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Abstract
We consider the problem of representing Boolean functions exactly by “sparse” linear combina-
tions (over R) of functions from some “simple” class C. In particular, given C we are interested
in finding low-complexity functions lacking sparse representations. When C forms a basis for
the space of Boolean functions (e.g., the set of PARITY functions or the set of conjunctions)
this sort of problem has a well-understood answer; the problem becomes interesting when C is
“overcomplete” and the set of functions is not linearly independent. We focus on the cases where
C is the set of linear threshold functions, the set of rectified linear units (ReLUs), and the set of
low-degree polynomials over a finite field, all of which are well-studied in different contexts.

We provide generic tools for proving lower bounds on representations of this kind. Applying
these, we give several new lower bounds for “semi-explicit” Boolean functions. Let α(n) be an
unbounded function such that nα(n) is time constructible (e.g. α(n) = log?(n)). We show:

Functions in NTIME[nα(n)] that require super-polynomially many linear threshold functions
to represent (depth-two neural networks with sign activation function, a special case of depth-
two threshold circuit lower bounds).
Functions in NTIME[nα(n)] that require super-polynomially many ReLU gates to represent
(depth-two neural networks with ReLU activation function).
Functions in NTIME[nα(n)] that require super-polynomially many O(1)-degree Fp-polynomials
to represent exactly, for every prime p (related to problems regarding Higher-Order “Uncer-
tainty Principles”). We also obtain a function in ENP requiring 2Ω(n) linear combinations.
Functions in NTIME[npoly(logn)] that require super-polynomially many ACC ◦THR circuits to
represent exactly (further generalizing the recent lower bounds of Murray and the author).

We also obtain “fixed-polynomial” lower bounds for functions in NP, for the first three represent-
ation classes. All our lower bounds are obtained via algorithms for analyzing linear combinations
of simple functions in the above scenarios, in ways which substantially beat exhaustive search.
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6:2 Limits on representing Boolean functions by linear combinations of simple functions
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1 Introduction

Given f : {0, 1}n → {0, 1} and a class C of “simple” functions, when can f be represented
exactly as a short R-linear combination of functions from C? When C forms a basis for
Bn (the set of all Boolean functions on n inputs) the question has a unique answer that
is generally easy to obtain, by analyzing the appropriate linear system (the cases where
C is the set of all parity functions or the set of all conjunctions are canonical examples).
For |C| � 2n, the situation becomes much more interesting, as there can be many possible
representations. The general problem of understanding which functions do and do not have
sparse representations for simple C arises in many different mathematical topics. Three
relevant to TCS are depth-two threshold circuits, depth-two neural networks with various
activation functions, and higher-order Fourier analysis. We use the notation

SUM ◦ C

to denote the class of R-linear combinations of C-functions; for example, SUM◦MOD2 denotes
R-linear combinations of PARITY functions. The relevant complexity measure for a “circuit”
in SUM ◦ C is the fan-in of the SUM gate, which we call the sparsity of the circuit.

Sums of Threshold Circuits

Let SUM ◦ THR be linear combinations of linear threshold functions (LTFs).2 As there are
2Θ(n2) n-variate threshold functions [55], a function f : {0, 1}n → {0, 1} has many possible
representations as a SUM ◦ THR. Such circuits are also known in the machine learning
literature as depth-two neural networks with sign activation functions.

In 1994, Roychowdhury, Orlitsky, and Siu [38] noted that no interesting size lower bounds
were known for computing Boolean functions with SUM ◦ THR circuits (beyond the few that
are/were known for THR ◦ THR [22, 38, 28, 14, 43, 2]). The problem was raised again more
recently in CCC’10 by Hansen and Podolskii [23]. In particular, the following remains largely
unanswered:

Problem: Find an explicit f : {0, 1}? → {0, 1} without polynomially-sparse SUM ◦
THR, i.e., every linear combination of LTFs computing f on n-bit inputs needs nω(1)

LTFs, for infinitely many n.

Because of prior lower bounds in weaker settings (such as majority-of-majority [22] and
majority-of-thresholds [36]), it is natural to think that correlation bounds against linear
threshold functions should help.3 Correlation bounds do imply lower bounds for SUM ◦THR,
but only when the weights in the linear combination are not too large (i.e., the weights must
be in [−2δn, 2δn] for small δ < 1). However, if arbitrary weights are allowed, interesting lower
bounds on SUM ◦ THR (beyond Ω(n2.5 wires [28]) were open, to the best of our knowledge.
In Section 4, we prove arbitrary polynomial lower bounds for NP functions:

2 From here on, “linear combination” means “R-linear combination”, unless otherwise specified.
3 That is, one wants to show that a function cannot be (1/2 + ε(n))-approximated by a linear threshold

function, for the tiniest ε(n) > 0 possible.
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I Theorem 1. For all k, there is an fk ∈ NP without SUM ◦ THR circuits of nk sparsity.
Furthermore, for every unbounded α(n) such that nα(n) is time constructible, there is a
function in NTIME[nα(n)] that does not have SUM ◦ THR circuits of polynomial sparsity.

Note that for arbitrary circuits (even for THR ◦ THR circuits) the best known complexity
for such functions without nk-size circuits (for fixed k) is MA/1 ([40]) and Sp2 .

Sums of ReLU Gates

A ReLU (rectified linear unit) gate is a function f : {0, 1}t → R+ such that there is a vector
w ∈ Rt and scalar a ∈ R such that for all x,

f(x) = max{0, 〈x,w〉+ a}.

It is important to note that ReLU gates might not be Boolean-valued, but they must output
non-negative numbers on all Boolean inputs. Linear combinations of ReLU gates are also
known as depth-two neural networks with ReLU activation functions, and they are intensely
studied in machine learning. Several lower bounds for Sums-of-ReLU functions (which for
consistency we call SUM ◦ ReLU) have recently been shown for functions with real-valued
inputs and outputs (examples include [16, 44, 3, 15, 39]) but none of the methods extend to
Boolean functions, to the best of our knowledge. Recently, Mukherjee and Basu [33] have
proved Ω(n1−δ)-gate lower bounds for SUM ◦ ReLU circuits computing the Andreev function,
extending ideas in [28, 13].

Observing that for |〈x,w〉| ≥ 1 we have

max{0, 〈x,w〉+ 1} −max{0, 〈x,w〉} = sign(〈x,w〉),

it follows that every SUM◦THR circuit can be simulated by a SUM◦ReLU circuit with only a
doubling of the sparsity. In Section 5 we extend our lower bounds to Sums-of-ReLU circuits:

I Theorem 2. For all k, there is an fk ∈ NP without SUM ◦ ReLU circuits of nk sparsity.
Furthermore, for every unbounded α(n) such that nα(n) is time constructible, there is a
function in NTIME[nα(n)] that does not have SUM ◦ ReLU circuits of polynomial sparsity.

Representing Boolean Functions With Higher-Order Polynomials

Higher-order Fourier analysis of Boolean functions deals with representing Boolean functions
by R-linear combinations of F2-polynomials of degree higher than one (see [25] for a survey of
some applications in CS theory). The question of which (if any) explicit functions lack sparse
representations, even for degree-two polynomials, has been wide open. Letting MOD2 be the
class of parity functions, this question asks to find lower bounds for SUM ◦MOD2 ◦ AND2
circuits (in our notation, ANDk denotes ANDs of fan-in at most k). Such lower bound
problems appear much more difficult than the degree-one case of SUM ◦ MOD2. Even
understanding the sparsity of the AND function in the quadratic (and in general, degree-
O(1)) setting is a prominent open problem:

I Hypothesis 3 (Quadratic Uncertainty Principle [17]). There is an ε > 0 such that the AND
function on n variables does not have SUM ◦MOD2 ◦ AND2 circuits of 2εn sparsity.

