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Abstract
In this work, we study time/space trade-offs for function composition. We prove asymptotic-
ally optimal lower bounds for function composition in the setting of nondeterministic read once
branching programs, for the syntactic model as well as the stronger semantic model of read-once
nondeterministic computation. We prove that such branching programs for solving the tree eval-
uation problem over an alphabet of size k requires size roughly kΩ(h), i.e space Ω(h log k). Our
lower bound nearly matches the natural upper bound which follows the best strategy for black-
white pebbling the underlying tree. While previous super-polynomial lower bounds have been
proven for read-once nondeterministic branching programs (for both the syntactic as well as the
semantic models), we give the first lower bounds for iterated function composition, and in these
models our lower bounds are near optimal.
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1 Introduction

One of the most promising approaches to proving major separations in complexity theory
is to understand the complexity of function composition. Given two Boolean functions,
f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}, their composition is the function f ◦ g :
{0, 1}mn → {0, 1} defined by

(f ◦ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)).
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15:2 Hardness of Function Composition for Semantic Read once Branching Programs

The complexity of function composition is one of the most tantalizing and basic problems
in complexity theory, and has been studied in a variety of models. There are very few
setting where function composition can be computed with substantially less resources than
first computing each instance of g, followed by computing f on the outputs of the g’s.
Indeed, lower bounds for function composition are known to resolve several longstanding
open problems in complexity theory.

The most famous conjecture about function composition in complexity theory is the
Karchmer-Raz-Wigderson (KRW) conjecture [25], asserting that the minimum Boolean
circuit depth for computing f ◦ g for nontrivial functions f and g is the minimum depth of
computing f plus the minimum depth of computing g. Karchmer, Raz and Wigderson show
that repeated applications of this conjecture implies super-logarithmic lower bounds on the
depth complexity of an explicit function, thus resolving a major open problem in complexity
theory (separating P from NC1). In particular, The tree evaluation problem defines iterated
function composition with parameters d and h as follows. The input is an ordered d-ary
tree of depth h+ 1. Each of the dh leaf nodes of the tree is labelled with an input bit, and
each non-leaf node of the tree is labelled by a 2d Boolean vector, which is the truth table of
a Boolean function from {0, 1}d → {0, 1}. This induces a 0/1 value for each intermediate
node in the tree in the natural way: for a node v with corresponding function fv, we label v
with fv applied to bits that label the children of v. The output is the value of the root node.
The basic idea is to apply h = O(logn/ log logn) compositions of a random d = logn-ary
function f : {0, 1}logn → {0, 1} to obtain a new function over O(n2) bits that is computable
in polynomial time but that requires depth Ω(log2 n) (ignoring lower order terms).

In communication complexity, lower bounds for function composition have been suc-
cessful for solving several open problems. For example, lifting theorems in communication
complexity reduce lower bounds in communication complexity to query complexity lower
bounds, via function composition. Raz and McKenzie [33] proved a general lifting theorem
for deterministic communication complexity, which implies a separation of NCi from P

for all i > 1. Subsequent lifting theorems (proving hardness of function composition for
other communication models) have resolved open problems in game theory, proof complexity,
extension complexity, and communication complexity [20, 8, 26, 28, 12].

The complexity of function composition for space-bounded computation has also been
studied since the 1960’s. The classical result of Nečiporuk [31] proves Ω(n2/ log2 n) size
lower bounds for deterministic branching programs for function composition1. Subsequently,
Pudlak observed that Nečiporuk’s method can be extended to prove Ω(n3/2/ logn) size lower
bounds for nondeterministic branching programs. These classical results are still the best
unrestricted branching program size lower bounds known, and it is a longstanding open
problem to break this barrier. Furthermore, its known that Nečiporuk method cannot fetch
lower bounds better than those mentioned above for both deterministic and non-deterministic
branching programs[23, 4].

In this work, we study time/space tradeoffs for function composition. We prove asymptot-
ically optimal lower bounds for function composition in the setting of nondeterministic read
once branching programs, for the syntactic model as well as the stronger semantic model of
read-once nondeterministic computation. We prove that such branching programs for solving

1 While Nečiporuk’s result is not usually stated this way, it can be seen as a lower bound for function
composition. We present this alternative proof in section B in the Appendix.
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the tree evaluation problem over an alphabet of size k requires size roughly kΩ(h), i.e space
Ω(h log k). Our lower bound nearly matches the natural upper bound which follows the best
strategy for black-white pebbling [10] the underlying tree. While previous super-polynomial
lower bounds have been proven for read-once nondeterministic branching programs (for both
the syntactic as well as the semantic models), we give the first lower bounds for iterated
function composition, and in these models our lower bounds are near optimal.

1.1 History and Related Work

1.1.1 Function Composition and Direct Sum Conjectures
Karchmer, Raz and Wigderson [25] resolved their conjecture in the context of monotone
circuit depth. In an attempt to prove the conjecture in the non-monotone case, they
proposed an intermediate conjecture, known as the universal relation composition conjecture.
This intermediate conjecture was proven by Edmonds et.al [15] using novel information-
theoretic techniques. More recently some important steps have been taken towards replacing
the universal relation by a function using information complexity[19] and communication
complexity techniques [14]. Dinur and Meir[14] prove a "composition theorem" for f ◦ g
where g is the parity function, and obtain an alternative proof of cubic formula size lower
bounds as a corollary. The cubic formula size lower bound was originally proven by Håstad
[34] and more recently by Tal [35].

1.1.2 Time-Space Tradeoffs
In the uniform setting, time-space tradeoffs for SAT were achieved in a series of papers
[16, 29, 17, 18]. Fortnow-Lipton-Viglas-Van Melkebeek [18] shows that any algorithm for SAT
running in space no(1) requires time at least Ω(nφ−ε) where φ is the golden ratio ((

√
5 + 1)/2)

and ε > 0. Subsequent works [36, 13] improved the time lower bound to greater than n1.759.
The state of the art time/space tradeoffs for branching programs were proven in the

remarkable papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a
polynomial-time computable Boolean function such that any sub-exponential size determin-
istic branching program requires superlinear length. This result was significantly improved
and extended by Beame-et-al who showed that any sub-exponential size randomized branching
program requires length Ω(n logn

log logn ).
Lower bounds for nondeterministic branching programs have been more difficult to obtain.

Length-restricted nondeterministic branching programs come in two flavors: syntactic and
semantic. A length l syntactic model requires that every path in the branching program
has length at most l, and similarly a read-c syntactic model requires that every path in the
branching program reads every variable at most c times. In the less restricted semantic
model, the read-c requirement is only for consistent accepting paths from the source to the
1-node; that is, accepting paths along which no two tests xi = d1 and xi = d2, d1 6= d2 are
made. Thus for a nondeterministic read-c semantic branching program, the overall length of
the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once
branching program, but the opposite direction does not hold. In fact, Jukna [22] proved
that semantic read-once branching programs are exponentially more powerful than syntactic
read-once branching programs, via the “Exact Perfect Matching"(EPM) problem. The input
is a (Boolean) matrix A, and A is accepted if and only if every row and column of A has
exactly one 1 and rest of the entries are 0’s i.e if it’s a permutation matrix. Jukna gave a

CCC 2018



15:4 Hardness of Function Composition for Semantic Read once Branching Programs

polynomial-size semantic read-once branching program for EPM, while it was known that
syntactic read-once branching programs require exponential size [27, 24].

Lower bounds for syntactic read-c (nondeterministic) branching programs have been
known for some time [32, 6]. However, for semantic nondeterministic branching programs,
even for read-once, no lower bounds are known for polynomial time computable functions
for the boolean, k = 2 case. Nevertheless exponential lower bounds for semantic read-c
(nondeterministic) k-way branching programs, where k ≥ 23c+10 were shown by Jukna[21].
More recently [11] obtain exponential size lower bounds for semantic read-once nondetermin-
istic branching programs for k = 3, leaving only the boolean case open. Liu [30] proved
near optimal size lower bounds for deterministic read once branching programs for function
composition.

