
Complexity Classification of Conjugated Clifford
Circuits
Adam Bouland1

Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, Berkeley, CA, USA
adam@csail.mit.edu

https://orcid.org/0000-0002-8556-8337

Joseph F. Fitzsimons2

Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2,
Singapore 117543
joe.fitzsimons@nus.edu.sg

Dax Enshan Koh3

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA
daxkoh@mit.edu

https://orcid.org/0000-0002-8968-591X

Abstract
Clifford circuits – i.e. circuits composed of only CNOT, Hadamard, and π/4 phase gates – play
a central role in the study of quantum computation. However, their computational power is
limited: a well-known result of Gottesman and Knill states that Clifford circuits are efficiently
classically simulable. We show that in contrast, “conjugated Clifford circuits” (CCCs) – where one
additionally conjugates every qubit by the same one-qubit gate U – can perform hard sampling
tasks. In particular, we fully classify the computational power of CCCs by showing that essentially
any non-Clifford conjugating unitary U can give rise to sampling tasks which cannot be efficiently
classically simulated to constant multiplicative error, unless the polynomial hierarchy collapses.
Furthermore, by standard techniques, this hardness result can be extended to allow for the
more realistic model of constant additive error, under a plausible complexity-theoretic conjecture.
This work can be seen as progress towards classifying the computational power of all restricted
quantum gate sets.
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1 Introduction

Quantum computers hold the promise of efficiently solving certain problems, such as factoring
integers [53], which are believed to be intractable for classical computers. However, experi-
mentally implementing many of these quantum algorithms is very difficult. For instance, the
largest number factored to date using Shor’s algorithm is 21 [40]. These considerations have
led to an intense interest in algorithms which can be more easily implemented with near-term
quantum devices, as well as a corresponding interest in the difficulty of these computational
tasks for classical computers. Some prominent examples of such models are constant-depth
quantum circuits [56, 11] and non-adaptive linear optics [3].

In many of these constructions, one can show that these “weak” quantum devices can
perform sampling tasks which cannot be efficiently simulated classically, even though they
may not be known to be capable of performing difficult decision tasks. Such arguments
were first put forth by Bremner, Jozsa, and Shepherd [14] and Aaronson and Arkhipov
[3], who showed that exactly simulating the sampling tasks performed by weak devices is
impossible assuming the polynomial hierarchy is infinite. The proofs of these results use
the fact that the output probabilities of quantum circuits can be very difficult to compute
– in fact they can be GapP-hard and therefore #P-hard to approximate. In contrast the
output probabilities of classical samplers can be approximated in BPPNP by Stockmeyer’s
approximate counting theorem [55], and therefore lie in the polynomial hierarchy. Hence a
classical simulation of these circuits would collapse the polynomial hierarchy to the third
level by Toda’s Theorem [57]. Similar hardness results have been shown for many other
models of quantum computation [56, 43, 22, 10, 21, 8, 16, 39].

A curious feature of many of these “weak” models of quantum computation is that they
can be implemented using non-universal gate sets. That is, despite being able to perform
sampling problems which appear to be outside of BPP, these models are not themselves
known to be capable of universal quantum computation. In short these models of quantum
computation seem to be “quantum-intermediate” between BPP and BQP, analogous to the
NP-intermediate problems which are guaranteed to exist by Ladner’s theorem [36]. From the
standpoint of computational complexity, it is therefore natural to study this intermediate
space between BPP and BQP, and to classify its properties.

One natural way to explore the space between BPP and BQP is to classify the power
of all possible quantum gate sets over qubits. The Solovay-Kitaev Theorem states that all
universal quantum gate sets, i.e. those which densely generate the full unitary group, have
equivalent computational power [18]. Therefore the interesting gates sets to classify are
those which are non-universal. However just because a gate set is non-universal does not
imply it is weaker than BQP – in fact some non-universal gates are known to be capable of
universality in an “encoded” sense, and therefore have the same computational power as
BQP [32]. Other non-universal gate sets are efficiently classically simulable [25], while others
seem to lie “between BPP and BQP” in that they are believed to be neither universal for
BQP nor efficiently classically simulable [14]. It is a natural open problem to fully classify all
restricted gate sets into these categories according to their computational complexity.

This is a challenging problem, and to date there has only been partial progress towards
this classification. One immediate difficulty in approaching this problem is that there is not
a known classification of all possible non-universal gate sets. In particular this would require
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classifying the discrete subgroups of SU(2n) for all n ∈ N, which to date has only been
solved for n ≤ 2 [28]. Therefore existing results have characterized the power of modifications
of known intermediate gate sets, such as commuting circuits and linear optical elements
[9, 10, 47]. Others works have classified the classical subsets of gates [6, 27], or else given
sufficient criteria for universality so as to rule out the existence of certain intermediate
families [52]. A complete classification of this space “between BPP and BQP” would require a
major improvement in our understanding of universality as well as the types of computational
hardness possible between BPP and BQP.

One well-known example of a non-universal family of quantum gates is the Clifford group.
Clifford circuits – i.e. circuits composed of merely CNOT, Hadamard and Phase gates –
are a discrete subgroup of quantum gates which play an important role in quantum error
correction [24, 13], measurement-based quantum computing [49, 50, 17], and randomized
benchmarking [38]. However a well-known result of Gottesman and Knill states that circuits
composed of Clifford elements are efficiently classically simulable [25, 5]. That is, suppose
one begins in the state |0〉⊗n, applies polynomially many gates from the set CNOT,H,S,
then measures in the computational basis. Then the Gottesman-Knill theorem states that
one can compute the probability a string y is output by such a circuit in classical polynomial
time. One can also sample from the same probability distribution on strings as this circuit as
well. A key part of the proof of this result is that the quantum state at intermediate stages
of the circuit is always a “stabilizer state” – i.e. the state is uniquely described by its set of
stabilizers in the Pauli group – and therefore has a compact representation. Therefore the
Clifford group is incapable of universal quantum computation (assuming BPP 6= BQP).

In this work, we will study the power of a related family of non-universal gates, known
as Conjugated Clifford gates, which we introduce below. These gates are non-universal by
construction, but not known to be efficiently classically simulable either. Our main result
will be to fully classify the computational power of this family of intermediate gate sets.

1.1 Our results

This paper considers a new “weak” model of quantum computation which we call “conjug-
ated Clifford circuits” (CCCs). In this model, we consider the power of quantum circuits
which begin in the state |0〉⊗n, and then apply gates from the set (U† ⊗ U†)(CNOT)(U ⊗
U), U†HU,U†SU where U is a fixed one-qubit gate. In other words, we consider the power
of Clifford circuits which are conjugated by an identical one-qubit gate U on each qubit.
These gates manifestly perform a discrete subset of unitaries so this gate set is clearly not
universal.

Although this transformation preserves the non-universality of the Clifford group, it is
unclear if it preserves its computational power. The presence of generic conjugating unitaries
(even the same U on each qubit, as in this model) breaks the Gottesman-Knill simulation
algorithm [25], as the inputs and outputs of the circuit are not stabilizer states/measurements.
Hence the intermediate states of the circuit are no longer efficiently representable by the
stabilizer formalism. This, combined with prior results showing hardness for other modified
versions of Clifford circuits [33, 34], leads one to suspect that CCCs may not be efficiently
classically simulable. However prior to this work no hardness results were known for this
model.

In this work, we confirm this intuition and provide two results in this direction. First,
we provide a complete classification of the power of CCCs according to the choice of U .
We do this by showing that any U which is not efficiently classically simulable by the
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Gottesman-Knill theorem suffices to perform hard sampling problems with CCCs4. That
is, for generic U , CCCs cannot be efficiently classically simulated to constant multiplicative
error by a classical computer unless the polynomial hierarchy collapses. This result can be
seen as progress towards classifying the computational complexity of restricted gate sets.
Indeed, given a non-universal gate set G, a natural question is to classify the power of G when
conjugated by the same one-qubit unitariy U on each qubit, as this transformation preserves
non-universality. Our work resolves this question for one of the most prominent examples of
non-universal gate sets, namely the Clifford group. As few examples of non-universal gate
sets are known5, this closes one of the major gaps in our understanding of intermediate gate
sets. Of course this does not complete the complexity classification of all gate sets, as there is
no known classification of all possible non-universal gate sets. However it does make progress
towards this goal.

