
On The Hardness of Approximate and Exact
(Bichromatic) Maximum Inner Product

Lijie Chen1

Massachusetts Institute of Technology, USA
lijieche@mit.edu

Abstract
In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which
we are given sets A and B of vectors, and the goal is to find a ∈ A and b ∈ B maximizing inner
product a · b. Max-IP is very basic and serves as the base problem in the recent breakthrough of
[Abboud et al., FOCS 2017] on hardness of approximation for polynomial-time problems. It is
also used (implicitly) in the argument for hardness of exact `2-Furthest Pair (and other important
problems in computational geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We
have three main results regarding this problem.

Characterization of Multiplicative Approximation. First, we study the best mul-
tiplicative approximation ratio for Boolean Max-IP in sub-quadratic time. We show that,
for Max-IP with two sets of n vectors from {0, 1}d, there is an n2−Ω(1) time (d/ logn)Ω(1)-
multiplicative-approximating algorithm, and we show this is conditionally optimal, as such
a (d/ logn)o(1)-approximating algorithm would refute SETH. Similar characterization is also
achieved for additive approximation for Max-IP.
2O(log∗ n)-dimensional Hardness for Exact Max-IP Over The Integers. Second, we
revisit the hardness of solving Max-IP exactly for vectors with integer entries. We show that,
under SETH, for Max-IP with sets of n vectors from Zd for some d = 2O(log∗ n), every exact
algorithm requires n2−o(1) time. With the reduction from [Williams, SODA 2018], it follows
that `2-Furthest Pair and Bichromatic `2-Closest Pair in 2O(log∗ n) dimensions require n2−o(1)

time.
Connection with NP·UPP Communication Protocols. Last, We establish a connection
between conditional lower bounds for exact Max-IP with integer entries and NP ·UPP commu-
nication protocols for Set-Disjointness, parallel to the connection between conditional lower
bounds for approximating Max-IP and MA communication protocols for Set-Disjointness.

The lower bound in our first result is a direct corollary of the new MA protocol for Set-
Disjointness introduced in [Rubinstein, STOC 2018], and our algorithms utilize the polynomial
method and simple random sampling. Our second result follows from a new dimensionality self
reduction from the Orthogonal Vectors problem for n vectors from {0, 1}d to n vectors from Z`

where ` = 2O(log∗ d), dramatically improving the previous reduction in [Williams, SODA 2018].
The key technical ingredient is a recursive application of Chinese Remainder Theorem.

As a side product, we obtain an MA communication protocol for Set-Disjointness with com-
plexity O

(√
n logn log logn

)
, slightly improving the O

(√
n logn

)
bound [Aaronson and Wig-

derson, TOCT 2009], and approaching the Ω(
√
n) lower bound [Klauck, CCC 2003].

Moreover, we show that (under SETH) one can apply the O(
√
n) BQP communication pro-

tocol for Set-Disjointness to prove near-optimal hardness for approximation to Max-IP with vec-
tors in {−1, 1}d. This answers a question from [Abboud et al., FOCS 2017] in the affirmative.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

1 Supported by an Akamai Fellowship

© Lijie Chen;
licensed under Creative Commons License CC-BY

33rd Computational Complexity Conference (CCC 2018).
Editor: Rocco A. Servedio; Article No. 14; pp. 14:1–14:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijieche@mit.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Keywords and phrases Maximum Inner Product, SETH, Hardness of Approximation in P, Fined-
Grained Complexity, Hopcroft’s Problem, Chinese Remainder Theorem

Digital Object Identifier 10.4230/LIPIcs.CCC.2018.14

Acknowledgements I would like to thank Ryan Williams for introducing the problem to me,
countless encouragement and helpful discussions during this work, and also many comments on
a draft of this paper. In particular, the idea of improving OV dimensionality self-reduction using
CRT (the direct CRT based approach) is introduced to me by Ryan Williams.
I am grateful to Virginia Vassilevska Williams, Kaifeng Lyu, Peilin Zhong for helpful discussions
and suggestions. I would like to thank Aviad Rubinstein for sharing a manuscript of his paper,
and pointing out that the O(

√
n logn log logn) MA protocol also works for Inner Product.

1 Introduction

We study the following fundamental problem from similarity search and statistics, which
asks to find the most correlated pair in a dataset:

I Definition 1.1 (Bichromatic Maximum Inner Product (Max-IP)). For n, d ∈ N, the Max-IPn,d
problem is defined as: given two sets A,B of vectors from {0, 1}d compute

OPT(A,B) := max
a∈A,b∈B

a · b.

We use Z-Max-IPn,d (R-Max-IPn,d) to denote the same problem, but with A,B being sets
of vectors from Zd (Rd).

Hardness of Approximation Max-IP
A natural brute-force algorithm solves Max-IP in O(n2 · d)-time. Assuming SETH2, there is
no n2−Ω(1)-time algorithm for Max-IPn,d when d = ω(logn) [70].

Despite being one of the most central problems in similarity search and having numerous
applications [47, 15, 61, 62, 65, 17, 16, 18, 57, 66, 68, 14, 49, 12, 67, 32, 31], until recently it
was unclear whether there could be a near-linear time, 1.1-approximating algorithm, before
the recent breakthrough of Abboud, Rubinstein and Williams [5].3

In [5], a framework for proving inapproximability results for problems in P is established
(the distributed PCP framework), from which it follows:

I Theorem 1.2 ([5]). Assuming SETH, there is no 2(logn)1−o(1)
-multiplicative-approximating

n2−Ω(1)-time algorithm for Max-IPn,no(1) .

Theorem 1.2 is an exciting breakthrough for hardness of approximation in P, implying
other important inapproximability results for a host of problems including Bichromatic LCS
Closest Pair Over Permutations, Approximate Regular Expression Matching, and Diameter
in Product Metrics [5]. However, we still do not have a complete understanding of the
approximation hardness of Max-IP yet. For instance, consider the following two concrete
questions:

2 SETH (Strong Exponential Time Hypothesis) states that for every ε > 0 there is a k such that k-SAT
cannot be solved in O((2− ε)n) time [46].

3 see [5] for a thorough discussion on the state of affairs on hardness of approximation in P before their
work

http://dx.doi.org/10.4230/LIPIcs.CCC.2018.14

L. Chen 14:3

I Question 1. Is there a (logn)-multiplicative-approximating n2−Ω(1)-time algorithm for
Max-IPn,log2 n? What about a 2-multiplicative-approximating algorithm for Max-IPn,log2 n?

I Question 2. Is there a (d/ logn)-additive-approximating n2−Ω(1)-time algorithm for
Max-IPn,d?

We note that the lower bound from [5] cannot answer Question 1. Tracing the details of
their proofs, one can see that it only shows approximation hardness for dimension d = logω(1) n.
Question 2 concerning additive approximation is not addressed at all by [5]. Given the
importance of Max-IP, it is interesting to ask:

For what ratios r do n2−Ω(1)-time r-approximation algorithms exist for Max-IP?

Does the best-possible approximation ratio (in n2−Ω(1) time) relate to the dimensionality,
in some way?

In an important recent work, Rubinstein [64] improved the distributed PCP construction
in a very crucial way, from which one can derive more refined lower bounds on approximating
Max-IP. Building on its technique, in this paper we provide full characterizations, determining
essentially optimal multiplicative approximations and additive approximations to Max-IP,
under SETH.

Hardness of Exact Z-Max-IP
Recall that from [70], there is no n2−Ω(1)-time algorithm for exact Boolean Max-IPn,ω(logn).
Since in real life applications of similarity search, one often deals with real-valued data
instead of just Boolean data, it is natural to ask about Z-Max-IP (which is certainly a special
case of R-Max-IP): what is the maximum d such that Z-Max-IPn,d can be solved exactly in
n2−Ω(1) time?

Besides being interesting in its own right, there are also reductions from Z-Max-IP to
`2-Furthest Pair and Bichromatic `2-Closest Pair. Hence, lower bounds for Z-Max-IP imply
lower bounds for these two famous problems in computational geometry (see [72] for a
discussion on this topic).

Prior to our work, it was implicitly shown in [72] that:

I Theorem 1.3 ([72]). There is no n2−Ω(1)-time algorithm for Z-Max-IPn,ω((log logn)2) with
vectors of O(logn)-bit entries, assuming SETH.

However, the best known algorithm for Z-Max-IP runs in n2−Θ(1/d) time [55, 11, 74]4,
hence there is still a gap between the lower bound and the best known upper bounds. To
confirm these algorithms are in fact optimal, we would like to prove a lower bound with ω(1)
dimensions.

In this paper, we significantly strength the previous lower bound from ω((log logn)2)
dimensions to 2O(log∗ n) dimensions (2O(log∗ n) is an extremely slow-growing function, see
preliminaries for its formal definition).

4 [11, 74] are for `2-Furthest Pair or Bichromatic `2-Closest Pair. They also work for Z-Max-IP as there
are reductions from Z-Max-IP to these two problems, see [72] or Lemma 4.5 and Lemma 4.6.

CCC 2018

14:4 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Fine-Grained Complexity and Communication Complexity
One intriguing aspect of the distributed PCP framework is that it makes use of the Õ(

√
n)

MA communication protocol for Set-Disjointness [1]. Several follow-up works [50, 64] explored
this connection further, and settled the hardness of approximation to several fundamental
problems (under SETH).

Given the success of the interplay between these two seemingly unrelated fields, it is
natural to seek more results from it. In particular, it is asked in [5] whether the O(

√
n) BQP

communication protocol for Set-Disjointness can be utilized.
In this paper, we answer the question affirmatively by showing that BQP communication

protocol implies hardness for approximation to {−1, 1}-Max-IP5. Moreover, we also establish
a connection between Z-Max-IP lower bounds and NP · UPP communication protocols for
Set-Disjointness, which suggests a new perspective on our results on Z-Max-IP.

1.1 Our Results
We use OVn,d to denote the Orthogonal Vectors problem: given two sets of vectors A,B
each consisting of n vectors from {0, 1}d, determine whether there are a ∈ A and b ∈ B such
that a · b = 0.6 Similarly, we use Z-OVn,d to denote the same problem except for that A,B
consists of vectors from Zd (which is also called Hopcroft’s problem).

All our results are based on the following widely used conjecture about OV:

I Conjecture 1.4 (Orthogonal Vectors Conjecture (OVC) [70, 7]). For every ε > 0, there
exists a c ≥ 1 such that OVn,d requires n2−ε time when d = c logn.

OVC is a plausible conjecture as it is implied by the popular Strong Exponential Time
Hypothesis [46, 29] on the time complexity of solving k-SAT [70, 73].

Characterizations of Hardness of Approximate Max-IP
The first main result of our paper characterizes when there is a truly sub-quadratic time
(n2−Ω(1) time, for some universal constant hidden in the big-Ω) t-multiplicative-approximating
algorithm for Max-IP, and characterizes the best-possible additive approximations as well.
We begin with formal definitions of these two standard types of approximation:

We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-multiplicative-approximating, if
for all A,B, A outputs a value ÕPT(A,B) ∈ [OPT(A,B),OPT(A,B) · t].
We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-additive-approximating, if for all
A,B, A outputs a value ÕPT(A,B) such that |ÕPT(A,B)− OPT(A,B)| ≤ t.
To avoid ambiguity, we call an algorithm computing OPT(A,B) exactly an exact algorithm
for Max-IPn,d (Z-Max-IPn,d).

Multiplicative Approximations for Max-IP. In the multiplicative case, our characterization
(formally stated below) basically says that there is a t-multiplicative-approximating n2−Ω(1)-
time algorithm for Max-IPn,d if and only if t = (d/ logn)Ω(1). Note that in the following
theorem we require d = ω(logn), since in the case of d = O(logn), there are n2−ε-time
algorithms for exact Max-IPn,d [14, 13].

5 That is, Max-IP with sets A and B being n vectors from {−1, 1}d.
6 Here we use the bichromatic version of OV instead of the monochromatic one for convenience, as they
are equivalent.

L. Chen 14:5

I Theorem 1.5. Letting ω(logn) < d < no(1) and t ≥ 2,7 the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)Ω(1)
,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating
algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

2. Moreover, let ε = min
(

log t
log(d/ logn) , 1

)
. There are t-multiplicative-approximating de-

terministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.

I Remark 1.6. The first algorithm is slightly faster, but only sub-quadratic when ε = Ω(1),
while the second algorithm still gets a non-trivial speed up over the brute force algorithm as
long as ε = ω(log logn/ logn).

We remark here that the above algorithms indeed work for the case where the sets
consisting of non-negative reals (i.e., R+-Max-IP):

I Corollary 1.7. Assume ω(logn) < d < no(1) and let ε = min(log t
log(d/ logn) , 1). There is a

t-multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running in time

O
(
n2−Ω(ε) · polylog(n)

)
.

The lower bound is a direct corollary of the new improved MA protocols for Set-Disjointness
from [64], which is based on Algebraic Geometry codes. Together with the framework of [5],
that MA-protocol implies a reduction from OV to approximating Max-IP.

Our upper bounds are application of the polynomial method [71, 9]: defining appropriate
sparse polynomials for approximating Max-IP on small groups of vectors, and use fast matrix
multiplication to speed up the evaluation of these polynomials on many pairs of points.

Via the known reduction from Max-IP to LCS-Pair in [5], we also obtain a more refined
lower bound for approximating the LCS Closest Pair problem (defined below).

I Definition 1.8 (LCS Closest Pair). The LCS-Closest-Pairn,d problem is: given two sets A,B
of n strings from Σd (Σ is a finite alphabet), determine

max
a∈A,b∈B

LCS(a, b),

where LCS(a, b) is the length of the longest common subsequence of strings a and b.

I Corollary 1.9 (Improved Inapproximability for LCS-Closest-Pair). Assuming SETH (or
OVC), for every t ≥ 2, t-multiplicative-approximating LCS-Closest-Pairn,d requires n2−o(1)

time, if d = tω(1) · log5 n.

7 Note that t and d are both functions of n, we assume they are computable in no(1) time throughout
this paper for simplicity.

CCC 2018

14:6 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Additive Approximations for Max-IP. Our characterization for additive approximations to
Max-IP says that there is a t-additive-approximating n2−Ω(1)-time algorithm for Max-IPn,d if
and only if t = Ω(d).