The rest of the paper is organized as follows. In Section 2 we give the formal definitions,
present the natural upper bound and state our main result. In Section 3 we give the intuition
and proof outline. Sections 4,5 and 6 are devoted to individual parts of the proof.

2 Definitions and Statement of Results

I Definition 1. Let f : [k]n → {0, 1} be a boolean valued function whose input variables are
x1, . . . , xn where xi ∈ [k]. A k-way nondeterministic branching program for f is an
acyclic directed graph G with a distinguished source node qstart and sink node (the accept
node) qaccept. We refer to the nodes as states. Each non-sink state is labeled with some input
variable xi, and each edge directed out of a state is labelled with a value b ∈ [k] for xi. For
each input ~ξ ∈ [k]n, the branching program accepts ~ξ if and only if there exists at least one
path starting at qstart leading to the accepting state qaccept, and such that all labels along
this path are consistent with ~ξ. The size of a branching program is the number of states in
the graph. A nondeterministic branching program is semantic read-once if for every path
from qstart to qaccept that is consistent with some input, each variable occurs at most once
along the path.

Syntactic read-once branching programs are a more restricted model where no path can
read a variable more than once; in the semantic read-once case, variables may be read more
than once, but each accepting path may only query each variable once.
I Definition 2. The (ternary) height h tree evaluation problem Tree~F , has an underlying
3-ary tree of height h with n = 3h−1 leaves. Each leaf is labelled by a corresponding variable
in x1, . . . , xn. (Note that a tree with a single node has height 1.) Each internal node v is
labeled with a function F : [k]3 → [k], where ~F denotes the vector of these functions. The
input ~ξ ∈ [k]n gives a value in [k] to the leaf variables ~x. This induces a value for each
internal node in the natural way, and the output Tree~F (~ξ) is the labeling of the root. In the
boolean version, the input ~ξ is accepted if and only if Tree~F (~ξ) ∈ [k1−ε] where ε ∈ (0, 1) is a
parameter.

The most natural way to solve the tree evaluation problem is to evaluate the vertices
of the tree, via a strategy that mimics the optimal black-white pebbling of the underlying
tree. In the next section, we review this upper bound, and show that it corresponds to a
nondeterministic semantic read-once branching program of size Θ(kh+1). Our main result
gives a nearly matching lower bound (when k is sufficiently large compared to h).
I Theorem 3. For any h, and k sufficiently large (k > 242h) , there exists ε and ~F such
that any k-ary nondeterministic semantic read-once branching program for Tree~F requires

size Ω
(

k
log k

)h
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We prove the lower bound for the decision version of the tree evaluation problem, with
ε chosen to be 9h

log k . Secondly, we actually show(See appendix C) that the lower bound
holds for almost all ~F , whenever each F is independently chosen to be a random 4-invertible
function:

I Definition 4. A function F : [k]3 → [k] is 4-invertible if whenever the output value and
two of its inputs from {a, b, c} are known, then the third input can be determined up to a set
of four values. That is, for each pair of values (a, b) ∈ [k]2, the mapping F (a, b, ∗) : [k]→ [k]
is at most 4-to-1, and likewise for pairs (b, c) and (a, c).

We expect that the lower bound should still hold even if every function in ~F is fixed
to be a particular function with nice properties, although we are not able to prove this at
present. In particular, we conjecture that the lower bound still holds where for every v,
Fv(a, b, c) = a3 + b3 + c3 over the field [k]. On the other hand, if we take an associative
function such as Fv(a, b, c) = a3 · b3 · c3 again over the field [k], then there is a very small
branching program, since we can compute the root value by reading the elements one at a
time and remembering the product so far. One thing that makes proving the lower bound
difficult is not being able to properly isolate or take advantage of the differences between
these functions over a finite field. For the rest of the paper, we will refer to nondeterministic
semantic read-once branching programs as simply branching programs.

2.1 Black/White pebbling, A natural upper bound
In order to get some intuition, we first review the matching upper bound. As mentioned
earlier, the upper bound mimics the optimal black/white pebbling strategy for a tree [9]. A
black pebble placement on a node v corresponds to remembering the value in [k] labelling
that node, and a white pebble on v corresponds to nondeterministically guessing v’s value
(which must later be verified.) The goal is to start with no pebbles on the tree, and end up
with one black pebble on the root (and no other pebbles). The legal moves in a black/white
pebbling game are:
1. A black pebble can be placed at any leaf.
2. If all children of node v are pebbled (black or white), place a black pebble at v and

remove any black pebbles at the children. (When all children are pebbled, a black pebble
on a child of v can be slid to v.)

3. Remove a black pebble at any time.
4. A white pebble can be placed at any node at any time.
5. A white pebble can be removed from v if v is a leaf or if all of v’s children are pebbled.

(When all children but one are pebbled, the white pebble on v can be slid to the unpebbled
child.)

I Lemma 5. Black pebbling the root of a d-ary tree of height h can be done with (d−1)(h−1)+1
pebbles. With both black and white pebbles, only d 1

2 (d− 1)h+ 1e pebbles are needed.

Proof. We will assume that d is odd; the case of d even is similar. With only black pebbles,
recursively pebble d− 1 of the d children of the root. Then use d− 1 pebbles to remember
these values as you use (d− 1)(h− 2) + 1 more pebbles to pebble its dth child for a total of
(d− 1) + (d− 1)(h− 2) + 1 = (d− 1)(h− 1) + 1 pebbles. Then pebble the root.

Now suppose white pebbles are also allowed (see Figure 1). Recursively pebble 1
2 (d−1)+1

of the d children of the root. Then use 1
2 (d− 1) pebbles to remember these values as you use

d 1
2 (d− 1)(h− 1) + 1e more pebbles to pebble its next child for a total of 1

2 (d− 1) + 1
2 (d−

CCC 2018



15:6 Hardness of Function Composition for Semantic Read once Branching Programs

1

2 3 4 5 6

Figure 1 This figure describes a black/white pebbling for a d-ary tree T of height h at d=5. We
start by pebbling the height h-1 subtrees rooted at nodes 2,3 and 4. Then we proceed to the second
half of children and guess the value that subtrees at node 5 and 6 would evaluate to. Now we can
pebble the root node 1 and remove the black pebbles. The white pebble or guess at node 5 can now
be verified and then the same is done subsequently for node 6.

1)(h − 1) + 1 = 1
2 (d − 1)h + 1 pebbles. Then use white pebbles to pebble the remaining

1
2 (d−1) children of the root. Pebble the root and pick up the black pebbles from the children.
Replacing the first of these whites requires 1

2 (d− 1)(h− 1) + 1 in addition to the 1
2 (d− 1)

white ones, again for a total of 1
2 (d− 1)h+ 1. Note as a base case, when h = 2 and there is a

root with d children, d pebbles are needed, no matter what the color. J

I Lemma 6. A pebbling procedure with p black or white pebbles (and t time) translates to a
layered nondeterministic branching program with tkp states. If only black pebbles are used,
the branching program is deterministic.

Proof. On input ~ξ the branching program moves through a sequence of states β1, β2, .., βt
where the state βt′ corresponds to the pebbling configuration at time t′. Each layer of the
branching program will have kp states one for each possible assignment of values in [k] to
each of the pebbles. If a black pebble is placed on a leaf during the pebbling procedure, then
the branching program queries this leaf. If all of the children of node v are pebbled, then
the branching program knows their values v1, v2 and v3 and hence can compute the value
fv(v1, v2, v3) of the node. Remembering this new value corresponds to placing a black pebble
at v. Removing a black pebble corresponds to the branching program forgetting this computed
value. If a white pebble is placed at v, then the branching program nondeterministically
guesses the required value for this node. This white pebble cannot be removed until this
value has been verified to be fv(v1, v2, v3) using the values of its children that were either
computed (black pebble) or also guessed (white). J

Observe that when we transform the black/white pebbling algorithm in Lemma 5 using
the translation procedure presented in Lemma 6 we obtain a syntactic read once branching
program.