Although it is believed that AND needs exponential sparsity, to our knowledge the only
lower bound known for an explicit function in SUM ◦MOD2 ◦ AND2 was Ω(n)-sparsity. For
completeness we include a proof provided to us by Lovett [30]) in Appendix A. Again, when
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the weights in the linear combination are required to be small (magnitudes are 2εn for small
ε > 0), correlation bounds yield some results: one example (among many) is the work of
Green [20] showing that a majority vote of quadratic F3-polynomials needs 2Ω(n) polynomials
to compute PARITY. (Other works in this vein include [24, 10, 9, 19]; see Viola [49] for a
survey.) However, for arbitrary weights, no non-trivial lower bounds have been reported (to
our knowledge).

In Section 6, we prove polynomial sparsity lower bounds for Boolean functions in NP and
2Ω(n)-size lower bounds for ENP, against linear combinations of polynomials over any prime
field with any constant degree:

I Theorem 4. For every integer k, d ≥ 1 and prime p, there is an fk ∈ NP without
SUM ◦MODp ◦ ANDd circuits of nk sparsity. Furthermore, for every unbounded α(n) such
that nα(n) is time constructible, there is a function in NTIME[nα(n)] that does not have
SUM ◦MODp ◦ ANDd circuits of polynomial sparsity.

I Theorem 5. For every d ≥ 1 and prime p, there is an α > 0 and an f ∈ ENP without
SUM ◦MODp ◦ ANDd circuits of 2αn sparsity.

Note the “smallest” known complexity class for a function lacking 2Ω(n)-size circuits is
EΣ2P [32], and it is a longstanding open problem to reduce the complexity class for such a
function, even against depth-3 AC0 circuits.

1.1 Intuition

Here we give an overview of some of the ideas used to prove the lower bounds in this work.
The lower bounds of this paper follow the high-level strategy of proving circuit lower bounds
by designing circuit-analysis (satisfiability) algorithms [51, 53, 52]. However, in this work we
must execute this strategy differently. All previous lower bounds proved in this framework
utilize the “polynomial method” from circuit complexity in various ways (representing a
circuit by a low-degree polynomial of some kind), combined with fast matrix multiplication
and/or fast polynomial evaluation. These approaches do not seem to work for solving SAT on
linear combinations of thresholds, low-degree polynomials, or ReLU gates. For example, we
do not know how to get a sparse (probabilistic or approximate) polynomial (over any field)
for computing an OR of many SUM ◦ THRs, and it is likely that any reasonable approach
via polynomials would fail to yield non-trivial results. However, we are able to adapt some
bits of the polynomial method to the setting of low-degree polynomials (see Section 6).

Another complication is that, in the prior lower bound arguments, a nondeterministic
procedure guesses a small circuit C of the kind one wishes to prove a lower bound against,
and composes C with other Boolean circuitry to form a SAT instance. In our case, if we guess
some arbitrary SUM ◦ C circuit, we first need to know if this circuit is actually computing a
Boolean function; if not, then the satisfiability question itself is not well-defined, and it will
not be possible to meaningfully compose such a circuit with other Boolean circuits. Thus we
need a way to efficiently check whether a linear combination is Boolean-valued.

We give a generic way to “lift” non-trivial algorithms for counting SAT assignments to
short products of C circuits to non-trivial algorithms for detecting if a given SUM ◦ C circuit
is Boolean-valued and for counting SAT assignments. More precisely, we show that in order
to prove lower bounds for linear combinations of C-functions, it suffices to solve a certain
sum-product task faster than exhaustive search:



R. R. Williams 6:5

Sum-Product over C: Given k functions f1, . . . , fk from C, each on Boolean variables
x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

Note the Sum-Product is computed over R, and the task makes sense even if the functions
f1, . . . , fk output non-Boolean values. Further note that if the functions f1, . . . , fk are
Boolean-valued, then the product of k of them is simply the AND of k of them. In general,
the Sum-Product problem will be NP-hard for most interesting representation classes: for
example, it is already equivalent to Subset Sum when C is the set of exact threshold functions
(see Section 2 for a definition). Our meta-theorem states that mild improvements over
exhaustive search for Sum-Product over C imply strong lower bounds for SUM ◦ C:

I Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where each C can be
evaluated on a given input in poly(n) time. Assume there is an ε > 0 and for k = 1, . . . , 4
there is an nO(1) · 2n−εn-time algorithm for computing the Sum-Product of k functions
f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C. Then:
1. For every k, there is a function in NP that does not have SUM ◦ C circuits of sparsity nk.
2. For every unbounded α(n) such that nα(n) is time constructible, there is a function in

NTIME[nα(n)] that does not have SUM ◦ C circuits of polynomial sparsity.

Theorem 6 is used to prove lower bounds against SUM ◦ THR, SUM ◦ ReLU, and SUM ◦
MOD2 ◦ ANDO(1), by providing non-trivial algorithms solving the Sum-Product problem for
these various classes. For the ENP lower bounds, we use a closure property of SUM ◦MOD2 ◦
ANDO(1) combined with standard ideas from this line of work (see Theorem 21).

Theorem 6 (and its components) can also be used to easily “lift” existing circuit lower
bounds to linear combinations of those circuits:

I Theorem 7. For every d,m ≥ 1, there is a b ≥ 1 and an f ∈ NTIME[nlogb n] that does not
have SUM ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

That is, we obtain super-polynomial sparsity lower bounds on representing nondetermin-
istic quasi-polynomial-time functions with R-linear combinations of ACC ◦THR circuits (each
of quasi-polynomial size). This applies the fact that we can solve the Sum-Product problem
on ACC ◦ THR circuits (because we can count SAT assignments to them), with an analogous
running time as the best SAT algorithm. More details on Theorem 7 can be found in
Section 3.

Outline

The next section is the Preliminaries, which gives background knowledge. Section 3 proves
Theorem 6. In Sections 4, 5, and 6, Sum-Product algorithms for THR, ReLU, and MODp ◦
ANDd (degree-d Fp-polynomials) are provided which beat exhaustive search. The algorithms
for THR and ReLU (Theorems 24 and 25) build upon and extend old Subset-Sum algorithms
(Theorem 9). The algorithm for MODp ◦ANDd (Theorem 26) uses tools from the polynomial
method in a new way. Applying Theorem 6 to each of these algorithms, we obtain strong
lower bounds for SUM ◦ C for all three classes C.

CCC 2018
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2 Preliminaries

Let C be a class of functions of the form f : {0, 1}n → R. Each member C ∈ C has a number
of inputs n and a size, which is the length of the representation of C in bits. For the classes
THR, MOD2 ◦ ANDO(1), and ReLU, the size |C| of a representation is poly(n) bits, without
loss of generality; see Proposition 8. (For classes such as MOD2 ◦ ANDlog2(n), a member of
the class takes Ω(nlogn) bits to represent, in the worst case.) We assume that for all n, our
class C contains the projection functions fi(x1, . . . , xn) = xi for all i = 1, . . . , n. We also
assume that C is evaluatable, meaning that there is a universal k ≥ 1 such that every C ∈ C
can be evaluated on a given input in O(|C|k) time. All classes we consider have this property.

As is standard, we let ANYc denote the class of Boolean functions with c inputs (the
class contains “any” such function).

An arbitrary SUM ◦ C circuit C over n variables represents some function f : {0, 1}n → R.
We say that C is Boolean-valued if for all x ∈ {0, 1}n, the output of C on x is in {0, 1}.
The following proposition is useful to keep in mind, as it shows that every sparse linear
combination of Boolean functions implementing another Boolean function has an equivalent
linear combination with “reasonable” coefficients.

I Proposition 8. Let C be a class of functions with co-domain {0, 1}, and let C be a SUM◦C
circuit of sparsity s that is Boolean-valued. There is an equivalent SUM ◦ C circuit C ′ such
that every weight in the linear combination of C ′ has the form j/k, where both j and k are
integers in [−ss/2, ss/2].