Second, we show that under an additional complexity-theoretic conjecture, classical
computers cannot efficiently simulate CCCs to constant error in total variation distance.
This is a more experimentally achievable model of error for noisy error-corrected quantum
computations. The proof of this result uses standard techniques introduced by Aaronson
and Arkhipov [3], which have also been used in other models [22, 15, 8, 16, 42, 39].

This second result is interesting for two reasons. First, it means our results may have
relevance to the empirical demonstration of quantum advantage (sometimes referred to
as “quantum supremacy”) [48, 8, 4], as our results are robust to noise. Second, from the
perspective of computational complexity, it gives yet another conjecture upon which one can
base the supremacy of noisy quantum devices. As is the case with other quantum supremacy
proposals [3, 22, 15, 42, 39], in order to show that simulation of CCCs to additive error still
collapses the polynomial hierarchy, we need an additional conjecture stating that the output
probabilities of these circuits are hard to approximate on average. Our conjecture essentially
states that for most Clifford circuits V and most one-qubit unitaries U , it is #P-hard to
approximate a constant fraction of the output probabilities of the CCC U⊗nV (U†)⊗n to
constant multiplicative error. We prove that this conjecture is true in the worst case – in
fact, for all non-Clifford U , there exists a V such that some outputs are #P-hard to compute
to multiplicative error. However, it remains open to extend this hardness result to the
average case, as is the case with other supremacy proposals as well [3, 22, 15, 42, 39]. To
the best of our knowledge our conjecture is independent of the conjectures used to establish
other quantum advantage results such as boson sampling [3], Fourier sampling [22] or IQP
[15, 16]. Therefore our results can be seen as establishing an alternative basis for belief in
the advantage of noisy quantum devices over classical computation.

One final motivation for this work is that CCCs might admit a simpler fault-tolerant
implementation than universal quantum computing, which we conjecture to be the case. It is
well-known that many stabilizer error-correcting codes, such as the 5-qubit and 7-qubit codes
[37, 19, 54], admit transversal Clifford operations [24]. That is, performing fault-tolerant
Clifford operations on the encoded logical qubits can be done in a very simple manner –
by simply performing the corresponding Clifford operation on the physical qubits. This
is manifestly fault-tolerant, in that an error on one physical qubit does not “spread” to
more than 1 qubit when applying the gate. In contrast, performing non-Clifford operations
fault-tolerantly on such codes requires substantially larger (and non-transversal) circuits – and

4 More precisely, we show that any U that cannot be written as a Clifford times a Z-rotation suffices to
perform hard sampling problems with CCCs. See Theorem 7 for the exact statement.

5 The only examples to our knowledge are matchgates, Clifford gates, diagonal gates, and subsets thereof.
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therefore the non-transversal operations are often the most resource intensive. The challenge
in fault-tolerantly implementing CCCs therefore lies in performing the initial state preparation
and measurement. Initial preparation of non-stabilizer states in these codes is equivalent to
the challenge of producing magic states, which are already known to boost Clifford circuits
to universality using adaptive Clifford circuits [13, 12] (in contrast our construction would
only need non-adaptive Clifford circuits with magic states). Likewise, measuring in a non-
Clifford basis would require performing non-Clifford one-qubit gates prior to fault-tolerant
measurement in the computational basis. Therefore the state preparation/measurement
would be the challenging part of fault-tolerantly implementing CCCs in codes with transversal
Cliffords. It remains open if there exists a code with transversal conjugated Cliffords6 and
easy preparation and measurement in the required basis. Such a code would not be ruled
out by the Eastin-Knill Theorem [20], which states that the set of transversal gates must be
discrete for all codes which correct arbitrary one qubit errors. Of course this is not the main
motivation for exploring the power of this model – which is primarily to classify the space
between BPP and BQP – but an easier fault-tolerant implementation could be an unexpected
bonus of our results.

1.2 Proof Techniques
To prove these results, we use several different techniques.

1.2.1 Proof Techniques: classification of exact sampling hardness
To prove exact (or multiplicative) sampling hardness for CCCs for essentially all non-Clifford
U , we use the notion of postselection introduced by Aaronson [2]. Postselection is the
(non-physical) ability to discard all runs of the computation which do not achieve some
particular outcomes. Our proof works by showing that postselecting such circuits allows them
to perform universal quantum computation. Hardness then follows from known techniques
[2, 14, 3].

One technical subtlety that we face in this proof, which is not present in other results, is
that our postselected gadgets perform operations which are not closed under inversion. This
means one cannot use the Solovay-Kitaev theorem to change quantum gate sets [18]. This is
a necessary step in the proof that PostBQP = PP [2], which is a key part of the hardness
proof (see [10]). Fortunately, it turns out that we can get away without inverses due to a
recent inverse-free Solovay-Kitaev theorem of Sardharwalla et al. [51], which removes the
needs for inverses if the gate set contains the Paulis. Our result would have been much more
difficult to obtain without this prior result. To our knowledge this is the first application of
their result to structural complexity.

A further difficulty in the classification proof is that the postselection gadgets we derive do
not work for all non-Clifford U . In general, most postselection gadgets give rise to non-unitary
operations, and for technical reasons we need to work with unitary postselection gadgets
to apply the results of [51]. Therefore, we instead use several different gadgets which cover
different portions of the parameter space of U ’s. Our initial proof of this fact used a total

6 Of course one can always “rotate” a code with transversal Clifford operations to obtain a code with
transversal conjugated Cliffords. If the code previously had logical states |0〉L, |1〉L, then by setting
the states |0〉′L = U†L|0〉L and |1〉′L = U†L|1〉L, one obtains a code in which the conjugated Clifford gates
(conjugated by U) are transversal. However having the ability to efficiently fault-tolerantly prepare |0〉L
in the old code does not imply the same ability to prepare |0〉′L in the new code.
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of seven postselection gadgets found by hand. We later simplified this to two postselection
gadgets by conducting a brute-force search for suitable gadgets using Christopher Granade
and Ben Criger’s QuaEC package [26]. We include this simplified proof in this writeup.

A final difficulty that one often faces with postselected universality proofs is that one must
show that the postselection gadgets boost the original gate set to universality. In general this
is a nontrivial task; there is no simple test of whether a gate set is universal, though some
sufficient (but not necessary) criteria are known [52]. Prior gate set classification theorems
have solved this universality problem using representation theory [9, 52] or Lie theory [10, 47].
However, in our work we are able to make use of a powerful fact: namely that the Clifford
group plus any non-Clifford unitary is universal. This follows from results of Nebe, Rains and
Sloane [44, 45, 1] classifying the invariants of the Clifford group7. As a result our postselected
universality proofs are much simpler than in other gate set classification theorems.

1.2.2 Proof techniques: additive error
To prove hardness of simulation to additive error, we follow the techniques of [3, 15, 22, 42].
In these works, to show hardness of sampling from some probability distribution with additive
error, one combines three different ingredients. The first is anti-concentration – showing that
for these circuits, the output probabilities in some large set T are somewhat large. Second,
one uses Markov’s inequality to argue that, since the simulation error sums to ε, on some
other large set of output probabilities S, the error must be below a constant multiple of
the average. If S and T are both large, they must have some intersection – and on this
intersection S ∩ T , the imagined classical simulation is not only a simulation to additive
error, but also to multiplicative error as well (since the output probability in question is
above some minimum). Therefore a simulation to some amount ε of additive error implies a
multiplicative simulation to the output probabilities on a constant fraction of the outputs.
The impossibility of such a simulation is then obtained by assuming that computing these
output probabilities is multiplicatively hard on average. In particular, one assumes that it is
a #P-hard task to compute the output probability on |S ∩ T |/2n -fraction of the outputs.
This leads to a collapse of the polynomial hierarchy by known techniques [3, 14].

