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Abstract
Non-signaling strategies are collections of distributions with certain non-local correlations. They
have been studied in Physics as a strict generalization of quantum strategies to understand the
power and limitations of Nature’s apparent non-locality. Recently, they have received attention
in Theoretical Computer Science due to connections to Complexity and Cryptography.

We initiate the study of Property Testing against non-signaling strategies, focusing first on
the classical problem of linearity testing (Blum, Luby, and Rubinfeld; JCSS 1993). We prove
that any non-signaling strategy that passes the linearity test with high probability must be close
to a quasi-distribution over linear functions.

Quasi-distributions generalize the notion of probability distributions over global objects (such
as functions) by allowing negative probabilities, while at the same time requiring that “local
views” follow standard distributions (with non-negative probabilities). Quasi-distributions arise
naturally in the study of Quantum Mechanics as a tool to describe various non-local phenomena.

Our analysis of the linearity test relies on Fourier analytic techniques applied to quasi-
distributions. Along the way, we also establish general equivalences between non-signaling strate-
gies and quasi-distributions, which we believe will provide a useful perspective on the study of
Property Testing against non-signaling strategies beyond linearity testing.
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17:2 Testing Linearity against Non-Signaling Strategies

1 Introduction

Property Testing studies sublinear-time algorithms for approximate decision problems. A
tester is an algorithm that receives oracle access to an input, samples a small number of
locations, queries the input at these locations, and then decides whether to accept or reject.
If the input has a certain property, the tester must accept with high probability; if instead
the input is far from all inputs having this property, then the tester must reject with high
probability.

Seminal works in Property Testing include those of Blum, Luby, and Rubinfeld [15],
who studied the problem of deciding whether the input is the evaluation table of a linear
function or is far from any such table, and of Rubinfeld and Sudan [45], who studied the
analogous problem for low-degree functions. Property Testing for general decision problems
was introduced in the foundational work of Goldreich, Goldwasser, and Ron [26].

We initiate the study of Property Testing when the input is a non-signaling strategy
[35, 43, 40, 41], which means that the input belongs to a certain class of probabilistic oracles
that answer a tester’s queries by sampling from a distribution that may depend on all queries.
This setting stands in stark contrast to the standard one, where each query’s answer is
fixed before queries are sampled. We provide a first analysis of linearity testing against
non-signaling strategies, establishing general statements and techniques about non-signaling
strategies along the way.

Non-signaling strategies have been studied in Physics for over 30 years as a strict
generalization of quantum strategies, in order to understand the power and limitations
of Nature’s apparent non-locality.1 Informally, Quantum Mechanics is a very accurate
description of Nature but it may also be an incomplete one: it has not been successfully
combined with General Relativity to get a quantum theory of gravity. Nevertheless, there is
wide agreement that Nature forbids instantaneous communication despite its apparent non-
locality, so this non-signaling property must be part of any ultimate theory of Nature. Non-
signaling strategies exactly capture this minimal requirement, thus (purportedly) capturing
any physically-realizable strategy.

Non-signaling strategies also have strong connections to Complexity Theory and Cryp-
tography. Property Testing against non-signaling strategies is likely to strengthen these
connections (see Section 4 for details), and thus we believe that it should be explicitly studied.

1.1 Linearity testing
A boolean function f : {0, 1}n → {0, 1} is linear if f(x)+f(y) = f(x+y) for all x, y ∈ {0, 1}n,
where bits are added modulo two and vectors are added component-wise. The problem of
linearity testing is to decide whether a given arbitrary boolean function f : {0, 1}n → {0, 1}
is linear or is far from all linear functions. Blum, Luby, and Rubinfeld [15] suggest a very
simple 3-query tester: sample uniform and independent x, y ∈ {0, 1}n, and check that
f(x) + f(y) = f(x+ y). Perhaps surprisingly, analyzing this tester is far from simple, and a
tight characterization of its acceptance probability is still an open problem. Nevertheless,
upper and lower bounds on the acceptance probability are known, which is sufficient for
applications. Bellare, Coppersmith, Håstad, Kiwi, and Sudan [12] have shown that the
acceptance probability is at most 1−∆(f), where ∆(f) is the fractional Hamming distance

1 “Non-locality” refers to correlations in Nature that appear non-local when interpreted using classical
physics.
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of f to the closest linear function. Many other works have studied this problem and closely
related ones [50, 13, 14, 21]. Finally, Ito and Vidick [30, 52] analyzed linearity testing
against quantum strategies. Fixed functions and quantum strategies are both special cases
of non-signaling strategies, the subject of this work.

1.2 Non-signaling strategies
A non-signaling strategy is a collection of distributions, one per set of queries, that jointly
satisfy certain restrictions. There are two distinct definitions, corresponding to whether the
strategy is meant to represent a function or players in a game. Throughout most of this
paper, we consider non-signaling functions, because the functional view fits better the setting
of Property Testing; nevertheless, we also consider non-signaling players, and show that our
results about non-signaling functions imply corresponding results about non-signaling players
(see full version for details).

A k-non-signaling function F extends the notion of a function f : {0, 1}n → {0, 1} as
follows: it is a collection {FS}S⊆{0,1}n,|S|≤k where each FS is a distribution over functions
fS : S → {0, 1} and, for every two subsets S and T each of size at most k, the restrictions of
FS and FT to S ∩T are equal as distributions. We sometimes write “F(S) = ~b”, for a subset
S ⊆ {0, 1}n and string ~b ∈ {0, 1}S , to denote the event that the function sampled from FS
equals ~b.

Observe that, given any k ∈ {1, . . . , 2n}, every function f : {0, 1}n → {0, 1} naturally
induces a k-non-signaling function F = {FS}S⊆{0,1}n,|S|≤k, namely the one where each FS
equals the constant distribution that outputs the restriction of f to S with probability 1.
More generally, every distribution over functions induces a corresponding k-non-signaling
function in a similar way.

However, the set of non-signaling functions is richer, because consistency between local
distributions need not imply a global distribution, as the following example shows. For n = 2
and k = 2, consider the non-signaling function {FS}S⊆{0,1}2,|S|≤2 defined as follows: F{00,11}

is uniform over the two functions
{ 00→ 0

11→ 1 , 00→ 1
11→ 0

}
and, for every {x, y} 6= {00, 11}, F{x,y}

is uniform over
{ x→ 0

y → 0 , x→ 1
y → 1

}
. No distribution over functions can explain the above

strategy, as any f in the support of such a distribution would have to satisfy f(00) 6= f(11)
and f(x) = f(y) for every {x, y} ⊆ {0, 1}2 \ {00, 11}, which is impossible.

1.3 The problem and challenges
We study linearity testing against non-signaling functions, which is the following problem.

I Question 1.1 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function.
Suppose that with probability at least 1 − ε (for sufficiently small ε ≥ 0) it holds that
f(x) + f(y) = f(x+ y), where x and y are sampled uniformly and independently from {0, 1}n
and f : {x, y, x + y} → {0, 1} is sampled from the distribution F{x,y,x+y}. Can we deduce
any global properties about F?

In order to build intuition about this question, we temporarily put aside the case when
ε > 0, and focus on the case ε = 0, which already turns out to be quite subtle. In other
words, let us assume for now that for every x, y ∈ {0, 1}n and every f in the support of
F{x,y,x+y} it holds that f(x) + f(y) = f(x + y). What global properties, if any, can we
deduce about F?

Ideally, we would like to characterize the set of all non-signaling functions that pass the
linearity test with probability 1 and say that this set is related to linear functions. If F

CCC 2018
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is restricted to answer according to a single fixed function f : {0, 1}n → {0, 1} (as in the
standard setting) then f passing the linearity test with probability 1 is equivalent to f being
linear by definition. On the other extreme, if F is allowed to answer queries arbitrarily
without any non-signaling property then no interesting conclusion is possible. The case of F
being a non-signaling function sits somewhere in between these two extremes: F is neither a
fixed function nor completely arbitrary. We present two examples to highlight the challenges
that arise when seeking an answer.

I Example 1.2. Consider the following 3-non-signaling function F = {FS}S⊆{0,1}n,|S|≤3.
For every subset {x, y, x + y} ⊆ {0, 1}n \ {0n}, the random variable f ← F{x,y,x+y} is
such that (f(x), f(y), f(x+ y)) is uniform over {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}; for every
subset {x, y, z} ⊆ {0, 1}n \ {0n} with z 6= x+ y, the random variable f ← F{x,y,z} is such
that (f(x), f(y), f(z)) is uniform over {0, 1}3. For every set S ⊆ {0, 1}n containing 0n, F
samples f ← FS\{0n}, and outputs the function g where g(x) = f(x) for x ∈ S \ {0n} and
g(0n) = 0. Note that F is 3-non-signaling because for every S ⊆ {0, 1}n \ {0n} with |S| = 3
the restriction of FS to any two coordinates {x, y} ⊆ S induces a uniformly boolean random
function over f : {x, y} → {0, 1}. In particular, for distinct x, y ∈ {0, 1}n \ {0n} it holds that
F{0n,x,y} outputs 0 on 0n, and random bits on x and y.

Clearly, F passes the linearity test with probability 1. Observe that we can alternatively
describe its answers according to the following procedure: upon receiving a subset S ⊆ {0, 1}n,
F samples a uniformly random linear function f : {0, 1}n → {0, 1} (independent of S) and
returns the restriction of f to S. We can thus explain F via the uniform distribution over
linear functions.

Generalizing from the above example, any non-signaling function that is induced by
sampling a linear function from any distribution (not just the uniform one) and answering
accordingly will pass the linearity test with probability 1. Note that a distribution over linear
functions is given by non-negative real numbers (pα)α∈{0,1}n such that

∑
α∈{0,1}n pα = 1,

where pα is the probability of sampling the function 〈α, ·〉. If F answers according to
(pα)α∈{0,1}n , then Pr[F(x) = b] =

∑
α:〈α,x〉=b pα for every x ∈ {0, 1}n and b ∈ {0, 1}; a

similar formula holds for more inputs.
The above discussion suggests a natural conjecture: every non-signaling function that

passes the linearity test with probability 1 can be explained by some distribution over linear
functions. In fact, this conjecture is true if the non-signaling strategy is restricted to be a
quantum strategy [30, 52]. But the set of non-signaling strategies is strictly larger. Below we
show that, perhaps surprisingly, these additional strategies make this conjecture false.

I Example 1.3. Consider the following 3-non-signaling function F = {FS}S⊆{0,1}n,|S|≤3.
For every subset {x, y, x+ y} ⊆ {0, 1}n \ {0n}, F{x,y,x+y} is the following distribution

Pr
f←F{x,y,x+y}

[f(x, y, x + y) = (a1, a2, a3)] =

{
1/7 if (a1, a2, a3) = (0, 0, 0)
2/7 if (a1, a2, a3) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

for every subset {x, y, z} ⊆ {0, 1}n\{0n} with z 6= x+y, F{x,y,z} is the following distribution

Pr
f←F{x,y,z}

[f(x, y, z) = (a1, a2, a3)] =
{

0 if (a1, a2, a3) = (0, 0, 0)
1/7 if (a1, a2, a3) 6= (0, 0, 0)

.

If an input set S contains 0n, FS assigns 0n to 0 and answers the rest according to FS\{0n}.
Note that F is 3-non-signaling because for distinct and non-zero x and y, the distribution of



A. Chiesa, P. Manohar, and I. Shinkar 17:5

F{x,y} is

Pr
f←F{x,y}

[f(x, y) = (a1, a2)] =
{

1/7 if (a1, a2) = (0, 0)
2/7 if (a1, a2) 6= (0, 0)

.

In particular, for distinct and non-zero x and y, the distribution of F{x,y,0n} is

Pr
f←F{x,y,0n}

[f(x, y, 0n) = (a1, a2, 0)] =
{

1/7 if (a1, a2) = (0, 0)
2/7 if (a1, a2) ∈ {(1, 0), (0, 1), (1, 1)}

.

Observe that F passes the linearity test with probability 1. However, unlike before,
a distribution over linear functions that explains F does not exist. Namely, there is no
probability vector (pα)α∈{0,1}n with non-negative entries and

∑
α∈{0,1}n pα = 1 such that

Pr[F(x) = b] =
∑
α:〈α,x〉=b pα for all x ∈ {0, 1}n and b ∈ {0, 1}. In fact, when trying to solve

this linear system of equations with (pα)α∈{0,1}n as the variables, we obtain a solution vector
in which some of the entries are negative.

The above example is problematic because it seems to suggest that a clean characterization
of the set of all non-signaling functions passing the linearity test does not exist. Indeed, it
shows that this set is strictly richer than the set of all distributions over linear functions.

1.4 Negative probabilities and quasi-distributions
In order to resolve the difficulty encountered in Example 1.3, we embrace negative probabilities
(and probabilities greater than 1), and consider the notion of a quasi-distribution over boolean
functions.

I Definition 1.4 (informal). A quasi-distribution is defined as a vector of real numbers
Q = {qf}f : {0,1}n→{0,1} such that

∑
f : {0,1}n→{0,1} qf = 1. Similarly, a quasi-distribution

over linear functions is a quasi-distribution Q = {qf}f : {0,1}n→{0,1} such that qf = 0 for
all f that are not linear functions; in this case, we also allow ourselves to represent the
quasi-distribution by a vector (qα)α∈{0,1}n , where each qα is associated with the linear
function 〈α, ·〉.