Proof. (See also [34, 4].) Let C be a linear combination of s functions from C. WLOG,
the set of s Boolean functions from C is a linearly independent set (otherwise, we could
obtain a smaller linear combination representing the same function). The problem of finding
coefficients for the Boolean-valued C is equivalent to solving a certain linear system Ax = b

in s unknowns over the rationals, where b ∈ {0, 1}2n and A ∈ {0, 1}s×2n . Take a linearly
independent subsystem of s of these 2n equations. Since the determinant of any s×s Boolean
matrix is in [−ss/2, ss/2] [21], the result follows from Cramer’s rule. J

The relevant theorem for sums of ReLU gates is more involved, but Maass [31] shows
how the weights for a circuit of size s need only poly(s, n) bits of precision. Such “analog-to-
digital” results are crucial for our work, as in our lower bound proofs we will need a discrete
nondeterministic algorithm to guess a SUM ◦ C circuit and check various properties of it.

Useful Results For Thresholds

We draw from several algorithms and representation theorems from past work. For SUM◦THR,
we eventually appeal to a classic result from exact algorithms:

I Theorem 9 (Horowitz and Sahni [26]). The number of Subset Sum solutions to any
arbitrary instance of n items with integer weights of magnitude [−2W , 2W ] can be computed
in 2n/2 · poly(W ) time.

Theorem 9 is usually stated in terms of finding a subset sum solution, but the algorithm
can be easily adapted to count solutions as well.

A Boolean function f is called an exact threshold function if there are real-valued
α1, . . . , αn and t such that for all x,

f(x) = 1 ⇐⇒
∑
i

αixi = t.
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Let ETHR be the class of exact threshold functions. For our SUM ◦ THR circuit results, the
following transformation is extremely useful:

I Theorem 10 (Hansen and Podolskii [23]). Every linear threshold function in n variables
can be represented as an linear combination of poly(n) exact threshold functions, each with
coefficient 1.

It follows that every SUM ◦ THR of sparsity s has an equivalent SUM ◦ ETHR of sparsity
poly(s). The idea is that a THR function defines a set of points in the Boolean hypercube
lying on one side of a given hyperplane; we can “cover” all the points lying on one side by a
disjoint sum of poly(n) hyperplanes, which function as ETHR gates. Thus each coefficient in
the linear combination is simply 1.

Another useful property of ETHR gates is that they are closed under AND:

I Theorem 11 (Hansen and Podolskii [23]). Every conjunction of t exact threshold functions
in n variables with integer weights in [−W,W ] can be converted in poly(t, n) time to an
equivalent single exact threshold gate, with weights in [−(nW )Θ(t), (nW )Θ(t)].

The idea is simple: if we multiply the ith exact threshold gate’s linear form by the factor
(nW )i, no linear form will “interfere” with the other sums, and we can determine if all of
them are satisfied simultaneously with one exact threshold.

Useful Results for Finite Field Polynomials

Two tools from the literature will be helpful for our results on linear combinations of
polynomials. The first is modulus-amplifying polynomials, which have been used in Toda’s
Theorem [46], representations of ACC and ACC-SAT algorithms [6, 53], algorithms for All-
Pairs Shortest Paths [12], and algorithms for solving polynomial systems [29]:

I Lemma 12 (Beigel and Tarui [6]). For all ` ∈ Z+, the degree-(2`− 1) polynomial (over Z)

P`(y) = 1− (1− y)`
`−1∑
j=0

(
`+ j − 1

j

)
yj

has the property for all integers m ≥ 2,
if y = 0 mod m then P`(y) = 0 mod m`,
if y = 1 mod m then P`(y) = 1 mod m`.

Furthermore, each coefficient in F` has magnitude at most 2O(`).

Recall that a multivariate polynomial is multilinear if it contains no powers larger than
one. The second tool is a classic result on rapidly evaluating a multilinear polynomial on all
points in the Boolean hypercube.

I Theorem 13 (cf. [8], Section 2.2). Given the 2n-coefficient vector of a multilinear polynomial
p ∈ Z[x1, . . . , xn] where each coefficient is in [−W,W ], the value of p on all points in {0, 1}n
can be computed in 2n · poly(n, logW ) time.

The algorithm of Theorem 13 can be obtained by divide-and-conquer (as described in [50])
or by dynamic programming (as in [8], Section 2.2).

CCC 2018
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Connections Between Nondeterministic Circuit UNSAT Algorithms and Circuit
Lower Bounds

We also appeal to several known connections between circuit UNSAT algorithms that beat
exhaustive search and circuit lower bounds against nondeterministic time classes, which build
on prior work [51, 27, 41, 7].

I Theorem 14 ([35]). If there is an ε > 0 such that Circuit Unsatisfiability for (fan-in 2)
circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic time, then for
every k there is a function in NP that does not have nk-size (fan-in 2) circuits.

I Theorem 15 (Corollary 12 in Tell [45], following [35]). If there is a δ > 0 and c ≥ 1 such
that Circuit Unsatisfiability for (fan-in 2) circuits with n variables and m gates is solvable
in O(2n(1−δ) ·mc) nondeterministic time, then for every unbounded α(n) such that nα(n) is
time-constructible, there is a function in NTIME[nα(n)] that is not in P/poly.

I Theorem 16 ([35]). If there is an ε > 0 such that Circuit Unsatisfiability for (fan-in 2)
circuits with n inputs and 2nε size is solvable in O(2n−nε) nondeterministic time, then for
every k there is a function in NTIME[npoly(logn)] that does not have nlogk n-size (fan-in 2)
circuits.

In fact, all of these algorithms-to-lower-bounds connections still hold when we replace
Circuit Unsatisfiability with the promise problem of distinguishing unsatisfiable circuits from
circuits with 2n−1 satisfying assignments.

The Power of Linear Combinations of Low-Degree Polynomials

We note that classical work suggests that R-linear combinations of higher-degree F2-
polynomials can be quite powerful. For example, applying Valiant’s depth reduction [47] and
using the representation of the AND function in the Fourier basis, it is easy to show that every
O(n)-size O(logn)-depth circuit can be represented by a linear combination of 2O(n/ log logn)

F2-polynomials of degree O(nε), for any desired ε > 0. Moreover, one can represent any O(n)-
size “Valiant series-parallel” circuit (see [11]) by a linear combination of 2εn F2-polynomials
of degree 22O(1/ε) . Hence there is a natural barrier to proving exponential-sparsity lower
bounds for linear combinations of “somewhat-low” degree polynomials.

3 Meta-Theorem for Lower Bounds on Linear Combinations of
Simple Functions

In this section, we prove our generic theorem which is applied in subsequent sections to
prove lower bounds against linear combinations of threshold functions, ReLU gates, and
constant-degree polynomials. Recall (from the Introduction) the Sum-Product problem:

Sum-Product over C: Given k functions f1, . . . , fk from C, each on Boolean variables
x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

I Reminder of Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where
each C can be evaluated on a given input in poly(n) time. Assume there is an ε > 0 and for
k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for computing the Sum-Product of k
functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C. Then:



R. R. Williams 6:9

1. For every c, there is a function in NP that does not have SUM ◦ C circuits of sparsity nc.
2. For every unbounded α(n) such that nα(n) is time constructible, there is a function in

NTIME[nα(n)] that does not have SUM ◦ C circuits of polynomial sparsity.

The remainder of this section will prove Theorem 6, and an extension to ENP in some
cases. We are able to use much of the earlier arguments [51, 53, 35] as black boxes. However
we need several modifications.

The first new component needed is a method for checking that a given linear combination
of C circuits actually encodes a Boolean function (i.e. is Boolean-valued on all Boolean
inputs). This is provided by the following theorem:

I Theorem 17. Assume there is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time
algorithm for computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)
from C.
Then there is a 2n−εn ·poly(n, s)-time algorithm that, given f(x1, . . . , xn) which is an arbitrary
linear combination of s functions from C, determines whether or not f(a) ∈ {0, 1} for all
a ∈ {0, 1}n.