We follow this technique to show hardness of sampling with additive error. In our case,
the anticoncentration theorem follows from the fact that the Clifford group is a “2-design”
[58, 59] – i.e. a random Clifford circuit behaves equivalently to a random unitary up to its
second moment – and therefore must anticoncentrate, as a random unitary does (the fact that
unitary designs anticoncentrate was also shown independently by several groups [29, 39, 31]).
This is similar to the hardness results for IQP [15] and DQC1 [42], in which the authors also
prove their corresponding anticoncentration theorems. In contrast it is open to prove the
anticoncentration theorem used for Boson Sampling and Fourier Sampling [3, 22], though
these models have other complexity-theoretic advantages8. Therefore the only assumption
needed is the hardness-on-average assumption. We also show that our hardness assumption
is true for worst-case inputs. This result follows from combining known facts about BQP
with the classification theorem for exact sampling hardness.

7 However we note that in our proofs we will only use the fact that the Clifford group plus any non-Clifford
element is universal on a qubit. This version of the theorem admits a direct proof using the representation
theory of SU(2).

8 For instance, for these models it is known to be #P-hard to exactly compute most output probabilities of
their corresponding circuit. This is a necessary but not sufficient condition for the supremacy conjectures
to be true, which require it to be #P-hard to approximately compute most output probabilities of their
corresponding circuit. It remains open to show an exact average-to-worst case reduction for models
which exhibit anticoncentration, such as our model, IQP, and DQC1.
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1.3 Relation to other works on modified Clifford circuits

While we previously discussed the relation of our results to prior work on gate set classification
and sampling problems, here we compare our results to prior work on Clifford circuits. We
are not the first to consider the power of modified Clifford circuits. Jozsa and van den
Nest [33] and Koh [34], categorized the computational power of a number of modified
versions of Clifford circuits. The closest related result is the statement in [33] that if the
input state to a Clifford circuit is allowed to be an arbitrary tensor product of one-qubit
states, then such circuits cannot be efficiently classically simulated unless the polynomial
hierarchy collapses. Their hardness result uses states of the form |0〉⊗n/2|α〉⊗n/2, where
|α〉 = cos(π/8)|0〉+ i sin(π/8)|1〉 is a magic state. They achieve postselected hardness via
the use of magic states to perform T gates, using a well-known construction (see e.g. [13]).
So in the [33] construction there are different input states on different qubits. In contrast,
our result requires the same input state on every qubit – as well as measurement in that
basis at the end of the circuit. This ensures our modified circuit can be interpreted as the
action of a discrete gate set, and therefore our result has relevance for the classification of
the power of non-universal gate sets.

2 Preliminaries

We denote the single-qubit Pauli matrices by X = σx =
(

0 1
1 0

)
, Y = σy =

(
0 −i
i 0

)
,

Z = σz =
(

1 0
0 −1

)
, and I =

(
1 0
0 1

)
. The ±1-eigenstates of Z are denoted by |0〉 and |1〉

respectively. The rotation operator about an axis t ∈ {x, y, z} with an angle θ ∈ [0, 2π) is

Rt(θ) = e−iθσt/2 = cos(θ/2)I − i sin(θ/2)σt. (1)

We will use the fact that any single-qubit unitary operator U can be written as

U = eiαRz(φ)Rx(θ)Rz(λ), (2)

where α, φ, θ, λ ∈ [0, 2π) [46].
For linear operators A and B, we write A ∝ B to mean that there exists α ∈ C\{0} such

that A = αB. For linear operators, vectors or complex numbers a and b, we write a ∼ b

to mean that a and b differ only by a global phase, i.e. there exists θ ∈ [0, 2π) such that
a = eiθb. For any subset S ⊆ R and k ∈ R, we write kS to refer to the set {kn : n ∈ S}. For
example, kZ = {kn : n ∈ Z}. We denote the set of odd integers by Zodd. We denote the
complement of a set S by Sc.

2.1 Clifford circuits and conjugated Clifford circuits

The n-qubit Pauli group Pn is the set of all operators of the form ikP1 ⊗ . . . ⊗ Pn, where
k ∈ {0, 1, 2, 3} and each Pj is a Pauli matrix. The n-qubit Clifford group is the normalizer of
Pn in the n-qubit unitary group Un, i.e. Cn = {U ∈ Un : UPnU† = Pn}.

The elements of the Clifford group, called Clifford operations, have an alternative char-
acterization: an operation is a Clifford operation if and only if it can be written as a
circuit comprising the following gates, called basic Clifford gates: Hadamard, π/4 phase, and
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controlled-NOT gates, whose matrix representations in the computational basis are

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


respectively. An example of a non-Clifford gate is the T gate, whose matrix representation is

given by T =
(

1 0
0 eiπ/4

)
. We denote the group generated by the single-qubit Clifford gates

by 〈S,H〉.
We will make use of the following fact about Clifford operations.

I Fact 1. Rz(φ) is a Clifford operation if and only if φ ∈ π
2Z.

A Clifford circuit is a circuit that consists of computational basis states being acted on
by the basic Clifford gates, before being measured in the computational basis. Without loss
of generality, we may assume that the input to the Clifford circuit is the all-zero state |0〉⊗n.
We define conjugated Clifford circuits (CCCs) similarly to Clifford circuits, except that each
basic Clifford gate G is replaced by a conjugated basic Clifford gate (U⊗k)†gU⊗k, where
k = 1 when g = H,S and k = 2 when g = CNOT. In other words,

I Definition 2. Let U be a single-qubit unitary gate. A U -conjugated Clifford circuit
(U -CCC) on n qubits is defined to be a quantum circuit with the following structure:
1. Start with |0〉⊗n.
2. Apply gates from the set {U†HU,U†SU, (U† ⊗ U†)CNOT(U ⊗ U)}.
3. Measure each qubit in the computational basis.
Because the intermediate U and U† gates cancel, we may equivalently describe a U -CCC as
follows:
1. Start with |0〉⊗n.
2. Apply U⊗n.
3. Apply gates from the set {H,S,CNOT}.
4. Apply (U†)⊗n.
5. Measure each qubit in the computational basis.

2.2 Notions of classical simulation of quantum computation
Let P = {pz}z and Q = {qz}z be (discrete) probability distributions, and let ε ≥ 0. We say
that Q is a multiplicative ε-approximation of P if for all z,

|pz − qz| ≤ εpz. (3)

We say that Q is an additive ε-approximation of P if

1
2
∑
z

|pz − qz| ≤ ε. (4)

Note that any multiplicative ε-approximation is also an additive ε/2-approximation, since
summing Eq. (3) over all z produces Eq. (4). Here the factor of 1/2 is present so that ε is
the total variation distance between the probability distributions.

A weak simulation with multiplicative (additive) error ε > 0 of a family of quantum
circuits is a classical randomized algorithm that samples from a distribution that is a
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multiplicative (additive) ε-approximation of the output distribution of the circuit. Note that
from an experimental perspective, additive error is the more appropriate choice, since the
fault-tolerance theorem merely guarantees additive closeness between the ideal and realized
output distributions [7].

There are of course other notions of simulability of quantum circuits – such as strong
simulation where one can compute individual output probabilities. We discuss these further
in Section 6.

2.3 Postselection gadgets
Our results involve the use of postselection gadgets to simulate unitary operations. In this
section, we introduce some terminology to describe these gadgets.

