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Abstract
Computing functions over a distributed stream of data is a significant problem with practical
applications. The distributed streaming model is a natural computational model to deal with such
scenarios. The goal in this model is to maintain an approximate value of a function of interest
over a data stream distributed across several computational nodes. These computational nodes
have a two-way communication channel with a coordinator node that maintains an approximation
of the function over the entire data stream seen so far. The resources of interest, which need
to be minimized, are communication (primary), space, and update time. A practical variant of
this model is that of distributed sliding window (dsw), where the computation is limited to the
last W items, where W is the window size. Important problems such as sampling and counting
have been investigated in this model. However, certain problems including computing frequency
moments and metric clustering, that are well studied in other streaming models, have not been
considered in the distributed sliding window model.

We give the first algorithms for computing the frequency moments and metric clustering
problems in the distributed sliding window model. Our algorithms for these problems are a
result of a general transfer theorem we establish that transforms any algorithm in the distributed
infinite window model to an algorithm in the distributed sliding window model, for a large class
of functions. In particular, we show an efficient adaptation of the smooth histogram technique of
Braverman and Ostrovsky, to the distributed streaming model. Our construction allows trade-
offs between communication and space. If we optimize for communication, we get algorithms
that are as communication efficient as their infinite window counter parts (upto polylogarithmic
factors).

2012 ACM Subject Classification Theory of computation→ Streaming models, Theory of com-
putation → Sketching and sampling, Theory of computation → Distributed algorithms

Keywords and phrases distributed streaming, distributed functional monitoring, distributed
sliding window, frequency moments, k-median clustering, k-center clustering

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.22

1 Introduction

Modern data often arrive fast and are distributed over several nodes. In such situations
it is not practical to store and process all the data at a central location. The distributed
streaming model is a natural architecture for such computing scenario. In this model, a set
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22:2 New Algorithms for Distributed Sliding Windows

of distributed computational nodes get a stream of data items. Each distributed node has a
two-way communication channel to a coordinator node. The goal of the coordinator node is
to continuously keep track of an approximate value of a function of interest over the union of
all streams distributed over the nodes. As in the case of traditional streaming situation, it is
assumed that a data item cannot be revisited unless stored on local memory. The primary
resource of interest is the total number of bits of communication between the coordinator
node and distributed nodes. Other important resources are total space used over all nodes
and the update time per data item.

The focus of this paper is the sliding window variation of this distributed streaming
model: distributed sliding window (dsw) model. In this model, the goal of the coordinator
node is to continuously compute an approximation of a desired function over only the last W
data items in the union of all data items arriving at each of the distributed nodes. Example
of practical situations where such computing scenario arise include geographically distributed
e-commerce servers or LAN devices or sensor nodes trying to compute some statistics about
the transactions made or the traffic passed or the interesting events happened respectively,
for the last million items or during last 24 hours. In general the sliding window variations
are more difficult for algorithm design than their infinite window counter parts because of
‘implicit deletion’: the last element of the current window gets deleted at the arrival of the
next element. In the distributed model there are additional challenges since the coordinator
node is not directly aware of the arrival of a new item.

1.1 Our Results
We design efficient (communication, space, time) algorithms in the distributed sliding window
model for functions including frequency moments and metric clustering. Our algorithms for
these problems are results of a general transfer theorem we establish that transforms any
algorithm in the distributed (infinite window) streaming model (diw) to an algorithm in
the distributed sliding window model, for a large class of functions. Specifically, we adapt
the smooth histogram technique of Braverman and Ostrovsky [5] that applies to the class
of smooth functions in the single stream model, to the distributed setting. In particular,
we prove the following transfer theorem (please refer to the next section for definitions and
notations).

I Theorem. Let f be an (α, β)-smooth function f for some 0 < β < α < 1. Let 0 < ε < 1
be such that b = (1+ε)2

(1−ε)2 (1− β) < 1. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. Suppose there is a diw
algorithm B computes f over stream size at most m, upto approximation ratio (1± ε), using
cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then there is another algorithm that computes f over a dsw
of size W upto approximation ratio (1± (α+ ε)) using cost 〈L ·W x · (1 + logW )cB(W, ε), (4L ·
sB(W, ε) + W y), L(4 + logW )tB(W, ε)〉, where L = ((log fmax

fmin(1−ε)/ log 1
b ) + 2), fmax = the

maximum value of f over any window of size W , and fmin = smallest non-zero value of f .
We assume storing each data element takes unit space.

The construction allows trade-offs between communication and space. In particular
setting x = y = 1/2, we get that for any function f with fmax/fmin = poly(W ), a diw
algorithm for f with cost 〈c, s, t〉 can be transformed to get a dsw algorithm with cost
〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉, where Õ hides polylog factors.