Proof. Suppose we are given f =
∑s
i=1 αici, where αi ∈ R and ci ∈ C each have n inputs.

Consider the polynomial

h(x) := f(x)2 · (1− f(x))2 = f(x)2 − 2f(x)3 + f(x)4.

Observe that:
If f(a) ∈ {0, 1} for all a ∈ {0, 1}n, then h(a) = 0 for all a.
f(b) /∈ {0, 1} implies h(b) > 0.
For all a ∈ {0, 1}n, h(a) ≥ 0.

Therefore
∑
a∈{0,1}n h(a) = 0 if and only if f(a) ∈ {0, 1} for all a ∈ {0, 1}n. By applying the

distributive law to each of f(x)2, f(x)3, f(x)4, and exchanging the order of summation, we
have

∑
a∈{0,1}n

h(a) =
∑
i1,i2

βi1,i2

 ∑
a∈{0,1}n

fi1(x) · fi2(x)


+
∑
i1,i2,i3

γi1,i2,i3

 ∑
a∈{0,1}n

fi1(x) · fi2(x) · fi3(x)


+

∑
i1,i2,i3,i4

δi1,i2,i3,i4

 ∑
a∈{0,1}n

fi1(x) · fi2(x) · fi3(x) · fi4(x)


for βi1,i2 = αi1 · αi2 , γi1,i2,i3 = −2αi1 · αi2 · αi3 , δi1,i2,i3,i4 = αi1 · αi2 · αi3 · αi4 .

Observe that each sum over a ∈ {0, 1}n on the RHS is precisely a Sum-Product task
over C, with products ranging from k = 2 to k = 4. Therefore we can check that the sum∑
a∈{0,1}n h(a) is zero with O(s4) calls to Sum-Product over C. By assumption, this can be

done in O(2n−εn · poly(n, s)) time. J

The second crucial component yields the ability to solve Circuit Unsatisfiability efficiently
with nondeterminism, under the hypotheses (in fact, weaker hypotheses). This is provided
by the following lemma, which is similar to (but more complicated than) Lemma 3.1 in [53]:
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I Lemma 18. Assume:
There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
computing the Sum-Product of k functions from C.
The Circuit Evaluation problem has SUM ◦ C circuits of sparsity nc, for some c > 0.

Then there is a nondeterministic 2n−εn · poly(n, s)-time algorithm for Circuit Unsatisfiability,
on arbitrary fan-in-2 circuits with n inputs and s gates.

Proof. Suppose we are given a circuit C with n inputs and s gates of fan-in 2, and wish to
nondeterministically prove it is unsatisfiable. Let us index the gates in topological order, so
that gates 1, . . . , n are the input gates, and the s-th gate is the output gate.

Our nondeterministic algorithm begins by guessing a SUM ◦ C circuit EV AL with n+
O(log s) inputs and sparsity at most (n + s)c+1, which is intended to encode the Circuit
Evaluation function:

EV AL(C, x, i) := Evaluate C on x, and output the value of the i-th gate of C.

(Note i is encoded as an O(log s)-bit string.) Let

D(x, i) := EV AL(C, x, i),

i.e., we think of C as hard-coded in the function, to simplify the notation. Applying
Theorem 17, we can check that D encodes a Boolean function in 2n−εn · poly(s, n) time.

Next, we check that D(a, s) = 0 for all a ∈ {0, 1}n; in other words, D claims that C
outputs 0 on every input. Suppose D has the form

D(x, i) =
(n+s)c+1∑
j=1

αj · cj(x, i),

for some αj ∈ R and cj ∈ C. Since D has already been determined to be Boolean, it suffices
to compute

∑
a∈{0,1}n D(a, s) to know whether or not D(x, s) = 0 for all a. By exchanging

the order of summation,

∑
a∈{0,1}n

D(a, s) =
∑

a∈{0,1}n

∑
j

αj · cj(a, i)


=
∑
j

αj ·

 ∑
a∈{0,1}n

cj(a, i)

 .

Therefore we only need to make (n + s)c+1 calls to Sum-Product over C (with k = 1) to
determine that D(x, s) = 0 for all a ∈ {0, 1}n. This can be done in 2n−εn · poly(n, s) time,
by assumption.

Next, we have to check that for every gate i = 1, . . . , s, and every a ∈ {0, 1}n, D(a, i)
correctly reports the output of the i-th gate when C evaluates a. To check the input gates,
we need to check that D(x, i) = xi for all i = 1, . . . , n; we can do this by checking that∑

a∈{0,1}n
(D(x, i)− xi)2 = 0,

which (by distributivity and re-arranging the order of summation, as in the proof of The-
orem 17) can be computed with O((n+ s)2(c+1)) calls to Sum-Product over C (with k = 2)
in 2n−εn · poly(n, s) time.
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For all gates i other than the input gates, the ith-gate takes inputs from previous gates
indexed by some i1 < i and i2 < i, and computes a function of their two outputs. To check
the consistency of gate i, we can form a degree-3 polynomial pi(A,B,C) which outputs 0-1
values on all A,B,C ∈ {0, 1}, such that pi(A,B,C) = 0 if and only if A is the output of gate
i, given that B is the output of gate i1 and C is the output of gate i2.

Since D is Boolean-valued, we have reduced our problem to determining that∑
a∈{0,1}n

p(D(a, i), D(a, i1), D(a, i2)) = 0,

for each gate i = n+1, . . . , s, and each gate i’s corresponding input gates i1 and i2. Applying
the distributive law to the LHS and exchanging the order of summation (as before), this
results in O((n + s)3(c+1)) Sum-Product-over-C computations with up to k = 3 products,
computable in 2n−εn · poly(n, s) time.

Our nondeterministic algorithm determines that the input circuit C is unsatisfiable if and
only if all of the above checks pass. If C is satisfiable, then every possible D guessed will
fail some check. If C is unsatisfiable, then under the hypotheses of the theorem, a SUM ◦ C
circuit D simulating every gate of C always exists. By guessing this D, and running the
assumed Sum-Product algorithm, our nondeterministic algorithm accepts. J

After the above preparation, we turn back to the proof of Theorem 6. At this point, it is
simply a matter of applying the above Lemma 18 with the known algorithms-to-lower-bound
connections:

Proof of Theorem 6. Suppose every C ∈ C has a poly(n)-bit representation, where each C
can be evaluated on a given input in poly(n) time. Recall the hypothesis of the theorem is:

(A) There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C.

Furthermore, recall that Lemma 18 states:

Assuming (A) and assuming Circuit Evaluation has SUM ◦ C circuits of sparsity nk
for some k, there is a nondeterministic 2n−εn · poly(n, s)-time algorithm for Circuit
Unsatisfiability, on arbitrary fan-in-2 circuits with n inputs and s gates.

We can then prove the lower bounds of the theorem readily, as follows.
(1) Assume every function in NP has SUM ◦ C circuits of nk sparsity circuits, for some fixed

k. Then both hypotheses of Lemma 18 are satisfied (note Circuit Evaluation is in P),
and the conclusion implies that there is an ε > 0 such that Circuit Unsatisfiability for
(fan-in 2) circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic
time. Therefore by Theorem 14, for every k there is a function in NP that does not have
nk-size (fan-in 2) circuits. This is a contradiction because SUM ◦ C circuits of nk sparsity
can be simulated with nck-size fan-in-2 circuits, for some universal c.

(2) The same argument as in (1) and (2) (but with Theorem 15 applied) shows that for every
unbounded α(n) such that nα(n) is time-constructible, there is a function in NTIME[nα(n)]
that does not have SUM ◦ C circuits of polynomial sparsity.