A function f in a quasi-distribution Q = {qf}f is thus “sampled” with “probability” qf ,
which means that for every subset S ⊆ {0, 1}n and string ~b ∈ {0, 1}S the event “Q(S) = ~b”
has quasi-probability given by P̃r[Q(S) = ~b ] :=

∑
f s.t. f(S)=~b qf .

This may seem nonsensical, because quasi-probabilities are not restricted to be in [0, 1].
But this shall soon make sense. In the words of Paul Dirac [22, p.8]: “Negative energies
and probabilities should not be considered as nonsense. They are well-defined concepts
mathematically, like a negative sum of money, since the equations which express the important
properties of energies and probabilities can still be used when they are negative. Thus negative
energies and probabilities should be considered simply as things which do not appear in
experimental results.”

This viewpoint, which plays a central role in our work, is borrowed from Physics, where
it is used to describe many physical phenomena [22, 25], including non-signaling ones [2].

While the non-signaling function F in Example 1.3 cannot be explained by any distribution
over linear functions, it can be explained by a quasi-distribution over linear functions.
Concretely, letting qα represent the probability of “sampling” the function 〈α, ·〉, we solve
the following system of linear equations in the variables (qα)α∈{0,1}n :∑

α∈{0,1}n

qα = 1 and ∀x ∈ {0, 1}n ∀ b ∈ {0, 1}
∑

α:〈α,x〉=b

qα = Pr[F(x) = b] .

CCC 2018



17:6 Testing Linearity against Non-Signaling Strategies

The solution to this system is q~0 = 1− 8
7

2n−1
2n < 0 and qα = 8

7 ·
1

2n for all α 6= ~0. We stress that
the solution has a negative entry. One can then verify that the quasi-distribution obtained
above not only matches F on events involving one input (which is by construction) but also
on events involving two inputs: Pr[F(x1) = b1 , F(x2) = b2] =

∑
α:〈α,x1〉=b1 , 〈α,x2〉=b2

qα for
all x1, x2 ∈ {0, 1}n and b1, b2 ∈ {0, 1}. Similarly, the same holds for events involving three
inputs.

Crucially, the quasi-probabilities of events that involve a small enough set of inputs
“magically” add up to non-negative probabilities because, in particular, they describe distri-
butions of F . In other words, like in Dirac’s observation above, the negative probabilities
“do not appear in experimental results”; in our case the experiment is querying F , and a
quasi-distribution is merely a convenient mathematical abstraction to describe it.

The foregoing considerations directly lead to the following observation.

IObservation 1.5. If Q = (qf )f : {0,1}n→{0,1} is a quasi-distribution that induces a probability
distribution on every event of at most k inputs, then Q induces a k-non-signaling function.

Furthermore, if Q is supported on linear functions only, then the corresponding k-non-
signaling function passes the linearity test with probability 1.

The first part of the observation suggests using k as a measure of a quasi-distribution’s
locality: we say that a quasi-distribution Q = (qf )f is k-local if for every k inputs x1, . . . , xk ∈
{0, 1}n and k outputs b1, . . . , bk ∈ {0, 1} it holds that

∑
f :f(x1)=b1,...,f(xk)=bk

qf ≥ 0. Thus
Q behaves like a collection of (standard) distributions on all events that involve at most k
inputs and, moreover, these distributions jointly satisfy the k-non-signaling property.

The second part of the observation shows the existence of a class of non-signaling functions
that pass the linearity test with probability 1 that is much richer than the class of distribution
over linear functions. Are there any other types of non-signaling functions that pass the
linearity test with probability 1, or are these all of them? Moreover, how does this answer
change when we merely require that a non-signaling function pass the linearity test with
probability at least 1− ε? We now discuss our results, which will provide answers to these
questions.

2 Our results

Quasi-distributions arose rather naturally when reasoning about non-signaling functions.
First, we show that this is not a coincidence by proving that the two notions are equivalent.

I Theorem 2.1 (informal). Local quasi-distributions and non-signaling functions are equiva-
lent:
1. every k-local quasi-distribution induces a corresponding k-non-signaling function; con-

versely,
2. every k-non-signaling function has a k-local quasi-distribution that describes it. (In fact,

this quasi-distribution is not unique: the set of all such quasi-distributions is an affine
subspace.)

See Section 8 (specifically, Theorem 8.1 and Theorem 8.2) for precise statements of the two
items.

The first item is just Observation 1.5. The second item is proved via Fourier analytic
techniques applied to a quasi-probability vector. Informally, the Fourier coefficients of
quasi-probability vectors are indexed by subsets of {0, 1}n, and can be grouped into levels
according to their size. We prove that the only coefficients that matter for the k-non-signaling
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function are those in the levels for sizes at most k, while all others change the weights in the
quasi-probability vector but do not affect the induced k-non-signaling function.

The foregoing equivalence can be viewed as the “functional analogue” of an equivalence
proved in [2] for the (incomparable) case of non-signaling players. The Fourier analytic
techniques that we use are novel and, moreover, can be adapted to the case of non-signaling
players in order to strengthen [2]’s result to find all quasi-distributions (rather than just one)
that describe a given set of non-signaling players (see full version for details). We believe that
the mathematical structure uncovered by our Fourier analytic techniques is of independent
interest.

Having established the equivalence of local quasi-distributions and non-signaling functions,
we return to the problem of linearity testing against non-signaling functions. Our first theorem
in this direction is a characterization of the set of non-signaling functions that pass the
linearity test with probability 1: this set consists of local quasi-distributions over linear
functions (essentially).

I Theorem 2.2 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function such
that

Pr
x,y←{0,1}n

f←F{x,y,x+y}

[f(x) + f(y) = f(x+ y)] = 1 .

There is a unique (k − 1)-local quasi-distribution L over linear functions describing F on all
input sets of size ≤ k − 1 (LS and FS are equal as distributions for every set S ⊆ {0, 1}n
with |S| ≤ k − 1).

See Theorem 10.1 in Section 10 for the precise statement. (A minor technicality of
the theorem is that L is only (k − 1)-local and only matches F on at most k − 1 inputs;
the discussion after Theorem 10.1 explains why this is the best we can hope for.) To
prove the theorem we define a quasi-distribution L over linear functions by solving a
certain system of linear equations that ensures that L and F match on single inputs,
i.e., that P̃r[L(x) = b] = Pr[F(x) = b] for all x ∈ {0, 1}n and b ∈ {0, 1}. We then
need to establish that L and F match on all sets of at most k − 1 inputs. We do so in
two steps: we first use linearity to show that L and F match on all parity events (i.e.,
P̃r
[∑

i∈T L(xi) = b
]

= Pr
[∑

i∈T F(xi) = b
]
for all x1, . . . , xs ∈ {0, 1}n and b ∈ {0, 1} with

s ≤ k − 1); then we use Fourier analysis to extend this claim to all allowed input sets.

We finally return to our original question (Question 1.1). Suppose that a non-signaling
function F passes the linearity test with probability 1−ε for sufficiently small ε ≥ 0 (possibly
with ε > 0 so Theorem 2.2 does not apply). What can we learn about F? Recall that if F
answers according to a fixed function f : {0, 1}n → {0, 1} (as in standard linearity testing),
then we may conclude that f is ε-close to some linear function [15, 12]. The foregoing
discussion for the case of ε = 0 leads to a natural conjecture: non-signaling functions that
pass the linearity test with high probability are local quasi-distributions over functions that are
close to linear. Our next theorem implies that this conjecture is true, but in a non-interesting
way. That is, it holds even without the hypothesis: every k-non-signaling function can be
expressed as a quasi-distribution over functions with support of size at most k (namely, over
functions that are non-zero for at most k inputs).

I Theorem 2.3 (informal). Every k-non-signaling function F can be expressed as a k-local
quasi-distribution Q over functions with support of size at most k.
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17:8 Testing Linearity against Non-Signaling Strategies

The above theorem is quite counterintuitive. On one hand, if F is described by a
distribution over functions that are close to linear, then F passes the linearity test with high
probability. But this simple fact does not extend to the case where F is a quasi-distribution
over functions that are close to linear. For example, the all-ones function never passes the
linearity test, yet Theorem 2.3 implies that it can be expressed as a quasi-distribution over
functions with support of size at most k, i.e., functions that are k

2n -close to the all-zeros
function (a linear function)!

We prove Theorem 2.3 via a greedy approach: given the non-signaling function F , we
iteratively consider small-support functions from heaviest to lightest and, in each iteration,
assign to these functions certain quasi-probabilities computed from F . See Theorem 9.1 (in
Section 9) for details.

Since our last conjecture turned out to be false, we again look for inspiration in the
standard setting in order to formulate another conjecture. Taking a different view, linearity
testing tells us that if a function f : {0, 1}n → {0, 1} passes the linearity test with high
probability then we know that there exists a linear function L such that for every x ∈ {0, 1}n
it holds that L(x) = f(x+ y)− f(y) with high probability over a random y ∈ {0, 1}n. Put
another way, the answers to any given query (or, more generally, a set of queries) given by
the self-correction of f and by L are close in statistical distance.

The foregoing observation suggests a conjecture: if a non-signaling function passes the
linearity test with high probability, then its self-correction is close to a quasi-distribution over
linear functions.

The self-correction F̂ of a non-signaling function F is naturally defined: on input
x ∈ {0, 1}n, F̂ samples a random y ∈ {0, 1}n and outputs F(x + y) − F(y); a similar
procedure applies if F̂ receives multiple inputs. Note that if F is k-non-signaling then F̂ is
k̂-non-signaling with k̂ := bk/2c.

The notion of distance is also naturally defined: the distance between two non-signaling
functions is the maximum statistical distance between the distributions induced on every
subset S; the equivalence of non-signaling functions and quasi-distributions (Theorem 2.1)
extends this definition to apply between two quasi-distributions, or between a non-signaling
function and a quasi-distribution.

The following theorem shows that the conjecture above is in fact true.

I Theorem 2.4 (informal). Let F = {FS}S⊆{0,1}n,|S|≤k be a k-non-signaling function such
that

Pr
x,y←{0,1}n

f←F{x,y,x+y}

[f(x) + f(y) = f(x+ y)] ≥ 1− ε for some ε ≥ 0 .

There is a (k̂ − 1)-local quasi-distribution L over linear functions that is Ok̂(ε)-close to F̂ on
all input sets of size ≤ k̂ − 1. That is, the maximum statistical distance between LS and F̂S,
across all sets S ⊆ {0, 1}n with |S| ≤ k̂ − 1, is Ok̂(ε).

See Theorem 11.2 (in Section 11) for details. Our proof differs significantly from prior
proofs of linearity testing in the standard setting. Informally, we start the proof by noting
that F̂ satisfies Prf̂←F̂{x,y,x+y}

Pr[f̂(x) + f̂(y) = f̂(x+y)] ≥ 1− ε̂ for every x, y ∈ {0, 1}n and
ε̂ := 4ε. (By assumption, F merely satisfies such a statement for random x, y ∈ {0, 1}n.) The
next step is similar to a step in the proof of Theorem 2.2: we define a quasi-distribution L
over linear functions by solving a system of linear equations that ensures that L and F̂ match
on single inputs, i.e., that Pr[L(x) = b] = Pr[F(x) = b] for all x ∈ {0, 1}n and b ∈ {0, 1}.
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We are left to argue that L and F̂ almost match on all sets of at most k̂ − 1 inputs, i.e.,
that the distributions LS and F̂S are statistically close for |S| < k̂. As before, we do so in
two steps: we first use linearity to show that L and F̂ almost match on all parity events
(i.e., Pr[

∑
i∈T F̂(xi) = b] ≈ P̃r[

∑
i∈T L(xi) = b] for all x1, . . . , xs ∈ {0, 1} for s ≤ k̂− 1), and

then we use a quantitative Fourier analytic claim (Lemma 5.1) to extend this claim to the
remaining query sets.

Finally, we use the foregoing results about non-signaling functions to prove analogous
statements about non-signaling players.

Recall that a k-non-signaling player P extends the notion of k non-communicating players
(possibly sharing randomness) as follows: it is a collection (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n where
each P(x1,...,xk) is a distribution over functions f : [k] → {0, 1} (the players’ k answers to
the k inputs) and, for every two input vectors (x1, . . . , xk) and (y1, . . . , yk) that agree on a
subset I ⊆ [k] of entries, the restrictions of P(x1,...,xk) and P(y1,...,yk) to entries in I are equal
as distributions. Non-signaling players are a richer class than non-communicating players
(and quantum-entangled ones) [40].

Now the linearity test, given a k-non-signaling player P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n ,
samples random vectors x, y ∈ {0, 1}n and distinct players i1, i2, i3 ∈ [k], sends the three
queries x, y, x+ y to the players Pi1 ,Pi2 ,Pi3 , and checks that Pi1(x) + Pi2(y) = Pi3(x+ y).

I Theorem 2.5 (informal). Let P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n be a k-non-signaling player.
1. Suppose that

Pr
x,y←{0,1}n

i1,i2,i3←[k]
P

[Pi1(x) + Pi2(y) = Pi3(x+ y)] = 1 .