3 Proof Overview

The crux of the proof is a compression argument, showing that from a small branching
program, we can encode the information for a function label at a single special vertex of
the ternary input tree more efficiently than is information-theoretically possible, thereby



Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi 15:7

obtaining a contradiction. We accomplish this by looking at the inputs read before and
after any state q in the branching program on a particular accepting computation path,
and finding one particular state q that has an associated "nice" collection of inputs. As in
earlier papers, we prove that this nice collection of inputs forms an embedded rectangle. An
embedded rectangle (formally defined in Definition 8) is a subset of inputs, all of which are
accepted and all of which pass through a special state q in the branching program. These
inputs form a combintorial rectangle but where some of the input coordinates can be fixed.
However, unlike earlier results, our embedded rectangle is required to have a very specific
structure, in order to get a simple and short encoding of a function label. Below are more
details about this specific structure and how we obtain it.

For each accepting input, we consider its accepting computation path in the branching
program. This computation path, P , induces a permutation Π on the leaf variables of the
ternary tree, defined by the order in which the leaf variables to the ternary tree are queried
along the accepting computational path P . In Lemma 12 we prove that for each accepting
input, there is a special state q along the computation path querying a special leaf variable lq,
such that many of the other leaf variables are read before q and many are read after q along
this path. More specifically, let us visualize the ternary tree for this input, with the path
from the root to the special leaf variable lq going down the middle of the tree. 2 We show
that the subtrees hanging off the left of this path (which we call the "red" subtrees) each
contain many leaf variables that have been read before reaching state q, and the subtrees
hanging off the right of this path (the "white" subtrees) each contain many leaf variables
that are read after reaching state q.

Using Lemma 12, by averaging (over all accepting inputs, permutations and states), we
prove in Lemma 9 that there exists an embedded rectangle with the following properties: we
can find a single state q (which queries leaf variable lq), a single set of "red" leaf variables, and
a single set of "white" leaf variables such that for a large collection of accepting inputs, they
all pass through state q, and the set of red leaf variables are in one-to-one correspondence
with the left subtrees, and the white leaf variables are in one-to-one corresponds with the
right subtrees. (See Figure 2.)

From there, in Lemma 15, we further refine our embedded rectangle, by identifying
a special internal node v∗ in the ternary tree, such that we can encode the function Fv∗
associated with v∗ too succinctly. The reason we get compression is because the branching
program is read-once, so the only way to transmit the information about the values of
the red variables is via the state q we are passing through. Similarly the only way to
nondeterministically guess information about the values of the white variables is also via
the same state q. Since there are only s << kh states, focusing on one particularly popular
special node q amongst accepting inputs allows us to show that there is one node v∗ in the
ternary tree, that has a single red variable x (in the left subtree of v∗) and a single white
variable y (in the right subtree) that can each take on about r values.

If all of the internal functions ~F of the ternary tree are invertible, then these r distinct
values for the red variable x produce r distinct values as they propagate up the tree to v∗.
Similarly the r distinct values for the white variable y produce this many distinct values
as they propagate up the tree to v∗. Fixing the middle input to Fv∗ , this gives rise to r2

distinct inputs to Fv∗ : the left input to Fv∗ runs over r distinct values (corresponding to the
r values for x that propagate up the tree), and the right input runs over r distinct values

2 Note that the computation path P is a sequence of states in the branching program, whereas a path in
the ternary tree is defined on the input tree.

CCC 2018



15:8 Hardness of Function Composition for Semantic Read once Branching Programs

(corresponding to the r values for y that propagate up the tree). Since Tree~F is a decision
problem, each input is accepted if and only if the value of the root is in the restricted set
[k1−ε]. Again if the internal functions are invertible, the size of this set would be retained as
it propagates down the tree from the root to v∗. Thus the embedded rectangle enables us to
encode the function Fv∗ on these r2 inputs much more succinctly than should be possible
as follows. First, the label L will specify the r2 special inputs to Fv∗ . What is key about
an r-by-r square is that though its area consists of r2 values, the length of its two sides is
only r << r2. This allows us to specify L using only O(r log k) bits. Secondly, the r2 output
values of Fv∗ on these r2 special inputs can be communicated with only r2 log(k1−ε) bits
instead of the usual r2 log(k) bits (since as we argued above, the output is restricted to a
set of size k1−ε rather than to a set of size k.) The details of the compression argument are
given in Section 6.

Some complications arise when trying to carry out the above proof outline, making the
actual proof more intricate. First, the compression argument requires that each ~F has a lot
of accepting instances, so we need to show that most random ~F have this property. The
more serious complication is the fact that we cannot easily count over random invertible
functions, so instead we use functions that are almost invertible. More specifically ~F is a
vector of 4-invertible functions which means that for each F ∈ ~F , knowing two of the inputs
to F and the output value, there are at most four consistent values for the third input. We
use a novel argument that allows us to count over 4-invertible functions (Section 6). Our
compression argument sketched above is then adapted to handle the case of 4-invertible
functions with a small quantitative loss. Namely when going down the path P to determine
the constraints on the output of Fi∗ on an input (ai, bj , ci,j) ∈ R, the number of allowable
values for Fi∗(ai, bj , ci,j) will be k1−ε at the root vertex, and by 4-invertibility, we will gain
a factor of four for each subsequent function along the path. Since the path height is very
small relative to r this will still give us adequate compression.

4 Most ~F have a lot of accepting instances

Let Syes = {~ξ | Tree~F (~ξ) ∈ [k1−ε]}. That is, Syes is the set of accepting inputs to Tree~F .
Let Bad(~F ) be the event that the size of Syes is significantly smaller than expected – in
particular |SY es| ≤ 1

6kε · k
n. Let F be the uniform distribution over 4-invertible functions,

and let ~F be the uniform distribution over vectors of 4-invertible functions (one for each
non-leaf vertex in the tree). Lemma 7 proves that Pr~F [Bad(~F )] is exponentially small, where
~F is sampled from ~F .

I Lemma 7. For k > 242h and ε = 9h
log k , Pr~F [Bad(~F )] ≤ 1

10 .

See section A in the Appendix for the proof. The above probability is in fact much
smaller but the above bound suffices for our purpose.

5 Finding an Embedded Rectangle

This section proves that the accepted instances of Tree~F solvable by a small branching
program contain a large embedded rectangle whenever Bad(~F ) does not occur.

Parameters. The number of variables is n = 3h−1 and each variable is from [k]. In what

follows we will fix r = 26h

ε and ε = 9h
log k . The lower bound will hold for s ≤

(
k

n26 log k

)h
. For

k sufficiently large (k > 242h), the lower bound is Ω(k/ log k)h.
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I Definition 8. For π ⊂ {1, . . . , n}, let xπ denote the set of variables {xi | i ∈ π}. An
embedded rectangle [2, 21] is defined by a 5-tuple (πred, πwhite, A,B, ~w), where:
(i) πred, πwhite are disjoint subsets of {1, . . . , n},
(ii) A ⊆ [k]|πred| is a set of assignments to xπred and B ⊆ [k]|πwhite| is a set of assignments

to xπwhite ;
(iii) ~w ∈ [k]n−|πred|−|πwhite| is a fixed assignment to the remaining variables.
The assignments defined by the rectangle are all assignments (~α, ~β, ~w) where xπred = ~α,
xπwhite = ~β and the rest of the variables are assigned ~w, where ~α ∈ A and ~β ∈ B.

5.1 Finding a rectangle over the leaves
In this section, we prove the following lemma, that shows the existence of a large embedded
rectangle of accepting instances if the branching program solving Tree~F is small.

I Lemma 9. Let B be a size s nondeterministic, semantic read-once BP over {x1, . . . , xn}
solving Tree~F for some ~F such that ¬Bad(~F ) holds. Let s be chosen as above. Then there
exists an embedded rectangle (πred, πwhite, A,B, ~w) such that:
1. |πred| = |πwhite| = h,
2. |A| × |B| ≥ k2h−ε

s23h2 ,
3. B accepts all inputs in the embedded rectangle.

In order to prove the above Lemma, we will need the following definitions.