I Theorem 1.10. Letting ω(logn) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm
for Max-IPn,d if

t = o(d).

2. Moreover, letting ε = t

d
, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.

The lower bound above is already established in [64], while the upper bound works by
reducing the problem to the d = O(logn) case via random-sampling coordinates, and solving
the reduced problem via known methods [14, 13].
I Remark 1.11. We want to remark here that the lower bounds for approximating Max-IP are
direct corollaries of the new MA protocols for Set-Disjointness in [64]. Our main contribution
is providing the complementary upper bounds to show that these lower bounds are indeed
tight assuming SETH.

All-Pair-Max-IP. Finally, we remark that our algorithms (with slight adaptions) also work
for the following stronger problem8: All-Pair-Max-IPn,d, in which we are given two sets A and
B of n vectors from {0, 1}d, and for each x ∈ A we must compute OPT(x,B) := max

y∈B
x · y.

An algorithm is t-multiplicative-approximating (additive-approximating) for All-Pair-Max-IP
if for all OPT(x,B)’s, it computes corresponding approximating answers.

I Corollary 1.12. Suppose ω(logn) < d < no(1), and let

εM := min
(

log t
log(d/ logn) , 1

)
and εA := min(t, d)

d
.

There is an n2−Ω(εM) polylog(n) time t-multiplicative-approximating algorithm and an
n2−Ω(ε1/3

A
/ log ε−1

A
) time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA �

log6 logn/ log3 n.

8 Since All-Pair-Max-IP is stronger than Max-IP, lower bounds for Max-IP automatically apply for
All-Pair-Max-IP.

L. Chen 14:7

BQP Communication Protocols and Approximate {-1,1}-Max-IP.
Making use of the O(

√
n)-degree approximate polynomial for OR [27, 36], we also give a

completely different proof for the hardness of multiplicative approximation to {−1, 1}-Max-IP.
Lower bound from that approach is inferior to Theorem 1.5: in particular, it cannot achieve
a characterization.

It is asked in [5] that whether we can make use of the O(
√
n) BQP communication

protocol for Set-Disjointness [28] to prove conditional lower bounds. Indeed, that quantum
communication protocol is based on the O(

√
n)-time quantum query algorithm for OR

(Grover’s algorithm [42]), which induces the needed approximate polynomial for OR. Hence,
the following theorem in some sense answers their question in the affirmative:

I Theorem 1.13 (Informal). Assuming SETH (or OVC), there is no n2−Ω(1) time no(1)-
multiplicative-approximating algorithm for {−1, 1}-Max-IPn,no(1) .

The full statement can be found in Theorem C.1 and Theorem C.2.

Hardness of Exact Z-Max-IP in 2O(log∗ n) Dimensions
Now we turn to discuss our results on Z-Max-IP. We show that Z-Max-IP is hard to solve in
n2−Ω(1) time, even with 2O(log∗ n)-dimensional vectors:

I Theorem 1.14. Assuming SETH (or OVC), there is a constant c such that any exact
algorithm for Z-Max-IPn,d for d = clog∗ n dimensions requires n2−o(1) time, with vectors of
O(logn)-bit entries.

As direct corollaries of the above theorem, using reductions implicit in [72], we also
conclude hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair under SETH (or
OVC) in 2O(log∗ n) dimensions.

I Theorem 1.15 (Hardness of `2-Furthest Pair in clog∗ n Dimensions). Assuming SETH (or
OVC), there is a constant c such that `2-Furthest Pair in clog∗ n dimensions requires n2−o(1)

time, with vectors of O(logn)-bit entries.

I Theorem 1.16 (Hardness of Bichromatic `2-Closest Pair in clog∗ n Dimensions). Assuming
SETH (or OVC), there is a constant c such that Bichromatic `2-Closest Pair in clog∗ n

dimensions requires n2−o(1) time, with vectors of O(logn)-bit entries.

The above lower bounds on `2-Furthest Pair and Bichromatic `2-Closest Pair are in
sharp contrast with the case of `2-Closest Pair, which can be solved in 2O(d) · n logO(1) n

time [23, 51, 37].

Improved Dimensionality Reduction for OV and Hopcroft’s Problem
Our hardness of Z-Max-IP is established by a reduction from Hopcroft’s problem, whose
hardness is in turn derived from the following significantly improved dimensionality reduction
for OV.

I Lemma 1.17 (Improved Dimensionality Reduction for OV). Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from OVn,d to `O(6log∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with
bit-length O

(
d/` · log ` · 6log∗ d

)
.

CCC 2018

14:8 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Comparison with [72]. Comparing to the old construction in [72], our reduction here is
more efficient when ` is much smaller than d (which is the case we care about). That is,

in [72], OVn,d can be reduced to dd/` instances of Z-OVn,`+1, while we get
{
`6

log∗ d
}d/`

instances in our improved one. So, for example, when ` = 7log∗ d, the old reduction yields
dd/7

log∗ d
= nω(1) instances (recall that d = c logn for an arbitrary constant c), while our

improved one yields only no(1) instances, each with 2O(log∗ n) dimensions.
From Lemma 1.17, the following theorem follows in the same way as in [72].

I Theorem 1.18 (Hardness of Hopcroft’s Problem in clog∗ n Dimensions). Assuming SETH
(or OVC), there is a constant c such that Z-OVn,clog∗ n with vectors of O(logn)-bit entries
requires n2−o(1) time.

Connection between Z-Max-IP Lower Bounds and NP · UPP
Communication Protocols
We also show a new connection between Z-Max-IP and a special type of communication
protocol. Let us first recall the Set-Disjointness problem:

I Definition 1.19 (Set-Disjointness). Let n ∈ N, in Set-Disjointness (DISJn), Alice holds a
vector X ∈ {0, 1}n, Bob holds a vector Y ∈ {0, 1}n, and they want to determine whether
X · Y = 0.

In [5], the hardness of approximating Max-IP is established via a connection to MA com-
munication protocols (in particular, a fast MA communication protocol for Set-Disjointness).
Our lower bound for (exact) Z-Max-IP can also be connected to similar NP · UPP protocols
(note that MA = NP · promiseBPP).

Formally, we define NP · UPP protocols as follows:

I Definition 1.20. For a problem Π with inputs x, y of length n (Alice holds x and Bob
holds y), we say a communication protocol is an (m, `)-efficient NP · UPP communication
protocol if the following holds:

There are three parties Alice, Bob and Merlin in the protocol.
Merlin sends Alice and Bob an advice string z of length m, which is a function of x and y.
Given y and z, Bob sends Alice ` bits, and Alice decides to accept or not.9 They have an
unlimited supply of private random coins (not public, which is important) during their
conversation. The following conditions hold:

If Π(x, y) = 1, then there is an advice z from Merlin such that Alice accepts with
probability ≥ 1/2.
Otherwise, for all possible advice strings from Merlin, Alice accepts with probability
< 1/2.

Moreover, we say the protocol is (m, `)-computational-efficient, if in addition the probab-
ility distributions of both Alice and Bob’s behavior can be computed in poly(n) time given
their input and the advice.

Our new reduction from OV to Max-IP actually implies a super-efficient NP ·UPP protocol
for Set-Disjointness.

9 In UPP, actually one-way communication is equivalent to the seemingly more powerful one in which
they communicate [60].

L. Chen 14:9

I Theorem 1.21. For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

For example, when α = 3 log∗ n, Theorem 1.21 implies there is an O(o(n), O(log∗ n))-
computational-efficient NP ·UPP communication protocol for DISJn. Moreover, we show that
if the protocol of Theorem 1.21 can be improved a little bit (like removing the 6log∗ n term),
we would obtain the desired hardness for Z-Max-IP in ω(1)-dimensions.

I Theorem 1.22. Assuming SETH (or OVC), if there is an increasing and unbounded
function f such that for all 1 ≤ α ≤ n, there is an

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with
vectors of polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic
`2-Closest Pair.

Improved MA Protocols for Set-Disjointness
Finally, we also obtain a new MA protocol for Set-Disjointness, which improves on the
previous O(

√
n logn) protocol in [1], and is closer to the Ω(

√
n) lower bound by [52]. Like

the protocol in [1], our new protocol also works for the following slightly harder problem
Inner Product.

I Definition 1.23 (Inner Product). Let n ∈ N, in Inner Product (IPn), Alice holds a vector
X ∈ {0, 1}n, Bob holds a vector Y ∈ {0, 1}n, and they want to compute X · Y .

I Theorem 1.24. There is an MA protocol for DISJn and IPn with communication complexity

O
(√

n logn log logn
)
.

In [64], the author asked whether the MA communication complexity of DISJ (IP) is
Θ(
√
n) or Θ(

√
n logn), and suggested that Ω(n logn) may be necessary for IP. Our result

makes progress on that question by showing that the true complexity lies between Θ(
√
n)

and Θ(
√
n logn log logn).

1.2 Intuition for Dimensionality Self Reduction for OV
The 2O(log∗ n) factor in Lemma 1.17 is not common in theoretical computer science10, and
our new reduction for OV is considerably more complicated than the polynomial-based
construction from [72]. Hence, it is worth discussing the intuition behind Lemma 1.17, and
the reason why we get a factor of 2O(log∗ n).

10Other examples include an O
(
2O(log∗ n)n4/3) time algorithm for Z-OVn,3 [56], O

(
2O(log∗ n)n log n

)
time

algorithms (Fürer’s algorithm with its modifications) for Fast Integer Multiplication [38, 34, 43] and an
old O(nd/22O(log∗ n)) time algorithm for Klee’s measure problem [30].

CCC 2018

14:10 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

A Direct Chinese Remainder Theorem Based Approach. We first discuss a direct re-
duction based on the Chinese Remainder Theorem (CRT) (see Theorem 2.5 for a formal
definition). CRT says that given a collection of primes q1, . . . , qb, and a collection of integers
r1, . . . , rb, there exists a unique integer t = CRR({ri}; {qi}) such that t ≡ ri (mod qi) for
each i ∈ [b] (CRR stands for Chinese Remainder Representation).

Now, let b, ` ∈ N, suppose we would like to have a dimensionality reduction ϕ from
{0, 1}b·` to Z`. We can partition an input x ∈ {0, 1}b·` into ` blocks, each of length b, and
represent each block via CRT: that is, for a block z ∈ {0, 1}b, we map it into a single integer
ϕblock(z) := CRR({zi}; {qi}), and the concatenations of ϕblock over all blocks of x is ϕ(x) ∈ Z`.

The key idea here is that, for z, z′ ∈ {0, 1}b, ϕblock(z) · ϕblock(z′) (mod qi) is simply
zi · z′i. That is, the multiplication between two integers ϕblock(z) · ϕblock(z′) simulates the
coordinate-wise multiplication between two vectors z and z′!

Therefore, if we make all primes qi larger than `, we can in fact determine x · y from
ϕ(x) · ϕ(y), by looking at ϕ(x) · ϕ(y) (mod qi) for each i. That is,

x · y = 0⇔ ϕ(x) · ϕ(y) ≡ 0 (mod qi) for all i.

Hence, let V be the set of all integer 0 ≤ v ≤ ` ·

(
b∏
i=1

qi

)2

that v ≡ 0 (mod qi) for all

i ∈ [b], we have

x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

The reduction is completed by enumerating all integers v ∈ V , and appending corres-
ponding values to make ϕA(x) = [ϕ(x),−1] and ϕB(y) = [ϕ(y), v] (this step is from [72]).

Note that a nice property for ϕ is that each ϕ(x)i only depends on the i-th block of x,
and the mapping is the same on each block (ϕblock); we call this the block mapping property.

Analysis of the Direct Reduction. To continue building intuition, let us analyze the above

reduction. The size of V is the number of Z-OVn,`+1 instances we create, and |V | ≥
b∏
i=1

qi.

These primes qi have to be all distinct, and it follows that
b∏
i=1

qi is bΘ(b). Since we want to

create at most no(1) instances (or nε for arbitrarily small ε), we need to set b ≤ logn/ log logn.
Moreover, to base our hardness on OVC which deals with c logn-dimensional vectors, we need
to set b · ` = d = c · logn for an arbitrary constant c. Therefore, we must have ` ≥ log logn,
and the above reduction only obtains the same hardness result as [72].

Key Observation: “Most Space Modulo qi” is Actually Wasted. To improve the above
reduction, we need to make |V | smaller. Our key observation about ϕ is that, for the primes
qi’s, they are mostly larger than b� `, but ϕ(x) · ϕ(y) ∈ {0, 1, . . . , `} (mod qi) for all these
qi’s. Hence, “most space modulo qi” is actually wasted.

Make More “Efficient” Use of the “Space”: Recursive Reduction. Based on the previous
observation, we want to use the “space modulo qi” more efficiently. It is natural to consider
a recursive reduction. We will require all our primes qi’s to be larger than b. Let bmicro
be a very small integer compared to b, and let ψ : {0, 1}bmicro·` → Z` with a set Vψ and a
block mapping ψblock be a similar reduction on a much smaller input: for x, y ∈ {0, 1}bmicro·`,
x · y = 0⇔ ψ(x) · ψ(y) ∈ Vψ. We also require here that ψ(x) · ψ(y) ≤ b for all x and y.

L. Chen 14:11

For an input x ∈ {0, 1}b·` and a block z ∈ {0, 1}b of x, our key idea is to partition z again
into b/bmicro “micro” blocks each of size bmicro. And for a block z in x, let z1, . . . , zb/bmicro be its
b/bmicro micro blocks, we map z into an integer ϕblock(z) := CRR({ψblock(zi)}b/bmicro

i=1 ; {qi}b/bmicro
i=1).

Now, given two blocks z, z′ ∈ {0, 1}b, we can see that

ϕblock(z) · ϕblock(z′) ≡ ψblock(zi) · ψblock(z′i) (mod qi).

That is, ϕ(x) · ϕ(y) (mod qi) in fact is equal to ψ(x[i]) · ψ(y[i]), where x[i] is the concat-
enation of the i-th micro blocks of x in each block, and y[i] is defined similarly. Hence, we
can determine whether x[i] · y[i] = 0 from ϕ(x) · ϕ(y) (mod qi) for all i, and therefore also
determine whether x · y = 0 from ϕ(x) · ϕ(y).