There exists a (k − 2)-local quasi-distribution L over linear functions that describes P.
2. Suppose that

Pr
x,y←{0,1}n

i1,i2,i3←[k]
P

[Pi1(x) + Pi2(y) = Pi3(x+ y)] ≥ 1− ε .

There exists a (k̂ − 1)-local quasi-distribution L over linear functions that is Ok̂(ε)-close
to P̂, where P̂ is the (appropriately defined) self-correction of P.

See full version for details. The proof of these theorems show how to reduce to the case
of non-signaling functions, which we have already established (in Theorems 2.2 and 2.4
respectively).

We conclude this section via a brief comparison to the case of quantum strategies. Ito
and Vidick [30, 52] show that any quantum strategy that passes the linearity test with high
probability is close to a distribution over linear functions. Our results instead show that,
in our setting, we can only hope for a conclusion involving a quasi-distribution over linear
functions. This qualitative difference is due to the fact that non-signaling strategies are a
richer class than quantum strategies.

3 Techniques

We highlight some of the techniques that we use by providing proof sketches of some of our
results. We first discuss the ideas behind the equivalence between non-signaling functions
and local quasi-distributions (Section 3.1) and then how we analyze the linearity test
(Section 3.2). After that, we explain how we derive corresponding results about non-signaling
players (Section 3.3).
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3.1 Non-signaling functions and local quasi-distributions are equivalent
Our Theorem 2.1 states that non-signaling functions and local quasi-distributions are equiva-
lent. One direction of this equivalence, namely that every k-local quasi-distribution induces a
corresponding k-non-signaling function, is a simple observation. Below we focus on the other,
more interesting direction, which is: given a k-non-signaling function F = {FS}S⊆{0,1}n,|S|≤k,
how do we construct a quasi-distribution Q = {qf}f : {0,1}n→{0,1} that matches F on all sets
of at most k queries?

We construct Q by specifying its Fourier coefficients. We view Q = (qf )f : {0,1}n→{0,1} as
a function q : {0, 1}{0,1}n → R by setting q(f) := qf ∈ R, and then write Q via its Fourier
expansion:

q(·) =
∑

T⊆{0,1}n

q̂(T )χT (·) where
{
χT (f) := (−1)

∑
x∈T

f(x)

q̂(T ) := 〈q, χT 〉 = 1
22n

∑
f : D→{0,1} q(f)χT (f)

.

We set the 22n Fourier coefficients as follows:

q̂(T ) :=


1

22n if T = ∅
2

22n

(
Pr[
∑
x∈T F(x) = 0]− 1

2
)

if 1 ≤ |T | ≤ k
0 if |T | > k

.

We have to argue that the above choice of Q does describe F . First, we show that F and Q
match on all parity events of size at most k, i.e., for all S ⊆ {0, 1}n with |S| ≤ k

Pr
[∑
x∈S
F(x) = 1

]
=

∑
f :
∑

x∈S
f(x)=1

qf = P̃r
[∑
x∈S
Q(x) = 1

]
.

Recall (see Section 1.4) that P̃r[·] denotes the quasi-probability for an event about a quasi-
distribution.

Second, we prove that Pr [F(S) ∈ E] = P̃r [Q(S) ∈ E] for every subset S ⊆ {0, 1}n and
event E ⊆ {0, 1}S . We build on the previous step by observing that any event can be
expressed as a linear combination of parity events: there exist real numbers {cT }T depending
on E such that

Pr[Q(S) ∈ E] =
∑
T⊆S

cT · P̃r
[∑
x∈T
Q(x) = 0

]
. (1)

In fact, the real numbers {cT }T are closely related to the Fourier coefficients of the indicator
function of E, and this relation is a consequence of the fact that the functions {χT (·)}T
depend only on the parities of their inputs. See Lemma 5.1 for details.

The above is merely one quasi-distribution that explains F . We can find other such
quasi-distributions by noting that changing q̂(T ) for |T | > k yields quasi-distributions that
still match F . Essentially, if |T | > k then χT (·) does not affect the induced distributions
on sets of at most k inputs. We then argue that these are the only solutions possible. See
Section 8 for details.

3.2 Testing linearity against non-signaling functions
We discuss the ideas behind our analysis of linearity test against non-signaling functions
(that is, behind Theorem 2.2 and Theorem 2.4). We first explain why known proofs in the
standard setting do not easily extend to our setting, and then we describe the approach that
we took.
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3.2.1 Difficulties of prior approaches
We begin with a helpful exercise for which difficulties do not arise: consider the task of
analyzing the linearity test against a distribution D over boolean functions. Namely, if
Pr[f(x) + f(y) = f(x+ y)] ≥ 1− ε for f ← D and x, y ← {0, 1}n then what can we conclude
about D? This case is not hard to analyze: we separately apply known results on linearity
testing to each function in the support of D, and conclude that most of D is concentrated
on nearly-linear functions. Indeed, by Markov’s inequality, with probability 1−

√
ε over a

choice of f ← D it holds that Prx,y[f(x) + f(y) = f(x + y)] ≥ 1 −
√
ε and thus that f is√

ε-close to a linear function. This conclusion explains why D passes the linearity test with
high probability.

However, when considering the linearity test against a non-signaling function, the situation
changes significantly, as we now explain.

The Fourier analytic approach. One of the classical proofs of linearity testing in the
standard setting follows a Fourier analytic approach [12]. Unfortunately, we do not see how
to use this approach directly on a non-signaling function F , because computing Fourier
coefficients requires access to an entire function while F only provides local views. We could
instead rely on the equivalence between non-signaling functions and local quasi-distributions,
and apply Fourier analysis to the functions in a quasi-distribution Q = (qf )f : {0,1}n→{0,1}
that describes F . Namely, we could rewrite the probability Pr[F(x) + F(y) = F(x+ y)] as∑
f qf Pr[f(x) + f(y) = f(x+ y)], and then reason about the Fourier coefficients of every f .

We do not see how to make this work either, because the coefficients {qf}f can be positive
or negative (and even unbounded), which in particular forbids Markov-type arguments. It is
also not clear what kind of conclusion we could expect about the Fourier coefficients about
all functions.

The combinatorial approach. Another classical proof of linearity testing in the standard
setting follows a combinatorial approach (e.g., [15, 13]): given the function f : {0, 1}n → {0, 1},
define its correction g : {0, 1}n → {0, 1} to be g(x) := majy∈{0,1}nf(x+ y)− f(y), and show
that it is close to f ; then show that g is linear as, for every x ∈ {0, 1}n, a vast majority
of y’s yield g(x). This approach also seems to fail in our setting: the foregoing correcting
procedure relies on taking majority over all y ∈ {0, 1}n, but a non-signaling function only
accepts up to k inputs at a time.

It is not surprising that prior approaches do not seem to apply to our setting: they
were developed to show that a function f passing the linearity test with high probability is
nearly-linear. But we already know that every non-signaling function can be described by a
quasi-distribution over nearly-linear functions, so we are not interested in conclusions about
nearly-linear functions. Instead, we aim to show that (the self-correction of) a non-signaling
function passing the linearity test with high probability is close to a quasi-distribution over
linear functions. We next discuss our approach to establish such a conclusion.

3.2.2 Our approach
Let us once more first focus on the case where a k-non-signaling function F passes the linearity
test with probability 1, namely, Pr[F(x) + F(y) = F(x + y)] = 1 for every x, y ∈ {0, 1}n.
Our first step is to show that there exists a quasi-distribution L over linear functions that
matches F on single inputs, namely, P̃r[L(x) = b] = Pr[F(x) = b] for every x ∈ {0, 1}n and
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b ∈ {0, 1}. Viewing L as a vector (`α)α∈{0,1}n where each α is associated with the linear
function 〈α, ·〉, we know that L must be a solution to the following system of linear equations:

∀x ∈ {0, 1}n ,
∑

α:〈α,x〉=0

`α = Pr[F(x) = 0] .

Note that it suffices to consider constraints only involving Pr[F(x) = 0] because Pr[F(x) =
1] = 1 − Pr[F(x) = 0]. Also, L is a quasi-distribution because

∑
α `α = Pr[F(0n) = 0] =

Prx←{0,1}n [F(0n) + F(x) = F(x)] = 1 (as F always passes the linearity test). This system
has a unique solution, which thus defines the quasi-distribution L. We remark that it
is no coincidence that quasi-distributions supported on LIN are uniquely defined by their
probabilities on sets of size 1: a quasi-distribution is supported on LIN if and only if all of its
Fourier coefficients are determined by the coefficients only for sets of size 1 (see full version
for details).

Next, we need to argue that L and F match on larger sets of inputs. We first argue
that they match on all parity events, similarly to the idea behind the equivalence between
non-signaling functions and quasi-distributions discussed above (in Section 3.1). Specifically,
we use the assumption on linearity to show that for every subset S ⊆ {0, 1}n with |S| < k it
holds that

P̃r
[∑
x∈S
L(x) = 0

]
= Pr

[∑
x∈S
F(x) = 0

]
.

After that, using Eq. (1), we conclude that L and F match on all sets S of less than k inputs:
we express each event E ⊆ {0, 1}S as a linear combination of parity events for both F and L,

Pr [F(S) ∈ E] =
∑
T⊆S

cT · Pr
[∑
x∈T
F(x) = 0

]
,

and similarly

P̃r [L(S) ∈ E] =
∑
T⊆S

cT · P̃r
[∑
x∈T
L(x) = 0

]
.

The above shows that matching on parity events implies matching on all sets of less than k
inputs.

Let us now relax the assumption that F passes the linearity test with probability 1 to
merely that it passes the test with high probability, say at least 1 − ε for ε > 0. We first
consider F̂ , which is the k̂-non-signaling self-correction of F (with k̂ := k/2), and observe
that there exists ε̂ = 4ε such that F̂ satisfies, for every x, y ∈ {0, 1}n,

Pr
f̂←F̂{x,y,x+y}

[f̂(x) + f̂(y) = f̂(x+ y)] ≥ 1− ε̂ .

Note that, by assumption, F merely satisfies such a statement for random x, y ∈ {0, 1}n.
The next step is similar to the “ε = 0” case discussed above: we define a quasi-distribution

L over linear functions by solving the system of linear equations that ensures that L and
F̂ match on all single inputs, i.e., that P̃r[L(x) = b] = Pr[F̂(x) = b] for all x ∈ {0, 1}n and
b ∈ {0, 1}.

We then argue that L and F̂ almost match on sets of less than k̂ inputs, i.e., that the
distributions LS and F̂S are statistically close for every S ⊆ {0, 1}n with |S| < k̂. We do so,
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again, in two steps. First, we use the almost linearity of F̂ to show that L and F̂ almost
match on all parity events. Specifically, we show that for every subset T ⊆ {0, 1}n with
|T | < k̂ and b ∈ {0, 1},∣∣∣∣∣Pr

[∑
x∈T
F̂(x) = b

]
− P̃r

[∑
x∈T
L(x) = b

]∣∣∣∣∣ < (|T | − 1)ε̂ .

Then, we use Eq. (1) to extend this claim to all events on these query sets: for every subset
S ⊆ {0, 1}n with |S| < k̂ and event E ⊆ {0, 1}S∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]

∣∣∣ < ∑
T⊆S

|cT | · (|T | − 1) · ε̂ .

Crucially, unlike the case of ε = 0, here we need quantitative bounds on the coefficients
{cT }T in order to derive an upper bound. We prove such bounds in Lemma 5.1.

Finally, while L is close to F̂ (see Definition 7.5 for how to extend the notion of statistical
distance to our setting), it is possible that L does not induce a distribution on all subsets
S ⊆ {0, 1}n with |S| < k̂, because it could be that P̃r [L(S) ∈ E] is negative for some S and
E ⊆ {0, 1}S . However, since Pr[F̂(S) ∈ E] is a probability (i.e., a number between 0 and
1), for all subsets S ⊆ {0, 1}n with |S| < k̂ it holds that P̃r[L(S) ∈ E] ∈ [−ε′, 1 + ε′] for
ε′ := (|S| − 1) ·

√
|E| · ε̂. We then show that L can be corrected to obtain a (k̂ − 1)-local

quasi-distribution L′ that is close to L (see Corollary 7.9). By triangle inequality this implies
that L′ is also close to F̂ .

See Section 11 for details.

3.3 Extending the analysis to non-signaling players
We make a “black-box” use of our results on testing linearity against non-signaling functions
to derive corresponding results on testing linearity against non-signaling players. Recall
that, given a k-non-signaling player P = (P(x1,...,xk))(x1,...,xk)∈{0,1}k·n , the linearity test is
now as follows: sample x, y ∈ {0, 1}n and (distinct) i1, i2, i3 ∈ [k] uniformly at random,
send the three queries x, y, x + y to the players Pi1 ,Pi2 ,Pi3 respectively, and check that
Pi1(x) + Pi2(y) = Pi3(x+ y).

We prove that if P always passes the linearity test, then there exists a quasi-distribution
L over linear functions that matches P.

We first argue that P must be (almost) symmetric, that is, P’s answers depend only on
the set of asked queries but not also on which players answer these queries. In more detail,
we show that, for every subset I ⊆ [k] of |I| = k − 1 players, it holds that Pr[P(~x) = ~b] =
Pr[P(π(~x)) = π(~b)] for every permutation π : I → I, inputs ~x = (xi)i∈I ∈ ({0, 1}n)I , and
answers ~b = (bi)i∈I ∈ {0, 1}I .