We apply this general algorithm for computing frequency moments and metric clustering
problems to get new algorithms that are as communication efficient as their infinite window
counter parts (upto polylog factors). Although the cost functions associated with clustering
problems are not exactly smooth, we still give dsw algorithms for them based on the single
stream clustering algorithms given in [4].
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1.2 Previous work

Initial research in the distributed streaming model appeared in papers including [2, 10, 15,
18, 19]. These papers designed distributed streaming algorithms for several natural problems
including approximately tracking the functions: sum, top-k frequencies, set-expression
cardinality, approximate quantiles and thresholded counts. We refer the reader to the above
papers for practical motivations behind this model. A formal algorithmic approach towards
distributed streaming was first given by Cormode, Muthukrishanan and Yi [11]. They called
their model distributed functional monitoring model where the task is to continuously monitor
whether the function value is ≥ τ or ≤ (1− ε)τ for a threshold τ and an error parameter3 ε.
They designed the first algorithm for Fp, the pth frequency moment and also proved lower
bound results on the communication cost of monitoring Fp for p ≤ 2. Efficient randomized
algorithms for monitoring count, frequencies and ranks were given in [17]. Woodruff and
Zhang [22] designed better algorithms for Fp and provided matching lower bound for the
communication cost. Sampling algorithms over distributed streams were given in [12, 21].
Recently Chen and Zhang [7] gave an algorithm for distributed monitoring of entropy. We
refer the reader to [9] for a survey by Cormode on this topic.

While the “infinite-window” distributed streaming has received considerable attention, its
sliding (or finite) window counterpart has received only limited attention. The first paper to
deal with distributed stream processing over a finite sliding window is [12] where the authors
present algorithms for sampling that is efficient in communication, space and time. Later,
in [6, 14], efficient algorithms for distributed sliding window were designed for the problems
of counting the number of bits, quantiles, and heavy hitters. In [20], the authors extend the
count-min sketch algorithm to the dsw model. In [16], the present authors give an algorithm
for Euclidean k-median clustering problem. To the best of our knowledge computations of Fp
for a general p and metric clustering are not yet considered in this model (which we consider
in this paper). We would like to note that Fp computation and clustering problems have
received considerable attention in the single stream sliding window models [1, 3, 4, 5, 8].

2 Background and definitions

2.1 The models

The distributed streaming model. In the distributed streaming model there are (K + 1)
computational nodes: {N1, N2, . . . , NK , C} where Nis are called distributed nodes and C is
called the coordinator node. These nodes have to collectively compute a function f over a
global stream of data items: {d1, d2, . . . , dt, . . . , dN} which are distributed over Nis in an
arbitrary manner. More precisely, at time t, the item dt will be sent to the node Nj for some
1 ≤ j ≤ m. At all times t, the coordinator should maintain an approximation of f over the
set of items {d1, d2, . . . , dt} seen so far from the global stream. In order to achieve this, each
Nj can communicate with C through a bi-directional channel. An algorithm in this model
must work for any ordering of the global input stream. The resources of interest are the
total communication, total space usage over all nodes, and time to process each data item.
The term local stream will be used to refer to the sub-stream seen only at a particular node
Nj . In this paper we call this model is the distributed infinite window model.

3 This does not loose generality as the authors observed that any monotonic function f can be computed
continuously using Õ( 1

ε ) copies of a monitoring algorithm for f .

SWAT 2018
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The distributed sliding window model. In the sliding window variation of the distributed
infinite window model, there are the global stream and the set of (K + 1) nodes as before.
But at any time t, the coordinator needs to maintain an approximation of the function f
over the set of most recent W data items: {dt−W+1, . . . , dt}. This set of items is known as
the active window and W is known as the window size. As in most of the prior literature, we
assume each data item comes with a unique (modulo W ) time-stamp4.

2.2 Smooth functions and smooth histograms
The notion of smooth functions was introduced by Braverman and Ostrovsky in [5]. The
main property that a smooth function f should satisfy is the following continuity property:
Consider f computed on a stream starting at two time points (or indices) i and j (j > i). If
f computed starting at i and f computed starting at j are within a constant factor of each
other at a given point in time, then it will remain within a constant factor in the future.

I Definition 1 ((α, β)-smooth function [5]). A function f defined on a set χ of elements is
called (α, β)-smooth, for some 0 < β < α < 1 if (1) f is non-decreasing and non-negative, (2)
f(A) is at most poly(|A|), (3) (1−β)f(A∪B) ≤ f(B) =⇒ (1−α)f(A∪B ∪C) ≤ f(B ∪C)
for any set A,B,C ⊆ χ.

Braverman and Ostrovsky show that for such smooth functions, it suffices to run an online
algorithm to compute the function starting at logarithmic number of carefully chosen indices
to get constant approximation at any given window. These indices correspond to a constant
factor decrease in the value of the function. The corresponding data structure is referred as
smooth histogram. This resulted in a construction that translates any single stream infinite
window algorithm to a single stream sliding window algorithm for smooth functions with
comparable space complexity (up to log factors) as that of the infinite window algorithm.

I Definition 2 (Approximate smooth histogram [5]). Let f be an (α, β) smooth function.
A smooth histogram for f is a data structure that consists of an increasing set of indices
[I1, I2, . . . , IL] over a sliding window of size W with the following properties.
1. For each i = 1 to L, there is an instance of a (1± ε)-approximating algorithm A, running

for approximating f(Ii, N), the value of f for ε ≤ β/4 over the set {dIi
, dIi+1, . . . , dN},

where dj is the data element at location j and dN is the most recently arrived element.
2. I1 is expired and I2 is active or I1 = 0.
3. For i = 1 to t−2, either 1) (1−α)f(Ii, N) ≤ f(Ii+1, N) and (1−β/2)f(Ii, N) > f(Ii+2, N)

or 2) (1− β/2)f(Ii, N) > f(Ii+1, N) and Ii+1 = Ii + 1.

For a smooth function, the third point above ensures that consecutive indices are farthest
apart but staying within at least (1 − α) factor (or immediate in stream and drops by
> (1− β/2) factor). Note that f(Ii, N) where Ii is the least index from the histogram that
is contained in the current window, approximates the value of the function on the current
window.