We can now observe that |V | ≤ bΘ(b/bmicro), smaller than before; thus we get an improve-
ment, depending on how large can bmicro be. Clearly, the reduction ψ can also be constructed
from even smaller reductions, and after recursing Θ(log∗ n) times, we can switch to the direct
construction discussed before. By a straightforward (but tedious) calculation, we can derive
Lemma 1.17.

High-Level Explanation on the 2O(log∗ n) Factor. Ideally, we want to have a reduction
from OV to Z-OV with only `O(b) instances, in other words, we want |V | = `O(b). The reason
we need to pay an extra 2O(log∗ n) factor in the exponent is as follows:

In our reduction, |V | is at least
b/bmicro∏
i=1

qi, which is also the bound on each coordinate

of the reduction: ψ(x)i equals to a CRR encoding of a vector with {qi}b/bmicro
i=1 , whose value

can be as large as
b/bmicro∏
i=1

qi − 1. That is, all we want is to control the upper bound on the

coordinates of the reduction.
Suppose we are constructing an “outer” reduction ϕ : {0, 1}b·` → Z` from the “micro”

reduction ψ : {0, 1}bmicro·` → Z` with coordinate upper bound Lψ (ψ(x)i ≤ Lψ), and let
Lψ = `κ·bmicro (that is, κ is the extra factor comparing to the ideal case). Recall that we have
to ensure qi > ψ(x) · ψ(y) to make our construction work, and therefore we have to set qi
larger than L2

ψ.

Then the coordinate upper bound for ϕ becomes Lϕ =
b/bmicro∏
i=1

qi ≥ (Lψ)2·b/bmicro = `2κ·b.

Therefore, we can see that after one recursion, the “extra factor” κ at least doubles. Since
our recursion proceeds in Θ(log∗ n) rounds, we have to pay an extra 2O(log∗ n) factor on the
exponent.

1.3 Related Works
SETH-based Conditional Lower Bound. SETH is one of the most fruitful conjectures in
the Fine-Grained Complexity. There are numerous conditional lower bounds based on it for
problems in P among different areas, including: dynamic data structures [58, 6, 10, 44, 53,
3, 45, 41], computational geometry [25, 72, 35], pattern matching [7, 21, 22, 26, 24], graph
algorithms [63, 40, 8, 54]. See [69] for a very recent survey on SETH-based lower bounds
(and more).

Communication Complexity and Conditional Hardness. The connection between commu-
nication protocols (in various model) for Set-Disjointness and SETH dates back at least

CCC 2018

14:12 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

to [59], in which it is shown that a sub-linear, computational efficient protocol for 3-party
Number-On-Forehead Set-Disjointness problem would refute SETH. And it is worth mention-
ing that [4]’s result builds on the Õ(logn) IP communication protocol for Set-Disjointness
in [1].

Distributed PCP. Using Algebraic Geometry codes, [64] obtains a better MA protocol,
which in turn improves the efficiency of the previous distributed PCP construction of [5].
He then shows the n2−o(1) time hardness for 1 + o(1)-approximation to Bichromatic Closest
Pair and o(d)-additive approximation to Max-IPn,d with this new technique.

[50] use the Distributed PCP framework to derive inapproximability results for k-
Dominating Set under various assumptions. In particular, building on the techniques of [64],
it is shown that under SETH, k-Dominating Set has no (logn)1/ poly(k,e(ε)) approximation in
nk−ε time11.

Hardness of Approximation in P. Making use of Chebychev embeddings, [12] prove a

2
Ω
(√

logn
log logn

)
inapproximability lower bound on {−1, 1}-Max-IP.12 [2] take an approach

different from Distributed PCP, and shows that under certain complexity assumptions, LCS
does not have a deterministic 1 + o(1)-approximation in n2−ε time. They also establish a
connection with circuit lower bounds and show that the existence of such a deterministic
algorithm implies ENP does not have non-uniform linear-size Valiant Series Parallel circuits.
In [4], it is improved to that any constant factor approximation deterministic algorithm for
LCS in n2−ε time implies that ENP does not have non-uniform linear-size NC1 circuits. See [5]
for more related results in hardness of approximation in P.

Organization of the Paper
In Section 2, we introduce the needed preliminaries for this paper. In Section 3, we prove
our characterizations for approximating Max-IP and other related results. In Section 4, we
prove 2O(log∗ n) dimensional hardness for Z-Max-IP and other related problems. In Section 5,
we establish the connection between NP · UPP communication protocols and SETH-based
lower bounds for exact Z-Max-IP. In Section 6, we present the O

(√
n logn log logn

)
MA

protocol for Set-Disjointness.

2 Preliminaries

We begin by introducing some notation. For an integer d, we use [d] to denote the set of
integers from 1 to d. For a vector u, we use ui to denote the i-th element of u.

We use log(x) to denote the logarithm of x with respect to base 2 with ceiling as
appropriate, and ln(x) to denote the natural logarithm of x.

In our arguments, we use the iterated logarithm function log∗(n), which is defined
recursively as follows:

log∗(n) :=
{

0 n ≤ 1;
log∗(logn) + 1 n > 1.

11where e : R+ → N is some function
12which is improved by Theorem 1.13

L. Chen 14:13

2.1 Fast Rectangular Matrix Multiplication
Similar to previous algorithms using the polynomial method, our algorithms make use of the
algorithms for fast rectangular matrix multiplication.

I Theorem 2.1 ([39]). There is an N2+o(1) time algorithm for multiplying two matrices A
and B with size N ×Nα and Nα ×N , where α > 0.31389.

I Theorem 2.2 ([33]). There is an N2 · polylog(N) time algorithm for multiplying two
matrices A and B with size N ×Nα and Nα ×N , where α > 0.172.

2.2 Number Theory
Here we recall some facts from number theory. In our reduction from OV to Z-OV, we will
apply the famous prime number theorem, which supplies a good estimate of the number of
primes smaller than a certain number. See e.g. [19] for a reference on this.

I Theorem 2.3 (Prime Number Theorem). Let π(n) be the number of primes ≤ n, then we
have

lim
n→∞

π(n)
n/ lnn = 1.

From a simple calculation, we obtain:

I Lemma 2.4. There are 10n distinct primes in [n+ 1, n2] for a large enough n.

Proof. For a large enough n, from the prime number theorem, the number of primes in
[n+ 1, n2] is equal to

π(n2)− π(n) ∼ n2/2 lnn− n/ lnn� 10n. J

Next we recall the Chinese remainder theorem, and Chinese remainder representation.

I Theorem 2.5. Given d pairwise co-prime integers q1, q2, . . . , qd, and d integers r1, r2, . . . , rd,

there is exactly one integer 0 ≤ t <
d∏
i=1

qi such that

t ≡ ri (mod qi) for all i ∈ [d].

We call this t the Chinese remainder representation (or the CRR encoding) of the ri’s (with
respect to these qi’s). We also denote

t = CRR({ri}; {qi})

for convenience. We sometimes omit the sequence {qi} for simplicity, when it is clear from
the context.

Moreover, t can be computed in polynomial time with respect to the total bits of all the
given integers.

2.3 Communication Complexity
In our paper we will make use of a certain kind of MA protocol, we call them (m, r, `, s)-efficient
protocols13.

13Our notations here are adopted from [50]. They also defined similar k-party communication protocols,
while we only discuss 2-party protocols in this paper.

CCC 2018

14:14 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

I Definition 2.6. We say an MA Protocol is (m, r, `, s)-efficient for a communication problem,
if in the protocol:

There are three parties Alice, Bob and Merlin in the protocol, Alice holds input x and
Bob holds input y.
Merlin sends an advice string z of length m to Alice, which is a function of x and y.
Alice and Bob jointly toss r coins to obtain a random string w of length r.
Given y and w, Bob sends Alice a message of length `.
After that, Alice decides whether to accept or not.

When the answer is yes, Merlin has exactly one advice such that Alice always accept.
When the answer is no, or Merlin sends the wrong advice, Alice accepts with probability
at most s.

2.4 Derandomization
We make use of expander graphs to reduce the amount of random coins needed in one of our
communication protocols. We abstract the following result for our use here.

I Theorem 2.7 (see e.g. Theorem 21.12 and Theorem 21.19 in [20]). Let m be an integer,
and set B ⊆ [m]. Suppose |B| ≥ m/2. There is a universal constant c1 such that for all
ε < 1/2, there is a poly(logm, log ε−1)-time computable function F : {0, 1}logm+c1·log ε−1

→
[m]c1·log ε−1

, such that

Pr
w∈{0,1}logm+c1·log ε−1

[a /∈ B for all a ∈ F(w)] ≤ ε,

here a ∈ F(w) means a is one of the element in the sequence F(w).

3 Hardness of Approximate Max-IP

In this section we prove our characterizations of approximating Max-IP.

3.1 The Multiplicative Case
We begin with the proof of Theorem 1.5. We recap it here for convenience.

Reminder of Theorem 1.5 Letting ω(logn) < d < no(1) and t ≥ 2, the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)Ω(1)
,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating
algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

2. Moreover, let ε = min
(

log t
log(d/ logn) , 1

)
. There are t-multiplicative-approximating de-

terministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.

L. Chen 14:15

In Lemma 3.2, we construct the desired approximate algorithm and in Corollary 3.4 we
prove the lower bound.

The Algorithm
First we need the following simple lemma, which says that the k-th root of the sum of the
k-th powers of non-negative reals gives a good approximation to their maximum.

I Lemma 3.1. Let S be a set of non-negative real numbers, k be an integer, and xmax :=
max
x∈S

x. We have

(∑
x∈S

xk

)1/k

∈
[
xmax, xmax · |S|1/k

]
.

Proof. Since(∑
x∈S

xk

)
∈
[
xkmax, |S| · xkmax

]
,

the lemma follows directly by taking the k-th root of both sides. J

I Lemma 3.2. Assuming ω(logn) < d < no(1) and letting ε = min
(

log t
log(d/ logn) , 1

)
, there

are t-multiplicative-approximating deterministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1
ε−1+ 0.31

2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1
ε−1+ 0.17

2 · polylog(n)
)

= O
(
n2−Ω(ε) · polylog(n)

)
.

Proof. Let d = c · logn. From the assumption, we have c = ω(1), and ε = min
(

log t
log c , 1

)
.

When log t > log c, we simply use a c-multiplicative-approximating algorithm instead, hence
in the following we assume log t ≤ log c. We begin with the first algorithm here.

Construction and Analysis of the Power of Sum Polynomial Pr(z). Let r be a parameter
to be specified later and z be a vector from {0, 1}d, consider the following polynomial

Pr(z) :=
(

d∑
i=1

zi

)r
.

Observe that since each zi takes value in {0, 1}, we have zki = zi for k ≥ 2. Therefore, by
expanding out the polynomial and replacing all zki with k ≥ 2 by zi, we can write Pr(z) as

Pr(z) =
∑

S⊆[d],|S|≤r

cS · zS .

In which zS :=
∏
i∈S

zi, and the cS ’s are the corresponding coefficients. Note that Pr(z)

has

m :=
r∑

k=0

(
d

k

)
≤
(
ed

r

)r

CCC 2018

14:16 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

terms.
Then consider Pr(x, y) := Pr(x1 · y1, x2 · y2, . . . , xd · yd), plugging in zi := xi · yi, it can

be written as

Pr(x, y) :=
∑

S⊆[d],|S|≤r

cS · xS · yS ,

where xS :=
∏
i∈S

xi, and yS is defined similarly.

Construction and Analysis of the Batch Evaluation Polynomial Pr(X, Y). Now, let X
and Y be two sets of b = tr/2 vectors from {0, 1}d, we define

Pr(X,Y) :=
∑

x∈X,y∈Y
Pr(x, y) =

∑
x∈X,y∈Y

(x · y)r.

By Lemma 3.1, we have

Pr(X,Y)1/r ∈ [OPT(X,Y),OPT(X,Y) · t] ,

recall that OPT(X,Y) := max
x∈X,y∈Y

x · y.

Embedding into Rectangle Matrix Multiplication. Now, for x, y ∈ {0, 1}d, we define the
mapping φx(x) as

φx(x) := (cS1 · xS1 , cS2 · xS2 , . . . , cSm · xSm)

and

φy(y) := (yS1 , yS2 , . . . , ySm) ,

where S1, S2, . . . , Sm is an enumeration of all sets S ⊆ [d] and |S| ≤ r.
From the definition, it follows that

φx(x) · φy(y) = Pr(x, y)

for every x, y ∈ {0, 1}d.
Then for each X and Y , we map them into m-dimensional vectors φX(X) and φY (Y)

simply by a summation:

φX(X) :=
∑
x∈X

φx(x) and ΦY (Y) :=
∑
y∈Y

φy(y).

We can see

φX(X) · φY (Y) =
∑
x∈X

φx(x) ·
∑
y∈Y

φy(y) =
∑
x∈X

∑
y∈Y

Pr(x, y) = Pr(X,Y).

Given two sets A,B of n vectors from {0, 1}d, we split A into n/b sets A1, A2, . . . , An/b
of size b, and split B in the same way as well. Then we construct a matrix MA(MB) of size
n/b×m, such that the i-th row of MA(MB) is the vector ΦX(Ai)(ΦY (Bi)). After that, the
evaluation of Pr(Ai, Bj) for all i, j ∈ [n/b] can be reduced to compute the matrix product
MA ·MT

B . After knowing all Pr(Ai, Bj)’s, we simply compute the maximum of them, whose
r-th root gives us a t-multiplicative-approximating answer of the original problem.

L. Chen 14:17

Analysis of the Running Time. Finally, we are going to specify the parameter r and
analyze the time complexity. In order to utilize the fast matrix multiplication algorithm
from Theorem 2.1, we need to have

m ≤ (n/b)0.313,

then our running time is simply (n/b)2+o(1) = n2+o(1)/b2.
We are going to set r = k · logn/ log c, and our choice of k will satisfy k = Θ(1). We have

m ≤
(
e · d
r

)r
≤
(

c logn · e
k · logn/ log c

)k·logn/ log c
,

and therefore

logm ≤ k · logn
[
log c log c

k
+ 1
]/

log c.

Since c = ω(1) and k = Θ(1), we have

logm ≤ (1 + o(1)) · k logn = k logn+ o(logn).