We then define a (k − 1)-non-signaling function F that matches k − 1 players of P
in the natural way (we define Pr[F(x1) = b1, . . . ,F(xk−1) = bk−1] to be Pr[P1(x1) =
b1, . . . ,Pk−1(xk−1) = bk]). By the aforementioned symmetry of P, it does not matter which
k − 1 players we use to define F .

We then argue that F always passes the linearity test. Our earlier results imply that there
exists a quasi-distribution L over linear functions that matches F on all subsets of at most
k − 2 queries. By definition of F this implies that L also matches the players P1, . . . ,Pk−2,
and, using the symmetry of P , we conclude that L also matches every subset of k− 2 players.

We now relax the assumption that P passes the linearity test with probability 1 to merely
that it passes the test with probability 1− ε for a small enough ε > 0.
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Similarly to the case of non-signaling functions, we define a self-correction P̂ of P
in the natural way: it is a k̂-non-signaling player (for k̂ := k/2) that, given a query
(x1, . . . , xk̂) ∈ {0, 1}k̂×n, samples w1, . . . , wk̂ ∈ {0, 1}n and a permutation π : [k] → [k]
uniformly at random, and answers each xi with Pπ(2i)(xi + wi) + Pπ(2i+1)(wi).

We show that P̂ is (fully) symmetric and that, for every x, y ∈ {0, 1}n and distinct
i1, i2, i3 ∈ [k̂], Pr[P̂i1(x) + P̂i2(y) = P̂i3(x + y)] > 1 − ε̂ for ε̂ := 4ε. This is analogous
to the average-case-to-worst-case statement that we showed for non-signaling functions.
We define a k̂-non-signaling function F̂ that matches P̂ similarly to the above (by letting
Pr[F̂(x1) = b1, . . . , F̂(xk̂) = bk̂] := Pr[P̂1(x1) = b1, . . . , P̂k̂(xk̂) = bk̂]), and show that it
satisfies the analogous worst-case property, that is, Pr[F̂(x) + F̂(y) = F̂(x+ y)] ≥ 1− ε̂ for
every x, y ∈ {0, 1}n. Our earlier results imply that there exists a quasi-distribution L over
linear functions that is close to F̂ , and thus also close to P̂.

See full version for details.

4 Discussion and open problems

The study of non-signaling strategies in Physics is motivated by the goal of understanding
the power and limitations of Nature’s apparent non-locality [35, 43, 40, 41, 8]. Prior work
has explored many topics, including the inter-convertibility between quantum strategies and
non-signaling strategies [19, 11, 10, 31, 17]; communication complexity with non-signaling
strategies [51, 16]; non-local computation [36]; using non-signaling strategies to achieve key
distribution, oblivious transfer, and bit commitments [9, 53, 18, 49, 48]; and many others
[38, 27, 20].

More recently, researchers have established connections with Complexity Theory and
Cryptography. Property Testing against non-signaling strategies, the subject of our work, is
likely to lead to a deeper understanding of these.

4.1 Powers and limitations of non-local strategies
Understanding the computational complexity of computing or approximating the value of
certain classes of games is a fundamental problem in Complexity Theory. Games are typically
phrased in terms of one or more non-communicating players that interact with a probabilistic
polynomial-time Referee (with polynomial randomness), who decides at the end of the game
if the players win or not. The complexity of these games is well-understood.

Results on Interactive Proofs (IPs) [37, 46] imply that approximating the value of single-
player games is PSPACE-complete, when given enough rounds.
Results on Multi-prover Interactive Proofs (MIPs) [7] imply that approximating the value
of multi-player games is NEXP-complete, even with only two players.
Results on Probabilistically Checkable Proofs (PCPs) [6, 24, 4, 3] imply that, if the
player’s strategy is non-adaptive (the player merely answers queries from the Referee)
then approximating the game’s value is NEXP-complete, even if the Referee asks only a
constant number of queries and receives answers over a constant-size alphabet.

However, if the players can use any non-signaling strategy to win the game, much less is
known.

If there are only two players, then approximating the game’s value is PSPACE-complete
[29, 28]. If the game has k players then its value can be computed in time poly(2kr, |Σ|k),
where r is the Referee’s randomness complexity and Σ is each player’s answer’s alphabet
[23], which means that this computation lies in EXP. This is very unlike the case of non-
communicating players.
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However, hardness results for this problem in the case of three or more players have been
elusive. Recently, Kalai, Raz, and Rothblum [32, 34] established EXP-hardness for the case
of polynomially-many provers, via a reduction from deterministic-time languages.

I Theorem 4.1 ([32, 34]). Let L be a language decidable in time T : N→ N. There exists
a constant c > 0 such that, for any function λ : N→ N with λ ≥ logc T , L has a (λ logc T )-
prover MIP with soundness error 2−λ against non-signaling players. The verifier runs in
time nλ2 logc T and the provers in time poly(T, λ); each query and answer consists of λ logc T
bits.

The above theorem is proved by constructing a PCP verifier that is secure against non-
signaling functions (Definition 6.1), which can then be compiled into an MIP verifier that is
secure against non-signaling players. The proof is a technical tour-de-force showing that a
modification of the “classical” PCP verifier in [7, 6] is secure against non-signaling functions.

The huge gap between the EXP-completeness for polynomially-many provers and the
PSPACE-completeness for two provers motivates a natural question:

Is there a non-signaling analogue of the PCP Theorem? I.e., does EXP have
O(1)-query PCPs over a O(1)-size alphabet that are secure against non-signaling
functions? (Equivalently, O(1)-prover MIPs over a O(1)-size alphabet that are secure
against non-signaling players?)

We believe that initiating a study of Property Testing against non-signaling strategies will
drive progress on this question. In particular, linearity testing is one of the ingredients of
the (classical) PCP Theorem, and linearity testing against non-signaling strategies may be a
good place to start.

We also believe that Property Testing against non-signaling strategies may play a signifi-
cant simplifying role, which could itself drive progress on this and other questions. Indeed,
the analysis of classical PCP constructions (including [7, 6]) is carried out in two conceptually
simple steps: first argue soundness assuming that the PCP is a low-degree function, and
then rely on low-degree testing and self-correction to ensure that the PCP is close to a
low-degree function [45, 44, 5]. The study of this latter step as a standalone problem in the
area of Property Testing has enabled much progress on PCP research. In contrast, while
the analysis in [32, 34] does analyze low-degree tests by proving certain average-case-to-
worst-case statements, it does not prove any local-to-global phenomena for the property of
“low-degreeness”.

We prove a first local-to-global phenomenon for Property Testing against non-signaling
strategies. However, whether Property Testing is feasible beyond the case of linearity testing
(our focus) and whether it plays a beneficial and simplifying role in PCP research are
fascinating open problems.

4.2 Hardness of approximation
Feige et al. [24] showed a fundamental connection between MIPs/PCPs and the hardness
of approximating values of constraint satisfaction problems. Kalai, Raz, and Regev [33]
recently established a similar connection, this time between non-signaling MIPs/PCPs
and the hardness of approximating values of linear programs. While the first connection
considers approximation algorithms that are bounded in time, the second connection considers
approximation algorithms that are bounded in space. We recall [33]’s result and its relation
to our results.
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I Theorem 4.2 ([33]). Let L be a language with a 1-round k-prover MIP with soundness
error ε against non-signaling players in which:
(i) the verifier has time complexity T , space complexity S, and randomness complexity r;
(ii) the prover’s answers are symbols in Σ.

Then there is a family of polyhedra {Hn}n∈N and a poly(2kr, |Σ|k , T )-time poly(k, r, S)-
space reduction R such that:
(i) For every instance x ∈ {0, 1}∗, R(x) is a linear program with polyhedron H|x| and with

poly(2kr, |Σ|k) variables and constraints.
(ii) If x ∈ L, then the value of the linear program R(x) is 1.
(iii) If x 6∈ L, then the value of the linear program R(x) at most ε.

The above result, when combined with the non-signaling MIPs for deterministic-time
languages of [32, 34] (see Section 4.1), implies that a 2logo(1)(n)-space approximation algorithm
for linear programming is unlikely, even when given unbounded computation based on the
polyhedron. (Since that would imply, in particular, that every problem in P can be solved in
2logo(1)(n)-space.)

The above conclusion, however, appears sub-optimal because both 2kr and |Σ|k are
super-polynomial in the construction of [32, 34]. Ideally, we would like a construction where
r = O(logn) and k = O(1), which again (as discussed in Section 4.1) leads to the question
of whether there is a non-signaling analogue of the PCP Theorem. We conjecture that the
study of Property Testing against non-signaling strategies is again very relevant.

4.3 One-round delegation of computation
Delegation of computation is a fundamental goal in Cryptography that involves designing
protocols that enable a weak verifier to outsource expensive computations to a powerful but
untrusted prover.

A key efficiency measure is round complexity (the number of back-and-forth messages
between the verifier and prover). Aiello et al. [1] suggested a cryptographic method to
transform any 1-round MIP into a 1-round delegation protocol, but did not provide a proof
of security. Later on, Dwork et al. [23] showed that this method is not secure in the general
case, by exhibiting a 1-round MIP for which the transformation yields a delegation protocol
that can be fooled.

Nevertheless, Kalai, Raz, and Rothblum [32] proved that if the 1-round MIP used in
the method is sound against non-signaling players then the resulting delegation protocol
cannot be fooled (namely, is secure). More precisely, the 1-round MIP must be sound not
only against all players that are non-signaling but also against all players that are almost
non-signaling (see full version for details), where “almost” denotes a certain parameter that
depends on the security reduction.

By invoking this method on the MIP of [32, 34] (which is secure against almost non-
signaling players), one obtains a delegation protocol for all polynomial-time functions in
which the prover runs in polynomial time and the verifier in polylogarithmic time.

Yet, the seemingly sub-optimal parameters of the MIP of [32, 34] suggest that there is
room to improve efficiency by invoking the method on more efficient MIPs. For example:

Is there an almost non-signaling analogue of the PCP Theorem?
Namely, does EXP have O(1)-query PCPs (equivalently, O(1)-prover MIPs) over a
O(1)-size alphabet that are secure against almost non-signaling strategies?
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The study of Property Testing against almost non-signaling strategies is likely a first step,
and our work establishes first results for exact non-signaling strategies.

I Remark 4.3 (extension to almost non-signaling). While almost non-signaling strategies are
not our focus, in this paper we do show that almost non-signaling strategies are not outside
the reach of tools that we use. Concretely, we show that every almost non-signaling function
is “reasonably close” to a corresponding (exact) non-signaling function. The proof of this
statement uses Fourier analysis, and the intuition behind it is similar to how almost-feasible
solutions to Sherali–Adams relaxations are “smoothened”into feasible ones [42]. The generic
lemma enables us, for example, to extend Theorem 2.4 to the case of almost non-signaling
strategies. Whether a whitebox analysis of linearity testing against almost non-signaling
strategies can improve upon such a blackbox extension remains an interesting open problem.
See full version for details.

5 Preliminaries

For a finite domain D, we denote by UD the set of all boolean functions f : D → {0, 1}; when
D is clear from context, we may omit the subscript in UD. When D = {0, 1}n, a function
f ∈ U{0,1}n is linear if f(x) + f(y) = f(x+ y) for all x, y ∈ {0, 1}n; LIN is the set of all such
linear functions.

5.1 Fourier analysis of boolean functions
We use standard notation for Fourier analysis of boolean functions (see [39] for more details).
For a domain D of size N , we consider functions f : {0, 1}D → R. The inner product of two
functions g1, g2 : {0, 1}D → R is 〈g1, g2〉 := 1

2N

∑
x∈{0,1}D g1(x)g2(x). For a subset T ⊆ D,

χT : {0, 1}D → R is the parity function χT (x) = (−1)
∑

i∈T
xi . It is not hard to verify that

the set of functions {χT }T⊆D is an orthonormal basis of the space of all functions from
{0, 1}D to R. In particular, every function f : {0, 1}D → R can be written as

f(·) =
∑
T⊆D

f̂(T )χT (·) ,

where f̂(T ) = 〈f, χT 〉 = 1
2N

∑
x∈{0,1}D f(x)χT (x). In particular, by Parseval’s identity for

any two functions f, g : {0, 1}D → R we have

1
2N

∑
x∈{0,1}D

f(x)g(x) =
∑
T⊆D

f̂(T )ĝ(T ) ,

which implies Plancherel’s identity

1
2N

∑
x∈{0,1}D

f(x)2 =
∑
T⊆D

f̂(T )2 .

For a set E ⊆ {0, 1}s, its indicator function 1E : {0, 1}s → {0, 1} is defined as

1E =
{

1 if x ∈ E
0 otherwise

.

Note that by Plancherel’s identity we have
∑
T⊆[s] 1̂E(T )2 = E[1E ] = |E|

2s . In particular, this

implies ‖1̂E‖1 =
∑
T⊆[s] |1̂E(T )| ≤

√∑
T⊆[s] 1̂E(T )2 ·

√∑
T⊆[s] 1 ≤

√
|E|
2s · 2s/2 =

√
|E|.
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5.2 Expressing boolean events as sums of parities
We state two lemmas that express the probability of certain events as probabilities about
the parities of related events.