I Definition 3. Let U be a single-qubit operation. Let k, l ∈ Z+ with k > l. A k-to-l
U -CCC postselection gadget G is a postselected circuit fragment that performs the following
procedure on an l-qubit system:
1. Introduce a set T of (k − l) ancilla registers in the state |a1 . . . ak−l〉, where a1 . . . ak−l ∈
{0, 1}k−l.

2. Apply U⊗(k−l) to the set T of registers.
3. Apply a k-qubit Clifford operation Γ to both the system and ancilla.
4. Choose a subset S of (k − l) registers and apply (U†)⊗(k−l) to S.
5. Postselect on the subset S of qubits being in the state |b1 . . . bk−l〉, where b1 . . . bk−l ∈
{0, 1}k−l.

An example of a 4-to-1 U -CCC postselection gadget is the circuit fragment described by
the following diagram:

Γ

U† 〈b1|

|a1〉 U U† 〈b2|

|a2〉 U U† 〈b3|

|a3〉 U

Let G be a U -CCC postselection gadget as described in Definition 3. The action A(G)
(also denoted AG) of G is defined to be the linear operation that it performs, i.e.

A(G) = AG = 〈b1 . . . bl|S

(∏
i∈S

U†i

)
Γ
(∏
i∈T

Ui

)
|a1 . . . al〉T , (5)

and the normalized action of G, when it exists, is

ÃG = AG

(detAG)2−l . (6)

Note that the above normalization is chosen so that det ÃG = 1.
We say that a U -CCC postselection gadget G is unitary if there exists α ∈ C\{0} and a

unitary operator U such that AG = αU . It is straightforward to check that the following are
equivalent conditions for gadget unitarity.
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I Lemma 4. A U-CCC postselection gadget G is unitary if and only if either one of the
following holds:
1. There exists γ > 0 such that A†GAG = γI,
2. Ã†GÃG = I, i.e. ÃG is unitary.

Similarly, we say that a U -CCC postselection gadget G is Clifford if there exists α ∈ C\{0}
and a Clifford operator U such that AG = αU . The following lemma gives a necessary
condition for a gadget to be Clifford.

I Lemma 5. If G is a Clifford U -CCC postselection gadget, then

AGXA
†
G ∝ X or AGXA†G ∝ Y or AGXA†G ∝ Z, (7)

and

AGZA
†
G ∝ X or AGZA†G ∝ Y or AGZA†G ∝ Z. (8)

Proof. If G is a Clifford U -CCC postselection gadget, then there exists α ∈ C\{0} and a
Clifford operation Γ such that AG = αΓ. Since Γ is Clifford, ΓXΓ† is a Pauli operator. But
ΓXΓ† 6∼ I, otherwise, X ∼ I, which is a contradiction. Hence, ΓXΓ† ∼ X or Y or Z, which
implies Eq. (7). The proof of Eq. (8) is similar, with X replaced with Z. J

3 Weak simulation of CCCs with multiplicative error

3.1 Classification results
In this section, we classify the hardness of weakly simulating U -CCCs as we vary U . As we
shall see, it turns out that the classical simulation complexities of the U -CCCs associated with
this notion of simulation are all of the following two types: the U -CCCs are either efficiently
simulable, or are hard to simulate to constant multiplicative error unless the polynomial
hierarchy collapses. To facilitate exposition, we will introduce the following terminology to
describe these two cases: Let C be a class of quantum circuits. Following the terminology in
[34], we say that C is in PWEAK if it is efficiently simulable in the weak sense by a classical
computer. We say that C is PH-supreme (or that it exhibits PH-supremacy) if it satisfies
the property that if C is efficiently simulable in the weak sense by a classical computer to
constant multiplicative error, then the polynomial hierarchy (PH) collapses.

The approach we take to classifying the U -CCCs is to decompose each U into the form
given by Eq. (2),

U = eiαRz(φ)Rx(θ)Rz(λ), (9)

and study how the classical simulation complexity changes as we vary α, φ, θ and λ. Two
simplifications can immediately be made. First, the outcome probabilities of the U -CCC are
independent of α, since α appears only in a global phase. Second, the probabilities are also
independent of λ. To see this, note that the outcome probabilities are all of the form:

|〈b|Rz(−λ)⊗nV Rz(λ)⊗n|0〉|2 = |〈b|V |0〉|2, (10)

which is independent of λ. In the above expression, b ∈ {0, 1}n and

V = Rx(−θ)⊗nRz(−φ)⊗nΓRz(φ)⊗nRx(θ)⊗n

for some Clifford circuit Γ. The equality follows from the fact that the computational basis
states are eigenstates of Rz(λ)⊗n with unit-magnitude eigenvalues.
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Table 1 Complete complexity classification of U -CCCs (where U = Rz(φ)Rx(θ)) with respect
to weak simulation, as we vary φ and θ. The roman numerals in parentheses indicate the parts of
Lemma 6 that are relevant to the corresponding box. All U -CCCs are either in PWEAK (i.e. can be
efficiently simulated in the weak sense) or PH-supreme (i.e. cannot be simulated efficiently in the
weak sense, unless the polynomial hierarchy collapses.)

φ
θ πZ π

2 Zodd
(
π
2 Z
)c

π
2 Z

PWEAK
(i, ii)

PWEAK
(ii)

PH-supreme
(iv)(

π
2 Z
)c PWEAK

(i)
PH-supreme

(iii)
PH-supreme

(iv)

Hence, to complete the classification, it suffices to just restrict our attention to the
two-parameter family {Rz(φ)Rx(θ)}φ,θ of unitaries. We first prove the following lemma (see
Table 1 for a summary):

I Lemma 6. Let U = Rz(φ)Rx(θ), where φ, θ ∈ [0, 2π). Then
U -CCCs are in PWEAK, if

(i) φ ∈ [0, 2π) and θ ∈ πZ, or

(ii) φ ∈ π
2Z and θ ∈ π

2Z.
U -CCCs are PH-supreme, if

(iii) φ /∈ π
2Z and θ ∈ π

2Zodd, or

(iv) θ /∈ π
2Z.

We defer the proof of Lemma 6 to Sections 3.2 and 3.3. Lemma 6 allows us to prove our
main theorem:

I Theorem 7. Let U be a single-qubit unitary operator. Consider the following two state-
ments:
(A) U -CCC is in PWEAK.
(B) There exists a single-qubit Clifford operator Γ ∈ 〈S,H〉 and λ ∈ [0, 2π) such that9

U ∼ ΓRz(λ). (11)

Then,
1. (B) implies (A).
2. If the polynomial hierarchy is infinite, then (A) implies (B).

In other words, if we assume that the polynomial hierarchy is infinite, then U -CCCs are
PH-supreme if and only if they cannot be written in the form U ∼ ΓRz(λ), where Γ is a
Clifford circuit and Rz(λ) is a Z-rotation.

Proof.
1. Since Rz(λ)|0〉 ∼ |0〉, it follows that for any Γ, ΓRz(λ)-CCCs have the same outcome

probabilities as Γ-CCCs. But C-CCCs are efficiently simulable, by the Gottesman-Knill
Theorem, since Γ ∈ 〈S,H〉. Hence, U -CCCs are in PWEAK.

9 or alternatively, we could restrict the range of λ to be in [0, π], since any factor of Rz(π/2) ∼ S can be
absorbed into the Clifford operator Γ.
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2. Let U be such that U -CCCs are in PWEAK. Using the decomposition in Eq. (2), write
U = eiαRz(φ)Rx(θ)Rz(λ). Since we assumed that the polynomial hierarchy is infinite,
Lemma 6 implies that
a. θ ∈ πZ, or
b. θ ∈ π

2Z and φ ∈ π
2Z.