Plugging in, we have

m ≤ (n/b)0.313

⇐= logm ≤ 0.313 · (logn− log b)
⇐= k logn ≤ 0.31 · (logn− log b)

⇐= 0.31 · (r/2) · log t+ k logn ≤ 0.31 logn (b = tr/2)

⇐= logn
log c · k · log t · 0.31

2 + k logn ≤ 0.31 logn (r = k · logn/ log c)

⇐= k ·
{

1 + log t
log c ·

0.31
2

}
≤ 0.31

⇐= k = 0.31
1 + log t

log c ·
0.31

2
= 0.31

1 + 0.31
2 · ε

.

Note since ε ∈ [0, 1], k is indeed Θ(1).
Finally, with our choice of k specified, our running time is n2+o(1)/b2 = n2+o(1)/tr.
By a simple calculation,

log tr = r · log t
= k · logn/ log c · log t

= logn ·
{

log t
log c ·

0.31
1 + 0.31

2 · ε

}
= logn · 0.31ε

1 + 0.31
2 · ε

= logn · 0.31
ε−1 + 0.31

2
.

Hence, our running time is

n2+o(1)/tr = n
2+o(1)− 0.31

ε−1+ 0.31
2

as stated.

CCC 2018

14:18 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

The Second Algorithm. The second algorithm follows exactly the same except for that we
apply Theorem 2.2 instead, hence the constant 0.31 is replaced by 0.17. J

Generalization to Non-negative Real Case
Note that Lemma 3.1 indeed works for a set of non-negative reals, we can observe that the
above algorithm in fact works for R+-Max-IPn,d (which is the same as Max-IP except for that
the sets consisting of non-negative reals):14

Reminder of Corollary 1.7 Assume ω(logn) < d < no(1) and let ε = min(log t
log(d/ logn) , 1).

There is a t-multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running
in time

O
(
n2−Ω(ε) · polylog(n)

)
.

Proof Sketch. We can just use the same algorithm in Lemma 3.2, the only difference is
on the analysis of the number of terms in Pr(z): since z is no longer Boolean, Pr(z) is no

longer multi-linear, and we need to switch to a general upper bound
(
d+ r

r

)
on the number

of terms for r-degree polynomials of d variables. This corollary then follows by a similar
calculation as in Lemma 3.2. J

The Lower Bound
The lower bound follows directly from the new MA protocol for Set-Disjointness in [64]. We
present an explicit proof here for completeness.

To prove the lower bound, we need the following reduction from OV to t-multiplicative-
approximating Max-IP.

I Lemma 3.3 (Implicit in Theorem 4.1 of [64]). There is a universal constant c1 such that,
for every integer c, reals ε ∈ (0, 1] and τ ≥ 2, OVn,c logn can be reduced to nε Max-IPn,d
instances (Ai, Bi) for i ∈ [nε], such that:

d = τpoly(c/ε) · logn.
Letting T = c logn · τ c1 , if there is a ∈ A and b ∈ B such that a · b = 0, then there exists
an i such that OPT(Ai, Bi) ≥ T .
Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

The reduction above follows directly from the new MA communication protocols in [64]
together with the use of expander graphs to reduce the amount of random coins. A proof for
the lemma above can be found in Appendix D.

Now we are ready to show the lower bound on t-multiplicative-approximating Max-IP.

I Corollary 3.4. Assuming SETH (or OVC), and letting d = ω(logn) and t ≥ 2. There is
no n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ logn)o(1)
.

14 In the following we assume a real RAM model of computation for simplicity.

L. Chen 14:19

Proof. Let c = d/ logn, then t = co(1) (recall that t and d are two functions of n).
Suppose for contradiction that there is an n2−ε′ time t(n)-multiplicative-approximating

algorithm A for Max-IP(n, d) for some ε′ > 0.
Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 3.3 with

τ = t to reduce an OVn,c2 logn instance to nε

Max-IPn,tpoly(c2/ε)·logn ≡ Max-IPn,tO(1)·logn

instances. Since t = co(1), which means for sufficiently large n, tO(1) · logn = co(1) · logn =
o(d), and it in turn implies that for sufficiently large n, nε calls to A are enough to solve the
OVn,c2 logn instance.

Therefore, we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contra-
diction to OVC. J

Finally, the correctness of Theorem 1.5 follows directly from Lemma 3.2 and Corollary 3.4.

3.2 The Additive Case
In this subsection we prove Theorem 1.10. We first recap it here for convenience.

Reminder of Theorem 1.10 Letting ω(logn) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm
for Max-IPn,d if

t = o(d).

2. Moreover, letting ε = t

d
, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.

We proceed similarly as in the multiplicative case by establishing the algorithm first.

The Algorithm
The algorithm is actually very easy, we simply apply the following algorithm from [13].

I Lemma 3.5 (Implicit in Theorem 5.1 in [13]). Assuming ε� log6 log(d logn)/ log3 n, there
is an

n2−Ω
(
ε1/3/ log(d

ε logn)
)

time ε · d-additive-approximating randomized algorithm for Max-IPn,d.

I Lemma 3.6. Let ε = min(t, d)
d

, there is a randomized

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating algorithm for Max-IPn,d when ε� log6 logn/ log3 n.

CCC 2018

14:20 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Proof. When t > d the problem becomes trivial, so we can assume t ≤ d, and now t = ε · d.
Let ε1 = ε/2 and c1 be a constant to be specified later. Given an Max-IPn,d instance with

two sets A and B of vectors from {0, 1}d, we create another Max-IPn,d1 instance with sets Ã,
B̃ and d1 = c1 · ε−2

1 · logn as follows:
Pick d1 uniform random indices i1, i2, i3, . . . , id1 ∈ [d], each ik is an independent uniform
random number in [d].
Then we construct Ã from A by reducing each a ∈ A into ã = (ai1 , ai2 , . . . , aid1

) ∈ {0, 1}d1

and B̃ from B in the same way.

Note for each a ∈ A and b ∈ B, by a Chernoff bound, we have

Pr
[∣∣∣∣ ã · b̃d1

− a · b
d

∣∣∣∣ ≥ ε1

]
< 2e−2d1ε

2
1 = 2n−2·c1 .

By setting c1 = 2, the above probability is smaller than 1/n3.
Hence, by a simple union bound, with probability at least 1− 1/n, we have∣∣∣∣∣ ã · b̃d1

− a · b
d

∣∣∣∣∣ ≤ ε1

for all a ∈ A and b ∈ B. Hence, it means that this reduction only changes the “relative

inner product”(a · b
d

or ã · b̃
d1

) of each pair by at most ε1. Hence, the maximum of the “relative

inner product” also changes by at most ε1, and we have |OPT(A,B)/d−OPT(Ã, B̃)/d1| ≤ ε1.
Then we apply the algorithm in Lemma 3.5 on the instance with sets Ã and B̃ with error

ε = ε1 to obtain an estimate Õ, and our final answer is simply Õ

d1
· d.

From the guarantee from Lemma 3.5, we have |OPT(Ã, B̃)/d1− Õ/d1| ≤ ε1, and therefore
we have |OPT(A,B)/d − Õ/d1| ≤ 2ε1 = ε, from which the correctness of our algorithm
follows directly.

For the running time, note that the reduction part runs in linear time O(n · d), and the
rest takes

n2−Ω
(
ε1/3/ log(d1

ε1 logn)
)

= n2−Ω(ε1/3/ log ε−1)

time. J

The Lower Bound
The lower bound is already established in [64], we show it follows from Lemma 3.3 here for
completeness.

I Lemma 3.7 (Theorem 4.1 of [64]). Assuming SETH (or OVC), and letting d = ω(logn) and
t > 0, there is no n2−Ω(1)-time t-additive-approximating randomized algorithm for Max-IPn,d
if

t = o(d).

Proof. Recall that t and d are all functions of n. Suppose for contradiction that there is an
n2−ε′ time t(n)-additive-approximating algorithm A for Max-IP(n, d) for some ε′ > 0.

L. Chen 14:21

Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 3.3 with
τ = 2 to reduce an OVn,c2 logn instance to nε

Max-IPn,2poly(c2/ε)·logn ≡ Max-IPn,d1 where d1 = O(1) · logn

instances. In addition, from Lemma 3.3, to solve the OVc2 logn instance, we only need to

distinguish an additive gap of T2 = Ω(logn) = Ω(d1) for these Max-IP instances obtained via
the reduction.

This can be solved, via nε calls to A as follows: for each Max-IPn,d1 instance I we get,
since d = ω(logn), which means for a sufficiently large n, d1 = O(logn) � d, and we can
duplicate each coordinate d/d1 times (for simplicity we assume d1|d here), to obtain an
Max-IPn,d instance Inew, such that OPT(Inew) = d/d1 · OPT(I). Then A can be used to

estimate OPT(Inew) within an additive error t = o(d). Scaling its estimate by d1

d
, it can also

be used to estimate OPT(I) within an additive error o(d1) = o(logn) ≤ T/2 for sufficiently
large n.

Therefore, we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contra-
diction to OVC. J

Finally, the correctness of Theorem 1.10 follows directly from Lemma 3.6 and Lemma 3.7.

3.3 Adaption for All-Pair-Max-IP
Now we sketch the adaption for our algorithms to work for the All-Pair-Max-IP problem.

Reminder of Corollary 1.12 Suppose ω(logn) < d < no(1), and let

εM := min
(

log t
log(d/ logn) , 1

)
and εA := min(t, d)

d
.

There is an n2−Ω(εM) polylog(n) time t-multiplicative-approximating algorithm and an
n2−Ω(ε1/3

A
/ log ε−1

A
) time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA �

log6 logn/ log3 n.

Proof Sketch. Note that the algorithm in Lemma 3.5 from [13] actually works for the
All-Pair-Max-IPn,d. Hence, we can simply apply that algorithm after the coordinate sampling
phase, and obtain a t-additive-approximating algorithm for All-Pair-Max-IPn,d.

For t-multiplicative-approximating algorithm, suppose we are given with two sets A and
B of n vectors from {0, 1}d. Instead of partitioning both of them into n/b subsets Ai’s and
Bi’s (the notations used here are the same as in the proof of Lemma 3.2), we only partition
B into n/b subsets B1, B2, . . . , Bn/b of size b, and calculate Pr(x,Bi) :=

∑
y∈Bi

Pr(x, y) for

all x ∈ A and i ∈ [n/b] using similar reduction to rectangle matrix multiplication as in
Lemma 3.2. By a similar analysis, these can be done in n2−Ω(εM) · polylog(n) time, and with
these informations we can compute the t-multiplicative-approximating answers for the given
All-Pair-Max-IPn,d instance. J

3.4 Improved Hardness for LCS-Closest Pair Problem
We finish this section with the proof of Corollary 1.9. First we abstract the reduction from
Max-IP to LCS-Closest-Pair in [5] here.

CCC 2018

14:22 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

OVn,c logn Z-OVn,2O(log∗ n) Z-Max-IPn,2O(log∗ n)

`2-furthestn,2O(log∗ n)

Bichrom.-`2-closestn,2O(log∗ n)

Figure 1 A diagram for all reductions in this section.

I Lemma 3.8 (Implicit in Theorem 1.6 in [5]). For big enough t and n, t-multiplicative-
approximating Max-IPn,d reduces to t/2-multiplicative-approximating LCS-Closest-Pairn,d1 ,
where d1 = O(d3 log2 n).

Now we are ready to prove Corollary 1.9 (restated below for convenience).

Reminder of Corollary 1.9 Assuming SETH (or OVC), for every t ≥ 2, t-multiplicative-
approximating LCS-Closest-Pairn,d requires n2−o(1) time, if d = tω(1) · log5 n.

Proof. From Corollary 3.4, assuming SETH (or OVC), for every t ≥ 2, we have that 2t-
multiplicative-approximating Max-IPn,d requires n2−o(1) time if d = tω(1) · logn. Then from
Lemma 3.8, t-multiplicative-approximating LCS-Closest-Pairn,d1 for d1 = O(d3 log2 n) =
tω(1) · log5 n requires n2−o(1) time. J

4 Hardness of Exact Z-Max-IP, Hopcroft’s Problem and More

In this section we show hardness of Hopcroft’s problem, exact Z-Max-IP, `2-Furthest Pair
and Bichromatic `2-Closest Pair. Essentially our results follow from the framework of [72],
in which it is shown that hardness of Hopcroft’s problem implies hardness of other three
problems, and is implied by dimensionality reduction for OV.

The Organization of this Section
In Section 4.1, we prove the improved dimensionality reduction for OV. In Section 4.2, we
establish the hardness of Hopcroft’s problem in 2O(log∗ n) dimensions with the improved
reduction. In Section 4.3, we show Hopcroft’s problem can be reduced to Z-Max-IP and thus
establish the hardness for the later one. In Section 4.4, we show Z-Max-IP can be reduced to
`2-Furthest Pair and Bichromatic `2-Closest Pair, therefore the hardness for the later two
problems follow. See Figure 1 for a diagram of all reductions covered in this section.

The reduction in last three subsections are all from [72] (either explicit or implicit), we
make them explicit here for our ease of exposition and for making the paper self-contained.

4.1 Improved Dimensionality Reduction for OV
We begin with the improved dimensionality reduction for OV. The following theorem is one
of the technical cores of this paper, which makes use of the CRR encoding (see Theorem 2.5)
recursively.

L. Chen 14:23

I Theorem 4.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` :
{0, 1}b·` → Z` and a set Vb,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = 0⇔ ψb,`(x) · ψb,`(y) ∈ Vb,`

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the set Vb,` can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

I Remark 4.2. We didn’t make much effort to minimize the base 6 above to keep the
calculation clean, it can be replaced by any constant > 2 with a tighter calculation.

Proof. We are going to construct our reduction in a recursive way. ` will be the same
throughout the proof, hence in the following we use ψb (Vb) instead of ψb,` (Vb,`) for
simplicity.

Direct CRR for small b:

When b < `, we use a direct Chinese remainder representation of numbers. We pick b primes
q1, q2, . . . , qb in [`+ 1, `2], and use them for our CRR encoding.

Let x ∈ {0, 1}b·`, we partition it into ` equal size groups, and use xi to denote the i-th
group, which is the sub-vector of x from the ((i− 1) · b+ 1)-th bit to the (i · b)-th bit.

