. Now, define Ski =

∑i
j=1 Qk

j and note that every sequence
Sk1 , . . . , S

k
sk

is a martingale. Also, |Ski − Ski−1| = |Qk
i | ≤ 1 with probability 1. Thus, using

Azuma’s inequality,

Pr[Q > ε] = Pr
[
t+1∑
k=1

Sksk > εKD

]
≤

t+1∑
k=1

Pr
[
Sksk >

εKD

t+ 1

]

≤
t+1∑
k=1

exp

−
(
εKD
t+1

)2

2 · sk

 ≤ (t+ 1)e−
ε2KD

2(t+1)2 ,

where the last inequality follows from the fact that sk ≤ KD.
To complete our analysis, we require E to work for any X, f1, . . . , ft and D. By the

union bound, the probability for a random E to fail, denote it by pE , is given by

pE ≤
(
N

K

)
DtD2D·M

t+1
(t+ 1)e−

ε2KD
2(t+1)2

≤ 2K log(NeK )+tDd+DMt+1+log(t+1)− ε
2KD log e
2(t+1)2

≤ 2K(n−k+2)+tDd+DMt+1+log(t+1)− ε2KD
2(t+1)2 .

To prove that pE < 1 (in fact this will show pE � 1) it is sufficient to prove that:
1. K(n− k + 2) ≤ ε2KD

8(t+1)2 .
2. D(td+M t+1) + log(t+ 1) ≤ ε2KD

8(t+1)2 , or alternatively D(2td+M t+1) ≤ ε2KD
8(t+1)2 .

Item (1) is true whenever

D ≥ 8(t+ 1)2(n− k + 2)
ε2 .

Item (2) is true whenever

K ≥ 8(t+ 1)2(2td+M t+1)
ε2 .

The bounds on d and k follow from the above two inequalities. J
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