In Case (a), θ ∈ 2πZ or πZodd. If θ ∈ 2πZ, then

U ∼ Rz(φ)Rx(2πZ)Rz(γ) = I.Rz(φ+ γ),

which is of the form given by Eq. (11). If πZodd, then

U ∼ Rz(φ)Rx(πZodd)Rz(γ) ∼ Rz(φ)XRz(γ) = XRz(γ − φ),

which is again of the form given by Eq. (11).
In Case (b),

U ∈ eiαRz(πZ/2)Rx(πZ/2)Rz(γ)
= eiαRz(πZ/2)HRz(πZ/2)HRz(γ). (12)

But the elements of Rz(πZ/2) are of the form Sj , for j ∈ Z, up to a global phase.
Therefore, Rz(πZ/2)HRz(πZ/2)H is Clifford, and U is of the form Eq. (11). J

Hence, Theorem 7 tells us that under the assumption that the polynomial hierarchy is
infinite, U -CCCs can be simulated efficiently (in the weak sense) if and only if U ∼ ΓRz(λ)
for some single qubit Clifford operator Γ, i.e. if U is a Clifford operation times a Z-rotation.

3.2 Proofs of efficient classical simulation

In this section, we prove Cases (i) and (ii) of Lemma 6.

3.2.1 Proof of Case (i): φ ∈ [0, 2π) and θ ∈ πZ

I Theorem 8. Let U = Rz(φ)Rx(θ). If φ ∈ [0, 2π) and θ ∈ πZ, then U-CCCs are in
PWEAK.

Proof. First, we consider the case where θ ∈ 2πZ. In this case, U = Rz(φ), and the
amplitudes of the U -CCC can be written as

〈y|Rz(−φ)⊗nΓRz(φ)⊗n|x〉 ∼ 〈y|Γ|x〉 (13)

for some Clifford operation Γ and computational basis states |x〉 and |y〉. By the Gottesman-
Knill Theorem, these U -CCCs can be efficiently weakly simulated.

Next, we consider the case where θ ∈ πZodd. In this case, U = Rz(φ)Rx(π) ∼ Rz(φ)X,
and the amplitudes of the U -CCC can be written as

〈y|X⊗nRz(−φ)⊗nΓRz(φ)⊗nX⊗n|x〉 ∼ 〈ȳ|Γ|x̄〉 (14)

for some Clifford operation Γ and computational basis states |x〉 and |y〉, where z̄ is the
bitwise negation of z. By the Gottesman-Knill Theorem, these U -CCCs can be efficiently
weakly simulated.

Putting the above results together, we get that U -CCCs are in PWEAK. J
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3.2.2 Proof of Case (ii): φ ∈ π
2Z and θ ∈ π

2Z

I Theorem 9. Let U = Rz(φ)Rx(θ). If φ ∈ π
2Z and θ ∈ π

2Z, then U -CCCs are in PWEAK.

Proof. The elements of Rz(π2Z) are of the form Sj , where j ∈ Z, up to a global phase.
Therefore, U = Rz(φ)Rx(θ) = Rz(φ)HRz(θ)H is a Clifford operation, and so, the U -CCCs
consist of only Clifford gates. By the Gottesman-Knill Theorem, these U -CCCs can be be
efficiently (weakly) simulated. J

3.3 Proofs of hardness

In this section, we prove Cases (iii) and (iv) of Lemma 6. Our proof uses postselection gadgets,
similar to the techniques used in [14, 10]. One can also prove hardness using techniques from
measurement-based-quantum computing, at least for certain U . We give such a proof in the
appendix of the full version of our paper for the interested reader; we believe this proof may
be more intuitive for those who are familiar with measurement-based quantum computing.

We start by proving a lemma that will be useful for the proofs of hardness.

I Lemma 10. (Sufficient condition for PH-supremacy) Let U be a single-qubit gate. If there
exists a unitary non-Clifford U -CCC postselection gadget G, then U -CCCs are PH-supreme.

Proof. Suppose such a gadget G exists. Then, since the Clifford group plus any non-Clifford
gate is universal [44, 45, 1], the Clifford group plusGmust be universal on a single qubit. Then,
by the inverse-free Solovay-Kitaev Theorem of Sardharwalla et al. [51], using polynomially
many gates from the set G,H, S one can compile any desired one-qubit unitary V to inverse
exponential accuracy (since in particular 〈H,S〉 contains the Paulis). In particular, since
any three-qubit unitary can be expressed as a product of a constant number of CNOTs and
one-qubit unitaries, one can compile any gate in the set {CCZ, Controlled-H, all one-qubit
gates } to inverse exponential accuracy with polynomial overheard.

In his proof that PostBQP = PP, Aaronson showed that postselected poly-sized circuits
of the above gates can compute any language in PP [2]. Furthermore, as his postselection
succeeds with inverse exponential probability, compiling these gates to inverse exponential
accuracy is sufficient for performing arbitrary PP computations.

Hence, by using polynomially many gadgets for G, CNOT, H and S, one can compile
Aaronson’s circuits10 for computing PP to inverse exponential accuracy, and hence these
circuits can compute PP-hard problems. PH-supremacy then follows from the techniques of
[14, 3]. Namely, a weak simulation of such circuits with constant multiplicative error would
place PP ⊆ BPPNP ⊆ ∆3 by Stockmeyer counting, and hence by Toda’s theorem this would
result in the collapse of PH to the third level. In fact, by the arguments of Fujii et al. [23],
one can collapse PH to the second level as well, by placing coC=P in SBP, and we refer the
interested reader to their work for the complete argument. J

10More specifically, we compile the circuit given by (U†)⊗n, then Aaronson’s circuit, then U⊗n, as we
need to cancel the U ’s at the beginning and the U†s at the end in order to perform Aaronson’s circuit
which starts and measures in the computational basis. However as the U,U† are one-qubit gates, one
can cancel them to inverse exponential accuracy using our gates, and hence this construction suffices.
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3.3.1 Proof of Case (iii): φ /∈ π
2Z and θ ∈ π

2Zodd
Let U = Rz(φ)Rx(θ). Consider the following U -CCC postselection gadget:

I(φ, θ) = • U† 〈0|

|0〉 U •

(15)

We now prove some properties about I(φ, θ).

I Theorem 11.
1. The action of I(φ, θ) is

AI(φ,θ) =
(

cos2 θ
2

i
2 sin θ e−iφ

− i
2 sin θ eiφ − sin2 θ

2

)
. (16)

2. I(φ, θ) is a unitary gadget if and only if θ ∈ π
2Zodd. When I(φ, θ) is unitary,

ÃI(φ,θ) = i√
2

(
1 i(−1)ke−iφ

−i(−1)keiφ −1

)
, (17)

where k = θ
π −

1
2 .

3. I(φ, θ) is a Clifford gadget if and only if φ ∈ π
2Z and θ ∈ π

2Zodd.
4. I(φ, θ) is a unitary non-Clifford gadget if and only if φ /∈ π

2Z and θ ∈ π
2Zodd.

Proof.
1. By direct calculation.
2. By Eq. (16),

A†I(φ,θ)AI(φ,θ) =
(

cos2 θ
2

i
4 sin(2θ)e−iφ

− i
4 sin(2θ)eiφ sin2 θ

2

)
. (18)

If θ ∈ π
2Zodd, then A

†
I(φ,θ)AI(φ,θ) = 1

2I, which implies that I(φ, θ) is a unitary gadget, by
Lemma 4. Conversely, assume that I(φ, θ) is a unitary gadget. Suppose that θ /∈ π

2Zodd.
Then sin(2θ) 6= 0, which implies that A†I(φ,θ)AI(φ,θ) 6∝ I, which is a contradiction. Hence,
θ ∈ π

2Zodd.
Next, k = θ

π −
1
2 implies that θ = π

2 (2k + 1). Since θ ∈ π
2Zodd, it follows that k ∈ Z.