2.3 Notation
In this paper we use the abbreviations diw and dsw to mean distributed infinite window and
distributed sliding window respectively. We denote by (t1, t2] the subset of the stream from

4 This model is also known as time-based dsw model. There is another variation called sequence-based
dsw, where no time-stamps are available. This model is harder to design algorithms on.
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(t1 + 1)-st through t2-th element. We also use: K to denote the number of distributed nodes,
m the length of stream, W the length of window and k the number of medians/centers for
clustering. 〈c, s, t〉 denotes the costs of our diw/dsw algorithm, where c is the communication
complexity over any window of size W or over the length of the stream m as appropriate,
s is the space complexity and t is the update time (possibly amortized). For a function f ,
by a c-factor approximation we mean f

c ≤ f̃ ≤ c · f and by (1± ε) approximation we mean
(1− ε)f ≤ f̃ ≤ (1 + ε)f .

3 A transfer theorem for smooth functions

In this section we give a general construction that transforms a distributed infinite window
(diw) algorithm for smooth function to a distributed sliding window (dsw) algorithm. We
assume that the infinite window algorithm B has a cost-tuple 〈cB(m, ε), sB(m, ε), tB(m, ε)〉,
over a stream of length m and with error parameter ε. In particular we prove the following
theorem (same as the theorem stated in the introduction).

I Theorem 3. Let f be an (α, β)-smooth function f for some 0 < β < α < 1. Let 0 < ε < 1
be such that b = (1+ε)2

(1−ε)2 (1− β) < 1. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. Suppose there is a diw
algorithm B computes f over stream size at most m, upto approximation ratio (1± ε), using
cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then there is another algorithm that computes f over a dsw
of size W upto approximation ratio (1± (α+ ε)) using cost 〈L ·W x · (1 + logW )cB(W, ε), (4L ·
sB(W, ε) + W y), L(4 + logW )tB(W, ε)〉, where L = ((log fmax

fmin(1−ε)/ log 1
b ) + 2), fmax = the

maximum value of f over any window of size W , and fmin = smallest non-zero value of f .
We assume storing each data element takes unit space.

Note that the construction allows trade-offs between communication and space. In
particular setting x = y = 1/2, we get that for any function f with fmax/fmin = poly(W ), a
diw algorithm for f with cost 〈c, s, t〉 can be transformed to get a dsw algorithm with cost
〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉, where Õ hides polylog factors.

We first give the algorithm and its proof for the case when x = 0 and y = 1, and then
point out how to modify this algorithm to get the general algorithm. This algorithm has
communication and time costs almost same as (upto polylog(W )) that of the diw algorithm,
but uses Θ(W ) space.

I Theorem 4. Let f be an (α, β) smooth function for some 0 < β < α < 1. Let 0 < ε < 1 be
any number such that b = (1+ε)2

(1−ε)2 (1−β) < 1. Further assume f has a (1± ε)-approximate diw
algorithm B over stream size at most m, with cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then, there
is a dsw algorithm for computing f upto approximation ratio (1±(α+ε)) with cost 〈L(logW +
1)cB(W, ε), L·sB(W, ε)+W,L(logW+1)tB(W, ε)〉, where L ≤ (log fmax

fmin(1−ε)/ log 1
b )+2, fmax =

the maximum value of f over any window of size W , and fmin = smallest non-zero value of
f . We assume storing each data element takes unit space.

High level idea of the algorithm: Our general approach is to adapt the smooth histogram
technique for sliding windows due to Braverman and Ostrovsky [5] to the distributed setting.
Braverman and Ostrovsky showed that for smooth functions, if streaming algorithms are
maintained from a small set of carefully chosen indices of the active window, one of these
algorithms would approximate the value of the function over all active windows in near
future. These indices correspond to a drop of the value of the function by some constant
factor. Their algorithm has three main steps: when a new data item d arrives (1) start a new
instance of the streaming algorithm A from this new item (2) update all running instances of

SWAT 2018
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I1 I2 I3 I4

• • •

buffered
window future

window

Figure 1 Online algorithms run from each index Ij (position indicated by ‘(’). The one from
I3 can be used to approximate f over the future window. Thus, indices from the buffered window
serves for next W elements.

A with d and (3) remove redundant indices and the corresponding instances of A. There are
technical challenges to translate the smooth histogram technique to the distributed setting.
The main obstacle is the following: In the single stream case, for each newly arrived element,
an instance of A is started from its index. Most of them are removed at some later point in
the future so that at all times only a logarithmic number of indices are kept. In distributed
setting, if one has to start instances of A each time a new element arrives, it will cost Ω(W )
bits of communication (from the distributed node where the item arrives to the coordinator).

In order to reduce the communication cost we use the following approach. Instead of
continuously building the histogram, we observe that it is enough to create it once per
W items. Once built, this histogram will continue to work till the arrival of next W th

item due to smoothness of the function. In other words, steps (1) and (3) in the previous
discussion could be dropped except once per W items. This keeps the asymptotic time
and communication cost small. We split the entire stream into static windows of size W :
(0,W ], (W, 2W ], . . . , (aW, aW +W ], . . . and we build the smooth histogram only when the
current window coincides with one of the static windows. This is done by buffering the
entire expiring window using O(W ) space (see Figure 1 for illustration). The indices, which
correspond to a drop of some constant factor for f , are obtained by performing binary
searches on the buffered static window. This will introduce further communication cost and
time for about O(log2 W ) many instances of the online algorithm.