I Lemma 5.1. Let X1, . . . , Xs be boolean random variables. Then, for every event E ⊆
{0, 1}s it holds that

Pr[(X1 . . . , Xs) ∈ E] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅)− 1E(~0), and cT = 2 · 1̂E(T ) for all T 6= ∅. In particular, cT ’s depend
only on E and

∑
T⊆[s] |cT | ≤ 3‖1̂E‖1 ≤ 3

√
|E|.

I Corollary 5.2. Let X1, . . . , Xs be boolean random variables. Then, for every ~b = (b1, . . . , bs)
in {0, 1}s it holds that

Pr[X1 = b1, . . . , Xs = bs] = −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]
.

Proof of Lemma 5.1. Define p : {0, 1}s → R as p(~a) = Pr[X1 = a1, . . . , Xs = as], and write
p =

∑
T⊆[s] p̂(T ) · χT . We have

p̂(T ) = E[p(~a) · χT (~a)]

= 1
2s

 ∑
~a:
∑

i∈T
~ai=0

p(~a)−
∑

~a:
∑

i∈T
~ai=1

p(~a)


= 1

2s

2
∑

~a:
∑

i∈T
~ai=0

p(~a)− 1


= 1

2s

(
2 Pr

[∑
i∈T

Xi = 0
]
− 1
)

Let E ⊆ {0, 1}s be an event, and let 1E : {0, 1}s → {0, 1} be its indicator function. Then,
by Parseval’s identity we have

Pr[(X1 . . . , Xs) ∈ E] =
∑

~a∈{0,1}s

p(~a) · 1E(~a) = 2s ·
∑
T⊆[s]

p̂(T ) · 1̂E(T ) .

By plugging in the formula p̂(T ) = 1
2s

(
2 Pr[

∑
i∈T Xi = 0]− 1

)
, and using Pr[

∑
i∈∅Xi =

0] = 1 we get

Pr[(X1 . . . , Xs) ∈ E] =
∑
T⊆[s]

(
2 Pr

[∑
i∈T

Xi = 0
]
− 1
)
·1̂E(T ) =

∑
T⊆[s]

cT ·Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅) −
∑
T⊆[s] 1̂E(T ), and cT = 2 · 1̂E(T ) for all T 6= ∅. Since 1E(·) =∑

T⊆[s] 1̂E(T )χT (·), it follows that 1E(~0) =
∑
T⊆[s] 1̂E(T ), as required.

Thus, by the argument in Section 5.1 we have
∑
T⊆[s] |cT | ≤ 3

∑
T⊆[s] |1̂E(T )| ≤ 3

√
|E|.
J
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Proof of Corollary 5.2. Let E = {~b} be the singleton event. It is easy to verify that
1̂E(T ) = (−1)

∑
i∈T

bi · 2−s. Therefore, by Lemma 5.1 we have

Pr[X1 = b1, . . . , Xs = bs] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]
,

where c∅ = 2 · 1̂E(∅) − 1E(~0) = 1
2s−1 − 1E(~0), and cT = (−1)

∑
i∈T

bi · 2−s+1 for all T 6= ∅.
By substituting Pr

[∑
i∈T Xi = 0

]
with 1 − Pr

[∑
i∈T Xi = 1

]
for all T ⊆ [s] such that∑

i∈T bi = 1 we get

Pr[X1 = b1, . . . , Xs = bs] =
∑
T⊆[s]

cT · Pr
[∑
i∈T

Xi = 0
]

=

−1E(0)−
∑

T :
∑

i∈T
bi=1

1
2s−1

+ 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T

Xi =
∑
i∈T

bi

]
,

as required. J

5.3 A linear system
Below we prove that a certain linear system of equations, which we will use later, has a
unique solution. This linear system is the inverse of the Hadamard–Walsh matrix.

I Lemma 5.3. For every positive integer n and real numbers {cβ}β∈{0,1}n , the system of 2n
linear equations over R in 2n variables {zα}α∈{0,1}n given by∀β ∈ {0, 1}n

∑
α∈{0,1}n

s.t. 〈α,β〉=0

zα = cβ


has a unique solution.

Proof. Let A be the 2n× 2n boolean matrix corresponding to the system of linear equations,
that is, such that Az = c. Note that the (β, α)-th entry of A is equal to 1− 〈α, β〉, and in
particular, the row in A corresponding to β = 0n is the all-ones row. Define H to be the
matrix obtained from A by performing the following elementary row operations: for every
β 6= 0n, multiply row β by 2 and then subtract the all-ones row (corresponding to β = 0n).

Note that the (β, α)-th entry of H is equal to (−1)〈α,β〉. (The matrix H is sometimes
called the Hadamard–Walsh matrix.) Indeed, this holds trivially for the row β = 0n as
Hβ,α = (−1)〈α,0n〉 = 1, and for β 6= 0n we have Hβ,α = 2(1 − 〈α, β〉) − 1 = 1 − 2〈α, β〉 =
(−1)〈α,β〉. Since H was obtained from A by performing elementary row operations, A is
invertible if and only if H is invertible. Observe that H is indeed invertible because the rows
of H are mutually orthogonal since for every two distinct β and γ in {0, 1}n it holds that

〈row β, row γ〉 =
∑
α

(−1)〈α,β〉(−1)〈α,γ〉 =
∑
α

(−1)〈α,β〉+〈α,γ〉 =
∑
α

(−1)〈α,β+γ〉 = 0 ,

where the last equality holds because β + γ 6= 0n. J
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6 Non-signaling functions

We define non-signaling functions, introduce useful notation for them, and prove a simple
lemma about them. The notions described here are used throughout the paper.

I Definition 6.1 (non-signaling functions). A k-non-signaling (boolean) function over
a finite domain D is a collection F = {FS}S⊆D,|S|≤k where
(i) each FS is a distribution over functions f : S → {0, 1}, and
(ii) for every two subsets S and T each of size at most k, the restrictions of FS and FT to

S ∩ T are equal as distributions.
(If S = ∅ then FS always outputs the empty string.)

Given a set S ⊆ D of size |S| ≤ k and a string ~b ∈ {0, 1}S , we define

Pr[F(S) = ~b ] := Pr
f←FS

[ f(S) = ~b ] .

The non-signaling property in this notation is the following: for every two subsets S, T ⊆ D
of sizes |S| , |T | ≤ k and every string ~b ∈ {0, 1}S∩T , Pr[F(S)|S∩T = ~b ] = Pr[F(T )|S∩T = ~b ].

Sometimes it is more convenient to consider a vector of inputs (rather than a set), and
so we define notation for this case. Given a vector 〈x1, . . . , xs〉 with entries in D and a
vector 〈b1, . . . , bs〉 with entries in {0, 1} (with s ∈ {1, . . . , k}), we define Pr[F(〈x1, . . . , xs〉) =
〈b1, . . . , bs〉] and Pr[F(x1) = b1, . . . ,F(xs) = bs] to be the probability

Pr
f←F{x1,...,xs}

[ f(x1) = b1, . . . , f(xs) = bs] .

Note that {x1, . . . , xs} is an unordered set and its size may be less than s, because the entries
of the vector 〈x1, . . . , xs〉 may not be distinct. We abuse notation and still use symbols such
as S and ~b to denote vectors as above. We stress that we use an ordering on S merely to
match each element of S to the corresponding element in ~b; the event remains unchanged if
one permutes the entries of S and ~b according to the same permutation.

I Remark 6.2 (Sherali–Adams hierarchy). We note that k-non-signaling functions are solutions
to the linear program arising from the k-relaxation in the Sherali–Adams hierarchy [47]. The
variables are of the form XS,~b (for all S ⊆ D of size at most k and ~b ∈ {0, 1}S) and express
Pr[F(S) = ~b ]. Consistency across subsets S and T is expressed using the natural linear
constraints.2

We conclude with a useful lemma.

I Lemma 6.3. Let F be a k-non-signaling function over a domain D, let S1, S2 be subsets of
D with |S1 ∪ S2| ≤ k, and let g1 : {0, 1}S1 → {0, 1}r and g2 : {0, 1}S2 → {0, 1}r be functions.
If PrF [ g1(F(S1)) = g2(F(S2))] ≥ 1− ε, then for every ~b ∈ {0, 1}r it holds that∣∣∣Pr

F
[ g1(F(S1)) = ~b ]− Pr

F
[ g2(F(S2)) = ~b ]

∣∣∣ ≤ ε .

In particular, if ε = 0 then PrF [ g1(F(S1)) = ~b ] = PrF [ g2(F(S2)) = ~b ] for every ~b ∈ {0, 1}r.

2 In fact it suffices to only have variables of the form XS,1S as all other probabilities can be computed
from these.



A. Chiesa, P. Manohar, and I. Shinkar 17:21

Proof. By direct computation:∣∣∣Pr
F

[ g1(F(S1)) = ~b ]− Pr
F

[ g2(F(S2)) = ~b ]
∣∣∣

=
∣∣∣∣Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) = ~b ] + Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ]

− Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) = ~b ]− Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]
∣∣∣∣

=
∣∣∣Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ]− Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]
∣∣∣

≤ Pr
F

[ g1(F(S1)) = ~b ∧ g2(F(S2)) 6= ~b ] + Pr
F

[ g1(F(S1)) 6= ~b ∧ g2(F(S2)) = ~b ]

≤ Pr
F

[ g1(F(S1)) 6= g2(F(S2))] ≤ ε .

Note that we are implicitly using the fact that |S1 ∪ S2| ≤ k whenever we have S1 and S2 in
the same probability event because we are querying F on all inputs in S1 ∪ S2 at once. J

7 Quasi-distributions

A quasi-distribution extends the notion of a probability distribution by allowing probabilities
to be negative, and is the main tool that we use to analyze non-signaling functions.

I Definition 7.1 (quasi-distributions). Let D be a finite domain, and denote by UD the set
of all boolean functions of the form f : D → {0, 1}. A quasi-distribution Q over a subset
G ⊆ UD is a set of real numbers {qf}f∈UD

such that
∑
f∈UD

qf = 1 and qf = 0 for every
f /∈ G.

I Definition 7.2 (quasi-probability). Given a quasi-distribution Q = {qf}f∈UD
, a subset

S ⊆ D, and a string ~b ∈ {0, 1}S , we define the quasi-probability of the event “Q(S) = ~b”
to be the following (possibly negative) real number

P̃r[Q(S) = ~b ] :=
∑

f∈UD s.t. f(S)=~b

qf .

As in the case of non-signaling functions, it is sometimes more convenient to consider a
vector of inputs rather than a set. Given a vector 〈x1, . . . , xs〉 with entries in D and a vector
〈b1, . . . , bs〉 with entries in {0, 1}, we define Pr[Q(〈x1, . . . , xs〉) = 〈b1, . . . , bs〉] and Pr[Q(x1) =
b1, . . . ,Q(xs) = bs] to be the (possibly negative) real number

∑
f∈UD s.t. ∀i f(xi)=bi

qf . We
abuse notation and still use symbols such as S and ~b to denote vectors as above.

Since a quasi-distribution Q is defined by its weights q = (qf )f∈UD
, we can view Q as a

function from {0, 1}D to R, where we identify a function f : D → {0, 1} with the corresponding
vector in {0, 1}D and q(f) with qf . In particular, we can write q(·) =

∑
T⊆D q̂(T )χT (·),

where χT (f) = (−1)
∑

x∈T
f(x), and q̂(T ) = 〈q, χT 〉 = 1

2|D|
∑
f : D→{0,1} q(f)χT (f).

The following lemma is an analogue of Lemma 5.1 for quasi-distributions.

I Lemma 7.3. Let Q = (qf )f be a quasi-distribution, S = 〈x1, . . . , xs〉 a vector with entries
in {0, 1}n. Then, for every event E ∈ {0, 1}s it holds that

∑
f :f(S)∈E

qf =
∑
T⊆[s]

cT · P̃r
[∑
i∈T
Q(xi) = 0

]
=
∑
T⊆[s]

cT ·

 ∑
f :
∑

i∈T
f(xi)=0

qf

 ,

where c∅ = 2 · 1̂E(∅)− 1E(~0), and cT = 2 · 1̂E(T ) for all T 6= ∅.
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The proof of the lemma is immediate from the proof of Lemma 5.1, since the proof only uses
the fact that probabilities add up to 1, which also holds for quasi-probabilities.

I Definition 7.4 (locality). Let D be a finite domain of size N . For 1 ≤ ` ≤ N a quasi-
distribution Q over UD is `-local if for every subset S ⊆ D of size |S| ≤ ` and string
~b ∈ {0, 1}S ,

P̃r[Q(S) = ~b ] ∈ [0, 1] .

For completeness, we also say that all quasi-distributions are 0-local.

If Q is `-local, then for every subset S ⊆ D of size |S| ≤ `, we may view Q(S) as a
probability distribution over {0, 1}S . If Q is `-local then it is s-local for every s ∈ {0, 1, . . . , `}.

For Q to be `-local, it suffices for all relevant P̃r[Q(S) = ~b] to be non-negative (as opposed
to be in [0, 1]). This is because

∑
f qf = 1, so that

∑
~b∈{0,1}S P̃r[Q(S) = ~b] = 1 and, if all

terms in this sum are non-negative, then we can deduce that P̃r[Q(S) = ~b] ≤ 1 for every ~b.