This completes the proof. J
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A Note on Lower Bounds for Linear Combinations of ACC Circuits

There are other new lower bound consequences of the arguments in Theorem 6 that we will
not study in detail here, because they follow easily from combining known results. Here is
an example:

I Reminder of Theorem 7. For every d,m ≥ 1, there is a b ≥ 1 and an f ∈ NTIME[nlogb n]
that does not have SUM ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

This lower bound can be obtained as follows. First, the argument of Lemma 18 also
shows:

I Theorem 19. Assume
There is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−nε-time algorithm for
computing the Sum-Product of k functions from C.
The Circuit Evaluation problem has SUM ◦ C circuits of sparsity na, for some a > 0.

Then there is a nondeterministic 2n−nε · poly(n, s)-time algorithm for Circuit Unsatisfiability,
on arbitrary fan-in-2 circuits with n inputs and s gates.

Now we combine this theorem with the following two facts:
1. For every depth d and integer m ≥ 2, there is an ε > 0 such that the Sum-Product of

O(1) AC0
d[m] ◦ THR circuits of 2nε size can be computed in 2n−nε time. This simply

applies the algorithm for counting satisfying assignments of AC0
d[m] ◦ THR circuits ([52]).

2. If for some α > 0 there is a nondeterministic 2n−nα -time Circuit Unsatisfiability algorithm
for 2nα -size circuits, then for every a ≥ 1, there is a b ≥ 1 such that NTIME[nlogb n] does
not have nloga n-size circuits (this is a theorem of Murray and Williams [35]).

Theorem 7 is immediate: Assuming NTIME[nlogb n] has SUM ◦ AC0
d[m] ◦ THR circuits of

na size for some a ≥ 1, both hypotheses of Theorem 19 are satisfied for C = AC0
d[m] ◦ THR,

and the conclusion of Theorem 19 combined with item 2 above yields a contradiction.

3.1 Lower Bounds for Exponential Time With an NP Oracle
For classes C with a natural closure property, the lower bounds can be extended to 2Ω(n)

sparsity for a function in ENP. Recall ANYc denotes the class of Boolean functions with c
inputs (the class contains “any” such function).

For an integer c ≥ 1, we say that C is efficiently closed under NC0
c if there is a polynomial-

time algorithm A such that, given any circuit C of the form C ◦ ANYc, algorithm A outputs
an equivalent circuit D from C (which is only polynomially larger). We note this property is
true of O(1)-degree polynomials:

I Proposition 20. For every integer m ≥ 2 and c ≥ 1, the class C =
⋃
d≥1 MODm ◦ ANDd

is efficiently closed under NC0
c.

Proof. Every MODm◦ANDd ◦ANYc circuit can be represented by an MODm◦ANDdc circuit.
In particular, every Boolean function on c inputs has an exact representation as a sum
(modulo m) of ANDs of fan-in c; composing such a sum with a MODm ◦ AND circuit and
applying the distributive law yields the result. J

I Theorem 21. There is a universal c ≥ 1 satisfying the following. Suppose C is efficiently
closed under NC0

c, and suppose every C ∈ C has a poly(n)-bit representation, where each C
can be evaluated on a given input in poly(n) time.
Assume there is an ε > 0 and for k = 1, . . . , 4 there is an nO(1) · 2n−εn-time algorithm for
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computing the Sum-Product of k functions f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) from C.
Then there is a function in ENP that does not have SUM ◦ C circuits of sparsity 2αn, for some
α > 0.

The remainder of this section sketches the proof of Theorem 21; we give only a sketch, as
the argument closely resembles others [53, 27]).

Let ε ∈ (0, 1). Assume C is efficiently closed under NC0
c . Furthermore:

(A) There is an ε > 0 and an O(2n−εn)-time algorithm for computing the Sum-Product of k
functions from C, and

(B) For all functions f ∈ TIME[2O(n)]NP and all α > 0, f has SUM ◦ C circuits of sparsity
2αn.

We wish to establish a contradiction. In particular, we will show that assumptions (A) and
(B) together imply that every problem in NTIME[2n] can be simulated by a nondeterministic
o(2n)-time algorithm, contradicting the (strong) nondeterministic time hierarchy theorem [42,
56].

Let L ∈ NTIME[2n]. On a given input x, our nondeterministic o(2n)-time algorithm for
L has two parts:
(i) It guesses a witness for x of o(2n) size.
(ii) It verifies that witness for x in o(2n) time.

To handle (i), we use assumption (B) to show that one can nondeterministically guess a
2αn · poly(n)-size SUM ◦ C circuit that encodes a witness for x, applying a simple “easy
witness” lemma from [51]:

I Lemma 22 (Lemma 3.2 in [51]). Let D be any class of circuits. If ENP has circuits of size
S(n) from class D, then for every L ∈ NTIME[2n] and every verifier V for L, and every
x ∈ L of length n = |x|, there is a y of length O(2n) such that V (x, y) accepts and the
D-circuit complexity of y (construed as a function f : {0, 1}n+O(1) → {0, 1}) is at most S(n).

In other words, assumption (B) implies that every yes-instance of L has S(n)-size “witness
circuits”: a witness of length O(2n) that can be represented as an S(n)-size SUM◦C Boolean-
valued circuit. Furthermore, this holds for every verifier for L.

To handle (ii), we choose an appropriate verifier, so that verifying witnesses becomes
equivalent to a simple Sum-Product call. In particular we use the following extremely “local”
reduction from L ∈ NTIME[2n] to 3SAT instances of 2n · poly(n) length:

I Lemma 23 ([27]). Every L ∈ NTIME[2n] can be reduced to 3SAT instances of O(2n ·n4) size.
Moreover, there is an algorithm that, given an instance x of L and an integer i ∈ [O(2n · n4)]
in binary, reads only O(1) bits of x and outputs the i-th clause of the resulting 3SAT
formula, in O(n4) time.

Since in Lemma 23 each bit of the output is a function of some c ≤ O(1) inputs, each bit
of the output is a member of ANYc. So for every instance x of length n for the language L,
we can produce (in deterministic poly(n) time) a circuit Dx which is an ordered collection of
O(n) functions from ANYc. The circuit Dx takes n+O(logn) binary inputs, construes that
input as an integer i, and outputs the i-th clause of a formula Fx which is satisfiable if and
only if x ∈ L.

Our nondeterministic algorithm for L guesses a 2O(αn)-sparse SUM ◦ C circuit Cx that
takes n+O(logn) inputs and is meant to encode a satisfying assignment for the formula Fx.
We can check Cx is Boolean-valued on all 2n · poly(n) inputs in 2n−εn/2 time, by applying
Theorem 17 and letting α > 0 be sufficiently small.
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Composing Cx with the O(n) polynomials forming Dx, we obtain a 2O(αn)-sparse SUM ◦
C ◦ANYc circuit E with n+O(logn) inputs (composed of three copies of Cx, and O(n) copies
of Dx) such that

E is unsatisfiable if and only if Cx encodes a satisfying assignment for Fx.

(We leave out the details, as they are provided in multiple other papers [51, 53].) To complete
the o(2n)-time algorithm for L, it suffices to check unsatisfiability of the resulting 2O(αn)-size
circuit E in o(2n) nondeterministic time. This would yield the desired contradiction.

Such a nondeterministic UNSAT algorithm is provided by first converting E into a SUM◦C
circuit in 2O(αn) time (using the fact that C is efficiently closed under NC0). This yields a
sum of 2O(αn) C-circuits. Analogously to the proof of Lemma 18, checking the unsatisfiability
of such an E can be reduced to 2O(αn) calls to Sum-Product of C, by applying distributivity.
Applying the Sum-Product algorithm of assumption (A) that runs in O(2n−εn) time, and
setting α > 0 to be sufficiently small, the running time is o(2n).

This completes the proof of Theorem 21.