Proof. (Of Theorem 4). A high-level pseudocode of the algorithms is given in Algorithm 1. We
split the entire stream into static windows of size W : (0,W ], (W, 2W ], . . . , (aW, aW +W ], . . .
and maintain a smooth histogram over exactly one of them. If the current time t satisfies
aW −W < t < aW , the smooth histogram from the static window (aW − 2W,aW −W ] can
be used to approximate f([t−W + 1, t]). We recall, the smooth histogram maintains online
algorithms from a set of appropriately chosen indices guarantees that any two consecutive
indices are either consecutive or are (1−α)-factor close in f . If I1 ≤ (t−W + 1) < I2 are the
two unique consecutive pair of indices enclosing (t−W + 1), the value of the online algorithm
from the index I1 can be used to approximate f([t−W + 1, t]) upto (1± (α+ ε))-factor. We
buffer the next static window (aW, aW +W ] locally (at the distributed nodes as they arrive)
and build the smooth histogram from it at time (aW +W ). We describe how to build this
in detail in the following claim.

I Claim 5. Suppose we have stored a static window [λ, ρ] = (aW, aW +W ] locally. A smooth
histogram H for [λ, ρ] can be built using cost 〈L logW · cB(W, ε), (sB(W, ε) + W ), L logW ·
tB(W, ε)〉, where the number of indices in H is L ≤ (log fmax

fmin(1−ε)/ log 1
b ) + 2.
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Algorithm 1: High level dsw algorithm for smooth functions
Input: A stream of data: 〈d1, d2, . . . , dN 〉
Output: Approximate value of f((N −W,N ])

1 while Not the end of stream do
2 Let dN be the newly arrived item;
3 if N = aW +W then
4 Delete the current smooth histogram H((aW −W,aW ]);
5 H((aW, aW +W ])← Build a new smooth histogram for (aW, aW +W ];
6 Output the value of online algorithm over (aW, aW +W ];
7 else
8 if aW < N < aW +W then
9 Update the online algorithm from each index of H((aW −W,aW ]) with

dN ;
10 Buffer dN at the node where it arrived;
11 Ij , Ij+1 be the immediate indices such that Ij ≤ N −W + 1 < Ij+1;
12 Output the value of the online algorithm started from index Ij ;
13 end
14 end
15 end

Proof. We find the indices from the buffered window [λ, ρ] by binary search and by running
the online algorithm B on the buffered set of items5. The first index is always λ. The last
index is always the index ρ. We denote by f̃ , a (1± ε) factor approximation for f , found
using B. Then, the second index is created at a time-stamp t, such that,

f̃([t, ρ]) ≥ (1− β) (1 + ε)
(1− ε) f̃([λ, ρ]). (1)

This ensures, f([t, ρ]) ≥ (1− β)f([λ, ρ]), as desired for smooth histogram. In fact, we try to
find such a t as far as possible in the window to minimize the number of indices. We tag a
time-stamp ‘yes’ if it satisfies Equation (1) and ‘no’ otherwise. We set two variables l = λ

and r = ρ and maintain the invariant that l has ‘yes’ tag and r has ‘no’ tag. We next check
whether mid = (l+ r)/2 has ‘yes’ tag or ‘no’ tag and update l or r appropriately to maintain
the invariant. Then, in logW steps, we will be able to get hold of a t, such that, t has ‘yes’
tag but (t+ 1) has ‘no’ tag. This is our next index. We find subsequent indices in similar
manner.

Notice that, at the (t+ 1)-st item, the value of f̃ drops at least by factor (1− β) (1+ε)
(1−ε)

(Recall, if the indices are consecutive, drop could be larger). This implies, f drops at least
by factor b = (1− β) (1+ε)2

(1−ε)2 < 1. Suppose there are L indices in total. Then, After crossing
the (L − 1)-st index, the value of f̃ is at most fmaxb

(L−2), where fmax is the maximum

5 There are some details for running B on the buffered items. For a general function, assume, all the
nodes have some global knowledge of time. Then, a fixed time interval of sufficient length can be allotted
for processing each data item. Thus, for example, it may be agreed upon that the kth data item d in
the current window will be processed during time interval (t, t + ∆ · k) where ∆ is at least as large as
the update time of the algorithm and t is the time of arrival of the oldest element of the current window.
During this interval, whichever node has received d, will process it. For a permutation-invariant function
such as Fp and clustering, the nodes can take turns and run the online algorithm over the desired
sub-window of the local stream, to compute the function over any sub-window of the global stream.

SWAT 2018
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value of f over any window. Moreover, assuming the least non-zero value of f is fmin,
fmaxb

(L−2) ≥ fmin(1− ε). Hence L ≤ (log fmax
fmin(1−ε)/ log 1

b ) + 2. We denote by I this set of
indices. This concludes the updating of the smooth histogram. While finding the indices, at
most L logW instance of B are run for at most W units of time. This can be achieved using
L logW · cB(W, ε) total communication and LW logW · tB(W, ε) total time (i.e. amortized
update time L logW · tB(W, ε) per item). During the binary search, we need space for
running at most a single instance of B at any point in time, and the space is reused. We
also need space for buffering the current window. So, the space complexity for this part is
(sB(W, ε) +W ). J