IDefinition 7.5 (statistical distance). Given a finite domainD and an integer ` ∈ {1, . . . , |D|},
the ∆`-distance between two quasi-distributions Q and Q′ is

∆`(Q,Q′) := max
S⊆D , |S|≤`

∆(QS ,Q′S) ,

where ∆(QS ,Q′S) := maxE⊆{0,1}S

∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]
∣∣∣.

We say that Q and Q′ are ε-close in the ∆`-distance if ∆`(Q,Q′) ≤ ε; else, they are
ε-far.

I Remark 7.6 (distance for non-signaling functions). The definition of ∆`-distance naturally
extends to defining distances between k-non-signaling functions, as well as between quasi-
distributions and k-non-signaling functions, provided that ` ≤ k.

The notion above generalizes the standard notion of statistical (total variation) distance: if
Q and Q′ are distributions then their ∆|D|-distance equals their statistical distance. Also note
that if Q and Q′ are `-local quasi-distributions then their ∆`-distance equals the maximum
statistical distance, across all subsets S ⊆ D with |S| ≤ `, between the two distributions QS
and Q′S — in particular this means that any experiment that queries exactly one set of size
at most ` cannot distinguish between the two quasi-distributions with probability greater
than ∆`(Q,Q′).

We stress that ∆`(Q,Q′) = 0 does not necessarily mean that Q = Q′! In fact, it is
possible to have ∆`(Q,Q′) = 0 while

∑
f∈U |qf − q′f | is arbitrarily large. We also remark

that the ∆`-distance is not necessarily upper bounded by 1, and is in general unbounded.

I Definition 7.7 (approximate locality). Given a finite domain D, an integer ` ∈ {1, . . . , |D|},
and a real number ε ≥ 0, a quasi-distribution Q over UD is (`, ε)-local if, for every subset
S ⊆ D of size |S| ≤ ` and every event E ⊆ {0, 1}S ,

P̃r[Q(S) ∈ E] ∈ [−ε, 1 + ε] .

Approximate locality generalizes the notion of (exact) locality as in Definition 7.4.
Indeed, note that in Definition 7.4 the condition is point-wise, i.e., P̃r[Q(S) = ~b] ∈ [0, 1]
for each ~b ∈ {0, 1}S . However, this is in fact equivalent to the event-wise definition,
P̃r[Q(S) ∈ E] ∈ [0, 1] for all E ⊆ {0, 1}S , and hence every `-local quasi-distribution Q is
(`, 0)-local.
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Below we discuss the following questions. Given an approximately local quasi-distribution
Q, can we find a local quasi-distribution Q′ close to it? Moreover, can we ensure that Q′
“looks like” Q? We show that if Q is (`, ε)-local and is supported over a set G of functions
that is nice in some precise way, then there is an `-local Q′ over G that is close to Q. The
proof idea is similar to that of “smoothening” almost-feasible solutions to Sherali–Adams
relaxations into feasible ones [42].

I Lemma 7.8. Let D be a finite domain, ` ∈ {1, . . . , |D|} be an integer, and δ > 0, ε ≥ 0 be
reals. Let G ⊆ UD be a set of functions f : D → {0, 1} such that for all subsets S ⊆ D of size
|S| ≤ ` and for all strings ~b ∈ {0, 1}S it holds that Prf←G[f(S) = ~b] ∈ {0} ∪ [δ, 1], where f
is sampled uniformly at random from G. If Q is a (`, ε)-local quasi-distribution over G, then
there exists an `-local quasi-distribution Q′ over G such that ∆`(Q,Q′) ≤ (1 + ε− δ) · ε

ε+δ .

We highlight two notable special cases for the domain D = {0, 1}n. If G = U{0,1}n (the
set of all functions), then Prf←G[f(S) = ~b ] = 2−`. Also, if G = LIN (the set of all linear
functions), then for every subset S ⊆ {0, 1}n of size at most ` and every string ~b ∈ {0, 1}S it
holds that Prf←G[f(S) = ~b ] = 0 or Prf←G[f(S) = ~b ] = 2− dim(span(S)) ≥ 2−|S| ≥ 2−`. These
two cases yield the following corollary.

I Corollary 7.9. If Q is a (`, ε)-local quasi-distribution over U{0,1}n (resp., LIN), then
there is an `-local quasi-distribution Q′ over U{0,1}n (resp., LIN) such that ∆`(Q,Q′) ≤
1+ε−2−`

1+2`ε
· 2`ε < 2`ε.

Proof. The hypothesis of Lemma 7.8 holds with δ = 2−`. So there exists an `-local quasi-
distribution Q′ over U{0,1}n (resp., LIN) such that ∆`(Q,Q′) ≤ ε · 1+ε−δ

ε+δ = 1+ε−2−`

ε+2−` · ε =
1+ε−2−`

1+2`ε
· 2`ε. Clearly the fraction is smaller than 1, and so the entire expression is at most

2`ε. J

We now prove the lemma.

Proof of Lemma 7.8. Let UG be the uniform distribution over all functions in G. For
ε′ := ε

ε+δ , define the quasi-distribution Q′ := (1 − ε′)Q + ε′UG. Namely, if the vector of
quasi-probabilities of Q is (qf )f∈G, then the the vector of quasi-probabilities of Q′ is (q′f )f∈G
where q′f := (1− ε′) · qf + ε′/|G|.

First, we show that Q′ is an `-local quasi-distribution. That is, for all subsets S ⊆ D

of size at most ` and for every ~b ∈ {0, 1}S it holds that P̃r[Q′(S) = ~b] ≥ 0. Fix such an
S and ~b. If Prf∈G[f(S) = ~b] = 0, then there is no f ∈ G such that f(S) = ~b, and hence
P̃r[Q′(S) = ~b] = 0. Otherwise, Prf∈G[f(S) = ~b] ≥ δ, and hence,

P̃r[Q′(S) = ~b] =
∑

f∈G:f(S)=~b

q′f

=

 ∑
f∈G:f(S)=~b

(1− ε′)qf

+ ε′ Pr
f∈G

[f(S) = ~b]

≥

 ∑
f∈G:f(S)=~b

(1− ε′)qf

+ ε′ · δ

≥ −ε(1− ε′) + ε′ · δ

= −ε
(

δ

ε+ δ

)
+ ε

ε+ δ
δ = 0 .
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Second, we show that Q and Q′ are close in the sense that ∆`(Q,Q′) ≤ 2ε′ · (1 + ε− δ)
(see Definition 7.5). Fix a subset S ⊆ D of size at most `, and let E ⊆ {0, 1}S . Then

∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]
∣∣∣ =

∣∣∣∣∣∣
( ∑
f∈G:f(S)∈E

ε′qf

)
− ε′ Pr

f∈G
[f(S) ∈ E]

∣∣∣∣∣∣
=
∣∣∣∣ε′P̃r[Q(S) ∈ E]− ε′ Pr

f∈G
[f(S) ∈ E]

∣∣∣∣
≤ ε′(1 + ε− δ) ,

as required. J

8 Equivalence of non-signaling functions and local quasi-distributions

We establish an equivalence between non-signaling functions and local quasi-distributions.
First, we show that every local quasi-distribution induces a non-signaling function. Second,
we show that the converse is also true, namely, that every non-signaling function can be
described by a local quasi-distribution. In fact, the set of quasi-distributions describing it is
a real affine subspace.

I Theorem 8.1 (from local quasi-distributions to non-signaling functions). Let D be a finite
domain. For every `-local quasi-distribution Q over functions f : D → {0, 1} there exists an
`-non-signaling function F over D such that for every subset S ⊆ D of size |S| ≤ ` and
string ~b ∈ {0, 1}S, Pr[F(S) = ~b] = P̃r[Q(S) = ~b].

Proof. For every subset S ⊆ D of size |S| ≤ `, define FS to be the distribution over functions
f : S → {0, 1} where Pr[FS outputs f ] := P̃r[Q(S) = f(S)]. Note that FS is indeed a
distribution because Q is `-local, so the relevant probabilities are in [0, 1] and sum to 1. The
definition immediately implies that Pr[F(S) = ~b] = P̃r[Q(S) = ~b] for every string ~b ∈ {0, 1}S .
We are left to argue that F = {FS}S⊆D,|S|≤` is `-non-signaling.

Consider any two distinct subsets S, T ⊆ D of size at most `, and any string ~b ∈ {0, 1}S∩T .
Let US denote the set of functions from S → {0, 1}. We have that

Pr
f←FS

[f(S ∩ T ) = ~b] =
∑

f∈US s.t.
f(S∩T )=~b

Pr[FS outputs f ] =
∑

f∈US s.t.
f(S∩T )=~b

P̃r[Q(S) = f(S)]

=
∑

f∈US s.t.
f(S∩T )=~b

∑
g∈U s.t.
g(S)=f(S)

qg =
∑

g∈U s.t.
g(S∩T )=~b

qg = P̃r[Q(S ∩ T ) = ~b]

Similarly, we have that Prf←FT
[f(S ∩ T ) = ~b] = P̃r[Q(S ∩ T ) = ~b], and we conclude

that Prf←FS
[f(S ∩ T ) = ~b] = Prf←FT

[f(S ∩ T ) = ~b]. Since S, T were arbitrary, F is
`-non-signaling. J

We now show that every k-non-signaling function F arises from a k-local quasi-distribution
Q. Moreover, the set of such quasi-distributions is an affine subspace of co-dimension

(
N
≤k
)

in R2N , where N = |D| and
(
N
≤k
)

:=
∑k
i=0
(
N
i

)
. This converse is the interesting direction of

the equivalence.

I Theorem 8.2 (from non-signaling functions to local quasi-distributions). For every k-non-
signaling function F = {FS}S⊆D,|S|≤k over a finite domain D of size N there exists a k-local
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quasi-distribution Q over functions f : D → {0, 1} that describes F (for every subset S ⊆ D
of size |S| ≤ k and string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b]).

Moreover, the set of such quasi-distributions (viewed as vectors in R2N ) is the affine
subspace of co-dimension

(
N
≤k
)
given by Q0 + span{χT : T ⊆ D, |T | > k}, where Q0 is any

solution and χT : {0, 1}D → R is defined as χT (f) := (−1)
∑

x∈T
f(x).

Proof. We break the proof into three parts. First, we find one quasi-distribution that
matches F . Then, we find an affine space of such quasi-distributions. Finally, we prove that
this affine space contains all possible solutions.

Finding one solution. We construct a k-local quasi-distribution Q that behaves like F on
all sets of size at most k. Consider q(·) :=

∑
T :|T |≤k q̂(T )χT (·), where q̂(T ) is defined as

follows.

q̂(T ) :=


1

2N if T = ∅
2

2N

(
Pr[
∑
x∈T F(x) = 0]− 1

2
)

if 1 ≤ |T | ≤ k
0 if |T | > k

.

Note that Q is a quasi-distribution because
∑
f qf = 2N 〈q, χ∅〉 = 2N q̂(∅) = 1. Now, for any

subset S = 〈x1, . . . , xs〉 with |S| ≤ k,

∑
f :
∑

x∈S
f(x)=0

qf =
∑
f

qf (−1)
∑

x∈S
f(x) +

∑
f :
∑

x∈S
f(x)=1

qf

= 2N 〈q, χS〉+

1−
∑

f :
∑

x∈S
f(x)=0

qf


= 2N 1

2N−1

(
Pr
[∑
x∈S
F(x) = 0

]
− 1

2

)
+

1−
∑

f :
∑

x∈S
f(x)=0

qf


= 2 Pr

[∑
x∈S
F(x) = 0

]
−

∑
f :
∑

x∈S
f(x)=0

qf ,

which implies that

P̃r
[∑
x∈S
Q(x) = 0

]
=

∑
f :
∑

x∈S
f(x)=0

qf = Pr
[∑
x∈S
F(x) = 0

]
.

Therefore,

P̃r

[∑
x∈S

Q(x) = 1

]
= 1− P̃r

[∑
x∈S

Q(x) = 0

]
= 1− Pr

[∑
x∈S

F(x) = 0

]
= Pr

[∑
x∈S

F(x) = 1

]
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Thus, by Corollary 5.2 for any choice of bits b1, . . . , bs ∈ {0, 1} we have

Pr[F(x1) = b1, . . . ,F(xs) = bs] = −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T
F(xi) =

∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[∑
i∈T
Q(xi) =

∑
i∈T

bi

]
= P̃r[Q(x1) = b1, . . . ,Q(xs) = bs] .

This shows that Q behaves like F on all sets of size at most k.

Finding more solutions. We argue that Fourier coefficients for subsets T of size greater than
k do not affect the induced non-signaling function. Indeed, fix a subset T ⊆ D of size greater
than k, and let Q′ = (q′f )f be the quasi-distribution obtained from Q = (qf )f by defining its
weights as q′f := qf + cχT (f). Observe that for every ordered subset S = 〈x1, . . . , xs〉 with
s ≤ k and bits b1, . . . , bs it holds that

P̃r[Q(S) = ~b] =
∑

f :f(S)=~b

qf =
∑

f :f(S)=~b

(qf + cχT (f)) = P̃r[Q′(S) = ~b] .

To see that the middle equality holds, observe that there exists y ∈ T \ S, and thus∑
f :f(S)=~b

χT (f) =
∑

f(S)=~b

(−1)
∑

x∈T
f(x)

=
∑

f :f(S)=~b
f(y)=0

(−1)
∑

x∈T\{y}
f(x) −

∑
f :f(S)=~b
f(y)=1

(−1)
∑

x∈T\{y}
f(x) = 0 .