4 Sparse Combinations of Threshold Functions

We now turn to proving SUM ◦ THR lower bounds. Due to Lemma 6, it suffices to give a
2n−εn-time algorithm for the Sum-Product Problem over THR:

Sum-Product over THR: Given k linear threshold functions f1, . . . , fk, each on
Boolean variables x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

Putting together various pieces (described in the Preliminaries), there is a substantially
faster-than-2n time algorithm:

I Theorem 24. The Sum-Product of k linear threshold functions on n variables (with weights
in [−nn, nn]) can be computed in 2n/2 · nO(k) time.

Note that having weights in [−nn, nn] is without loss of generality (in our lower bound
proofs, our nondeterministic algorithm can always guess an equivalent circuit with such
weights, as described by Proposition 8).

Proof. Let f1, . . . , fk be n-variable threshold functions. Applying Theorem 10, we can write
each fi as a sum of t = poly(n) exact threshold functions:

fi(x) =
t∑
i=1

gi(x),

where each gi(x) is defined by some weights wi,1, . . . , wi,n ∈ R and a threshold value t ∈ R.
Therefore we can write the product f1 · · · fk as

k∏
i=1

fi =
∑

(i1,...,ik)∈[t]k
gi1 · · · gik .

Each term gi1 · · · gik is a conjunction of k exact thresholds. Applying Theorem 11, each such
term can be replaced with a single exact threshold gate, with weights of magnitude nO(kn),
i.e., each weight is representable with O(kn logn) bits. Thus
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k∏
i=1

fi =
∑

(i1,...,ik)∈[t]k
hi1,...,ik

for some exact threshold gates hi1,...,ik . The desired sum can therefore be written as

∑
a∈{0,1}n

k∏
i=1

fi(a) =
∑

a∈{0,1}n

∑
(i1,...,ik)∈[t]k

hi1,...,ik(a)

=
∑

(i1,...,ik)∈[t]k

 ∑
a∈{0,1}n

hi1,...,ik(a)

 .

Now observe that each sum
∑
a∈{0,1}n hi1,...,ik(a) on the RHS is equivalent to an instance of

#Subset Sum. In particular, each such sum is counting the number of subsets of a given set
of n weights in [−nΩ(kn), nO(kn)] which sum to zero. By Theorem 9, this can be computed
in poly(k, n) · 2n/2 time. Since there are nO(k) such sums to compute in the outer sum, the
total running time is nO(k) · 2n/2. J

The following are immediate from Theorem 6:

I Reminder of Theorem 1. For all k, there is an fk ∈ NP without SUM ◦ THR circuits of
nk sparsity. Furthermore, for every unbounded α(n) such that nα(n) is time constructible,
there is a function in NTIME[nα(n)] that does not have SUM ◦ THR circuits of polynomial
sparsity.

5 Sparse Combinations of ReLU Gates

Recall that a function f : {0, 1}n → R from the class ReLU is defined with respect to a weight
vector w ∈ Rn and a scalar a ∈ R, such that for all a ∈ {0, 1}n,

f(x) = max{0, 〈w, x〉+ a}.

To prove SUM ◦ ReLU lower bounds, we give a 2n−εn-time algorithm for the Sum-Product
Problem over ReLU:

Sum-Product over ReLU: Given k ReLU functions f1, . . . , fk, each on Boolean
variables x1, . . . , xn, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).

I Theorem 25. The Sum-Product of k ReLU functions on n variables (with weights in
[−W,W ]) can be computed in 2n/2 · nO(k) · poly(k, n, logW ) time.

The proof is similar in spirit to the algorithm for Sum-Product of threshold functions
(Theorem 24), except that complications arise due to the real-valued outputs of ReLU
functions. We end up having to solve a problem generalizing #Subset Sum, but which turns
out to have a nice “split-and-list” 2n/2-time algorithm, analogously to #Subset Sum.
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Proof. Let f1, . . . , fk be n-variable ReLU functions, defined by weight vectors w1, . . . , wk ∈
Rn and scalars a1, . . . , ak ∈ R, respectively. Our task is to compute∑

x∈{0,1}n
max{0, 〈x,w1〉+ a1} · · ·max{0, 〈x,wk〉+ ak}.

First, we note the above sum is equal to∑
x∈{0,1}n

[〈x,w1〉 ≥ −a1] · (〈x,w1〉+ a1) · · · [〈x,wk〉 ≥ −ak] · (〈x,wk〉+ ak),

where we are using the Iverson bracket notation [P ] to denote a function that outputs 1 if P
is true and 0 otherwise. Applying Theorem 10, each of the threshold functions [〈x,wi〉 ≥ −ai]
can be represented as a linear combination of t = poly(n) exact threshold functions. In
particular there are exact thresholds gi,j such that the above sum equals

∑
x

 t∑
j=1

g1,j(x)

 · (〈x,w1〉+ a1) · · ·

 t∑
j=1

gk,j(x)

 · (〈x,wk〉+ ak).

Applying the distributive law, the above sum equals∑
x

∑
j1,...,jk∈[t]k

g1,j1(x) · · · gk,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak).

Re-arranging the summation order yields∑
j1,...,jk∈[t]k

(∑
x

g1,j1(x) · · · gk,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak)
)
.

Applying Theorem 11, each g1,j1(x) · · · gk,jk(x) can be replaced by a single exact threshold
hj1,...,jk(x).

Our task has been reduced to nO(k) computations of the form∑
x∈{0,1}n

hj1,...,jk(x) · (〈x,w1〉+ a1) · · · (〈x,wk〉+ ak). (1)

Without the (〈x,w1〉 + a1) · · · (〈x,wk〉 + ak) term, (1) would be exactly a #Subset Sum
instance, as in Theorem 24. In this new situation, we need to count a “weighted” sum over
the subset sum solutions, where the weights are determined by a product of k inner products
of the solution vectors with some fixed vectors.

Let us now describe how to solve the generalized problem given by (1). To keep the
exposition clear, we will walk through an attempted solution and fix it as it breaks.

Suppose the exact threshold function hj1,...,jk(x) of (1) is defined by weights α1, . . . , αn ∈
R and threshold value t ∈ R, so that

hj1,...,jk(x) = 1 ⇐⇒
n∑
i=1

αixi = t.

As with the Subset Sum problem, we begin by splitting the set of variables x into two halves,
{x1, . . . , xn/2} and {xn/2+1, . . . , xn} (WLOG, assume n is even). Correspondingly, we split
each of the k weight vectors wi ∈ Rn of (1) into two halves, w(1)

i ∈ Rn/2 and w(2)
i ∈ Rn/2 for

the first and second halves of variables, respectively.
We list all 2n/2 partial assignments to the first half, and all 2n/2 partial assignments to

the second. For each partial assignment A = (A1, . . . , An/2) to the first half of variables
{x1, . . . , xn/2}, we compute a vector vA, as follows:
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vA[0] := −t+
∑n/2
i=1 αiAi,

for all j = 1, . . . , k, vA[j] := aj +
〈
w

(1)
j , (A1, . . . , An/2)

〉
.

For each partial assignment A′ = (An/2+1, . . . , An) from the second half, we compute a
vector wA′ :

wA′ [0] :=
∑n
i=n/2+1 αiAi,

for all j = 1, . . . , k, wA′ [j] :=
〈
w

(2)
j , (An/2+1, . . . , An)

〉
.

Notice that vA[0] + wA′ [0] = 0 if and only if hj1,...,jk(A,A′) = 1. Thus in our sum, we only
need to consider pairs of vectors vA from the first half and vectors wA′ from the second half
such that vA[0] + wA′ [0] = 0. Moreover, note that for all j = 1, . . . , k,

vA[j] + wA′ [j] = 〈x,wj〉+ aj .

It follows that (1) equals∑
(vA,wA′ ) : vA[0]+wA′ [0]=0

(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]).