I Definition 10. Let ~ξ be an accepting input, and let Comp~ξ be an accepting computation
path for ~ξ. Since every variable is read exactly once, Comp~ξ defines a permutation Π of
{1, . . . , n}. If q is a state that Comp~ξ passes through at time t ∈ [n], the pair (Π, q) partitions
the variables x1, . . . , xn into two sets, Red(Π, q) = {xi | Π(i) ≤ t} and White(Π, q) =
{xj | Π(j) > t}. Intuitively, since the branching program reads the variables in the order
given by Π (on input ~ξ), then Red(Π, q) are the variables that are read at or before reaching
state q, and White(Π, q) are the variables that are read after reaching state q.

I Definition 11. A labelled path P down the ternary tree is a sequence of vertices vh, . . . , v1
that forms a path from the root to a leaf of the ternary input tree. For each vertex vj of height
j along the path, its three subtrees are labelled as follows: one of its subtrees is labelled red
and is referred to as Redtree(vj), another is labelled white and is referred to asWhitetree(vj)
and lastly, Thirdtree(vj) refers to the subtree with root vj−1 that continues along the path
P . The root of Redtree(vj) will be called redchild(vj), the root of Whitetree(vj) will be
called whitechild(vj), and the root of Thirdtree(vj) will be called thirdchild(vj).

I Lemma 12. Let ~ξ be an accepting input with computation path Comp~ξ, where the ordering
of variables read along Comp~ξ is given by permutation Π of {1, . . . , n}. Then there exists a
state q and a labelled path P = vh, . . . , v1 in the ternary tree such that for all vj in the path,
2 ≤ j ≤ h Redtree(vj) contains greater than 2j−2 variables in Red(Π, q) and Whitetree(vj)
contains greater than 2j−2 variables in White(Π, q).

Proof. We will prove the above lemma by (downwards) induction on the path length. At
step j, 2 ≤ j ≤ h, we will have constructed a labelled partial path vh, vh−1, . . . , vj , an interval
[t0(j), t1(j)], and a partial coloring of the variables such that the following properties hold:
1. All variables xi such that Π(xi) ≤ t0(j) will be Red and all variables xi such that

Π(xi) ≥ t1(j) will be White. (The remaining variables that are read between time step
t0(j) and t1(j) are still uncolored.)
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2. For each vj′ , j < j′ ≤ h, Redtree(vj′) contains greater than 2j′−2 red variables, and
Whitetree(vj′) contains greater than 2j′−2 white variables.

3. The subtree of vj that continues the path, Thirdtree(vj), has at most 2j−2 red variables
and at most 2j−2 white variables.

While we construct our labelled path with the above properties it is worth mentioning
that t0(j) ≤ t1(j) always since all red variables come before white variables. Initially j = h,
the path is empty, t0[h] = 1 and t1[h] = n. Thus the size of the interval is n = 3h−1 and since
no variables have been assigned to be red or white, the above properties trivially hold. For
the inductive step, assume that we have constructed the partial path vh, . . . , vj+1. By the
inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 red variables and at most
2j−1 white variables. Thus at most one subtree of vj+1 can contain greater than 2j−2 red
variables. If one subtree of vj+1 does contain greater than 2j−2 red variables, then let this
be Redtree(vj+1). Otherwise, increase t0[j + 1] until one of vj+1’s three subtrees contains
(for the first time) more than 2j−2 red variables and let this subtree be Redtree(vj+1). Since
each of vj+1’s three subtrees has 3j−1 leaves and at most 2j−1 white variables, there are at
least 3j−1 − 2j−1 ≥ 2j−2 variables remaining in each subtree that are either uncolored or
colored red, and thus the process is well-defined.

Next we work with the remaining two subtrees of vj+1 in order to define Whitetree(vj+1).
Again by the inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 white
variables, and thus as most one subtree of the remaining two can contain greater than 2j−2

white variables. If one is found, then designate it asWhitetree(vj+1), and otherwise, decrease
t1[j + 1] until one of vj+1’s remaining two subtrees contains (for the first time) 2j−2 white
variables and designate it as Whitetree(vj+1). Again since each subtree has 3j−1 leaves and
at most 2j−1 red variables, there are at least 3j−1 − 2j−1 ≥ 2j−2 variables remaining in each
of the two subtrees that are uncolored or colored white and thus the process is well-defined.

Let the remaining subtree of vj+1 be Thirdtree(vj+1) and let the next vertex vj in
our path be thirdchild(vj+1). By construction Thirdtree(vj+1) contains at most 2j−2 red
variables and at most this same number of white variables. For the base case j = 2, by
induction we will have reached a vertex v2 with 3 child vertices, where at most one is colored
red and at most one is colored white and thus the size of the interval [t0[2], t1[2]] is between
one and three. Increase t0 and then decrease t1 so that v2 has exactly one red vertex and two
white vertices and let q be the state that Comp~ξ passes through as it reads the red child. J

Proof of Lemma 9. Consider a nondeterministic semantic read-once branching program
B for Tree~F . For each accepting input ~ξ, fix one accepting path Comp~ξ in the branching
program. Each of the n variables must be read in this path exactly once, and thus it defines
a permutation Π~ξ of the n variables. Apply Lemma 12 for ~ξ (and corresponding permutation
Π~ξ) to obtain an associated labelled path Pξ and state qξ. Do this for all accepting inputs,
and pick the pair P , q that occurs the most frequently. There are at most s possible values
for q and at most 6h−1 possible labelled paths: n = 3h−1 ending leaves of the path and
then for each of the h vertices vh′ along this path, we specify which of its subtrees are Red
and White, for another 2h−1 choices. Let S be those accepting inputs that give rise to the
popular pair P, q. Since there are at least |SY es| > 1

6kε · k
n accepting inputs, S is of size at

least
( 1

6hskε
)
kn.

Next we will select one common red variable in each of the h Red subtrees, and one
common white variable in each of the h White subtrees. Denoting the vertices of P by
vh, vh−1, . . . , v1, we will select the Red and White variables iteratively for j = h, h− 1, . . . , 1
as follows. Starting at Redtree(vj): for each ~ξ ∈ S, by Lemma 12 at least 2j−2 of its 3j−1
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variables are red, and thus there is one variable that is red in at least a 2j−2

3j−1 fraction of S.
Choose this variable, and update S to contain only those inputs in S where this variable is
red. (That is, ~ξ ∈ S will stay in S if and only if the variable is read by Comp~ξ before reaching
state q.) Do the same thing for Whitetree(vj). At the end, we will have selected for each
j one variable that is red in Redtree(vj), and one variable that is white in Whitetree(vj),
and a set of inputs S such that all h of the selected red variables (one per subtree) are
read before reaching q and all h of the selected white variables are read after reaching q.
Let πred be vector of h indices corresponding to these h red variables, where πred,j is the
index of the common red variable in Redtree(vj). and let πwhite be the vector of h indices
corresponding to these h white variables, where πwhite,j is the index of the common white
variable in Whitetree(vj). The size of S after this process will be reduced by a factor of

Πj∈[2,...,h]

(
2j−2

3j−1

)2

≥ 2−2h · 1.5−h
2
.

Our final pruning of S is to fix a partial assignment, ~w, to the remaining n−2h variables
that have not been identified as red or white. There are kn−2h choices here. Once again
choose the most popular one. Overall, for h ≥ 2 this gives

|S| ≥ 1
kε6h22h1.5h2skn−2h k

n ≥ k2h−ε

s1.5h2+8h ≥
k2h−ε

s23h2 .