Then sin θ = (−1)k, cos2 θ
2 = 1

2 and sin2 θ
2 = 1

2 . Hence,

AI(φ,θ) =
( 1

2
i
2 (−1)ke−iφ

− i
2 (−1)keiφ − 1

2

)
. (19)

Hence, detAI(φ,θ) = − 1
2 . Plugging this and Eq. (19) into Eq. (6) gives Eq. (17).

3. (⇐) Let φ ∈ π
2Z and θ ∈ π

2Zodd. Write φ = π
2 l and θ = π

2 (2k + 1). Then, by Eq. (17),

ÃI(φ,θ) = i√
2

(
1 i1+2k+3l

i3+2k+l −1

)
. (20)

Now, it is straightforward to check that for all k, l ∈ Z, ÃI(φ,θ)XÃ
†
I(φ,θ) ∈ {−X,Z,−Z}

and ÃI(φ,θ)ZÃ
†
I(φ,θ) ∈ {−Y,X, Y,−X}. This shows that ÃI(φ,θ) maps the Pauli group to

itself, under conjugation, which implies that ÃI(φ,θ) is Clifford.
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(⇒) Assume that I(φ, θ) is a Clifford gadget. Suppose that φ /∈ π
2Z or θ /∈ π

2Zodd. But
I(φ, θ) is unitary, and hence, θ ∈ π

2Zodd. So φ /∈ π
2Z. By Lemma 5, ÃI(φ,θ)XÃ

†
I(φ,θ) ∼ X

or Y or Z. But, as we compute,

ÃI(φ,θ)XÃ
†
I(φ,θ) =

(
(−1)k sinφ −e−iφ cosφ
−eiφ cosφ −(−1)k sinφ

)
. (21)

If ÃI(φ,θ)XÃ
†
I(φ,θ) ∼ X or Y , then sinφ = 0, which is a contradiction, since φ /∈ π

2Z.
Hence, ÃI(φ,θ)XÃ

†
I(φ,θ) ∼ Z, which implies that cosφ = 0. But this also contradicts

φ /∈ π
2Z. Hence, φ ∈ π

2Z and θ ∈ π
2Zodd.

4. Follows from Parts 2 and 3 of Theorem 11. J

I Theorem 12. Let U = Rz(φ)Rx(θ). If φ /∈ π
2Z and θ ∈ π

2Zodd, then U-CCCs are
PH-supreme.

Proof. By Theorem 11, when φ /∈ π
2Z and θ ∈ π

2Zodd, then I(φ, θ) is a unitary non-Clifford
U -CCC postselection gadget. Hence, by Lemma 10, U -CCCs are PH-supreme. J

3.3.2 Proof of Case (iv): θ /∈ π
2Z

Let U = Rz(φ)Rx(θ). Consider the following U -CCC postselection gadget:

J(φ, θ) = •

|0〉 U S • U† 〈0|

(22)

We now prove some properties about J(φ, θ).

I Theorem 13.
1. The action of J(φ, θ) is

AJ(φ,θ) = 1√
2
e−i

π
4

(
i+ cos θ 0

0 1 + i cos θ

)
= i√

2
e−i

π
4
√

1 + cos2 θ S†Rz(2 tan−1(cos θ)). (23)

2. J(φ, θ) is a unitary gadget for all θ, φ ∈ [0, 2π). The normalized action is

ÃJ(φ,θ) ∼ S†Rz(2 tan−1(cos θ)). (24)

3. J(φ, θ) is a Clifford gadget if and only if θ ∈ π
2Z.

4. J(φ, θ) is a unitary non-Clifford gadget if and only if θ /∈ π
2Z.

Proof.
1. By direct calculation.
2. The determinant of AJ(φ,θ) is

detAJ(φ,θ) = 1
2 (1 + cos2 θ) 6= 0 (25)

for all θ and φ. Hence, AJ(φ,θ) ∝ S†Rz(2 tan−1(cos θ)) for all θ and φ, which implies that
J(φ, θ) is a unitary gadget for all θ and φ.
Hence,

ÃJ(φ,θ) =
AJ(φ,θ)√
detAJ(φ,θ)

= ie−i
π
4 S†Rz(2 tan−1(cos θ)).
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3.

J(φ, θ) is a Clifford gadget ⇔ S†Rz(2 tan−1(cos θ)) is Clifford
⇔ Rz(2 tan−1(cos θ)) is Clifford
⇔ 2 tan−1(cos θ) ∈ π

2Z by Fact 1
⇔ cos θ ∈ {0, 1,−1}
⇔ θ ∈ π

2Z. (26)

4. Follows from Parts 2 and 3 of Theorem 13. J

I Theorem 14. Let U = Rz(φ)Rx(θ). If θ /∈ π
2Z, then U -CCCs are PH-supreme.

Proof. By Theorem 13, when θ /∈ π
2Z, then I(φ, θ) is a unitary non-Clifford U -CCC postse-

lection gadget. Hence, by Lemma 10, U -CCCs are PH-supreme. J

4 Weak simulation of CCCs with additive error

Here we show how to achieve additive hardness of simulating conjugated Clifford circuits,
under additional hardness assumptions. Specifically, we will show that under these assump-
tions, there is no classical randomized algorithm which given a one-qubit unitary U and a
Clifford circuit V , samples the output distribution of V conjugated by U ’s up to constant `1
error.

In the following, let V be a Clifford circuit on n qubits, U be a one-qubit unitary which
is not a Z-rotation times a Clifford, and y ∈ {0, 1}n be an n-bit string. Define

py,U,V =
∣∣〈y|(U†)⊗nV U⊗n|0n〉∣∣2 .

In other words py,U,V is the probability of outputting the string y when applying the circuit
V conjugated by U ’s to the all 0’s state, and then measuring in the computational basis. Let
the corresponding probability distribution on y’s given U and V be denoted D(U, V ).

I Theorem 15. Assuming that PH is infinite and Conjecture 16, then there is no classical
algorithm which given a one-qubit unitary U and an n-qubit Clifford circuit V , outputs a
probability distribution which is 1/100 close to D(U, V ) in total variation distance.

I Conjecture 16. For any U which is not equal to a Z-rotation times a Clifford, it is #P-hard
to approximate a 6/50 fraction of the py,U,V over the choice of y, V to within multiplicative
error 1/2 + o(1).

In order to prove this we’ll actually prove a more general theorem described below; the
result will then follow from simply setting a = c = 1/5, ε = 1/100. One can in general plug in
any values they like subject to the constraints; for instance one can strengthen the hardness
assumption by assuming computing a smaller fraction of the py,U,V is still #P-hard to obtain
larger allowable error in the simulation. These parameters are similar to those appearing in
other hardness conjectures, for example those used for IQP [15].

I Theorem 17. Pick constants 0 < ε, a, c < 1 such that (1−a)2/2− c > 0 and 2ε
ac < 1. Then

assuming Conjecture 18, given a one-qubit unitary U and an n-qubit Clifford circuit V , one
cannot weakly simulate the distribution D(U, V ) with a randomized classical algorithm with
total variation distance error ε, unless the polynomial hierarchy collapses to the third level.
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I Conjecture 18. For any U which is not equal to a Z-rotation times a Clifford, it is #P-hard
to multiplicatively approximate (1− a)2/2− c fraction of the py,U,V over the choice of (y, V ),
up to multiplicative error 2ε

ac + o(1).

Proof of Theorem 17. Suppose by way of contradiction that there exists a classical poly-
time randomized algorithm which given inputs U, V outputs samples from a distribution
D′(U, V ) such that 1

2 |D(U, V )−D′(U, V )|1 < ε. In particular, let qy,U,V be the probability
that D′(U, V ) outputs y – i.e. the probability that the simulation outputs y under inputs
U, V .

By our simulation assumption, for all U, V we have that
∑
y |qy,U,V − py,U,V | ≤ 2ε.