Therefore, Q′ matches Q (and thus also F) on all sets of size at most k. Since this holds for
every T with |T | > k, we see that every q′ in q + span{χT : T ⊆ D, |T | > k} also matches F
on all subsets of size at most k.

We found all solutions. Observe that if Q is a quasi-distribution, then for every subset
T ⊆ D with 1 ≤ |T | ≤ k it holds that

q̂(T ) = 1
2N
∑
f

qf (−1)
∑

x∈T
f(x)

= 1
2N

 ∑
f :
∑

x∈T
f(x)=0

qf −
∑

f :
∑

x∈T
f(x)=1

qf


= 1

2N

(
P̃r
[∑
x∈T
Q(x) = 0

]
− P̃r

[∑
x∈T
Q(x) = 1

])

= 1
2N−1

(
P̃r
[∑
x∈T
Q(x) = 0

]
− 1

2

)
.

If Q and F match on all input sets of size at most k, then they match on all parity events of
size at most k, and so q̂(T ) = 1

2N−1

(
P̃r[
∑
x∈T F(x) = 0]− 1

2

)
. Since q̂(∅) = 1

2N

∑
f qf = 1

2N ,
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we see that exactly
(
N
≤k
)
Fourier coefficients are determined. Thus, the set of all solutions is

contained in q + span{χT : T ⊆ D, |T | > k}.
On the other hand, we have already shown that the affine space q+span{χT : T ⊆ D, |T | >

k} contains only quasi-distributions that match F on all sets of size at most k. Thus, the affine
space of all quasi-distributions that match F is precisely q+ span{χT : T ⊆ D, |T | > k}. J

9 Quasi-distributions over functions with small support

We show that every k-non-signaling function can be expressed as a quasi-distribution over
functions with small support, namely, functions that evaluate to 1 for at most k inputs. For
linearity testing, this implies that restricting a quasi-distribution to functions that are ε-close
to linear is an empty condition, because all k-non-signaling functions can be expressed by
such quasi-distributions for ε = k

2n , regardless of whether they pass the linearity test with
high or low probability.

For a finite domain D, we denote by UD the set of all boolean functions f : D → {0, 1}
and, for k ≤ |D|, denote by U≤k the subset of UD of all functions that evaluate to 1 for
at most k values in D. We show that every k-non-signaling function F is described by a
quasi-distribution over U≤k.

I Theorem 9.1. Let D be a finite domain. For every k-non-signaling function F over D
there exists a k-local quasi-distribution Q over D supported on U≤k such that for every subset
S ⊆ D of size |S| ≤ k and string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b].

The proof of Theorem 9.1 relies on the following claim.

I Claim 9.2. Let F be a k-non-signaling function over a domain D, and let Q be a quasi-
distribution over functions f : D → {0, 1}. If for every subset S ⊆ D with 1 ≤ |S| ≤ k it
holds that P̃r[Q(S) = 1|S|] = Pr[F(S) = 1|S|] then for every subset S ⊆ D with |S| ≤ k and
string ~b ∈ {0, 1}S it holds that P̃r[Q(S) = ~b] = Pr[F(S) = ~b].

We first prove Theorem 9.1 using the claim, and then prove the claim.

Proof of Theorem 9.1. By Claim 9.2 it suffices to prove that the following linear system of
equations, in the variables {qf}f∈U≤k

, has a solution:

∑
f∈U≤k

qf = 1∑
f∈U≤k s.t.
f(S)=1|S|

qf = Pr[F(S) = 1|S|] ∀S ⊆ D with 1 ≤ |S| ≤ k

 .

We do so by iteratively assigning values to the variables {qf}f∈U≤k
, by considering all

functions with support size k, then with support size k − 1, and so on. At a high level, we
shall use the fact that this system of linear equations corresponds to an upper triangular
matrix (once variables are ordered according to support sizes), and thus can be solved via
back substitution.

First, consider any f ∈ U≤k such that |supp(f)| = k, and let S := supp(f). Since f is
the only function in U≤k whose support equals S, we must assign

qf := Pr[F(supp(f)) = 1k] .

CCC 2018



17:28 Testing Linearity against Non-Signaling Strategies

Next, we use induction on s = k − 1, . . . , 1 in decreasing order. Consider any f ∈ U≤k
such that |supp(f)| = s, and set

qf := Pr[F(supp(f)) = 1s]−

 ∑
f ′∈U≤k s.t.

supp(f ′))supp(f)

qf ′

 .

The above is well-defined since we first define qf for all functions with larger support.
Moreover, any choice of qf ′′ for functions f ′′ whose support does not contain supp(f) does
not affect the quasi-probability P̃r[Q(supp(f)) = 1s], and so we may think of this assignment
as qf satisfying the constraint P̃r[Q(supp(f)) = 1s] = Pr[F(supp(f)) = 1s].

Finally, if f is the all-zero function we define

qf := 1−
∑
f ′ 6=f

qf ′ ,

so that
∑
f∈U≤k

qf = 1. It is clear from the construction that the assignments to the variables
{qf}f∈U≤k

above satisfy the necessary linear constraints, as desired. J

Proof of Claim 9.2. Fix any subset S ⊆ D with |S| ≤ k and string ~b ∈ {0, 1}S . We prove
that P̃r[Q(S) = ~b] = Pr[F(S) = ~b], via induction on |Z| where Z := {i ∈ S : bi = 0}.

If |Z| = 0, then P̃r[Q(S) = ~b] = Pr[F(S) = ~b] holds by the assumption of the claim.
Now suppose that |Z| > 0, and let i∗ ∈ S be any coordinate such that bi∗ = 0. Let

~b¬i∗ ∈ {0, 1}S be the vector obtained from ~b by flipping the i∗-th coordinate to 1, and let
~b−i∗ ∈ {0, 1}S\{i

∗} be the vector obtained from ~b by removing the i∗-th coordinate. We
deduce that

Pr[F(S) = ~b ] = Pr[F(S \ {i∗}) = ~b−i∗ ]− Pr[F(S) = ~b¬i∗ ] , and

P̃r[Q(S) = ~b ] =P̃r[Q(S \ {i∗}) = ~b−i∗ ]− P̃r[Q(S) = ~b¬i∗ ] .

The inductive hypothesis tells us that Pr[F(S \ {i∗}) = ~b−i∗ ] = P̃r[Q(S \ {i∗}) = ~b−i∗ ] and
Pr[F(S) = ~b¬i∗ ] = P̃r[Q(S) = ~b¬i∗ ], from which we obtain that Pr[F(S) = ~b ] = P̃r[Q(S) =
~b ], as claimed. J

10 Exact local characterization of linear functions

We prove our results about non-signaling functions that always pass the linearity test. The
theorem below states that the test passes with probability 1 if and only if the non-signaling
function on sets of size at most k − 1 can be described by a (k − 1)-local quasi-distribution
over linear functions.

I Theorem 10.1 (exact local characterization). Let F be a k-non-signaling function with
k ≥ 4. The following statements are equivalent.
1. The linearity test always accepts: Prx,y,F [F(x) + F(y) = F(x+ y)] = 1.
2. For all x, y ∈ {0, 1}n it holds that PrF [F(x) + F(y) = F(x+ y)] = 1.
3. There exists a unique (k − 1)-local quasi-distribution L over LIN such that for every set

S ⊆ {0, 1}n of size |S| ≤ k − 1 and vector ~b ∈ {0, 1}S it holds that Pr[F(S) = ~b ] =
P̃r[L(S) = ~b ].

We comment on several aspects of the theorem.
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The case of large k. If k ≥ n+ 1, then L in Item 3 is in fact a (standard) distribution
over linear functions. Explanation. Let `α be the weight assigned to the linear function
〈α, ·〉 by L. Since L matches F on sets of size n, we see that each `α is non-negative:

`α =
∑

α′:〈α′,ei〉=αi 1≤i≤n

`α′ = Pr[F(e1) = α1, . . . ,F(en) = αn] ≥ 0 .

Agreement on k − 1 layers. The fact that |S| < k in Item 3 is necessary, because we
can construct a k-non-signaling function F where Pr[F(S) = ~b ] 6= P̃r[L(S) = ~b ] when
|S| = k.
Explanation. Let S1 be the set of S such that |S| < k or S is linearly dependent, and
S2 be the set of S such that |S| = k and S is linearly independent. The non-signaling
function F that answers according to a uniformly random linear function on all sets in S1
and answers with uniformly random bits that sum to 0 on all sets in S2 is k-non-signaling.
Furthermore, the corresponding unique L is the uniform distribution over linear functions,
and so Pr[F(S) = ~b ] 6= P̃r[L(S) = ~b ] when S ∈ S2.

The case of k = 3. In the theorem it is necessary to have k ≥ 4. This is because for
k = 3 it is not true that Item 3 always implies Item 2: it is possible for Item 3 to hold
while the linearity test passes with probability 0.
Explanation. Let L be a uniform distribution over linear functions, and let F be a
3-non-signaling function that agrees with L on all query sets of size 2. For every subset
{x, y, z} ⊆ {0, 1}n \ {0n} of size 3, the distribution of F is uniform over the set of tuples
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. If the input set S contains 0n, FS assigns 0n to 0 and
answers the rest according to FS\{0n}. One can verify that F is indeed a 3-non-signaling
function. Clearly, F satisfies Item 3, but passes the linearity test with probability 0, and
hence does not satisfy Item 2.

Proof that 1⇐⇒ 2. The acceptance probability of the test can be re-written as

Pr
x,y←{0,1}n,F

[F(x) + F(y) = F(x+ y)] = 1
22n

∑
x,y∈{0,1}n

Pr
F

[F(x) + F(y) = F(x+ y)] ,

and note that each of the probabilities in the sum lies in [0, 1]. Therefore, the acceptance
probability is 1 if and only if for all x, y ∈ {0, 1}n it holds that PrF [F(x) + F(y) =
F(x+ y)] = 1. J

Proof that 2 =⇒ 3. We first argue that if F behaves linearly on sets of the form {x, y, x+
y}, then it behaves linearly on all sets of size less than k. Let s ∈ {2, . . . , k− 1}, x1, . . . , xs ∈
{0, 1}n, and b ∈ {0, 1}, and define Si := {

∑i
j=1 xj , xi+1, . . . , xs} for every i ∈ {1, . . . , s}.

Note that |Si ∪ Si+1| = s− i+ 2 ≤ s+ 1 ≤ k. Letting add(·) be the addition function, the
fact that the linearity test always passes implies that

Pr
[
add(F(Si)) = add(F(Si+1))

]
= Pr

F
 i∑
j=1

xj

+ F(xi+1) = F

i+1∑
j=1

xj

 = 1 .
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This implies that Pr[F(
∑s
i=1 xi) = b] = Pr[

∑s
i=1 F(xi) = b], via the following argument:∣∣∣∣∣Pr

[
s∑
i=1
F(xi) = b

]
− Pr

[
F

(
s∑
i=1

xi

)
= b

]∣∣∣∣∣
= |Pr[add(F(S1)) = b]− Pr[add(F(Ss)) = b]|

=

∣∣∣∣∣
s−1∑
i=1

Pr[add(F(Si)) = b]− Pr[add(F(Si+1)) = b]

∣∣∣∣∣
≤
s−1∑
i=1
|Pr[add(F(Si)) = b]− Pr[add(F(Si+1)) = b]| = 0 ,

where the last equality is by Lemma 6.3, since |Si ∪ Si+1| ≤ k for every i. Note that s must
be strictly less than k because |S1 ∪ S2| = s+ 1.

We now construct L, and argue that it has the desired properties. Define (`α)α∈{0,1}n to
be the solution to the system of equations in Lemma 5.3 where cβ := Pr[F(β) = 0] for each
β ∈ {0, 1}n, and let L be the quasi-distribution over LIN that assigns weight `α to the linear
function 〈α, ·〉. That is, (`α)α∈{0,1}n satisfy the linear equations∑

α:〈α,x〉=0

`α = Pr[F(x) = 0]

for all x ∈ {0, 1}n. Note that L is indeed a quasi-distribution, because
∑
α `α = Pr[F(0n) =

0] = Prx←{0,1}n [F(0n) + F(x) = F(x)] = 1 (as F always passes the linearity test). We
remark that every quasi-distribution supported on LIN is uniquely determined by its induced
distributions on sets of size 1: a quasi-distribution is supported on LIN if and only if its
distributions on sets of size 1 determine all of its Fourier coefficients (see full version for
details).

Moreover, by definition of (`α)α∈{0,1}n , for every x ∈ {0, 1}n it holds that

Pr[F(x) = 0] =
∑

α:〈α,x〉=0

`α = P̃r[L(x) = 0] ,

which implies that for every x ∈ {0, 1}n and bit b ∈ {0, 1} it holds that Pr[F(x) = b] =
P̃r[L(x) = b]. In other words, F and L match on sets of size 1. This allows us to derive the
same conclusion for all sets of size less than k, as follows.