The Subset-Sum algorithm of Horowitz and Sahni [26] shows how to efficiently find
pairs (vA, wA′) with vA[0] + wA′ [0] = 0: sorting all vectors in the second half by their
0-th coordinate, for each vector vA from the first half we can compute (in poly(n) time)
the number of second-half vectors wA′ satisfying vA[0] + wA′ [0] = 0 (even if there are
exponentially many such vectors). However it is unclear how to incorporate the odd-looking
(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]) multiplicative factors into a weighted sum.

To do so, we modify the vectors vA and wB as follows. Consider the expansion of∏k
i=1(vA[i] + wA′ [i]) into a sum of 2k products: it can be seen as the inner product of two

2k-dimensional vectors, where one vector’s entries is a function solely of vA and the other
vector’s entries is a function solely of wA′ . (Furthermore, note that the number of bits needed
to describe entries in these new vectors has increased only by a multiplicative factor of k.)

Thus we can assign (2k + 1)-dimensional vectors v′A (in place of the vA) and w′B (in place
of the wB) such that v′A[0] = vA[0], w′A[0] = wA[0], and for all A,A′ we have

(vA[1] + wA′ [1]) · · · (vA[k] + wA′ [k]) =
2k∑
j=1

v′A[j] · w′A′ [j].

Now our goal is to compute

∑
(v′
A
,w′
A′ ) : v′

A
[0]+w′

A′ [0]=0

 2k∑
j=1

v′A[j] · w′A′ [j]

 . (2)

We can get a more efficient algorithm for the problem defined by (2), by preprocessing the
second half of vectors (i.e., the w′A′ vectors). For each distinct value e = w′A[0] ∈ R among
the 2n/2 vectors in the second half, we make a new (2k + 1)-dimensional vector W ′e where:

W ′e[0] = e, and
for all i = 1, . . . , 2k, W ′e[i] =

∑
w′
A

: w′
A

[0]=e w
′
A[i].

That is, the coordinates 1, . . . , 2k of W ′e are obtained by component-wise summing
all vectors w′A such that w′A[0] = e. The preparation of the vectors W ′e can be done in
2n/2 · poly(k, n, logW ) time, by partitioning all 2n/2 vectors w′A from the second half of
variables into equivalence classes (where two vectors are equivalent if their 0-coordinates are
equal), then obtaining each W ′e by summing the vectors in one equivalence class.
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Finally, we can use the W ′A′ vectors to compute the sum (2) in 2n/2 · 2k · poly(k, n, logW )
time. Have a running sum that is initially 0. Iterate through each vector v′A from the first
half of variables, look up the corresponding second-half vector W ′e (with v′A[0] = −W ′e[0]) in
poly(k, n, logW ) time, and add the inner product

2k∑
i=1

v′A[i] ·W ′e[i]

to the running sum. Because each vector (W ′e[1], . . . ,W ′e[2k]) is the sum of all vectors
(w′A′ [1], . . . , w′A′ [2k]) such that v′A[0] + w′A′ [0] = 0, each inner product

∑2k
i=1 v

′
A[i] ·W ′e[i]

contributes

∑
w′
A′ : v′

A
[0]+w′

A′ [0]=0

 2k∑
j=1

v′A[j] · w′A[j]


to the running sum. Therefore after iterating through all vectors v′A, our running sum has
computed (2) exactly, in only 2n/2 · 2k · poly(n, logW ) time. J

From the algorithm of Theorem 25, we immediately obtain the SUM ◦ReLU lower bounds
of Theorem 2.

6 Sparse Combinations of Low-Degree Polynomials over Finite Fields

We can also prove lower bounds for linear combinations of low-degree Fp-polynomials in n
variables, for any prime p, by giving a faster Sum-Product algorithm. In this context, the
Sum-Product problem becomes:

Sum-Product over MODp ◦ANDd: Given k polynomials p1, . . . , pk ∈ Fp[x1, . . . , xn],
each of degree at most d, compute

∑
x∈{0,1}n

(
k∏
i=1

pi(x)
)
,

where the sum over all x ∈ {0, 1}n is taken over the reals (or rationals).

That is, we treat each
∏k
i=1 pi(x) as a function from {0, 1}n to {0, 1, . . . , p− 1} ⊂ Q, and

wish to compute the sum of these integers over all x ∈ {0, 1}n.
In related work, Lokshtanov et al. [29] showed how to (deterministically) count solutions

in Fnp to a system of ` degree-d Fp-polynomials in pn+o(n)−n/O(dp6/7) · poly(`) time. For our
Sum-Product problem, we need to compute a “weighted” sum (the terms can take on values
in {0, . . . , p− 1}), and we need to count the weighted sum over only Boolean assignments.
We can achieve this, with a comparable runtime savings involving k and p:

I Theorem 26. The Sum-Product of k degree-d polynomials p1, . . . , pk ∈ Fp[x1, . . . , xn] can
be computed in p2k · (1.9n + 2n−n/(6dp)) · poly(n) time.

Proof. Let p1, . . . , pk be given. We wish to compute

∑
x∈{0,1}n

(
k∏
i=1

pi(x)
)
, (3)
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where each product outputs an integer in {0, 1, . . . , p− 1}. We first convert the Sum-Product
problem of (3) to an equivalent sum where each “term” in the sum is a small system of
polynomial equations.

We say that a function f : {0, 1}n → {0, 1} is an exact Fp-polynomial function if there is
a polynomial p ∈ Fp[x1, . . . , xn] and a ∈ Fp such that for all x ∈ {0, 1}n,

f(x) = 1 ⇐⇒ p(x) = a.

We use the notation [p(x) = a] to denote such an exact polynomial function. Let us replace
each polynomial pi(x) in the sum-product expression with an equivalent linear combination
(over Z) of exact polynomial functions. In particular, replace each pi(x) with the sum over
the integers∑

a∈Fp

a · [pi(x) = a].

That is, we are replacing pi(a) with an equivalent integer-valued sum of p Boolean functions.
Now the desired sum (3) has the form:

∑
x∈{0,1}n

 k∏
i=1

∑
a∈Fp

a · [pi(x) = a]


=

∑
x∈{0,1}n

∑
(a1,...,ak)∈Fkp

a1 · · · ak ·
k∏
i=1

[pi(x) = ai] (by distributivity) (4)

=
∑

(a1,...,ak)∈Fkp

a1 · · · ak ·

 ∑
x∈{0,1}n

[p1(x) = a1] · · · [pk(x) = ak]

 . (5)

Each inner sum in (5) counts the number of Boolean solutions to a system of polynomial
equations p1(x) = a1, . . . , pk(x) = ak. We can further reduce this problem to counting the
number of Boolean solutions to one equation, by applying a simple reduction (from [54]).
Namely, we have the equation

∑
x∈{0,1}n

k∏
i=1

[pi(x) = ai] (6)

= 1
pk

∑
(b1,...,bk)∈Fkp

∑
x∈{0,1}n

 k∑
j=1

bj · (pj(x)− aj) = 0

−
 k∑
j=1

bj · (pj(x)− aj) = 1

 .

(7)

To see why (6) holds, let x ∈ {0, 1}n such that [p1(x) = a1] · · · [pk(x) = ak] = 1. Then for
every (b1, . . . , bk) ∈ Fkp, we have [

∑k
j=1 bj · (pj(x)− aj) = 0] = 1. So every solution x to the

system of k equations is counted for pk times in (6); since the result is divided by pk, each
solution contributes 1 to (6). On the other hand, if x is not a solution to the system, and
[p1(x) = a1] · · · [pk(x) = ak] = 0, then for some j, pj(a)− aj 6= 0. It follows that there are
precisely pk−1 vectors (b1, . . . , bk) ∈ Fkp such that [

∑k
j=1 bj · (pj(x)− aj) = 0] = 1, and there

are precisely pk−1 (other) vectors (b′1, . . . , b′k) ∈ Fkp such that [
∑k
j=1 b

′
j · (pj(x)− aj) = 1] = 1.