Afterwards, we maintain B from each of the indices and update them with newly arrived
items. For any time till the arrival of next (W − 1) items, let f1 > f2 be the value of f at the
two enclosing indices of the current window. Let fcurrent be the value of f over the current
window. From the properties of smooth histogram, either fcurrent = f1, or (1− α)f1 < f2 ≤
fcurrent ≤ f1. Moreover, the value of online algorithm at the former index holds a value f̃1,
such that, (1− ε)f1 ≤ f̃1 ≤ (1 + ε)f1. Hence, (1− ε)fcurrent ≤ f̃1 ≤ (1+ε)

(1−α)fcurrent. This is
close to (1± (α+ ε))-approximation for small α and ε. We also need to continue running
B from each index for W units of time. This costs at most L · cB(W, ε) communication,
L · tB(W, ε) update time per item and L · sB(W, ε) space in total. J

Proof of Theorem 3. The proof follows closely from that of Theorem 4. In this case, we
break the current window of sizeW intoW x blocks, each of sizeW y, such thatW = W x ·W y,
for some 0 < x, y < 1, x+y = 1. We rebuild the smooth histogram per arrival ofW x elements
in the combined stream. Then, the nodes need to store at most W x items. As before, total
number of indices within each block, L1 ≤ L = ((log fmax

fmin(1−ε)/ log 1
b )+2). As in the algorithm

of Theorem 4, finding these indices is done by binary search, using at most L1 logW calls
to B. In total, this can be done with L1 logWcB(W, ε) total communication per block (i.e
L1 ·W x · logWcB(W, ε) in total), (sB(W, ε) +W y) space (since space is reused during binary-
search) and L1 logWW ytB(W, ε) total time per block (i.e. amortized L1 logWtB(W, ε) time
per item).

Subsequently, we need to maintain L1 ·W x online algorithms from each of the indices
within the current window of size W . But we can do better by removing unnecessary ones
while introducing indices from a new block. We arrange the combined indices in decreasing
order of arrival. Then, for each index i, we look for the subsequent index j where the current
value of the online algorithm drops by factor b for the first time. We remove all indices
strictly between i and (j − 1) if there are any. We repeat this removal procedure until no
more indices can be removed in such a manner. Then, starting from each index, at the next
to next index, value of online algorithm drops at least by factor b. After merging, there
are L2 ≤ (2(log fmax

fmin(1−ε)/ log 1
b ) + 2) ≤ 2L such indices at any point in time. Moreover, by

previous discussion, every next index is either the subsequent item, or within a factor b from
the previous index. This entire removal takes time linear in the set of the indices to be merged,
i.e. at most 10(log fmax

fmin(1−ε)/ log 1
b ) time per block. So, we ignore this while computing the

update time per item. Note that, during this removal, no further communication or space
is required. This concludes the indices removal procedure. Then, online algorithms from
each of the indices run for ≥ W y and ≤ W time. So the total communication cost is
at most L1 ·W xcB(W, ε). The space complexity for running the online algorithms is at
most 2L2 · sB(W, ε). Using the indices removal procedure, we improve the update time to
2L2 · tB(W, ε) per arrival, for updating each of the current instances of B. J
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3.1 Better and simpler algorithm for symmetric smooth functions
For symmetric smooth functions we get simpler algorithm with slightly better cost. In
particular, the cost of the algorithm will be 〈(L+ 1) · cB(W, ε) ·W x, 4L · sB(W, ε) +W y, 4(L+
1)tB(W, ε)〉.

We call a function symmetric if its value is invariant to the permutation of its arguments.
For symmetric functions, we create the indices of the smooth histogram by making a single
backward pass (i.e. from the most recent to the least recent item in the window) of the
distributed online algorithm on the buffered window [aW+1, aW+W ]. Let f̃(A) be the value
of this algorithm, which is within (1±ε)-factor of f(A). We create the last index of the smooth
histogram at (aW +W ). Recursively assume, the previous index we created was at t1. During
the backward pass, suppose at the time-stamp (t2− 1) ≤ t1, the value f̃([t2− 1, aW +W ]) is
at least 1

b · f̃([t1, aW +W ]) = 1
(1−β)

(1−ε)
(1+ε) · f̃([t1, aW +W ]) for the first time. If this happens

at t2 − 1 = t1 − 1, we create an index at (t1 − 1). Otherwise, we create at t2, which satisfies
f̃([t2, aW+W ]) < 1

b f̃([t1, aW+W ]). This implies, f([t1, aW+W ]) ≥ (1−β)f([t2, aW+W ]),
ensuring the smoothness condition between the consecutive indices t1 and t2. We find all the
L indices in similar manner, where L = ((log fmax

fmin(1−ε)/ log 1
b ) + 2), fmax = the maximum

value of f over any window of sizeW , and fmin = smallest non-zero value of f . This improves
the cost of Theorem 4 to 〈(L+ 1)cB(W, ε), (L+ 1) · sB(W, ε) +W, (L+ 1)tB(W, ε)〉. We can
shave off a logW factor from the costs of Theorem 3 using a similar simpler algorithm.
Note that, we crucially use the symmetric nature of the function in the use of the backward
online algorithm. The Fp and clustering costs are symmetric functions, whereas, the function
‘length of longest increasing subsequence’ is asymmetric smooth [5].

4 Applications: Computing Fp and Clustering

In this section we apply the transfer theorem to get new dsw algorithms for approximating
Fp and metric clustering problems.