For every s ∈ {1, . . . , k − 1}, x1, . . . , xs ∈ {0, 1}n, and b1, . . . , bs ∈ {0, 1},

Pr[F(x1) = b1, . . . ,F(xs) = bs]

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[∑
i∈T
F(xi) =

∑
i∈T

bi

]
(by Corollary 5.2)

= −1 + 1
2s−1

∑
T⊆[s]

Pr
[
F

(∑
i∈T

xi

)
=
∑
i∈T

bi

]
(by linearity)

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[
L

(∑
i∈T

xi

)
=
∑
i∈T

bi

]

= −1 + 1
2s−1

∑
T⊆[s]

P̃r
[∑
i∈T
L(xi) =

∑
i∈T

bi

]
(since supp(L) ⊆ LIN)

= P̃r[L(x1) = b1, . . . ,L(xs) = bs] . (by Lemma 7.3)
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Finally, since L agrees with F on all subsets of size less than k, the quasi-probabilities
must be in [0, 1], which means that L is (k − 1)-local. J

Proof that 3 =⇒ 2. Suppose that there exists a (k − 1)-local quasi-distribution L over LIN
such that for every s ∈ {1, . . . , k − 1}, x1, . . . , xs ∈ {0, 1}n, and b1, . . . , bs ∈ {0, 1} it holds
that Pr[F(x1) = b1, . . . ,F(xs) = bs] = P̃r[L(x1) = b1, . . . ,L(xs) = bs]. For every α ∈ {0, 1}n
denote by `α the weight assigned by L to the linear function 〈α, ·〉. For every x, y ∈ {0, 1}n
it holds that

Pr[F(x) + F(y) = F(x+ y)] =
∑
b1,b2

Pr[F(x) = b1,F(y) = b2,F(x+ y) = b1 + b2]

=
∑
b1,b2

P̃r[L(x) = b1,L(y) = b2,L(x+ y) = b1 + b2]

=
∑
b1,b2

∑
α:〈α,x〉=b1
〈α,y〉=b2

〈α,x+y〉=b1+b2

`α =
∑
b1,b2

∑
α:〈α,x〉=b1
〈α,y〉=b2

`α =
∑
α

`α = 1 ,

as desired. Note that the equality on the second line uses the assumption that k ≥ 4. This is
because we need L to match F on sets of size 3, and we only know that L matches F on all
sets of size at most k − 1. J

11 Robust local characterization of linear functions

We prove our results about non-signaling functions that pass the linearity test with high
probability. Given a k-non-signaling function F , define its self-correction F̂ as follows. On
an input x ∈ {0, 1}n we sample from F̂{x} by drawing a uniform w ∈ {0, 1}n, sampling a
function f from F{x+w,w}, and outputting f(x+w) + f(w). We generalize this correction to
larger input sets in the natural way.

I Definition 11.1. Given a k-non-signaling function F , define the self-correction of
F as follows. Given a set S = {x1, . . . , xs} ⊆ {0, 1}n, we sample from F̂{x1,...,xs} by
drawing uniform and independent w1, . . . , ws ∈ {0, 1}n, sampling a function f from the
distribution F{x1+w1,...,xs+ws,w1,...,ws}, and outputting the function f̂ that maps each xi to
f(xi + wi) + f(wi). That is, for every subset S = {x1, . . . , xs} ⊆ {0, 1}n of size at most k̂
and ~b ∈ {0, 1}S ,

Pr[F̂(S) = ~b] := Pr
w1,...,ws←{0,1}n

F

 F(x1 + w1) + F(w1) = b1
...

F(xs + ws) + F(ws) = bs

 .

F̂ is a k̂-non-signaling function for k̂ ≤ bk/2c. This follows immediately from the fact
that the wi’s are random and independent, and the fact that F is k-non-signaling.

The following theorem says that, if a k-non-signaling function F passes the linearity test
with high probability, then F̂ is close to a quasi-distribution over linear functions.

I Theorem 11.2 (robust local characterization). Let F be a k-non-signaling function with
k ≥ 7, and let F̂ be its (k̂-non-signaling) self-correction. Each of the following statements
implies the next one.
1. The linearity test accepts with probability 1− ε: Prx,y,F [F(x) +F(y) = F(x+ y)] ≥ 1− ε.
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2. For all x, y ∈ {0, 1}n it holds that PrF̂ [F̂(x) + F̂(y) = F̂(x + y)] ≥ 1 − ε̂ with ε̂ := 4ε;
moreover, it also holds that PrF̂ [F̂(0n) = 0] = 1.

3. There exists a quasi-distribution L over LIN such that for every ` ∈ {1, . . . , k̂− 1} it holds
that L is (`, 2`/2(`−1)ε̂)-local and, for every subset S ⊆ {0, 1}n of size at most ` and every
event E ⊆ {0, 1}S,

∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]
∣∣∣ ≤ (|S|−1)·‖1̂E‖1·ε̂ ≤ (|S|−1)·

√
|E|·ε̂.

4. For every ` ∈ {1, . . . , k̂ − 1}, there exists an `-local quasi-distribution L′ over LIN such
that ∆`(F̂ ,L′) ≤ (2` + 1) · 2`/2(`− 1)ε̂.

We highlight some of the differences of Theorem 11.2 (ε ≥ 0) from Theorem 10.1 (ε = 0).
In Item 2, we now need to use the self-correction F̂ to ensure that PrF̂ [F̂(x + y) =
F̂(x) + F̂(y)] is large for every x, y ∈ {0, 1}n, as opposed to random x, y ∈ {0, 1}n. This
is necessary because otherwise it is possible for PrF [F(x) +F(y) = F(x+ y)] to be small
for certain choices of x and y, and in this case a quasi-distribution supported only on
linear functions has no hope of approximating F on sets containing {x, y, x+ y}.
In Item 3, we choose L to match F̂ exactly on all sets of size 1, as before. However, since
the linearity condition only holds approximately, this means that we only get approximate
matching on larger input sets, and this approximation deteriorates as the sets get larger.
Since L only matches F̂ approximately, it is only an approximately `-local distribution.
Thus, we require the additional step of Item 4, where we correct L to an exactly `-local
distribution.

We now proceed to the proof of Theorem 11.2.

Proof that 1 =⇒ 2. Fix x, y ∈ {0, 1}n. The definition of F̂ implies that

Pr̂
F

[F̂(x) + F̂(y) = F̂(x+ y)]

= Pr
wx
wy
wx+y

F

[F(x+ wx) + F(wx) + F(y + wy) + F(wy) = F(x+ y + wx+y) + F(wx+y)] .

Define

S1 :={x+ wx, y + wy, x+ y + wx+y, wx, wy, wx+y} ,
S2 :={x+ wx + wy, y + wy, x+ y + wx+y, wx, wx+y} ,
S3 :={x+ wx + wy, y + wy + wx+y, x+ y + wx+y, wx} ,
S4 :={x+ wx + wy, y + wy + wx+y, x+ y + wx+y + wx} .

Observe that |Si ∪ Si+1| ≤ 7 ≤ k. Letting add(·) be the addition function, the linearity test
passing with probability at least 1− ε implies that

Pr[add(F(S1)) = add(F(S2))]
= Pr
wx,wy

F

[F(x+ wx + wy) = F(x+ wx) + F(wy)] ≥ 1− ε ,

Pr[add(F(S2)) = add(F(S3))]
= Pr
wy,wx+y

F

[F(y + wy + wx+y) = F(y + wy) + F(wx+y)] ≥ 1− ε ,

Pr[add(F(S3)) = add(F(S4))]
= Pr
wx,wx+y

F

[F(x+ y + wx+y + wx) = F(x+ y + wx+y) + F(wx)] ≥ 1− ε ,

Pr[add(F(S4)) = 0]
= Pr
wx,wy
wx+y

F

[F(x+ wx + wy) + F(y + wy + wx+y) = F(x+ y + wx+y + wx)] ≥ 1− ε .
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Therefore, by Lemma 6.3,

|Pr[add(F(S1)) = 0]− Pr[add(F(S4)) = 0]|

≤
3∑
i=1
|Pr[add(F(Si)) = 0]− Pr[add(F(Si+1)) = 0]| ≤ 3ε .

Since Pr[add(F(S4)) = 0] ≥ 1 − ε, it follows that PrF̂ [F̂(x) + F̂(y) = F̂(x + y)] =
Pr[add(F(S1)) = 0] ≥ 1− 4ε = 1− ε̂, as claimed. Finally, Pr[F̂(0n) = 0] = Prw∈{0,1}n [F(w+
0n) + F(w) = 0] = 1. J

Proof that 2 =⇒ 3. This proof generalizes the proof that 2 =⇒ 3 in Theorem 10.1. We begin
by arguing that F̂ behaves almost linearly on sets of size at most k̂−1. Let s ∈ {2, . . . , k̂−1},
x1, . . . , xs ∈ {0, 1}n, and b ∈ {0, 1}, and define Si := {

∑i
j=1 xj , xi+1, . . . , xs} for every

i ∈ {1, . . . , s}. Note that |Si ∪ Si+1| = s− i+ 2 ≤ s+ 1 ≤ k̂. Letting add(·) be the addition
function, the fact that the linearity test passes with probability at least 1− ε̂ implies that

Pr
[
add(F̂(Si)) = add(F̂(Si+1))

]
= Pr

F̂
 i∑
j=1

xj

+ F̂(xi+1) = F̂

i+1∑
j=1

xj

 ≥ 1− ε̂ .

This implies that
∣∣∣Pr[F̂(

∑s
i=1 xi) = b]− Pr[

∑s
i=1 F̂(xi) = b]

∣∣∣ ≤ (s − 1)ε̂, via the following
argument:∣∣∣∣∣Pr

[
s∑
i=1
F̂(xi) = b

]
− Pr

[
F̂

(
s∑
i=1

xi

)
= b

]∣∣∣∣∣
=
∣∣∣Pr[add(F̂(S1)) = b]− Pr[add(F̂(Ss)) = b]

∣∣∣
=

∣∣∣∣∣
s−1∑
i=1

Pr[add(F̂(Si)) = b]− Pr[add(F̂(Si+1)) = b]

∣∣∣∣∣
≤
s−1∑
i=1

∣∣∣Pr[add(F̂(Si)) = b]− Pr[add(F̂(Si+1)) = b]
∣∣∣

≤(s− 1)ε̂ .

where the last inequality is by Lemma 6.3, since |Si ∪ Si+1| ≤ k̂ for every i. Note that s
must be strictly less than k̂ because |S1 ∪ S2| = s+ 1.

We construct L as before. Define (`α)α∈{0,1}n to be the solution to the system of
equations in Lemma 5.3 where cβ := Pr[F̂(β) = 0] for each β ∈ {0, 1}n, and let L be the
quasi-distribution over LIN that assigns weight `α to the linear function 〈α, ·〉. Note that L
is indeed a quasi-distribution, because

∑
α `α = Pr[F̂(0n) = 0] = 1.

Moreover, by definition of (`α)α∈{0,1}n , for every x ∈ {0, 1}n and b ∈ {0, 1} it holds that
Pr[F̂(x) = b] = P̃r[L(x) = b]. In other words, F and L match exactly on sets of size one. We
now prove that F and L match approximately for sets of larger size (but still less than k̂)
with a guarantee that degrades with the set size.

Fix s ∈ {1, . . . , k − 1}, S = {x1, . . . , xs} ⊆ {0, 1}n, and E ⊆ {0, 1}S . We use Lemma 5.1
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to get real numbers {cT }T⊆[s] that depend only on E such that∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]
∣∣∣

=

∣∣∣∣∣∣
∑
T⊆[s]

cT · Pr
[∑
i∈T
F̂(xi) = 0

]
−
∑
T⊆[s]

cT · P̃r
[∑
i∈T
L(xi) = 0

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− P̃r

[∑
i∈T
L(xi) = 0

])∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− P̃r

[
L

(∑
i∈T

xi

)
= 0
])∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
T⊆[s]

cT

(
Pr
[∑
i∈T
F̂(xi) = 0

]
− Pr

[
F̂

(∑
i∈T

xi

)
= 0
])∣∣∣∣∣∣

≤
∑
T⊆[s]

|cT | (|T | − 1) ε̂ ≤ ε̂ · (s− 1) ·
∑
T⊆[s]

|cT |

≤ ε̂ · (s− 1)‖1̂E‖1 ≤ ε̂ · (s− 1)
√
|E| .

Since F̂ defines probabilities in [0, 1], L is (`, ε′)-local with ε′ = (` − 1)2`/2ε̂ for any
` < k̂. J

Proof that 3 =⇒ 4. Fix ` ∈ {1, . . . , k̂ − 1}, and let L be the (`, 2`/2(`− 1)ε̂)-local quasi-
distribution L over LIN such that for every subset S ⊆ {0, 1}n of size at most ` and event
E ⊆ {0, 1}S it holds that∣∣∣Pr[F̂(S) ∈ E]− P̃r[L(S) ∈ E]

∣∣∣ ≤√|E|(|S| − 1)ε̂ ≤ 2`/2(`− 1)ε̂ .

Thus, ∆`(F̂ ,L) ≤ 2`/2(` − 1)ε̂. By Corollary 7.9, there is an `-local quasi-distribution L′
such that ∆`(L,L′) ≤ 2` · 2`/2(`− 1)ε̂. Therefore,

∆`(F̂ ,L′) ≤ ∆`(F̂ ,L)+∆`(L,L′) ≤ 2`/2(`−1)ε̂+2` ·2`/2(`−1)ε̂ = (2`+1) ·2`/2(`−1)ε̂ .J
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