These two equal counts cancel out in the sum of (6), so non-solutions to the system contribute
0 to the sum of (6).
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Putting (5) and (6) together, the original Sum-Product problem (3) can now be reduced
to the computation of O(p2k) sums, each of the form∑

x∈{0,1}n
[q(x1, . . . , xn) = 0],

where q is an Fp-polynomial of degree at most d. That is, to obtain (3), we only need to count
the Boolean roots of O(p2k) polynomials q, and take the appropriate R-linear combination
of these counts.

Let us now focus on counting roots to a single polynomial q(x1, . . . , xn) of degree d.
Let P`(z) be the modulus-amplifying polynomial of degree 2` − 1, from Theorem 12. Let
δ ∈ (0, 1/2) be a parameter, and consider the following “reduced” polynomial in n − δn
variables, over the integers:

Q(x1, . . . , xn−δn) :=
∑

a1,...,aδn∈{0,1}

Pδn(1− q(x1, . . . , xn−δn, a1, . . . , aδn)p−1).

Note that Q has degree less than 2dpδn. Set δ = 1/(6dp), and note that 2dpδn < (n− δn)/2.
Over Fp, the polynomial 1 − q(x)p−1 equals 1 mod p if x is a root of q, and is 0 mod p
otherwise. Applying the modulus-amplifying properties of Pδn, we have:

If x is a root of q, then Pδn(1− q(x)p−1) = 1 mod pδn.
If x is not a root of q, then Pδn(1− q(x)p−1) = 0 mod pδn.

As the sum in Q is over only 2δn such Pδ(· · · ) terms, and p ≥ 2, we conclude that for
all b1, . . . , bn−δn ∈ {0, 1}, the quantity (Q(b1, . . . , bn−δn) mod pδn) equals the number of
a1, . . . , aδn ∈ {0, 1} such that

q(b1, . . . , bn−δn, a1, . . . , aδn) = 0.

Therefore if we evaluate the polynomial Q over all 2n−δn Boolean assignments (b1, . . . , bn−δn),
compute each value separately modulo pδn, then sum those values over the integers, we will
obtain the number of Boolean roots of q.

Over Boolean assignments, we may assume without loss of generality that Q is multilinear
(i.e. x2

i = xi for all i). Since 2dpδn < (n− δn)/2, standard properties of binomial coefficients
imply that the number of monomials of Q is

O

((
n− δn
2dpδn

))
.

By constructing Q term-by-term (expanding each Pδn(1− q(x1, . . . , xn−δn, a1, . . . , aδn)p−1)
one-by-one, and adding them to a running sum, similar to [12, 29]), we may represent Q as a
sum of O

((
n−δn
2dpδn

))
monomials, constructed in poly(n)·

(
n−δn
2dpδn

)
time. Letting δ = 1/(6dp), the

number of monomials of Q is less than
(
n
n/3
)
≤ 1.9n. Applying the fast polynomial evaluation

algorithm of Theorem 13, Q can be evaluated on all 2n−n/(6dp) Boolean assignments in time
(1.9n + 2n−n/(6dp)) · poly(n) time. J

Therefore, for every fixed degree d and prime p, there is an ε > 0 such that the relevant
Sum-Product problem is in 2n−εn · poly(n) time. This immediately implies the lower bounds
of Theorems 4 and 5. In particular, to prove 5 we apply Theorem 21. Fix an integer
degree d, and let c ≥ 1 be the universal constant (from Theorem 21) such that we need to
solve Sum-Product for MODp ◦ ANDd ◦ ANYc circuits. Converting to SUM ◦MODp ◦ ANDdc,
Theorem 26 says that the Sum-Product problem can be solved in 2n−n/O(dc) time (omitting
low-order terms).
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7 Conclusion

Applying old and new tools, we have established several strong new lower bounds for
representing Boolean functions in different regimes. Among the most interesting open
problems remaining, we find the Quadratic Uncertainty Principle (the conjecture that AND
requires large R-linear combinations of quadratic F2-polynomials) to be especially intriguing.
Quadratic polynomials have special properties that higher degrees do not; for example, one
can count the roots of a given quadratic Fp-polynomial in polynomial time (see [54] for a
recent application of this phenomenon). Therefore in some cases, our 2n−εn-time algorithms
become poly(n)-time algorithms. Intuitively, an extremely efficient counting algorithm should
imply lower bounds for functions in polynomial time against linear combinations of quadratic
F2-polynomials, perhaps even lower bounds against the AND function, but so far we have
not yet been able to prove such bounds.

The Constant Degree Hypothesis?

A longstanding problem in circuit complexity – seemingly related to the Quadratic Uncertainty
Principle – is the Constant Degree Hypothesis of Barrington, Straubing, and Therien [5]:

I Hypothesis 27 (Constant Degree Hypothesis (CDH)). For every constant d ≥ 1 and primes
p, q, there is an ε > 0 such that the AND function on n variables cannot be computed by
MODp ◦MODq ◦ ANDd circuits of 2εn size.

The CDH is currently only known to be true for d = 1, and for p = q. Can the techniques
of this paper say anything about such problems, even for the case of d = 2?

Split-and-List as a Lower Bound Technique?

As noted by a CCC reviewer, the algorithmic approaches applied in this paper (in particular,
the “split-and-list” paradigm [18]) were essentially known in the literature, and yet they were
already powerful enough to prove strong lower bounds against functions in NP. Is there a
more direct method for proving circuit lower bounds that “corresponds” to the split-and-list
paradigm, without having to go through a generic connection between SAT algorithms and
circuit lower bounds?

Intuitively, the algorithmic split-and-list paradigm is related to communication complexity.
In split-and-list, the variable space of an instance is “split” into smaller parts, and we find a
global solution to the instance by “listing” partial solutions to the variables, and combining
partial solutions together in some interesting way. This feels related to the situation where
multiple parties hold parts of a global input, and they communicate to determine if the
global input is a solution to some problem. Indeed, intuitive connections between the two
have been successfully made in several papers, and articulated fairly strongly in [48, 37, 1].

However, there is a sense in which split-and-list seems more powerful. A good example is
the algorithm for Subset-Sum: it splits the variables of the solution space into two parts,
and uses the ability to quickly and deterministically sort and search the list of 2n/2 partial
solutions to find a Subset-Sum faster. In contrast, deterministic communication between
two parties holding n/2 bits each (with public knowledge of a Subset-Sum instance of n
items) cannot always determine with low communication if their joint n-bit assignment is
a solution to the instance. (When the weights of the instance are exponentially large, the
communication problem becomes as hard as EQUALITY.)
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A Linear Lower Bound for AND With Sums of Quadratic Polynomials

For reference, we report a folklore Ω(n) lower bound on representing AND with linear
combinations of quadratic F2-polynomials (recall it is conjectured that the sparsity lower
bound is 2Ω(n)). The below proof was communicated to us by Shachar Lovett.

I Theorem 28 (Lovett [30]). The AND function on n inputs does not have SUM ◦MOD2 ◦
AND2 circuits of sparsity less than n/2.

Proof. Let f : {0, 1}n → {0, 1} be the NOR function (which by DeMorgan’s laws has the
same sparsity as AND). Suppose we can write

f(x) =
s∑
i=1

αi(−1)qi(x),

where the qi(x) are quadratic F2-polynomials, and all αi ∈ R. Note that without loss of
generality we may assume qi(0) = 0 for all i (if qi(0) = 1, then replacing αi by −αi and qi(x)
by qi(x) + 1 yields an equivalent expression). If s < n/2, then by the Chevalley–Warning
theorem, the number of common roots of {q1, ..., qr} is divisible by 2. But then there is
another common root x?, so f(0) = f(x?), contradicting the definition of NOR. J
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