Let Sred ⊆ [k]πred be the projection of S onto the coordinates of πred, the red variables
and let Swhite ∈ [k]πwhite be the projection of S onto the coordinates of πwhite, the white
variables. Let all the other variables be set according to the vector ~w. It is clear that
this gives an embedded rectangle, (πred, πwhite, Sred, Swhite, ~w). We want to show that all
assignments in the rectangle are accepted by B. To see this, consider an assignment ~α~β ~w
in the embedded rectangle, where ~α ∈ Sred is an assignment to xπred , and ~β ∈ Swhite is an
assignment to xπwhite , and ~w is an assignment to the remaining variables. By definition ~α is
in the projection of S onto πred, and thus there must be an assignment ~α~β′ ~w ∈ S. Similarly,
there must be an assignment ~α′~β ~w ∈ S. Since these assignments are in S, the computation
paths on each of them goes through q, and all variables xπred are read before reaching q,
and all variables xπwhite are read after q. We want to show that ~α~β ~w is also an accepting
input (in S). To see this, we follow the first half of the computation path of ~α~β′ ~w until we
reach q, and then we follow the second half of the computation path of ~α′~β ~w after q. In this
new spliced computation path, the variables xπred are all read (and have value ~α) prior to
reaching q, and the variables xπwhite are all read after reaching q (and have value ~β), and
since all other variables have the same values on all paths, the new spliced computation
path must be consistent and must be accepting. Therefore the input ~α~β ~w is in S and is an
accepting input. J

5.2 Refining the Rectangle
In this section, we refine the embedded rectangle given above, so that it will be a square
r-by-r rectangle.

I Definition 13. Let B be a branching program for Tree~F for some ~F such that ¬Bad(~F )
holds , and let (πred, πwhite, Sred, Swhite, ~w) be the embedded rectangle guaranteed by Lemma
9. We recall the notation/concepts from the proof of Lemma 9:
1. Let P = vh, . . . , v1 be the common labelled path in the ternary tree, where Redtree(vi),

Whitetree(vi) denotes the Red and White subtrees of vi.
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2. Let q be the common state in the branching program;
3. Let πred, πwhite be the indices of the red/white variables (h red variables altogether, one

per Red subtree, and h white variables altogether, one per White subtree);
4. For all (accepting) inputs in the rectangle, all of the variables xπred are read before q,

and all variables xπwhite are read after q.

We will now define a special kind of embedded rectangle that isolates a particular vertex
v along the path P (which corresponds to a particular function Fv).

I Definition 14. Let P = vh, . . . , v1 be the labelled path in the ternary tree, and let
r = 26h/ε. Let vi∗ be a special vertex in the path P , where πred,i∗ is the index of the red
variable in Redtree(vi∗), and πwhite,i∗ is the index of the white variable in Whitetree(vi∗).
An embedded rectangle (πred, πwhite, A,B, ~w) is special for vi∗ if:
1. |A| = |B| = r;
2. The projection of A onto xπred,i∗ has size r, and the projection of B onto xπwhite,i∗ has

size r. In other words, no two elements of A agree on the value taken by xπred,i∗ and
likewise, no two elements of B agree on the value taken by xπwhite,i∗ .

I Lemma 15. Let B be a size s branching program for Tree~F for some ~F such that ¬Bad(~F )
holds. Then (for our choice of parameters) there is an i∗ ∈ [h] and an embedded rectangle
that is special for vi∗.

Proof. Let B be a size s branching program for Tree~F and let (πred, πwhite, Sred, Swhite, ~w)
be the embedded rectangle guaranteed by Lemma 9. For each j ∈ [h], call vj red-good if
|Proj(Sred, πred,j)| ≥ r. That is, vj is red-good if Sred projected to the red variable in
Redtree(vj) has size at least r. Similarly, j is white-good if |Proj(Swhite, πwhite,j)| ≥ r.

If there are lred vertices that are red-good, then it is not hard to see that |Sred| ≤
(r−1)h−lredklred . To see this, every vj that is not red-good can take on at most r−1 values, and
the red-good ones could take on at most k values. If we similarly define lwhite to be the number
of vertices that are white-good, then similarly we have, |Swhite| ≤ (r − 1)h−lwhiteklwhite .

We want to show that there must exist an i∗ such that vi∗ is both red-good and white-good.
If not, then lred + lwhite ≤ h, and therefore |Sred × Swhite| ≤ (r − 1)hkh < rhkh. But on the
other hand, Lemma 9 dictates that |Sred × Swhite| ≥ k2h−ε

s23h2 . This is a contradiction since by

our choice of parameters (r = 26h/ε, ε = 9h/ log k, s ≤
(

k
n26 log k

)h
, n = 3h−1) we have:

k2h−ε

s23h2 ≥ k2h−ε

23h2 ·
(

326(h−1) log k
k

)h
≥ kh−ε210h2

(log k)h

= kh210h2
(

log k
29

)h
since ε= 9h

log k ,

= kh
210h2

29h

(
2h log 9h

εh

)
≥ kh26h2

εh
= rhkh since 4h+log(9h)−9>0, ∀ h≥2

Let i∗ ∈ [h] denote the index such that vertex vi∗ along the path P is both red-good
and white-good. Thus Redtree(vi∗) contains the red variable indexed by πred,i∗, and the
projection of Sred to xπred,i∗ has size at least r. Prune Sred to contain r assignments to
xπred , where we have exactly one assignment for each of the r distinct values for xπred,i∗ .
In other words, while retaining r distinct assignments to xπred,i∗ remove all but one of the
assignments in Sred consistent with the value taken by xπred,i∗ . Similarly, Whitetree(vi∗)
contains the white variable indexed by πwhite,i∗, and the projection of Swhite to xπwhite,i∗
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has size at least r. Prune Swhite to contain r assignments to xπwhite , where we have exactly
one assignment for each of the r distinct values for xπwhite,i∗ . Because the pruned sets Sred
and Swhite will be important for our encoding, the following definition describes these sets
more explicitly.

I Definition 16. The (pruned) assignments in Sred consist of r partial assignment to xπred .
Each such assignment gives a distinct value for xπred,i∗ , with the values for the rest of the
variables in xπred being completely determined by these. Let ~αi, i ∈ [r] denote the partial
assignments in Sred. That is, for each i ∈ [r], ~αi = α1

i , . . . α
h
i is a vector of h values given to

redchild(vi) for all i ∈ [h]. Viewing the vectors ~αi, i ∈ [r] as an r-by-h matrix, the entries
in column i∗ ( ~αi∗) run over the r distinct values given to xπred . Similarly, Swhite consists
of r partial assignments to xπwhite . Let ~βi, i ∈ [r] denote the partial assignments in Swhite.
That is, for each i ∈ [r], ~βi = β1

i , . . . , β
h
i is a vector of h values given to whitechild(vi) for

all i ∈ [h]. Viewed as an r-by-h matrix, the entries in column i∗ ( ~βi∗) run over the r distinct
values given to xπwhite .

It is clear from our construction that (πred, πwhite, Sred, Swhite, ~w) is an embedded rect-
angle that is accepted by B and that is special for vi∗. J

6 The Encoding

In this section, ~F is a vector of functions, one function each for each non-leaf vertex of the
ternary tree, where each F in ~F is a 4-invertible function from [k]3 to [k]. Let F denote the
uniform distribution on 4-invertible functions. Let H(F) refer to the entropy of F . Assume
that for each ~F where every constituent function is 4-invertible, we have a size s branching
program, B~F for Tree~F .

Our goal is to communicate a random ~F using less bits than is information-theoretically
possible (under the assumption of a small branching program for Tree~F ). If Bad(~F ) is true,
then we simply communicate ~F using the full H(F) bits that describe a uniformly random
4-invertible function at all the internal nodes of the tree. This requires H( ~F) = (number of
internal nodes)×H(F) bits. If Bad(~F ) is false, using Lemma 15, from B~F , we will define a
vector of information, L~F , which we call a label that will allow us to encode ~F with fewer
bits than is possible on average to get a contradiction. The following lemma describes how
one can come up with L~F .