Then we define ψb(x) as

ψb(x) :=
(

CRR
({
x1
j

}b
j=1

)
,CRR

({
x2
j

}b
j=1

)
, . . . ,CRR

({
x`j
}b
j=1

))
.

That is, the i-th coordinate of ψb(x) is the CRR encoding of the i-th sub-vector xi with
respect to the primes qj ’s.

Now, for x, y ∈ {0, 1}b·`, note that for j ∈ [b],

ψb(x) · ψb(y) (mod qj)

≡
∑̀
i=1

CRR
({
xij
}b
j=1

)
· CRR

({
yij
}b
j=1

)
(mod qj)

≡
∑̀
i=1

xij · yij (mod qj).

Since the sum
∑̀
i=1

xij · yij is in [0, `], and qj > `, we can see

∑̀
i=1

xij · yij = 0⇔ ψb(x) · ψb(y) ≡ 0 (mod qj).

Therefore, x · y =
b∑
j=1

∑̀
i=1

xij · yij = 0 is equivalent to that

ψb(x) · ψb(y) ≡ 0 (mod qj)

CCC 2018

14:24 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

for every j ∈ [b].

Finally, we have 0 ≤ ψb(x)i <
b∏
j=1

pj < `2·b ≤ `6
log∗(b)·b. Therefore

ψb(x) · ψb(y) < `6
log∗(b)·2b+1,

and we can set Vb to be the set of all integers in [0, `6
log∗(b)·2b+1] that is 0 modulo all the pj ’s,

and it is easy to see that

x · y ⇔ ψb(x) · ψb(y) ∈ Vb

for all x, y ∈ {0, 1}b·`.

Recursive Construction for larger b:

When b ≥ `, suppose the theorem holds for all b′ < b. Let bmicro be the number such that
(we ignore the rounding issue here and pretend that bmicro is an integer for simplicity),

`6
log∗(bmicro)·bmicro = b.

Then we pick b/bmicro primes p1, p2, . . . , pb/bmicro in [(b2`), (b2`)2], and use them as our
reference primes in the CRR encodings.

Let x ∈ {0, 1}b·`, as before, we partition x into ` equal size sub-vectors x1, x2, . . . , x`,
where xi consists of the ((i− 1) · b+ 1)-th bit of x to the (i · b)-th bit of x. Then we partition
each xi again into b/bmicro micro groups, each of size bmicro. We use xi,j to denote the j-th
micro group of xi after the partition.

Now, we use x[j] to denote the concatenation of the vectors x1,j , x2,j , . . . , x`,j . That
is, x[j] is the concatenation of the j-th micro group in each of the ` groups. Note that
x[j] ∈ {0, 1}bmicro·`, and can be seen as a smaller instance, on which we can apply ψbmicro .

Our recursive construction then goes in two steps. In the first step, we make use of ψbmicro ,
and transform each bmicro-size micro group into a single number in [0, b). This step transforms
x from a vector in {0, 1}b·` into a vector S(x) in Z(b/bmicro)·`. And in the second step, we use
a similar CRR encoding as in the base case to encode S(x), to get our final reduced vector
in Z`.

S(x) is simply

S(x) :=
(
ψbmicro(x[1])1, ψbmicro(x[2])1, . . . , ψbmicro(x[b/bmicro])1,

ψbmicro(x[1])2, ψbmicro(x[2])2, . . . , ψbmicro(x[b/bmicro])2,

. . . , . . . , . . .

ψbmicro(x[1])`, ψbmicro(x[2])`, . . . , ψbmicro(x[b/bmicro])`
)
.

That is, we apply ψbmicro on all the x[j]’s, and shrink all the corresponding micro-groups
in x into integers. Again, we partition S into ` equal size groups S1, S2, . . . , S`.

Then we define ψb(x) as

ψb(x) :=
(

CRR
({
S1
j

}b/bmicro

j=1

)
,CRR

({
S2
j

}b/bmicro

j=1

)
, . . . ,CRR

({
S`j
}b/bmicro

j=1

))
.

In other words, the i-th coordinate of ψb(x) is the CRR representation of the number
sequence Si, with respect to our primes {qj}b/bmicro

j=1 .

L. Chen 14:25

Now, note that for x, y ∈ {0, 1}b·`, x · y = 0 is equivalent to x[j] · y[j] = 0 for every
j ∈ [b/bmicro], which is further equivalent to

ψbmicro(x[j]) · ψbmicro(y[j]) ∈ Vbmicro

for all j ∈ [b/bmicro], by our assumption on ψbmicro .
Since 0 ≤ ψbmicro(x[j])i, ψbmicro(y[j])i < b for all x, y ∈ {0, 1}b·`, i ∈ [`] and j ∈ [b/bmicro], we

also have ψbmicro(x[j]) · ψbmicro(y[j]) < b2 · `, therefore we can assume that Vbmicro ⊆ [0, b2`).
For all x, y ∈ {0, 1}b·` and j ∈ [b/bmicro], we have

ψb(x) · ψb(y)

≡
∑̀
i=1

CRR
({
S(x)ij

}b/bmicro

j=1

)
· CRR

({
S(y)ij

}b/bmicro

j=1

)
(mod pj)

≡
∑̀
i=1

S(x)ij · S(y)ij (mod pj)

≡
∑̀
i=1

ψbmicro(x[j])i · ψbmicro(y[j])i (mod pj)

≡ψbmicro(x[j]) · ψbmicro(y[j]) (mod pj).

Since pj ≥ b2 · `, we can determine ψbmicro(x[j]) · ψbmicro(y[j]) from ψb(x) · ψb(y) by taking
modulo pj . Therefore,

x · y = 0

is equivalent to

(ψb(x) · ψb(y) mod pj) ∈ Vbmicro ,

for every j ∈ [b/bmicro].
Finally, recall that we have

`6
log∗(bmicro)·bmicro = b.

Taking logarithm of both sides, we have

6log∗(bmicro) · bmicro · log ` = log b.

Then we can upper bound ψb(x)i by

ψb(x)i <
b/bmicro∏
j=1

pj

< (b2`)2·(b/bmicro) (b ≥ `.)

≤ 26·b/bmicro·log b

≤ 26·b/bmicro·6log∗(bmicro)·bmicro·log `

≤ `6·6
log∗(bmicro)·b

≤ `6
log∗(b)·b (bmicro ≤ log b, log∗(bmicro) + 1 ≤ log∗(log b) + 1 = log∗(b).)

CCC 2018

14:26 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Therefore, we can set Vb as the set of integer t in [0, `6
log∗(b)·2b+1) such that

(t mod pj) ∈ Vbmicro

for every j ∈ [b/bmicro]. And it is easy to see this Vb satisfies our requirement.
Finally, it is easy to see that the straightforward way of constructing ψb(x) takes O(poly(b·

`)) time, and we can construct Vb by enumerating all possible values of ψb(x) · ψb(y) and
check each of them in O(poly(b · `)) time. Since there are at most `O(6log∗(b)·b) such values,
Vb can be constructed in

O
(
`O(6log∗(b)·b) · poly(b · `)

)
time, which completes the proof. J

Now we prove Lemma 1.17, we recap its statement here for convenience.

Reminder of Lemma 1.17 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from OVn,d to `O(6log∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with
bit-length O

(
d/` · log ` · 6log∗ d

)
.

Proof. The proof is exactly the same as the proof for Lemma 1.1 in [72] with different
parameters, we recap it here for convenience.

Given two sets A′ and B′ of n vectors from {0, 1}d, we apply ψd/`,` to each of the
vectors in A′ (B′) to obtain a set A (B) of vectors from Z`. From Theorem 4.1, there is
a (u, v) ∈ A′ × B′ such that u · v = 0 if and only if there is a (u, v) ∈ A × B such that
u · v ∈ Vd/`,`.

Now, for each element t ∈ Vd/`,`, we are going to construct two sets At and Bt of vectors
from Z`+1 such that there is a (u, v) ∈ A × B with u · v = t if and only if there is a
(u, v) ∈ At×Bt with u · v = 0. We construct a set At as a collection of all vectors uA = [u, 1]
for u ∈ A, and a set Bt as a collection of all vectors vB = [v,−t] for v ∈ B. It is easy to
verify this reduction has the properties we want.

Note that there are at most `O(6log∗ d·(d/`)) numbers in Vd/`,`, so we have such a number
of Z-OVn,`+1 instances. And from Theorem 4.1, the reduction takes

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
time.

Finally, the bit-length of reduced vectors is bounded by

log
(
`O(6log∗ d·(d/`))

)
= O

(
d/` · log ` · 6log∗ d

)
,

which completes the proof. J

L. Chen 14:27

A Transformation from Nonuniform Construction to Uniform
Construction
The proof for Theorem 4.1 works recursively. In one recursive step, we reduce the construction
of ψb,` to the construction of ψbmicro,`, where bmicro ≤ log b. Applying this reduction log∗ n
times, we get a sufficiently small instance that we can switch to a direct CRR construction.

An interesting observation here is that after applying the reduction only thrice, the block
length parameter becomes b′ ≤ log log log b, which is so small that we can actually use brute
force to find the “optimal” construction ψb′,` in bo(1) time instead of recursing deeper. Hence,
to find a construction better than Theorem 4.1, we only need to prove the existence of such
a construction. See Appendix B for details.

4.2 Improved Hardness for Hopcroft’s Problem
In this subsection we are going to prove Theorem 1.18 using our new dimensionality reduction
Lemma 1.17, we recap its statement here for completeness.

Reminder of Theorem 1.18 [Hardness of Hopcroft’s Problem in clog∗ n Dimension] Assuming
SETH (or OVC), there is a constant c such that Z-OVn,clog∗ n with vectors of O(logn)-bit
entries requires n2−o(1) time.

Proof. The proof here follows roughly the same as the proof for Theorem 1.1 in [72].
Let c be an arbitrary constant and d := c · logn. We show that an oracle solving Z-OVn,`+1

where ` = 7log∗ n in O(n2−δ) time for some δ > 0 can be used to construct an O(n2−δ+o(1))
time algorithm for OVn,d, and therefore contradicts the OVC.

We simply invoke Lemma 1.17, note that we have

log
{
`
O
(

6log∗ d·(d/`)
)}

= log ` ·O
(

6log∗ d · (d/`)
)

= O
(

log∗ n · 6log∗ n · c · logn/7log∗ n
)

= O
(

log∗ n · (6/7)log∗ n · c · logn
)

= o(logn).

Therefore, the reduction takes O(n · `O
(

6log∗ d·(d/`)
)
· poly(d)) = n1+o(1) time, and an OVn,d

instance is reduced to no(1) instances of Z-OVn,`+1, and the reduced vectors have bit length
o(logn) as calculated above. We simply solve all these no(1) instances using our oracle, and
this gives us an O(n2−δ+o(1)) time algorithm for OVn,d, which completes the proof. J

4.3 Hardness for Z-Max-IP
Now we move to hardness of exact Z-Max-IP.

I Theorem 4.3 (Implicit in Theorem 1.2 [72]). There is an O(poly(d) · n)-time algorithm
which reduces a Z-OVn,d instance into a Z-Max-IPn,d2 instance.

Proof. We remark here that this reduction is implicitly used in the proof of Theorem 1.2
in [72], we abstract it here only for our exposition.

CCC 2018

14:28 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Given a Z-OVn,d instance with sets A,B. Consider the following polynomial P (x, y),
where x, y ∈ Zd.

P (x, y) = −(x · y)2 =
∑
i,j∈[d]

−(xi · yi) · (xj · yj) =
∑
i,j∈[d]

−(xi · xj) · (yi · yj).

It is easy to see that whether there is a (x, y) ∈ A×B such that x · y = 0 is equivalent to
whether the maximum value of P (x, y) is 0.

Now, for each x ∈ A and y ∈ B, we identify [d2] with [d]× [d] and construct x̃, ỹ ∈ Zd
2

such that

x̃(i,j) = xi · xj and ỹ(i,j) = −yi · yj .

Then we have x̃ · ỹ = P (x, y). Hence, let Ã be the set of all these x̃’s, and B̃ be the set of
all these ỹ’s, whether there is a (x, y) ∈ A×B such that x · y = 0 is equivalent to whether
OPT(Ã, B̃) = 0, and our reduction is completed.

J

Now, Theorem 1.14 (restated below) is just a simple corollary of Theorem 4.3 and
Theorem 1.18.

Reminder of Theorem 1.14 Assuming SETH (or OVC), there is a constant c such that
every exact algorithm for Z-Max-IPn,d for d = clog∗ n dimensions requires n2−o(1) time, with
vectors of O(logn)-bit entries.

A Dimensionality Reduction for Max-IP
The reduction ψb,` from Theorem 4.1 actually does more: for x, y ∈ {0, 1}b·`, from ψb,`(x) ·
ψb,`(y) we can in fact determine the inner product x · y itself, not only whether x · y = 0.

Starting from this observation, together with Theorem 4.3, we can in fact derive a similar
dimensionality self reduction from Max-IP to Z-Max-IP, we deter its proof to Appendix A.

I Corollary 4.4. Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

reduction from Max-IPn,d to d · `O(6log∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of
entries with bit-length O

(
d/` · log ` · 6log∗ d

)
.

4.4 Hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair
We finish the whole section with the proof of hardness of `2-Furthest Pair and Bichromatic
`2-Closest Pair. The two reductions below are slight adaptations of the ones in the proofs of
Theorem 1.2 and Corollary 2.1 in [72].

I Lemma 4.5. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces
a Z-Max-IPn,d instance into an instance of `2-Furthest Pair on 2n points in Rd+2. Moreover,
if the Z-Max-IP instance consists of vectors of O(logn)-bit entries, so does the `2-Furthest
Pair instance.

L. Chen 14:29

Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such
that all vectors from A and B consist of (k · logn)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct
point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
−y, 0,

√
W − ‖y‖2

)
,

that is, appending two corresponding values into the end of vectors x and −y.
Now, we can see that for x1, x2 ∈ A, the squared distance between their reduced points is

‖x̃1 − x̃2‖2 = ‖x1 − x2‖2 ≤ 4 · d · n2k.