4.1 Computing Fp

I Definition 6 (pth Frequency moment). Given a set of items {1, 2, . . . , n} such that their
frequencies are {f1, f2, . . . , fn} respectively, their pth frequency moment is defined as Fp =∑n
i=1 f

p
i .

We first recall a result that shows Fp is smooth.

I Theorem 7 (Lemma 5 of [5]). Fix any 0 < ε < 1. For p < 1, Fp is (ε, ε)-smooth function.
For p ≥ 1, Fp is (ε, ε

p

pp )-smooth function.

The first distributed functional monitoring algorithm for Fp was given in [11]. In the
monitoring model, in a distributed stream of items, one has to decide whether F2 ≥ τ or
F2 ≤ (1− ε)τ at all times, for some ε and a threshold τ specified. The same paper ([11]) also
observed that any monotonic function f can be computed continuously using Õ( 1

ε ) copies of
a monitoring algorithm for f . Later on Woodruff and Zhang provided the following online
algorithm for Fp, for any p ≥ 1. They also showed this algorithm has optimal dependence on
K.

I Theorem 8 (Follows from Theorem 8 of [22]). For any 0 < ε < 1, there is an algorithm
that continuously computes Fp for any constant p ≥ 1, over universe [n] over a distributed
stream of length at most W upto approximation (1 ± ε) with high probability using cost
〈Õ(K

p−1

εΘ(p) ), Õ(nKε ), Õ( 1
ε2 )〉.
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From Theorem 3, we get the following algorithm for computing Fp, which is (ε, εp/pp)-smooth.

I Corollary 9. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. For any constant p, there is an algorithm
that continuously computes Fp over a time based dsw of width W upto approximation ratio
(1± ε) with high probability using cost 〈Õ(W x Kp−1

εΘ(p2) ), Õ(W y + nK
εΘ(p) ), Õ( 1

εΘ(p) )〉.

In particular for F2, we chose to work with the following result of [11] since its communication
cost has much smaller dependence on ε.

I Theorem 10 (Follows from Theorem 6.1 of [11]). For any 0 < ε < 1, there is an algorithm
that continuously computes F2 over universe n over a distributed stream of length at most W
upto approximation (1± ε) with high probability using cost 〈Õ((K

2

ε2 + K1.5

ε4 )), Õ(Kε3 ), Õ( 1
ε3 )〉.

From Theorem 3, we get the following algorithm for computing F2, which is (ε, ε2/4)-smooth.

I Corollary 11. Fix any 0 ≤ x, y ≤ 1, x+ y = 1. There is an algorithm that continuously
computes f over a time based dsw of width W upto approximation ratio (1 ± ε) with high
probability using cost 〈Õ(W x(K

2

ε4 + K1.5

ε8 )), Õ(W y + K
ε6 ), Õ( 1

ε6 )〉

4.2 Metric clustering
In this section we apply the generic algorithm from Section 3 for the functions: k-median
and k-center clustering.

I Definition 12 (Metric k-median clustering problem). Given a set of points P from a metric
space χ, output C∗ = arg minC⊆χ,|C|≤k

∑
p∈P minc∈C d(p, c) and OPTk =

∑
p∈P minc∈C∗

d(p, c) where d is the distance function of χ.

I Definition 13 (Metric k-center clustering problem). Given a set of points P from a met-
ric space χ, output C∗ = arg minC⊆χ,|C|≤k maxp∈P minc∈C d(p, c) and OPTk = maxp∈P
minc∈C∗ d(p, c) where d is the distance function of χ.

In this section, approximation ratio of r > 1 will mean the clustering cost of the algorithm is
in the range [OPT, r.OPT]. We assume each point takes O(1) space. These two clustering
problems have approximation ratio Θ(1). So a straightforward combination of the local
clusterings results in an overall approximation ratio of O(m). The cost functions OPTk are
neither smooth [4].

4.2.1 Metric k-median clustering
We use the following diw algorithm for k-median clustering.

I Theorem 14 (Theorem 2 of [16] restated). There is a distributed online algorithm for
O(1)-approximate metric k-median with success probability (1 − 1

poly(W ) ), and with cost
〈O(kK log3 W ), O(kK logW )), O(k logW )〉 assuming OPTk = poly(W ).

We cannot directly apply Theorem 3 since the k-median clustering cost is not smooth. We
use an additional property of k-median cost observed in [4] and use ideas from Theorem 4 to
get the following theorem, whose proof is in Section 5.

I Theorem 15. There is a dsw algorithm for O(1)-approximate metric k-median with
success probability (1− 1

poly(W ) ) per W items, and with cost 〈O(k2K log5 W ), O(k2K log3 W +
W ), O(k2 log3 W )〉 assuming OPTk = poly(W ).
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4.2.2 Metric k-center clustering
We use the following diw algorithm for k-center clustering.

I Theorem 16 (Theorem 6 of [13] restated). For any ε > 0, there is a deterministic
distributed online algorithm for (2 + ε)-approximate metric k-center with cost 〈O(kKε logW ),
O(kKε log OPT), O(k)〉 assuming OPTk = poly(W ).

The k-center clustering cost is not smooth. We prove an additional property of k-median
cost and use ideas from Theorem 4 to get the following theorem, whose proof is in Section 5.

I Theorem 17. There is a deterministic dsw algorithm for O(1)-approximate metric k-center
with cost 〈O(k2K log4 W ), O(k2K log2 W +W ), O(k2 log2 W )〉 assuming OPTk = poly(W ).