I Lemma 17. Let ~F be such that Bad(~F ) is false, and assume that Tree~F has a small
branching program B~F . Then there exists a vector L~F that can be specified with at most
4hr log k = O(hr log k) bits such that given ~F−∗ : the knowledge of all functions in ~F except
for F∗ at one special node, L~F can be used to infer r′2 inputs (ai, bj , ci,j) ∈ [k]3, i, j ∈ [r′] in
the domain of function F∗, where r′ = r

4i∗ and i∗ is the height of node of F∗ and corresponding
to these inputs one can infer r′2 sets of outputs C(i, j) ⊂ [k], i, j ∈ [r′], specifying a small
set of values such that F∗(ai, bj , ci,j) ∈ C(i, j). Moreover,

PrF∼F [∀i, j ∈ [r′]F (ai, bj , ci,j) ∈ C(i, j)] ≤ k−
7

9·24h εr
2
.

Proof. By Lemmas 9 and 15, there is a path P , a vertex vi∗ ∈ P and an embedded rectangle
(πred, πwhite, Sred, Swhite, ~w) that is special for vi∗.

The vector L~F will consist of:
(0) a description of ~w;
(1) a description of the labelled path P ;
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Figure 2 This figure depicts a label L~F associated with a problem instance Tree~F obtained as a
consequence of having a small branching program B~F . A label as guaranteed by lemma 17 consists
of a labelled path P reaching a leaf node, a special vertex vi∗ along the path and a vector of r values
each: ~α and ~β respectively for the red and white sub trees at each node along the path. (We use
blue for white here).

(2) the index i∗ of the special vertex along the path;
(3) a vector < ~α1, . . . , ~αr > of r assignments as described in Definition 16.
(4) the vector < ~β1, . . . , ~βr > of r assignments as described in Definition 16.
Figure 2 depicts a labelling that is induced by a small branching program. We first check
that the length of L~F is O(hr log k). The length of (0) is n log k = 3h−1 log k. The length of
(1) is h log 6, since there are 6h labelled paths (3h−1 different paths, and 2h choices for the
labels). The length of (2) is log h. The length of (3) is hr log k, and similarly the length of
(4) is hr log k. Thus the total length is at most 4hr log k.

Given the vector L~F , the special function F∗ will be the function associated with the
vertex vi∗. For each i, j ∈ [r], the corresponding input values (ai, bj , ci,j) for F∗ are obtained
by a bottom-up evaluation of the subtree rooted at vi∗ as follows. First, using L~F parts (3)
and (4) we extract values for all red and white children of vertices in the path below vi∗.
Secondly, using L~F part (0) we extract from ~w values for all other leaf vertices of the subtree
rooted at vi∗. Now using the knowledge of all internal functions corresponding to nodes below
vi∗ (given in ~F−∗), we can evaluate the subtree rooted at vi∗ in a bottom-up fashion in order
to determine the values (ai, bj , ci,j) for redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗).
Clearly, the value ci,j of thirdchild(vi∗) depends on both i, j since both red and white children
appear downstream to this node unlike say redchild(vi∗) or whitechild(vi∗).

Note that when we evaluate redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗) for each
pair of i, j ∈ [r] since all of the functions in ~F are 4-invertible, we are guaranteed that
there will be at least r′ = r

4i∗ distinct values taken by redchild(vi∗) and similarly r′ = r
4i∗

distinct values taken by whitechild(vi∗) resulting in at least r′2 distinct inputs (ai, bj , ci,j)
with i, j ∈ [r′] in the domain of F∗.
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A

B

A,B ⊂ [k] |A| = |B| = r′ |{(ai, bj , ci,j)|ai ∈ A, bj ∈ B}| = r′2

Figure 3 A subset in the input domain of Fv∗ with product structure in two coordinates and
over which the possible values taken by Fv∗ has low entropy.

We will now describe how to obtain the sets C(i, j) ⊂ [k], i, j ∈ [r′], using L~F and the
functions ~F−∗. Fix an input (ai, bj , ci,j). We want to determine the set C(i, j) of possible
values for F∗(ai, bj , ci,j). Recall that for each i, j ∈ [r′], we know the value given to all inputs
of the ternary tree. We want to work our way down the path P , starting at the root vertex
vh in order to determine C(i, j). If the functions in ~F were all invertible, then knowing that
(ai, bj , ci,j) is a yes input, this limits the number of possible values of the root vertex to the
set C(i, j)h = [k1−ε]. Working down the path, since we know the values of the red child and
white child of vh, this in turn gives us another set of at most k1−ε values, C(i, j)h−1 that
vh−1 can have. We continue in this way down the path until we arrive at a set of at most
k1−ε values, C(i, j) that vi∗ can take on.

However we are not working with invertible functions, but instead with 4-invertible
functions. This can be handled by a simple modification of the above argument. Again we
start at the root of the path vh. As before, we know the values associated with the root is
the set C(i, j)h = [k1−ε]. At vertex vh′ , we define the set C(i, j)h′ based on the previous
set C(i, j)h′+1. For a particular value z ∈ C(i, j)h′+1, we know the value of redchild(vh′),
and whitechild(vh′). This gives us values z, a, b. By the definition of Fvh′ being 4-invertible,
there are at most 4 values of c such that z = Fvh′ (a, b, c). Thus we know the four possible
values of c that can lead to z at a, b. Running over all z’s in C(i, j)h′+1 defines the set
C(i, j)h′ which has size at most four times the size of C(i, j)h′+1. Thus, the size of C(i, j)i∗
is at most 4h−i∗k1−ε. We set C(i, j) equal to C(i, j)i∗.

Let F be the uniform distribution over all 4-invertible functions from [k]3 to [k]. Let
E denote the event that for every (i, j), F (ai, bj , ci,j) ∈ C(i, j). It is left to show that
PrF∼F [E] ≤ k− 7

9 εr
22−4h . Let F ′ be the uniform distribution over all functions from [k]3 to

[k/4]. Lemma 18 below shows that PrF∼F [E] ≤ PrF ′∼F ′ [E]. Thus we have:

PrF∼F [E] ≤ PrF ′∼F ′ [E] =
(
|C(i, j)|
k/4

)(r′)2

≤
(
4 · 4h−i∗ · k−ε

)(r/4i∗)2

≤ k−
7

9·24h εr
2
. J

Proof. (of Theorem 3) We are now ready to complete the proof of our main theorem. Let
~F be the uniform distribution over vectors ~F of all 4-invertible functions from [k]3 to [k].
We prove the theorem by showing that if for every ~F , if Tree~F has a size s branching

program where s ≤
(

k
n26 log k

)h
, then the expected number of bits required for encoding an

~F sampled from the distribution ~F is less than the minimum number of bits required, which
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is 3h−1H(F), giving us the contradiction. Given ~F , the encoding is as follows.
(1) If ~F ∈ Bad(~F ), encode each function using H(F) bits, thus using 3h−1H(F) bits over

all the internal functions.
(2) If ~F /∈ Bad(~F ), encode as follows.

(2a) The first part is the description of L~F .
(2b) The second part is an optimal encoding of all of ~F except for F∗.
(2c) The third part is an optimal encoding of F∗. Recall that F∗ is an element from

the (uniform) distribution (F | E) where E denotes the event that for every (i, j),
F (ai, bj , ci,j) ∈ C(i, j).

Using this encoding, the decoding procedure is as follows. Whenever Bad(~F ) holds,
we use the information in (1) in order to recover ~F . Otherwise, if ¬Bad(~F ) holds3, we
proceed as follows. First we use the label L~F from (2a) in order to determine vi∗. Then
we use label L~F from (2a) along with information about the rest of the functions from (2b)
to find the special (r′)2 inputs (ai, bj , ci,j), i, j ∈ [r′] to the function F∗. We also use the
label L~F from (2a) and information from (2b) to determine the sets C(i, j) ⊂ [k] such that
F∗(ai, bj , ci,j) ∈ C(i, j) for all i, j ∈ [r′]. We can then determine using the information from
(2c) the values F∗(ai, bj , ci,j) for all i, j ∈ [r′] (and also the remaining inputs in [k]3).