Similarly we have

‖ỹ1 − ỹ2‖2 ≤ 4 · d · n2k

for y1, y2 ∈ B.
Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W + 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Putting everything together, we can see the `2-furthest pair among all points x̃’s and ỹ’s

must be a pair of x̃ and ỹ with x ∈ A and y ∈ B. And maximizing ‖x̃ − ỹ‖ is equivalent
to maximize x · y, which proves the correctness of our reduction. Furthermore, when k is
a constant, the reduced instance clearly only needs vectors with O(k) · logn = O(logn)-bit
entries. J

I Lemma 4.6. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces
a Z-Max-IPn,d instance into an instance of Bichromatic `2-Closest Pair on 2n points in Rd+2.
Moreover, if the Z-Max-IP instance consists of vectors of O(logn)-bit entries, so does the
Bichromatic `2-Closest Pair instance.

Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such
that all vectors from A and B consist of (k · logn)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct
point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
y, 0,

√
W − ‖y‖2

)
,

that is, appending two corresponding values into the end of vectors x and −y. And our
reduced instance is to find the closest point between the set Ã (consisting of all these x̃ where
x ∈ A) and the set B̃ (consisting of all these ỹ where y ∈ B).

Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W − 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Hence minimizing ‖x̃− ỹ‖ where x ∈ A and y ∈ B is equivalent to maximize x · y, which

proves the correctness of our reduction. Furthermore, when k is a constant, the reduced
instance clearly only needs vectors with O(k) · logn = O(logn)-bit entries. J

CCC 2018

14:30 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Now Theorem 1.15 and Theorem 1.16 (restated below) are simple corollaries of Lemma 4.5,
Lemma 4.6 and Theorem 1.14.

Reminder of Theorem 1.15 [Hardness of `2-Furthest Pair in clog∗ n Dimension] Assuming
SETH (or OVC), there is a constant c such that `2-Furthest Pair in clog∗ n dimensions
requires n2−o(1) time, with vectors of O(logn)-bit entries.

Reminder of Theorem 1.16 [Hardness of Bichromatic `2-closest Pair in clog∗ n Dimension]
Assuming SETH (or OVC), there is a constant c such that Bichromatic `2-Closest Pair in
clog∗ n dimensions requires n2−o(1) time, with vectors of O(logn)-bit entries.

5 NP · UPP communication protocol and Exact Hardness for
Z-Max-IP

We note that the inapproximability results for (Boolean) Max-IP is established via a connection
to the MA communication complexity protocol of Set-Disjointness [5]. In the light of this, in
this section we view our reduction from OV to Z-Max-IP (Lemma 1.17 and Theorem 4.3) in
the perspective of communication complexity.

We observe that in fact, our reduction can be understood as an NP ·UPP communication
protocol for Set Disjointness. Moreover, we show that if we can get a slightly better NP ·UPP
communication protocol for Set-Disjointness, then we would be able to prove Z-Max-IP is
hard even for ω(1) dimensions (and also `2-Furthest Pair and Bichromatic `2-Closest Pair).

5.1 NP · UPP Communication Protocol for Set-Disjointness
First, we rephrase the results of Lemma 1.17 and Theorem 4.3 in a more convenience way
for our use here.

I Lemma 5.1 (Rephrasing of Lemma 1.17 and Theorem 4.3). Let 1 ≤ ` ≤ d, and m =
`O(6log∗ d·(d/`)). There exists a family of functions

ψiAlice, ψ
i
Bob : {0, 1}d → R(`+1)2

for i ∈ [m] such that:
when x · y = 0, there is an i such that ψiAlice(x) · ψiBob(y) ≥ 0;
when x · y > 0, for all i ψiAlice(x) · ψiBob(y) < 0;
all ψiAlice(x) and ψiBob(y) can be computed in poly(d) time.

We also need the standard connection between UPP communication protocols and sign-
rank [60] (see also Chapter 4.11 of [48]).

I Lemma 5.2 (Equivalence of sign-rank and UPP communication protocol [60]). The following
statements are equivalent:

There is a d-cost UPP communication protocol for a problem F : X × Y → {0, 1}, where
X and Y are input sets of Alice and Bob respectively.
There are mappings ψX : X → R2d and ψY : Y → R2d such that for all (x, y) ∈ X × Y:

if F (x, y) = 1, ψX (x) · ψY(y) ≥ 0;
otherwise, ψX (x) · ψY(y) < 0.

L. Chen 14:31

From the above lemmas, we immediately get the needed communication protocol and
prove Theorem 1.21 (restated below for convenience).

Reminder of Theorem 1.21 For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

Proof Sketch. We set α = log ` here. Given the function families {ψiAlice}, {ψiBob} from
Lemma 5.1, Merlin just sends the index i ∈ [m] and the rest follows from Lemma 5.2. J

5.2 Slightly Better Protocols Imply Hardness in ω(1) Dimensions
Finally, we show that if we have a slightly better NP ·UPP protocol for Set-Disjointness, then
we can show Z-Max-IP requires n2−o(1) time even for ω(1) dimensions (and so do `2-Furthest
Pair and Bichromatic `2-Closest Pair). We restate Theorem 1.22 here for convenience.

Reminder of Theorem 1.22 Assuming SETH (or OVC), if there is an increasing and
unbounded function f such that for all 1 ≤ α ≤ n, there is a

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with
vectors of polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic
`2-Closest Pair.

Proof. Suppose otherwise, there is an algorithm A for Z-Max-IPn,d running in n2−ε1 time
for all constant d and for a constant ε1 > 0 (note for the sake of Lemma 4.5 and Lemma 4.6,
we only need to consider Z-Max-IP here).

Now, let c be an arbitrary constant, we are going to construct an algorithm for OVn,c logn
in n2−Ω(1) time, which contradicts OVC.

Let ε = ε1/2, and α be the first number such that c/f(α) < ε, note that α is also a
constant. Consider the (c logn/f(α), α)-computational-efficient NP · UPP protocol Π for
DISJc logn, and let A,B be the two sets in the OVn,c logn instance. Our algorithm via
reduction works as follows:

There are 2α possible messages in {0, 1}α, let m1,m2, . . . ,m2α be an enumeration of
them.
We first enumerate all possible advice strings from Merlin in Π, there are 2c logn/f(α) ≤
2ε·logn = nε such strings, let φ ∈ {0, 1}ε·logn be such an advice string.

For each x ∈ A, let ψAlice(x) ∈ R2α be the probabilities that Alice accepts each message
from Bob. That is, ψAlice(x)i is the probability that Alice accepts the message mi,
given its input x and the advice φ.
Similarly, for each y ∈ B, let ψBob(y) ∈ R2α be the probabilities that Bob sends each
message. That is, ψBob(y)i is the probability that Bob sends the message mi, give its
input y and the advice φ.
Then, for each x ∈ A and y ∈ B, ψAlice(x) · ψBob(y) is precisely the probability that
Alice accepts at the end when Alice and Bob holds x and y correspondingly and the
advice is φ. Now we let Aφ be the set of all the ψAlice(x)’s, and Bφ be the set of all
the ψBob(y)’s.

CCC 2018

14:32 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

If there is a φ such that OPT(Aφ, Bφ) ≥ 1/2, then we output yes, and otherwise output
no.

From the definition of Π, it is straightforward to see that the above algorithm solves
OVn,c·logn. Moreover, notice that from the computational-efficient property of Π, the
reduction itself works in n1+ε · polylog(n) time, and all the vectors in Aφ’s and Bφ’s have
at most polylog(n) bit precision, which means OPT(Aφ, Bφ) can be solved by a call to
Z-Max-IPn,2α with vectors of polylog(n)-bit entries.

Hence, the final running time for the above algorithm is bounded by nε · n2−ε1 = n2−ε

(2α is still a constant), which contradicts the OVC. J

6 Improved MA Protocols

In this section we prove Theorem 1.24 (restated below for convenience).

Reminder of Theorem 1.24 There is an MA protocol for DISJn and IPn with communication
complexity

O
(√

n logn log logn
)
.

To prove Theorem 1.24, we need the following intermediate problem.

I Definition 6.1 (The Inner Product Modulo p Problem (IPpn)). Let p and n be two positive
integers, in IPpn, Alice and Bob are given two vectors X and Y in {0, 1}n, and they want to
compute X · Y (mod p).

Note that IPn and IPpn are not Boolean functions, so we need to generalize the definition
of an MA protocol. In an MA protocol for IPn, Merlin sends the answer directly to Alice
together with a proof to convince Alice and Bob. The correctness condition becomes that for
the right answer X · Y , Merlin has a proof such that Alice and Bob will accept with high
probability (like 2/3). And the soundness condition becomes that for the wrong answers,
every proof from Merlin will be rejected with high probability.

We are going to use the following MA protocol for IPpn, which is a slight adaption from
the protocol in [64].

I Lemma 6.2 (Implicit in Theorem 3.1 of [64]). For a sufficiently large prime q and integers
T and n, there is an(

O (n/T · log q) , logn+O(1), O (T · log q) , 1/2
)
-efficient

MA protocol for IPqn.

Proof Sketch. The only adaption is that we just use the field Fq2 with respect to the given
prime q. (In the original protocol it is required that q ≥ T .) J

Now we ready to prove Theorem 1.24.

Proof of Theorem 1.24. Since a IPn protocol trivially implies a DISJn protocol, we only
need to consider IPn in the following.

Now, let x be the number such that xx = n, for convenience we are going to pretend
that x is an integer. It is easy to see that x = Θ(logn/ log logn). Then we pick 10x

L. Chen 14:33

distinct primes p1, p2, . . . , p10x in [x+ 1, x2] (we can assume that n is large enough to make
x satisfy the requirement of Lemma 2.4). Let T be a parameter, we use Πpi to denote the(
O (n/T · log pi) , logn+O(1), O (T · log pi) , 1/2

)
-efficient MA protocol for IPpin .

Our protocol for IPn works as follows:
Merlin sends Alice all the advice strings from the protocols Πp1 ,Πp2 , . . . ,Πp10x , together
with a presumed inner product 0 ≤ z ≤ n.
Note that Πpi contains the presumed value of X · Y (mod pi), Alice first checks whether
z is consistent with all these Πpi ’s, and rejects immediately if it does not.
Alice and Bob jointly toss O(log(10x)) coins, to pick a uniform random number i? ∈ [10x],
and then they simulate Πpi? . That is, they pretend they are the Alice and Bob in the
protocol Πpi? with the advice from Merlin in Πpi? (which Alice does have).

Correctness. Let X,Y ∈ {0, 1}n be the vectors of Alice and Bob. If X · Y = z, then by the
definition of these protocols Πpi ’s, Alice always accepts with the correct advice from Merlin.

Otherwise, let d = X · Y 6= z, we are going to analyze the probability that we pick a
“good” pi? such that pi? does not divide |d− z|. Since pi > x for all pi’s and xx > n ≥ |d− z|,
|d− z| cannot be a multiplier of more than x primes in pi’s.

Therefore, with probability at least 0.9, our pick of pi? is good. And in this case, from
the definition of the protocols Πpi ’s, Alice and Bob would reject afterward with probability
at least 1/2, as d (mod pi?) differs from z (mod pi?). In summary, when X · Y 6= z, Alice
rejects with probability at least 0.9/2 = 0.45, which finishes the proof for the correctness.

Complexity. Now, note that the total advice length is

O

(
n/T ·

10x∑
i=1

log pi

)
= O

(
n/T · log

10x∏
i=1

x2

)
= O

(
n/T · log x20x) = O (n/T · logn) .

And the communication complexity between Alice and Bob is bounded by

O
(
T · log x2) = O (T · log logn) .

Setting T =
√
n logn/ log logn balances the above two quantities, and we obtain the

needed MA-protocol for DISJn. J

7 Future Works

We end our paper by discussing a few interesting research directions.
1. The most important open question from this paper is that can we further improve the

dimensionality reduction for OV? It is certainly weird to consider 2O(log∗ n) to be the right
answer for the limit of the dimensionality reduction. This term seems more like a product
of the nature of our recursive construction and not the problem itself. We conjecture that
there should be an ω(1) dimensional reduction with a more direct construction.
One possible direction is to combine the original polynomial-based construction from [72]
together with our new number theoretical one. These two approaches seem completely
different, hence a clever combination of them may solve our problem.

2. In order to prove ω(1) dimensional hardness for `2-Furthest Pair and Bichromatic `2-
Closest Pair, we can also bypass the OV dimensionality reduction things by proving
ω(1) dimensional hardness for Z-Max-IP directly. One possible way to approach this
question is to start from the NP ·UPP communication protocol connection as in Section 5

CCC 2018

14:34 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

(apply Theorem 1.22), and (potentially) draw some connections from some known UPP
communication protocols.

3. We have seen an efficient reduction from Z-OV to Z-Max-IP which only blows up the
dimension quadratically, is there a similar reduction from Z-Max-IP back to Z-OV? Are
Z-Max-IP and Z-OV equivalent?

4. By making use of the new AG-code based MA protocols, we can shave a Õ(
√

logn)
factor from the communication complexity, can we obtain an O(

√
n) MA communication

protocol matching the lower bound for DISJn? It seems new ideas are required.
Since our MA protocol works for both DISJ and IP, and IP does seems to be a harder
problem. It may be better to find an MA protocol only works for DISJ. It is worth noting
that an O(

√
n) AMA communication protocol for DISJ is given by [64], which doesn’t

work for IP.
5. Can the dependence on ε in the algorithms from Theorem 1.5 be further improved? Is it

possible to apply ideas in the n2−1/Ω̃(
√
c) algorithm for Max-IPn,c logn from [13]?

6. For the complexity of 2-multiplicative-approximation to Max-IPn,c logn, Theorem 1.5
implies that there is an algorithm running in n2−1/O(log c) time, the same as the best
algorithm for OVn,c logn [9]. Is this just a coincidence? Or are there some connections
between these two problems?

7. We obtain a connection between hardness of Z-Max-IP and NP · UPP communication
protocols for Set-Disjointness. Can we get similar connections from other NP · C type
communication protocols for Set-Disjointness? Some candidates include NP · SBP and
NP · promiseBQP (QCMA).

References

1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
TOCT, 1(1):2:1–2:54, 2009. doi:10.1145/1490270.1490272.