5 Proofs of clustering results

It was shown in [4], the k-median cost behaves like a smooth function if the following
additional property is satisfied. For convenience, we abuse the notation of Definition 1 for a
smooth function in this subsection, by replacing (1−α) by 1

α and (1−β) by 1
β for appropriate

α > β > 1. We denote by Cost(P,O) the k-median clustering cost for a set of points P ,
when O is the set of k medians. For convenience, we drop the k in OPTk when there is no
ambiguity.

I Lemma (Lemma 3.1 of [4] restated). For any distinct sets of points A,B,C ⊆ χ from some
metric space χ, OPT(A∪B) ≤ γOPT(B) =⇒ OPT(A∪B ∪C) ≤ (2 + rγ)OPT(B ∪C) for
any r, γ ≥ 1, provided the following property holds for the sets A,B: There exists a k-median
clustering t : (A ∪B)→ F upto approximation ratio r such that |t−1(f) ∩A| ≤ |t−1(f) ∩B|
for each median f ∈ F .

I Theorem. There is a dsw algorithm for O(1)-approximate metric k-median with suc-
cess probability (1− 1

poly(W ) ) per W items, and with cost 〈O(k2m log5 W ), O(k2m log3 W +
W ), O(k2 log3 W )〉 assuming OPT = poly(W ).

Proof. We split the stream into static windows of the form: [aW + 1, aW +W ] and store
this window locally. At time (aW + W ), we need to rebuild a smooth histogram. For
this, we use the slightly better and simpler algorithm from the remark in Section 3.1.
We run A from Theorem 14 backwards (i.e. from item (aW + W ) to item (aW + 1)).
Let the approximation factor of A be λ. The last index of the smooth histogram is at
time-stamp (aW + W ). Suppose, the last time we created an index at time-stamp tl
and the value of A at tl was vl ∈ [OPT, λOPT]. Fix any γ > λ. Let (tl−1 − 1) be the
time when value of A is at least γ

λvl for the first time. If tl−1 − 1 = tl − 1, we create
the next index at (tl − 1). Otherwise at tl−1, A([tl−1, aW + W ]) < γ

λvl. This implies,
OPT([tl−1, aW + W ]) ≤ γ · OPT([tl, aW + W ]). This tl−1 is our next index. In total, at
most L such indices will be created, where L = ((log λfmax

fmin
)/ log γ

λ ) + 2) = O(logW ), fmax =
the maximum value of k-median cost over any window of size W , and fmin = smallest
non-zero value of k-median cost. We refer to these set of indices as ‘outer’ indices. For
each outer index, we also record the set of k medians produces by A. Let the indices be
I = {I1 < I2 < · · · < IL} and the corresponding sets of k medians be C = {C1, C2, . . . , CL},
where each Ci = {ci1, ci2, . . . , cik}. We communicate I and C to each node. We claim
that for any Ii ≤ t < Ii+1, Ci is a γλ-approximate set of k-medians for [t, aW +W ]. This
is because, Cost([t, aW + W ], Ci) ≤ Cost([Ii, aW + W ], Ci) ≤ λ · OPT ([Ii, aW + W ]) ≤
γλ · OPT ([Ii+1, aW + W ]) ≤ γλ · OPT ([t, aW + W ]) (Using monotonicity of OPT and
smoothness).
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We also need to ensure the additional property from Lemma 5. We ensure this by keeping
a set of ‘inner’ indices between each pair of outer indices. We describe below how to find the
inner indices between I1 and I2. Other inner indices can be found accordingly. For any i = 1
to L, and for any set S = [t, aW +W ] ⊆ [Ii, aW +W ], let nSij denote the number of points
from S which map to the median cij , in the clustering [Ii, aW +W ]→ Ci. Let ñSij denote
a (1± 1

10 ) approximation of nSij . We first assume the coordinator can compute ñSij for any
S = [t, aW +W ] ⊆ [Ii, aW +W ]. We defer the description of how to compute this in the
following paragraph. Let J1 be the first (earliest in window) inner index between I1 and I2.
We will create the index J1 at the farthest time-stamp I1 < t ≤ I2, such that

∀j = 1 : k, ñ[I1,aW+W ]
1j ≤ (18/11) · ñ[t,aW+W ]

1j (2)

The later condition ensures, for each median c1j ∈ C1, n[I1,aW+W ]
1j ≤ 2·n[t,aW+W ]

1j , equivalently
n

[I1,t−1]
1j ≤ n

[t,aW+W ]
1j , as demanded in the additional property from Lemma 5. Such a

farthest t satisfying Equation 2 is found by using binary search. Notice that t = l := I1
is always satisfied. We first guess t = r := I2. If this t satisfies Equation 2, we already
have an index at I2 and we don’t need to keep any inner index. If not, we next guess
t = d l+r2 e and if this t satisfies, we change l = d l+r2 e, otherwise, we change r = d l+r2 e.
In this way, we preserve the invariant that l satisfies Equation 2 but r does not. In
O(logW ) steps, we will get a t∗, such that t∗ satisfies but (t∗ + 1) does not. We set
J1 = t∗. We find the next inner index J2 similarly using the same clustering C1 and at
the farthest time-stamp t, such that, ∀j = 1 : k, ñ[J1,aW+W ]