We want to compare the savings of this encoding over the optimal one that uses H( ~F)
bits. Let p = PrF∼F [E]. Then 1/p is equal to the number of 4-invertible functions divided
by the number of 4-invertible functions satisfying E. Thus, when ¬Bad(~F ) holds, the savings
of our encoding in bits is log(1/p)− |L~F |, and therefore the overall savings in bits is

(1− pBad)[log(1/p)− |L~F |] ≥ (1− pBad)
[ 7

9·24h εr
2 log k − 4hr log k

]
=
[ 7

9·24h εr
2 − 4hr

]
(1− pBad) log k

since by Lemma 17, |L~F | ≤ 4hr log k and p ≤ k− 7
9 εr

22−4h .
In the expression

[ 7
9·24h εr

2 − 4hr
]
, the quadratic dependence on r in the first term whereas

only a linear dependence in the second allows us to choose r = 26h

ε , large enough so that
we make savings. At r = 26h

ε ,
[ 7

9·24h εr
2 − 4hr

]
= r

[ 7
9·24h 26h − 4h

]
> r ∀h ≥ 1. Also, by

Lemma 7 we know pBad ≤ 1
10 and since k ≥ 242h this implies (1− pBad) log k > 1. Thus our

savings is greater than r bits, giving a contradiction. J

I Lemma 18. Let F be the uniform distribution over all 4-invertible functions from [k]3 to
[k] and let F ′ be the uniform distribution over all functions from [k]3 to [k/4]. Fix r2 inputs
τi, i ∈ [r2], and let Ci be a corresponding subset of [k], such that ∪iCi ⊆ [k/4]. E be the
event that for all i, F (τi) ∈ Ci. Then PrF∼F [E] ≤ PrF ′∼F ′ [E].

Proof. Before we proceed with the proof, wish to mention that when we use this lemma in the
proof of Lemma 17 the sets Ci involved need not be such that ∪iCi ⊆ [k/4]. However, since
| ∪iCi| ≤ k/4, one can simply consider an alternative range of size k/4 that contains ∪iCi for
functions in F ′ instead of [k/4] to arrive at the same upperbound estimate on PrF∼F [E]. So
we assume here in the hypothesis just for the ease of exposition that ∪iCi ⊆ [k/4]. Proceeding
with the proof, let Ei denote the event that F (τi) ∈ Ci, and let E<i denote the event that
for all j < i, F (τj) ∈ Cj . Then PrF∼F [E] =

∏
i PrF∼F [Ei | E<i]. We will show that for any

i, PrF∼F [Ei | E<i] ≤ PrF ′∼F ′ [Ei]. Let σ specify the values of F for all tuples except for

3 Astute reader might have observed that inorder to recognize if Bad(~F ) holds or not one needs to convey
information, albeit just 1 bit. We end up saving a lot more so we ignore it.
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τi. Then PrF∼F [Ei | E<i] ≤ maxσPrF∼F [Ei | σ]. That is, the true probability is at most
the probability where we fix all values except for the value of F on τi to the worst possible
scenario.

We want to show that this probability only increases when the distribution switches from
F to F ′. But then note that under the distribution F ′, the values σ do not change the
probability. Thus we want to show: PrF∼F [Ei | σ] ≤ PrF ′∼F ′ [Ei | σ] ≤ PrF ′∼F ′ [Ei].

To prove the first inequality, note that σ specifies all but one of the [k]3 inputs to F . We
visualize this as a k-by-k-by-k cube, where all entries (x, y, z) are filled in with a value in
[k] except for the one entry corresponding to τi. We want to get an upper bound on how
many values we can choose for this last entry and still have a 4-invertible function. When
choosing this last value, in order for F to be 4-invertible, we cannot choose one of the at
most k/4 values that already appears four times along the “x" dimension, or one of the at
most k/4 values that already appears four times in the “y" dimension, or k/4 times in the
“z" dimension. This rules out at most 3k/4 values, leaving at least k/4 possible values. Thus
there is a set of at least k/4 values that can legally be filled in for F (τi) (even under the
worst possible σ), and because F is uniform on such functions, these completions all have
the same probability. The event Ei is when F (τi) is chosen to be in Ci. This probability is
at most that for the distribution F ′ on all functions from [k]3 to [k/4]. J

7 Conclusion

It is open to prove lower bounds for function composition for the case of Boolean non-
deterministic semantic read-once branching programs. In fact, it is open to prove lower
bounds for the Boolean case for any explicit function. Another longstanding open problem
is to break the Nečiporuk barrier of n2/ log2 n for deterministic branching programs, and
n3/2/ logn for nondeterministic branching programs. When g is the parity function, this
bound is optimal. Lower bounds for f ◦ g for g equal to the element distinctness function (or
even for the majority function) would be a significant breakthrough.
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A Proofs

Proof of lemma 7: For k > 242h and ε = 9h
log k , Pr~F [Bad(~F )] ≤ 1

10 .

Proof. We will choose a random ~F somewhat indirectly as follows. First, we sample a random
vector ~F ∈ ~F . Secondly, we choose a random permutation Π of the values [k], and let Π(~F )
be the same as ~F except that the root values have been permuted by Π. (This requires only
changing the outputs of the function at the root.) Note that this distribution on ~F is identical
to the uniform distribution over ~F . It follows that Pr~F [Bad(~F )] = Pr〈~F ,Π〉[Bad(Π(~F ))]. We

will consider the worst case value of ~F in order to bound the above probability. Observe that

Pr
〈~F ,Π〉

[Bad(Π(~F ))] ≤ Max~F Pr
Π

[Bad(Π(~F )) | ~F ].

Fix such a worst case ~F . For this ~F , for each value v ∈ [k] let qv denote the fraction of leaf
values ~ξ that give value v at the root. Note

∑
v qv = 1 and Avgv qv = 1

k .
Because the permutation Π is randomly chosen, Π−1([k1−ε]) is a random subset of [k] of

size k1−ε. Therefore via linearity of expectation,

Exp

(
|Syes|
|{~ξ}|

)
= Exp

 ∑
v∈Π−1([k1−ε])

qv

 = k1−ε

k
= k−ε.
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We want to bound the probability that the size of Syes is significantly smaller than its
expected value of k1−ε. But first, the lemma below proves that 0 ≤ qv ≤ 4h−1

k .

I Lemma 19. ∀v ∈ [k], qv ≤ 4h−1

k
.

Proof. Fix ~F . Fix all of the leaf values as in ~ξ, except for the left most leaf. Working down
from the root, for any value v at the root one can see that there are at most 4h−1 values
in [k] for this left most leaf that can lead to value v at the root of ~F . This is because each
internal function is 4-invertible and for any fixed value of an internal node, given the value
of two of its children(subtree evaluations) there are at most 4 possible values the other child
can take. J

We select a uniformly random set of size k1−ε to be mapped to [k1−ε] as follows. Flip a
biased coin for each point ‘v’ in [k] to be selected with probability k−ε. Given a vector of
qv describing the fraction of inputs that map to v, let Qv be a vector of random variables
associated with corresponding coin flips with each of them taking value qv with probability
k−ε and 0 with the remaining 1− k−ε. The expected number of points selected is k1−ε. The
experiment repeats until the number of points selected is within some standard deviations
say c.k 1−ε

2 of the mean k1−ε. Let’s first analyze the number of inputs selected corresponding
to the points selected in the process without the size requirement on number of points.