2 Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time
problems. In LIPIcs-Leibniz International Proceedings in Informatics, volume 67. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

3 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar
graph algorithms. In Proceedings of the IEEE 57th Annual Symposium on Foundations of
Computer Science, pages 477–486, 2016.

4 Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approxima-
tion algorithms for lcs imply new circuit lower bounds. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 94. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

5 Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP theorems for
hardness of approximation in P. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 25–36. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.12.

6 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. of the 55th FOCS, pages 434–443, 2014.

7 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. of the 41st ICALP, pages 39–51, 2014.

8 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 41–50. ACM, 2015.

http://dx.doi.org/10.1145/1490270.1490272
http://dx.doi.org/10.1109/FOCS.2017.12

L. Chen 14:35

9 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 218–230. Society for Industrial and Applied Math-
ematics, 2015.

10 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proceedings of the IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 434–443, 2014.

11 Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euc-
lidean minimum spanning trees and bichromatic closest pairs. Discrete & Computational
Geometry, 6(3):407–422, 1991.

12 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. On
the complexity of inner product similarity join. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 151–164. ACM, 2016.

13 Josh Alman, Timothy M Chan, and RyanWilliams. Polynomial representations of threshold
functions and algorithmic applications. In Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, pages 467–476. IEEE, 2016.

14 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In Proc. of the 56th FOCS, pages 136–150. IEEE, 2015.

15 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proc. of the 47th FOCS, pages 459–468. IEEE,
2006.

16 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In Advances in Neural Information Pro-
cessing Systems, pages 1225–1233, 2015.

17 Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proc. of the 25th SODA, pages 1018–1028. SIAM, 2014.

18 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proc. of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pages 793–801. ACM, 2015.

19 Tom M. Apostol. Introduction to analytic number theory. Springer Science & Business
Media, 2013.

20 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.
asp?isbn=9780521424264.

21 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquad-
ratic Time (unless SETH is false). In Proc. of the 47th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 51–58, 2015.

22 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Proc. of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 457–466, 2016.

23 Jon Louis Bentley and Michael Ian Shamos. Divide-and-conquer in multidimensional space.
In Proceedings of the eighth annual ACM symposium on Theory of computing, pages 220–
230. ACM, 1976.

24 Karl Bringman and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1216–1235. SIAM, 2018.

25 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. of the 55th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 661–670, 2014.

CCC 2018

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264

14:36 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

26 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. arXiv preprint arXiv:1611.00918, 2016.

27 Harry Buhrman, Richard Cleve, Ronald De Wolf, and Christof Zalka. Bounds for small-
error and zero-error quantum algorithms. In Foundations of Computer Science, 1999. 40th
Annual Symposium on, pages 358–368. IEEE, 1999.

28 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication
and computation. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 63–68. ACM, 1998.

29 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiab-
ility of small depth circuits. In IWPEC, volume 5917, pages 75–85. Springer, 2009.

30 Timothy M Chan. A (slightly) faster algorithm for klee’s measure problem. In Proceedings
of the twenty-fourth annual symposium on Computational geometry, pages 94–100. ACM,
2008.

31 Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering. In Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 31–46. SIAM, 2017.

32 Tobias Christiani and Rasmus Pagh. Set similarity search beyond minhash. arXiv preprint
arXiv:1612.07710, 2016.

33 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on Com-
puting, 11(3):467–471, 1982.

34 Svyatoslav Covanov and Emmanuel Thomé. Fast integer multiplication using generalized
fermat primes. arXiv preprint arXiv:1502.02800, 2015.

35 Roee David, CS Karthik, and Bundit Laekhanukit. On the complexity of closest pair via
polar-pair of point-sets. CoRR, abs/1608.03245, 2016.

36 Ronald de Wolf. A note on quantum algorithms and the minimal degree of epsilon-error
polynomials for symmetric functions. arXiv preprint arXiv:0802.1816, 2008.

37 Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algorithms, 25(1):19–51,
1997.

38 Martin Fürer. Faster integer multiplication. SIAM Journal on Computing, 39(3):979–1005,
2009.

39 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.

40 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams. Complete-
ness for first-order properties on sparse structures with algorithmic applications. In Proc. of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2162–2181,
2017.

41 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower
bounds for space/time tradeoffs. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger
Sack, editors, Algorithms and Data Structures, pages 421–436, Cham, 2017. Springer Inter-
national Publishing.

42 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM,
1996.

43 David Harvey, Joris Van Der Hoeven, and Grégoire Lecerf. Even faster integer multiplica-
tion. Journal of Complexity, 36:1–30, 2016.

44 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-

L. Chen 14:37

vector multiplication conjecture. In Proceedings of the 47th Annual ACM Symposium on
Theory of Computing, pages 21–30, 2015.

45 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional hardness for sensitivity problems. arXiv preprint arXiv:1703.01638, 2017.

46 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

47 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proc. of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613. ACM, 1998.

48 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

49 Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for
finding outlier correlations. In Proc. of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1288–1305. Society for Industrial and Applied Mathematics,
2016.

50 C.S. Karthik, Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complex-
ity of approximating dominating set. arXiv preprint arXiv:1711.11029, 2017.

51 Samir Khuller and Yossi Matias. A simple randomized sieve algorithm for the closest-pair
problem. Information and Computation, 118(1):34–37, 1995.

52 Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity.
In Computational Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, pages
118–134. IEEE, 2003.

53 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1272–1287, 2016.

54 Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow.
arXiv preprint arXiv:1702.05805, 2017.

55 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

56 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computa-
tional Geometry, 10(2):157–182, 1993.

57 Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner
product search. In Proc. of the 32nd International Conference on Machine Learning, ICML,
pages 1926–1934, 2015.

58 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachu-
setts, USA, 5-8 June 2010, pages 603–610, 2010.

59 Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms. In Proc. of
the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 1065–1075.
SIAM, 2010.

60 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal
of Computer and System Sciences, 33(1):106–123, 1986.

61 Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In
NIPS, volume 3, page 5, 2007.

62 Parikshit Ram and Alexander G Gray. Maximum inner-product search using cone trees.
In Proc. of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 931–939. ACM, 2012.

63 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the dia-
meter and radius of sparse graphs. In Proc. of the 45th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 515–524, 2013.

CCC 2018

http://dx.doi.org/10.1006/jcss.2000.1727

14:38 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

64 Aviad Rubinstein. Hardness of approximate nearest neighbor search. In STOC, page To
appear, 2018.

65 Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014.

66 Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing binary inner
products and set containment. In Proc. of the 24th International Conference on World Wide
Web, pages 981–991. ACM, 2015.

67 Christina Teflioudi and Rainer Gemulla. Exact and approximate maximum inner product
search with lemp. ACM Transactions on Database Systems (TODS), 42(1):5, 2016.

68 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. Journal of the ACM (JACM), 62(2):13, 2015.

69 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In To appear in the proceedings of the ICM, 2018.

70 R. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theoretical Computer Science, 348(2–3):357–365, 2005.

71 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 664–673. ACM, 2014.

72 Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-
linear vs barely-subquadratic complexity. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 1207–1215. SIAM, 2018. doi:10.1137/1.
9781611975031.78.

73 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1867–1877. SIAM, 2014.

74 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

A A Dimensionality Reduction for Max-IP

In fact, tracing the proof of Theorem 4.1, we observe that it is possible to compute the inner
product x · y itself from ψb,`(x) · ψb,`(y), that is:

I Corollary A.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` :
{0, 1}b·` → Z` and b · `+ 1 sets V 0

b,`, V
1
b,`, . . . , V

b·`
b,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = k ⇔ ψb,`(x) · ψb,`(y) ∈ V kb,` for all 0 ≤ k ≤ b · `,

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the sets V kb,`’s can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

Together with Theorem 4.3, it proves Corollary 4.4 (restated below).

Reminder of Corollary 4.4 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log∗ d·(d/`)) · poly(d)

)
-time

http://dx.doi.org/10.1137/1.9781611975031.78
http://dx.doi.org/10.1137/1.9781611975031.78

L. Chen 14:39

reduction from Max-IPn,d to d · `O(6log∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of
entries with bit-length O

(
d/` · log ` · 6log∗ d

)
.

Proof Sketch. Let b = d/` (assume ` divides d here for simplicity), A and B be the sets in
the given Max-IPn,d instance, we proceed similarly as the case for OV.

We first enumerate a number k from 0 to d, for each k we construct the set V kb,` as
specified in Corollary A.1. Then there is (x, y) ∈ A × B such that x · y = k if and only if
there is (x, y) ∈ A×B such that ψb,`(x) ·ψb,`(y) ∈ V kb,`. Using exactly the same reduction as
in Lemma 1.17, we can in turn reduce this into `O(6log∗(b)·b) instances of Z-OVn,`+1.

Applying Theorem 4.3, with evaluation of (d+ 1) · `O(6log∗(b)·b) Z-Max-IPn,(`+1)2 instances,
we can determine whether there is (x, y) ∈ A×B such that x · y = k for every k, from which
we can compute the answer to the Max-IPn,d instance. J

B Nonuniform to Uniform Transformation for Dimensionality
Reduction for OV

In this section we discuss the transformation from nonuniform construction to uniform one for
dimensionality reduction for OV. In order to state our result formally, we need to introduce
some definitions.

I Definition B.1 (Nonuniform Reduction). Let b, `, κ ∈ N. We say a function ϕ : {0, 1}b·` →
Z` together with a set V ⊆ Z is a (b, `, κ)-reduction, if the following holds:

For every x, y ∈ {0, 1}b·`,

x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

For every x and i ∈ [`],

0 ≤ ϕ(x)i < `κ·b.

Similarly, let τ be an increasing function, we say a function family {ϕb,`}b,` together
with a set family {Vb,`}b,` is a τ -reduction family, if for every b and `, (ϕb,`, Vb,`) is a
(b, `, τ(b))-reduction.

Moreover, if for all b and all ` ≤ log log log b, there is an algorithm A which com-
putes ϕb,`(x) in poly(b) time given b, ` and x ∈ {0, 1}b·`, and constructs the set Vb,` in
O
(
`O(τ(b)·b) · poly(b)

)
time given b and `, then we call (ϕb,`, Vb,`) a uniform-τ -reduction

family.

I Remark B.2. The reason we assume ` to be small is that in our applications we only care
about very small `, and that greatly simplifies the notation. From Theorem 4.1, there is
a uniform-

(
6log∗ b

)
-reduction family, and a better uniform-reduction family implies better

hardness for Z-OV and other related problems as well (Lemma 1.17, Theorem 4.3, Lemma 4.6
and Lemma 4.5).

Now we are ready to state our nonuniform to uniform transformation result formally.

I Theorem B.3. Letting τ be an increasing function such that τ(n) = O(log log logn) and
supposing there is a τ -reduction family, then there is a uniform-O(τ)-reduction family.

CCC 2018

14:40 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

Proof Sketch. The construction in Theorem 4.1 is recursive, it constructs the reduction ψb,`
from a much smaller reduction ψbmicro,`, where bmicro ≤ log b. In the original construction, it
takes log∗ b recursions to make the problem sufficiently small so that a direct construction
can be used. Here we only apply the reduction thrice. First let us abstract the following
lemma from the proof of Theorem 4.1.

I Lemma B.4 (Implicit in Theorem 4.1). Letting b, `, bmicro, κ ∈ N and supposing `κ·bmicro = b

and there is a (bmicro, `, κ)-reduction (ϕ, V ′), the following holds:

There is a (b, `, 6 · κ)-reduction (ψ, V).
Given (ϕ, V ′), for all x ∈ {0, 1}b·`, ψ(x) can be computed in poly(b · `), and V can be
constructed in O

(
`O(κ·b) · poly(b · `)

)
time.

Now, let b, ` ∈ N, we are going to construct our reduction as follows.
Let b1 be the number such that

`τ(b)·62·b1 = b,

and similarly we set b2 and b3 so that

`τ(b)·6·b2 = b1 and `τ(b)·b3 = b2.

We can calculate from above that b3 ≤ log log log b.
From the assumption that there is a τ -reduction, there is a (b3, `, τ(b3))-reduction

(ϕb3,`, Vb3,`), which is also a (b3, `, τ(b))-reduction, as τ is increasing. Note that we can
assume ` ≤ log log log b and τ(b) ≤ log log log b from assumption. Now we simply use a brute
force algorithm to find (ϕb3,`, Vb3,`). There are

`τ(b)·b3·`·2b3·` = bo(1)

possible functions from {0, 1}b3·` → {0, . . . `τ(b3)·b3 − 1}`. Given such a function ϕ, one can
check in poly(2b3·`) = bo(1) time that whether one can construct a corresponding set V to
obtain our (b3, `, τ(b))-reduction.

Applying Lemma B.4 thrice, one obtain a (b, `, O(τ(b)))-reduction (ψ, V). And since
ϕb3,` can be found in bo(1) time, together with Lemma B.4, we obtain a uniform-τ -reduction
family. J

Finally, we give a direct corollary of Theorem B.3 that the existence of an O(1)-reduction
family implies hardness of Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair
in ω(1) dimensions.

I Corollary B.5. If there is an O(1)-reduction family, then for every ε > 0, there exists
a c ≥ 1 such that Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair in c
dimensions with O(logn)-bit entries require n2−ε time.

Proof Sketch. Note that since its hardness implies the harnesses of other three, we only
need to consider Z-OV here.

From Theorem B.3 and the assumption, there exists a uniform-O(1)-reduction. Proceeding
similar as in Lemma 1.17 with the uniform-O(1)-reduction, we obtain a better dimensionality
self reduction from OV to Z-OV. Then exactly the same argument as in Theorem 1.18 with
different parameters gives us the lower bound required. J

L. Chen 14:41

C Hardness of Approximate {-1,1}-Max-IP via Approximate
Polynomial for OR

We first show that making use of the O(
√
n)-degree approximate polynomial for OR [27, 36],

OV can be reduced to approximating {−1, 1}-Max-IP.

I Theorem C.1. Letting ε ∈ (0, 1), there is an algorithm reducing an OVn,d instance with
sets A,B to a {−1, 1}-Max-IPn,d1 instance with sets Ã and B̃, such that:

d1 =
(

d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1, in which the notation

(
n

≤ m

)
denotes

m∑
i=0

(
n

i

)
.