Therefore by Markov’s inequality, given our constant 0 < c < 1, we have that for all U and
V there exists a set S′ ⊆ {0, 1}n of output strings y of size |S′|/2n > 1− c, such that for all
y ∈ S′,

|qy,U,V − py,U,V | ≤
2ε
c2n .

In particular, by averaging over V ’s, we see that for any U as above, there exists a
set S ⊂ {0, 1}n × C of pairs (y, V ) such that for all (y, V ) ∈ S, |qy,U,V − py,U,V | ≤ 2ε

c2n .

Furthermore S has measure at least (1− c) over a uniformly random choice of (y, V ).
We now show the following anticoncentration lemma (similar theorems were shown

independently in [29, 39, 31]):

I Lemma 19. For any fixed U and y as above, and for any constant 0 < a < 1, we have
that at least (1−a)2

2 fraction of the Clifford circuits V have the property that

py,U,V ≥
a

2n .

We will prove Lemma 19 shortly. First, we will show why this implies Theorem 17. In
particular, by averaging Lemma 19 over y’s, we see that for any U as above, there exists a
set T ⊂ {0, 1}n × C of pairs (y, V ) such that for all (y, V ) ∈ T , py,U,V ≥ a

2n . Furthermore
T has measure at least (1−a)2

2 over a uniformly random choice of (y, V ). Since we assumed
that (1− a)2/2 + (1− c) > 1, then S ∩ T must be nonempty, and in particular must contain
(1− a)2/2− c fraction of the pairs (y, V ). On this set S ∩ T , we have that

qy,U,V ≤ py,U,V + 2ε
c2n = py,U,V + 2ε

ac

a

2n ≤
(

1 + 2ε
ac

)
py,U,V ,

and likewise

qy,U,V ≥ py,U,V −
2ε
c2n = py,U,V −

2ε
ac

a

2n ≥
(

1− 2ε
ac

)
py,U,V .

Since 1 − 2ε
ac > 0 (which we guaranteed by assumption), qy,U,V is a multiplicative

approximation to py,U,V with multiplicative error 2ε
ac for (y, V ) in the set S ∩ T . The set

S ∩ T contains at least (1− a)2/2− c fraction of the total pairs (y, V ).
On the other hand, by Conjecture 18 we have that computing a (1− a)2/2− c fraction of

the py,U,V to this level of multiplicative error is a #P-hard task. So approximating py,U,V to
this level of multiplicative error for this fraction of outputs is both #P-hard, and achievable
by our simulation algorithm. This collapses PH to the third level by known arguments [3, 14].
In particular, by applying Stockmeyer’s approximate counting algorithm [55] to py,U,V , one
can multiplicatively approximate qy,U,V to multiplicative error 1

poly in FBPPNP for those
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elements in S ∩T . But since qy,U,V is a 2ε
ac -approx to py,U,V , this is a 2ε

ac + o(1) multiplicative
approximation to py,U,V in S ∩ T . Hence a #P-hard quantity is in FBPPNP. This collapses
PH to the third level by Toda’s theorem [57].

To complete our proof of Theorem 17, we will prove Lemma 19.

Proof of Lemma 19. To prove this, we will make use of the fact that the Clifford group is
an exact 2-design11 [58, 59]. The fact that the Clifford group is a 2-design means that for
any polynomial p over the variables {Vij} and their complex conjugates, which is of degree
at most 2 in the Vij ’s and degree at most 2 in the V ∗ij ’s, we have that

1
|C|

∑
V ∈C

p(V, V ∗) =
∫
p(V, V ∗)dV,

where C denotes the Clifford group and the integral dV is taken over the Haar measure. In
other words, the expectation values of low-degree polynomials in the entries of the matrices
are exactly identical to the expectation values over the Haar measure.

In particular, note that py,U,V is a degree-1 polynomial in the entries of V and their
complex conjugates, and p2

y,U,V is a degree-2 polynomial in these variables. Therefore, since
the Clifford group is an exact 2-design, we have that for any y and U ,

1
|C|

∑
V ∈C

py,U,V =
∫
py,U,V dV = 1

2n

and

1
|C|

∑
V ∈C

p2
y,U,V =

∫
p2
y,U,V dV = 2

22n − 1

(
1− 1

2n

)
,

where the values of these integrals over the Haar measure are well known – see for instance
Appendix D of [30].

Following [15], we now invoke the Paley-Zygmund inequality, which states that:

I Fact 20. Given a parameter 0 < a < 1, and a non-negative random variable p of finite
variance, we have

Pr[p ≥ aE[p]] ≥ (1− a)2E[p]2/E[p2].

Applying this inequality to the random variable py,U,V over the choice of the Clifford
circuit V , we have that

PrV
[
py,U,V ≥

a

2n
]
≥ (1− a)2 2−2n

2−2−n+1

22n−1
= (1− a)2 1− 2−2n

2− 2−n+1 ≥
(1− a)2

2

which implies the claim. J

This completes the proof of Theorem 17. J

11The Clifford group is also a 3-design, but we will only need the fact it is a 2-design for our proof.
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5 Evidence in favor of hardness conjecture

In Section 4, we saw that by assuming an average case hardness conjecture (namely Conjecture
18), we could show that a weak simulation of CCCs to additive error would collapse the
polynomial hierarchy. A natural question is: what evidence do we have that Conjecture 18 is
true?

In this section, we show that the worst-case version of Conjecture 18 is true. In fact, we
show that for any U 6= CRZ(θ) for a Clifford C, there exists a Clifford circuit V and an
output y such that computing py,U,V is #P-hard to constant multiplicative error. Therefore
certainly some output probabilities of CCCs are #P-hard to compute. Conjecture 18 is
merely conjecturing further that computing a large fraction of such output probabilities is
just as hard.

I Theorem 21 (Worst-case version of Conjecture 18). For any U which is not equal to a
Z-rotation times a Clifford, there exists a Clifford circuit V and string y ∈ {0, 1}n such that
it is #P-hard to multiplicatively approximate a py,U,V to multiplicative error 1/2− o(1).

Proof. This follows from combining the ideas from the proof of Lemma 6 with previously
known facts about BQP. In particular, we will use the following facts:
1. There exists a uniform family of poly-size BQP12 circuits Cx where x ∈ {0, 1}n using a

gate set with algebraic entries such that computing |〈0n|Cx|0n〉|2 to multiplicative error
1/2 is #P-hard [15].

2. For any poly-sized quantum circuit C over a gate set with algebraic entries, any non-zero
output probability has magnitude at least inverse exponential [35].

3. As shown in the proof of Theorem 7, for any U which is not a Clifford gate times a Z
rotation, there is a postselection gadget G which performs a unitary but non-Clifford
one-qubit operation. Furthermore all ancilla qubits in G begin in the state |0〉.

From these facts, we can now prove the theorem. Let p = |〈0n|Cx|0n〉|2. By Fact 2, the
circuit Cx from Fact 1 either has p = 0 or p ≥ 2−O(nc) for some constant c. Now suppose
we compile the circuit Cx from Fact 1 using Clifford gates plus the postselection gadget G –
call this new circuit with postselection C ′x. By Sardharwalla et al. [51] we can compile this
circuit with accuracy ε = 2−O(nc)−100 with only polynomial overhead.

Let ` ∈ {0, 1}k be the string of postselection bits of the circuit C ′x (which without loss of
generality are the last bits of the circuit), and let α is the probability that all postselections
succeed. Note α is a known and easily calculated quantity, since each postselection gadget is
unitary so succeeds with a known constant probability.

Let p′ = |〈0n`|C ′x|0n+k〉|2/α. Then we have that:
If p = 0 then p′ ≤ 2−O(nc)−100.
If p 6= 0 then p − 2−O(nc)−100 ≤ p′ ≤ p + 2−O(nc)−100. Since p ≥ 2−O(nc), this is a
multiplicative approximation to p with error 2−100.