We are interested in the fraction of inputs that get to be Yes inputs as a result of being
selected during the coin flipping process. Let QY es =

∑
v Qv. So

E[QY es] =
∑
v

E[Qv] =
∑
v

qvk
−ε = k−ε. (1)

In this experiment Qv are independent (but not necessarily identically distributed) non-
negative random variables. Consequently QY es obeys the following concentration bound[7]
around its mean

Prob [ (E[QY es]−
∑
v

Qv) ≥ t ] ≤ e

(
−t2

2
∑

v
E[Q2

v ]

)
(2)

Since by the regularity property from Lemma 19 we have qv ≤ 4h−1

k
for all v ∈ [k]

∑
v

E[Qv2] =
∑
v

qv
2k−ε = k−ε

∑
v

qv
2 ≤ k−ε

∑
v

(
4h−1

k

)2

= k−εk ·
(

4h−1

k

)2

= 42h−2

k1+ε

=⇒ Prob [ (E[QY es]−QY es) ≥ t ] ≤ e

(
−t2

2
∑

v
E[Q2

v ]

)
≤ e

(
−t2

2
(

42h−2
k1+ε

))
= e

−t2k1+ε

2·42h−2

Consequently,

Prob [QY es ≤ E[QY es]− t ] ≤ e
−t2k1+ε

2.42h−2 (3)

Set t = 1
2kε for the event Bad′ = [QY es ≤ E[QY es]− t ] = [QY es ≤ 1

2kε ].

pBad′ = Prob

[
QY es ≤

1
2kε

]
≤ e

−k1−ε

8.42h−2 (4)

Now consider the following transformed process in which the experiment repeats until
number of points selected is within some fixed deviation g from the mean. Let the set of
points be A. Depending on the count of number of points in A selected, if the count falls
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below k1−ε a few more points are uniformly randomly selected from [k] \A to obtain a set
of size k1−ε and likewise if the number is larger than k1−ε the required number of points
are uniformly randomly discarded from the set. Clearly, this process doesn’t discriminate
against any point in [k] and so generates a uniformly random subset of size exactly k1−ε from
[k]. Let call this set A′′ , it shall be our final set of size k1−ε. Let pBad be the probability
that the fraction of inputs associated with the set of points in A′′ is less than 1

6kε . For the
intermediate set A let U be the event [k1−ε − g ≤ |A| ≤ k1−ε + g]. Then,

Prob [Bad′ | U ] = Prob(Bad′ ∩ U)
Prob(U) ≤ Prob(Bad′)

Prob(U) (5)

Since |A| is binomially distributed with (n, p) = (k, k−ε), seen as a sum of independent
non-negative random variables, for a deviation g ≈ 2k 1−ε

2 we have the following concentration
guaranteed by (2)

Prob(U) = Prob
[
k1−ε − 2k

1−ε
2 ≤ |A| ≤ k1−ε + 2k

1−ε
2

]
≥ 0.8 (6)

By (4) it follows that Prob(Bad′) ≤ e
−k1−ε

8.42h−2 and together with (6) and (5) this implies

Prob [Bad′ | U ] ≤ 5
4e

−k1−ε

8.42h−2 (7)

the chance that SAY es is small is exponentially small. Now consider the transformation of A to
A′′. Note that whenever new points are added to A or some points in A are discarded so as
to obtain A′′ i.e a uniformly random choice of a set of exact size k1−ε the change from SAY es
to SA′′Y es is at most g.maxv qv. But by regularity property given by Lemma 19, qv ≤ 4h

k . So∣∣∣|SA′′Y es| − |SAY es|
∣∣∣ ≤ g. 4

h

k ≈ k
1−ε

2 4h
k = 4h

k
1−ε

2 +ε
=
(

4h

k
1−ε

2

)
1
kε ≤

1
3kε for k > 242h at ε = 9h

log k .

The resulting set A′′ will then always have size at least 1
2kε −

1
3kε = 1

6kε whenever QAY es > 1
2kε .

This implies pBad = Prob
[
QA

′′

Y es ≤ 1
6kε

]
≤ Prob

[
QAY es ≤ 1

2kε
]

= Prob [Bad′ | U ] and hence

≤ 5
4e
−k1−ε

8.42h−2 .

For k > 242h and ε = 9h
log k it can be seen that pBad ≤ 5

4e
−k1−ε

8.42h−2 ≤ 5
4 ( 1
e

242h−9h
24h−1 ) ≤ 1

228h ≤
1
10 , ∀h ≥ 1. J

B Nečiporuk via Function Composition

Consider the composition of two boolean functions f : {0, 1}a → 0, 1 and g : {0, 1}b → {0, 1}.
Let f be a hard function in the sense that any non-deterministic branching program computing
f requires size at least 2a/2. Such functions are guaranteed to exist by a simple counting
argument. Fix g to be any function such that it does not take a constant value when all but
any one of its b input bits are set.

I Lemma 20. Any non-deterministic branching program solving f ◦ g has size at least b2a/2.

Proof. Let there be a non-deterministic branching program solving f ◦ g of size s. For each
of the a copies of g in the composition f ◦ g pick the least queried input bit from amongst
each group of b input bits that correspond to a single copy of g, then set all remaining b− 1
variables in this input group to any value and reconnect the outgoing edges amongst the
remaining states appropriately. The resulting collapsed branching program has size at most
s
b . But recall that g has the property that fixing b − 1 of its input bits doesn’t make the
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function a constant. Thus the resulting collapsed branching program has to have size at
least that required for computing f , that is 2a/2. Therefore the original non-deterministic
branching program must have size at least s ≥ b2a/2. J

Let g = ⊕ be the parity function on b bits. The input to f ◦ ⊕ is the description of f ,
plus a vector of ab bits (the input to f ◦ ⊕). The input length is 2a + ab. Setting a = logn
and b = n

logn , the input length is 2n. By the above lemma, the size of a branching program

required to solve the composition f ◦ ⊕ is at least b2a/2 =
(

n
logn

)(
2

logn
2

)
= n3/2

logn . This
lower bound is also known to be the best achievable by Nečiporuk as shown by Beame and
McKenzie in [5].

By essentially similar means an Ω
(

n2

log2 n

)
lower bound can be shown for deterministic

branching programs. Consider deterministic branching programs solving f ◦ g where f is now
a hard function in the sense that any deterministic branching program computing f requires
size at least 2a

a (once again such functions are guaranteed to exist by counting argument).
Just as before, fix g = ⊕ to be the parity function (or any function that is not constant
when all but any one of its input bits are set.) A similar argument shows that any branching
program solving f ◦ ⊕ requires size at least b 2a

a . Set a = logn and b = n
logn to obtain an

Ω
(

n2

log2 n

)
lower bound.

C The lower bound holds for most ~F

We now argue that for most vectors of 4-invertible functions ~F , Tree~F does not have a small
branching program. We show that the probability that a uniformly randomly chosen ~F

has a small branching program is at most pBad + 1
2r ≤

1
227h . First, let #L = 2|L~F | be the

total number of labels. Recall that |L~F | is the number of bits needed to encode a label and
that the number of bits saved in our alternate encoding from the proof of Theorem 3 is
(1− pBad)[log(1/p)− |L~F |] = (1− pBad) log

(
1

p·#L

)
.

Note that for a uniformly randomly chosen ~F the probability that it has a small branching
program is at most the chance that Bad(~F ) holds plus the chance that Bad(~F ) doesn’t hold
and there exists a label L that is consistent with ~F (in other words a label obtained via
lemma 17 as a guaranteed consequence of ~F having a small branching program).

Pr~F [∃ a small BP solving Tree~F ]
≤ Pr~F [Bad(~F ) ∪ [¬Bad(~F ) ∩ ∃ a label L consistent with ~F ]
≤ pBad + Pr~F [¬Bad(~F ) ∩ [∃ a label L that is consistent with ~F ]] (by Union bound)
≤ pBad + Pr~F [∃ a label L that is consistent with ~F ] (since

P (A ∩B) ≤ min{P (A), P (B)})
≤ pBad + #L ·maxL Pr~F [ label L is consistent with ~F ] (by Union bound)
≤ pBad + p.#L

We have shown in the proof of theorem 3 that the number of bits saved in our alternate
encoding is is at least r. So,
(1− pBad) log( 1

p·#L ) ≥ r =⇒ 1
p·#L ≥ 2r/(1−pBad) ≥ 2r =⇒ p ·#L ≤ 1

2r .
Consequently it follows that:

Pr~F [∃ a small BP solving Tree~F ] ≤ pBad + 1
2r

Now note that the proof of Lemma 7 (see Appendix A) actually shows that pBad ≤ 2−28h.
As a result, Pr~F [∃ a small BP solving Tree~F ] ≤ 1

228h + 1
2r ≤

1
227h . (the last inequality

follows since r = 26h

ε = 26h log k
9h ≥ 26h+2). Thus we can conclude that most vectors of

4-invertible functions in fact do not have small branching programs.
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