There is an integer T > ε−1 such that if there is an (a, b) ∈ A × B such that a · b = 0,
then OPT(Ã, B̃) ≥ T .
Otherwise, |OPT(Ã, B̃)| ≤ T · ε.
Moreover, the reduction takes n · poly(d1) time.

We remark here that the above reduction fails to achieve a characterization: setting
ε = 1/2 and d = c logn for an arbitrary constant c, we have d1 = 2Õ(

√
logn), much larger

than logn. Another interesting difference between the above theorem and Lemma 3.3 (the
reduction from OV to approximating Max-IP) is that Lemma 3.3 reduces one OV instance
to many Max-IP instances, while the above reduction only reduces it to one {−1, 1}-Max-IP
instance.

Proof of Theorem C.1.
Construction and Analysis of Polynomial Pε(z). By [27, 36], there is a polynomial

Pε : {0, 1}d → R such that:
Pε is of degree D = O

(√
d log 1/ε

)
.

For every z ∈ {0, 1}d, Pε(z) ∈ [0, 1].
Given z ∈ {0, 1}d, if OR(z) = 0, then Pε(z) ≥ 1− ε, otherwise Pε(z) ≤ ε.
Pε can be constructed in time polynomial in its description size.

Now, let us analyze Pε further. For a set S ⊆ [d], let χS : {0, 1}d → R be χS(z) :=∏
i∈S

(−1)zi . Then we can write Pε as:

Pε :=
∑

S⊆[d],|S|≤D

χS · 〈χS , Pε〉,

where 〈χS , Pε〉 is the inner product of χS and Pε, defined as 〈χS , Pε〉 := Ex∈{0,1}dχS(x)·Pε(x).
Let cS = 〈χS , Pε〉, from the definition it is easy to see that cS ∈ [−1, 1].

Discretization of Polynomial Pε. Note that Pε(z) has real coefficients, we need to turn
it into another polynomial with integer coefficients first.

Let M :=
(

d

≤ D

)
, consider the following polynomial P̂ε:

P̂ε :=
∑

S⊆[d],|S|≤D

bcS · 2M/εc · χS .

CCC 2018

14:42 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

We can see that |P̂ε(z)/(2M/ε) − Pε(z)| ≤ ε for every z ∈ {0, 1}d, and we let ĉS :=
bcS ·M · 2/εc for convenience.

Simplification of Polynomial P̂ε. P̂ε(z) is expressed over the basis χS ’s, we need to turn
it into a polynomial over standard basis.

For each S ⊆ [d], consider χS , it can also be written as:

χS(z) =
∏
i∈S

(−1)zi :=
∏
i∈S

(1− 2zi) =
∑
T⊆S

(−2)|T |zT ,

where zT :=
∏
i∈T

zi. Plugging it into the expression of P̂ε, we have

P̂ε(z) :=
∑

T⊆[d],|T |≤D

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |zT .

Set

c̃T :=

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |,

the above simplifies to

P̂ε(z) :=
∑

T⊆[d],|T |≤D

c̃T · zT .

Properties of Polynomial P̂ε. Let us summarize some properties of P̂ε for now. First we
need a bound on |c̃T |, we can see |ĉS | ≤M · 2/ε, and by a simple calculation we have

|c̃T | ≤M2 · 2D · 2/ε.

Let B = M2 · 2D · 2/ε for convenience. For x, y ∈ {0, 1}d, consider P̂ε(x, y) :=
P̂ε(x1y1, x2y2, . . . , xdyd) (that is, plugging in zi = xiyi), we have

P̂ε(x, y) :=
∑

T⊆[d],|T |≤D

c̃T · xT · yT ,

where xT :=
∏
i∈T

xi and yT is defined similarly. Moreover, we have

If x · y = 0, then P̂ε(x, y) ≥ (2M/ε) · (1− 2ε).
If x · y 6= 0, then |P̂ε(x, y)| ≤ (2M/ε) · 2ε.

The Reduction. Now, let us construct the reduction, we begin with some notations. For
two vectors a, b, we use a ◦ b to denote their concatenation. For a vector a and a real x,
we use a · x to denote the vector resulting from multiplying each coordinate of a by x. Let
sgn(x) be the sign function that outputs 1 when x > 0, −1 when x < 0, and 0 when x = 0.
For x ∈ {−B,−B + 1, . . . , B}, we use ex ∈ {−1, 0, 1}B to denote the vector whose first |x|
elements are sgn(x) and the rest are zeros. We also use 1 to denote the all-1 vector with
length B.

Let T1, T2, . . . , TM be an enumeration of all subsets T ⊆ [d] such that |T | ≤ D, we define

ϕx(x) := ◦Mi=1(ec̃Ti · xTi) and ϕy(y) := ◦Mi=1(1 · yTi).

L. Chen 14:43

And we have

ϕx(x) · ϕy(y) =
M∑
i=1

(ec̃Ti · 1) · (xTi · yTi) =
M∑
i=1

c̃Ti · xTi · yTi = P̂ε(x, y).

To move from {−1, 0, 1} to {−1, 1}, we use the following carefully designed reductions
ψx, ψy : {−1, 0, 1} → {−1, 1}2, such that

ψx(−1) = ψy(−1) = (−1,−1), ψx(0) = (−1, 1),

ψy(0) := (1,−1), and ψx(1) = ψy(1) = (1, 1).

It is easy to check that for x, y ∈ {−1, 0, 1}, we have ψx(x) · ψy(y) = 2 · (x · y).
Hence, composing the above two reductions, we get our desired reductions φx = ψ⊗(B·M)

x ◦
ϕx and φy = ψ⊗(B·M)

y ◦ ϕy such that for x, y ∈ {0, 1}d, φx(x), φy(y) ∈ {−1, 1}2B·M and
φx(x) · φy(y) = 2 · P̂ε(x, y).

Finally, given an OVn,d instance with two sets A and B, we construct two sets Ã and B̃,
such that Ã consists of all φx(x)’s for x ∈ A, and B̃ consists of all φy(y)’s for y ∈ B.

Then we can see Ã and B̃ consist of n vectors from {−1, 1}d1 , where

d1 = 2B ·M = M3 · 2D · 2/ε =
(

d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1

as stated.
It is not hard to see the above reduction takes n · poly(d1) time. Moreover, if there

is a (x, y) ∈ A × B such that x · y = 0, then OPT(Ã, B̃) ≥ (4M/ε) · (1 − 2ε), otherwise,
OPT(Ã, B̃) ≤ (4M/ε) · 2ε. Setting ε above to be 1/3 times the ε in the statement finishes
the proof. J

With Theorem C.1, we are ready to prove our hardness results on {−1, 1}-Max-IP.

I Theorem C.2. Assume SETH (or OVC). Letting α : N→ R be any function of n such that
α(n) = no(1), there is another function β satisfying β(n) = no(1) and an integer T > α (β
and T depend on α), such that there is no n2−Ω(1)-time algorithm for {−1, 1}-Max-IPn,β(n)
distinguishing the following two cases:

OPT(A,B) ≥ T (A and B are the sets in the {−1, 1}-Max-IP instance).
|OPT(A,B)| ≤ T/α(n).

Proof. Letting α = no(1) and k = logα/ logn, we have k = o(1). Setting d = c logn where c
is an arbitrary constant and ε = α−1 in Theorem C.1, we have that an OVc logn reduces to a
certain α(n)-approximation to a {−1, 1}-Max-IPn,d1 instance with sets A and B, where

d1 =
(

c logn
≤ O(

√
ck logn)

)3
·2O(

√
ck logn) ≤

(√
c√
k

)O(
√
ck logn)

·2O(
√
ck logn) = nO(log(c/k)·

√
ck).

Now set β = nk
1/3

and T be the integer specified by Theorem C.1, since k = o(1), β =
no(1). Suppose otherwise there is an n2−Ω(1)-time algorithm for distinguishing whether
OPT(A,B) ≥ T or |OPT(A,B)| ≤ T/α(n). Then for any constant c, O(log(c/k)

√
ck) ≤ k1/3

for sufficiently large n, which means d1 ≤ β(n) for a sufficiently large n, and there is an
n2−Ω(1)-time algorithm for OVc logn by Theorem C.1, contradiction to OVC. J

CCC 2018

14:44 On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product

D A Proof of Lemma 3.3

Finally, we present a proof of Lemma 3.3, which is implicit in [64].
We need the following efficient MA protocol for Set-Disjointness from [64], which is also

used in [50].15

I Lemma D.1 (Theorem 3.2 of [64]). For every α and m, there is an
(m/α, log2m,poly(α), 1/2)-efficient MA protocol for DISJm.

We want to reduce the error probability while keeping the number of total random coins
relatively low. To achieves this, we can use an expander graph (Theorem 2.7) to prove the
following theorem.

I Lemma D.2. For every α, m and ε < 1/2, there is an (m/α, log2m+O(log ε−1),poly(α) ·
log ε−1, ε)-efficient MA protocol for DISJm.

Proof. Let c1 and F : {0, 1}logm+c1·log ε−1
→ [m]c1·log ε−1

be the corresponding constant and
function as in Theorem 2.7, and let Π denote the (m/α, log2m, poly(α), 1/2)-efficient MA
protocol for DISJm in Lemma D.1. Set q = c1 · log ε−1 and our new protocol Πnew works as
follows:

Merlin still sends the same advice to Alice as in Π.
Alice and Bob jointly toss r = logm+ q coins to get a string w ∈ {0, 1}r. Then we let
w1, w2, . . . , wq be the sequence corresponding to F(w), each of them can be interpreted
as logm bits.
Bob sends Alice q messages, the i-th message mi corresponds to Bob’s message in Π when
the random bits is wi.
After that, Alice decides whether to accept or not as follows:

If for every i ∈ [q], Alice would accept Bob’s message mi with random bits wi in Π,
then Alice accepts.
Otherwise, Alice rejects.

It is easy to verify that the advice length, message length and number of random coins
satisfy our requirements.

For the error probability, note that when these two sets are disjoint, the same advice in
Π leads to acceptance of Alice. Otherwise, suppose the advice from Merlin is either wrong
or these two sets are intersecting, then half of the random bits in {0, 1}logm leads to the
rejection of Alice in Π. Hence, from Theorem 2.7, with probability at least 1− ε, at least one
of the random bits wi’s would lead to the rejection of Alice, which completes the proof. J

Finally, we prove Lemma 3.3 (restated below).

Reminder of Lemma 3.3 There is a universal constant c1 such that, for every integer c,
reals ε ∈ (0, 1] and τ ≥ 2, OVn,c logn can be reduced to nε Max-IPn,d instances (Ai, Bi) for
i ∈ [nε], such that:

d = τpoly(c/ε) · logn.
Letting T = c logn · τ c1 , if there is a ∈ A and b ∈ B such that a · b = 0, then there exists
an i such that OPT(Ai, Bi) ≥ T .
Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

15The protocol in [50] also works for the k-party number-in-hand model.

L. Chen 14:45

Proof. The reduction follows exactly the same as in [5], we recap here for completeness.
Set α = c/ε,m = c·logn and ε = 1/τ , and let Π be the (m/α, log2m+O(log ε−1),poly(α)·

log ε−1, ε)-efficient MA protocol for Set-Disjointness as in Lemma D.2.
Now, we first enumerate all of 2m/α = 2ε·logn = nε possible advice strings, and create an

Max-IP instance for each of the advice strings.
For a fix advice ψ ∈ {0, 1}ε·logn, we create an Max-IP instance with sets Aψ and Bψ as

follows. We use a ◦ b to denote the concatenation of the strings a and b.
Let r = log2m + c1 · log ε−1, where c1 is the constant hidden in the big O notation in

Lemma D.2, and ` = poly(α) · log ε−1. Let m1,m2, . . . ,m2` be an enumeration of all strings
in {0, 1}`.

For each a ∈ A, and for each string w ∈ {0, 1}r, we create a vector aw ∈ {0, 1}2
`

, such
that awi indicates that given advice ψ and randomness w, whether Alice accepts message
mi or not (1 for acceptance, 0 for rejection). Let the concatenation of all these aw’s be
aψ. Then Aψ is the set of all these aψ’s for a ∈ A.
For each b ∈ B, and for each string w ∈ {0, 1}r, we create a vector bw ∈ {0, 1}2

`

, such
that bwi = 1 if Bob sends the message mi given advice ψ and randomness w, and = 0
otherwise. Let the concatenation of all these bw’s be bψ. Then Bψ is the set of all these
bψ’s for b ∈ B.

We can see that for a ∈ A and b ∈ B, aψ · bψ is precisely the number of random coins
leading Alice to accept the message from Bob given advice ψ when Alice and Bob holds
a and b correspondingly. Therefore, let T = 2r = c logn · τ c1 , from the properties of the
protocol Π, we can see that:

If there is a ∈ A and b ∈ B such that a · b = 0, then there is ψ ∈ {0, 1}ε·logn such that
aψ · bψ ≥ T .
Otherwise, for all a ∈ A, b ∈ B and advice ψ{0, 1}ε·logn, aψ · bψ ≤ T/τ .

And this completes the proof. J

CCC 2018

	Introduction
	Our Results
	Intuition for Dimensionality Self Reduction for OV
	Related Works

	Preliminaries
	Fast Rectangular Matrix Multiplication
	Number Theory
	Communication Complexity
	Derandomization

	Hardness of Approximate Max-IP
	The Multiplicative Case
	The Additive Case
	Adaption for All-Pair-Max-IP
	Improved Hardness for LCS-Closest Pair Problem

	Hardness of Exact Z-Max-IP, Hopcroft's Problem and More
	Improved Dimensionality Reduction for OV
	Improved Hardness for Hopcroft's Problem
	Hardness for Z-Max-IP
	Hardness for ell_2-Furthest Pair and Bichromatic ell_2-Closest Pair

	NP cdot UPP communication protocol and Exact Hardness for Z-Max-IP
	NP cdot UPP Communication Protocol for Set-Disjointness
	Slightly Better Protocols Imply Hardness in omega(1) Dimensions

	Improved MA Protocols
	Future Works
	A Dimensionality Reduction for Max-IP
	Nonuniform to Uniform Transformation for Dimensionality Reduction for OV
	Hardness of Approximate {-1,1}-Max-IP via Approximate Polynomial for OR
	A Proof of Lemma 3.3