Now suppose that one can compute |〈0n`|C ′x|0n+k〉|2 to multiplicative error γ to be
chosen shortly. Then immediately one can compute p′ = |〈0n`|C ′x|0n+k〉|2/α to the same
amount of multiplicative error – call this estimate p′′. By the above argument, if p = 0 then
p′′ < 2−O(nc)−100(1+γ). On the other hand if p > 0 then p′ > 2−O(nc), so p′′ > 2−O(nc)(1−γ).
So long as γ is chosen such that 2−100(1 + γ) < (1− γ) these two cases can be distinguished
– which holds in particular if γ ≈ 1/2.

12Even IQP suffices here [15].
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Therefore, if p′′ < 2−O(nc) then we can infer that p = 0. If p′′ > 2−O(nc)(1 − γ), then
p > 0 so p′′ is a γ approximation to p′ and hence a γ + 2−100 + γ2−100 approximation to
p. In either case we have computed a γ + 2−100 + γ2−100 approximation to p. Therefore, if
γ = 1/2− 2−99, then we have computed a 1/2-multiplicative approximation to p, which is
#P-hard by Fact 1. Therefore, computing some the probability that the CCC correspoding
to C ′x outputs |0n`〉 to multiplicative error 1/2− 2−99 is #P-hard. One can similarly improve
this hardness to 1/2− o(1). J

Given that the worst-case version of Conjecture 18 is true, a natural question to ask is how
difficult it would be to prove the average-case conjecture. To do so would in particular prove
quantum advantage over classical computation with realistic error, and merely assuming the
polynomial hierarchy is infinite. In some ways this would be stronger evidence for quantum
advantage over classical computation than Shor’s factoring algorithm, as there are no known
negative complexity-theoretic consequences if factoring is contained in P.

Unfortunately, recent work has shown that proving Conjecture 18 would be a difficult
task. Specifically, Aaronson and Chen [4] demonstrated an oracle relative to which PH is
infinite, but classical computers can efficiently weakly simulate quantum devices to constant
additive error. Therefore, any proof which establishes quantum advantage with additive error
under the assumption that PH is infinite must be non-relativizing. In particular this implies
any proof of Conjecture 18 would require non-relativizing techniques – in other words it
could not remain true if one allows for classical oracle class in the circuit. This same barrier
holds for proving the similar average-case hardness conjectures to show advantage for Boson
Sampling, IQP, DQC1, or Fourier sampling. Therefore any proof of Conjecture 18 would
require facts specific to the Clifford group. We leave this as an open problem. We also note
that it remains open to prove the average-case exact version of Conjecture 18 - i.e. whether
it is hard to exactly compute a large fraction of py,U,C . We believe this may be a more
tractable problem to approach than Conjecture 18. However this remains open, as is the
analogous average-case exact conjecture corresponding to IQP. We note the corresponding
average-case exact conjecture for Boson Sampling and Fourier sampling are known to be true
[3, 22], though these models are not known to anticoncentrate.

6 Summary of simulability of CCCs

For completeness, in this section we summarize the simulability of U -CCCs when U is not a
Clifford rotation times a Z rotation. There are various notions of classical simulation at play
here. The results of this paper so far have focused of notions of approximate weak simulation.
A weak simulation of a family of quantum circuits is a classical randomized algorithm that
samples from the same distribution as the output distribution of the circuit. On the other
hand, a strong simulation of a family of quantum circuits is a classical algorithm that computes
not only the joint probabilities, but also any marginal probabilities of the outcomes of the
measurements in the circuit. Following [34], we can further refine these definitions according
to the number of qubits being measured: a strong(1) simulation computes the marginal output
probabilities on individual qubits, and a strong(n) simulation computes the probability of
output strings y ∈ {0, 1}n. Similarly, a weak(1) simulation samples from the marginal output
probabilities on individual qubits, and a weak(n) simulation samples from p(y1, . . . , yn). A
weak+ simulation samples from the same distribution on all n output qubits up to constant
additive error. Our previous results have shown that efficient weak(n) simulations (Theorem
7), weak+ simulations (Theorem 17), and strong(n) simulations (Theorem 21) of CCCs are
implausible. However it is natural to ask if it is possible to simulate single output probabilities
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strong

weak strong(n)

weak+

strong(1)

weak(1)

hard

easy

conjectured

hard

(assuming PH
is infinite)

Figure 1 Relationships between different notions of classical simulation and summary of the
hardness of simulating CCCs. An arrow from A to B (A→ B) means that an efficient A-simulation
of a computational task implies that there is an efficient B-simulation for the same task. Note
also that an weak(n) simulation exists if and only if a weak simulation exists. For a proof of these
relationships, see [34]. The two curves indicate the boundary between efficiencies of simulation of
U -CCCs, where U is not a Clifford operation times a Z rotation. “Hard” means that an efficient
simulation of U -CCCs is not possible, unless PH collapses. “Conjectured hard” means that an
efficient simulation of U -CCCs is not possible, if we assume Conjecture 18. “Easy” means that an
efficient simulation of U -CCCs exists. Note that when U is a Clifford operation times a Z rotation,
all the above notions become easy.

of CCCs. It turns out the answer to this question is yes. This follows immediately from
Theorem 5 of [34], which showed more generally that Clifford circuits with product inputs or
measurements have an efficient strong(1) and weak(1) simulation. Therefore this completes
the complexity classification of the simulability of such circuits. We note that IQP has
identical properties in this regard. This emphasizes that the difficulty in simulating CCCs
(or IQP circuits) comes from the difficulty of simulating all of the marginal probability
distributions contained in the output distribution, where the marginal is taken over a large
number of output bits. The probabilities of computing individual output bits of either model
are easy for classical computation. This is summarized in Figure 1.

7 Open Problems

Our work leaves open a number of problems.
What is the computational complexity of commuting CCCs? In other words, can the
gate set CZ, S conjugated by a one-qubit gate U ever give rise to quantum advantage?
Note that this does not follow from Bremner, Jozsa and Shepherd’s results [14], as
their hardness proof uses the gate set CZ, T or CCZ,CZ,Z conjugated by one-qubit
gates. If this is true, it would say that the “intersection” of CCCs and IQP remains
computationally hard. One can also consider the computational power of arbitrary
fragments of the Clifford group, which were classified in [27]. Perhaps by studying such
fragments of the Clifford group one could achieve hardness with lower depth circuits (see
additional question below).
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We showed that Clifford circuits conjugated by tensor-product unitaries are difficult to
simulate classically. A natural extension of this question is: suppose your gate set consists
of all two-qubit Clifford gates, conjugated by a unitary U which is not a tensor product
of the same one-qubit gate. Can one show that all such circuits are difficult to simulate
classically (say exactly)? Such a theorem could be a useful step towards classifying the
power of all two-qubit gate sets.
Generic Clifford circuits have a depth which is linear in the number of qubits [5]. In
particular the lowest-depth decomposition for a generic Clifford circuit over n qubits to
date has depth 14n− 4 [41]. Such depth will be difficult to achieve in near-term quantum
devices without error-correction. As a result, others have considered quantum supremacy
experiments with lower-depth circuits. For instance, Bremner, Shepherd and Montanaro
showed advantage for a restricted version of IQP circuits with depth O(logn) [16] with
long-range gates (which becomes depth O(n1/2 logn) if one uses SWAP gates to simulate
long-range gates using local operations on a square lattice). We leave open the problem
of determining if quantum advantage can be achieved with CCCs of lower depth (say
O(n1/2) or O(n1/3)) with local gates only.
In order to establish quantum supremacy for CCCs, we conjectured that it is #P-hard
to approximate a large fraction of the output probabilities of randomly chosen CCCs
(Conjecture 18 ). Is it also #P-hard to exactly compute that large of a fraction of the
output probabilities? This is a necessary but not sufficient condition for Conjecture 18 to
be true, and we believe it may be a more approachable problem.
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