1j ≤ 18
11 ñ

[t,aW+W ]
1j holds. Note

that, the set C1 is a γλ approximate median for any I1 ≤ t < I2, from previous discussion.
So, the additional property from Lemma 5 holds at indices J1 and J2, with respect to
the clustering C1 and r = γλ. Let C ′1 and C ′2 be the λ-approximate clusterings for J1
and J2 respectively. Hence from Lemma 5 at any later time (t′ + W − 1), such that
J1 ≤ t′ < J2, Cost([t, t+W −1], C ′1) ≤ Cost([J1, t+W −1], C ′1) ≤ λ ·OPT ([J1, t+W −1]) ≤
λ(2 + γ2λ) ·OPT ([Ii+1, t+W − 1]) ≤ λ(2 + γ2λ) ·OPT ([t, t+W − 1]) (Using monotonicity
of OPT and smoothness). So, the final approximation is (2 + γ2λ). We find subsequent inner
indices in similar manner. Note that, after crossing each inner index, ñij for some j reduces
by a factor 18

11 . Since there are at most k medians and W items, the total number of inner
indices between I1 and I2 is at most O(k logW ). Also note that, for checking Equation 2,
the coordinator needs ñ[t,aW+W ]

ij values, for various values of t, and j, which we obtain as
follows.

Each node makes a backward pass over its local data. During this pass, for each i, it maps
each point p ∈ [Ii, aW +W ] to cij∗ , where j∗ = arg minj d(p, cij), i.e. cij∗ is the closest of the
medians from Ci. It also keeps a counter nij for each cij , which increments for each new point
mapping to cij . We then record the time-points where nij increases by (1 + 1

20 )-factor, i.e
crosses { 21

20 ,
21
20

2
, . . . ,W} for the first time. We call this set of time-points as Hij . Each node

z sends such Hz
ij , for each i, j to the coordinator. Note that, n[t,aW+W ]

ij =
∑
z n

[t,aW+W ]z

ij ,
where [t, aW + W ]z denotes items from [t, aW + W ] that appear at node z. Using Hz

ij ,
coordinator can approximate n[t,aW+W ]z

ij upto (1± 1
10 ) factor, for any z. Taking sum over

all z, it can approximate n[t,aW+W ]
ij for any t, upto (1± 1

10 ) factor, as required.
The total number of indices are O(kL logW ). The backward online algorithm costs

〈O(km log3 W ), O(km logW )), O(k logW )〉. Communicating the Hz
ij values cost O(kmL

log3 W ) in total. The set of inner indices require O(kL log2 W ) computations for nSij per W
items by the coordinator, and we ignore the costs for these. Later, online algorithms are run
for each index for at most W arrivals. We also have to include O(W ) space complexity for
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storing the static windows. The final cost is 〈O(k2mL log4 W ), O(k2mL log2 W +W ), O(k2

L log2 W )〉. Since we run at most O(kL logW ) online algorithms, success probability per W
items is still (1− 1

poly(W ) ). J

Next we present a Lemma analogous to Lemma 5 for smoothness of k-center clustering. The
additional property is more relaxed than that of k-median. To the best of our knowledge,
this result was not known before. We denote by Cost(P,O) the k-center clustering cost for a
set of points P , when O is the set of k centers. For convenience, we drop the k in OPTk
when there is no ambiguity.

I Lemma. For any distinct sets of points A,B,C ⊆ χ from some metric space χ, OPT(A∪
B) ≤ γOPT(B) =⇒ OPT(A∪B∪C) ≤ (1+2rγ)OPT(B∪C) for any r, γ ≥ 1, provided the
following property holds for the sets A,B: There is a k-center clustering t : (A∪B)→ F , upto
approximation ratio r, such that, for each center f ∈ F, |t−1(f)∩A| > 0 =⇒ |t−1(f)∩B| > 0.

Proof. Let O be the optimal set of centers for B∪C. We will map each element a ∈ A to some
point in O. Let O′ be the r-approximate set of centers for A ∪B, which satisfies the above
property. Let o′ ∈ O′ be the center to which a ∈ A maps to. By assumption some b ∈ B also
gets mapped to o′. Finally, let o ∈ O be the center to which b maps to. We will map a to o.
Then by definition, max(d(a, o′), d(b, o′)) ≤ r ·OPT(A∪B) and d(b, o) ≤ OPT(B∪C). Then,
by triangle inequality, d(a, o) ≤ (d(a, o′)+d(b, o′)+d(b, o)) ≤ (2r ·OPT(A∪B)+OPT(B∪C))

OPT (A ∪B ∪ C) ≤ Cost(A ∪B ∪ C,O)
≤ max{OPT(B ∪ C), Cost(A,O)}
≤ max{OPT(B ∪ C), (2r ·OPT(A ∪B) + OPT(B ∪ C))}
≤ (2r ·OPT(A ∪B) + OPT(B ∪ C))
≤ (2rγ ·OPT(B) + OPT(B ∪ C)) (Given)
≤ (1 + 2rγ)OPT(B ∪ C) (Using monotonicity of OPT)

J

Our dsw algorithm for k-center clustering closely follows that for k-median clustering given
earlier in this section. We create a set of ‘outer’ indices corresponding to a constant factor
drop of the cost of the diw algorithm. We also introduce a set of ‘inner’ indices between each
pair of outer indices to satisfy the additional property of Lemma 5. These inner indices are
created at a point t, such that there exists a center to which no item from part (t, aW +W ]
maps. Since, there are at most k centers, at most k inner indices are possible between each
pair of outer indices. Hence the total number of indices is O(k logW ). We skip more details
of the proof since it closely follows that of Theorem 15.
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