
Succinct Dynamic One-Dimensional Point
Reporting
Hicham El-Zein
Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
helzein@uwaterloo.ca

J. Ian Munro1

Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1
ynekrich@uwaterloo.ca

Abstract
In this paper we present a succinct data structure for the dynamic one-dimensional range report-
ing problem. Given an interval [a, b] for some a, b ∈ [m], the range reporting query on an integer
set S ⊆ [m] asks for all points in S ∩ [a, b]. We describe a data structure that answers reporting
queries in optimal O(k + 1) time, where k is the number of points in the answer, and supports
updates in O(lgε m) expected time. Our data structure uses B(n,m) + o(B(n,m)) bits where
B(n,m) is the minimum number of bits required to represent a set of size n from a universe of
m elements. This is the first dynamic data structure for this problem that uses succinct space
and achieves optimal query time.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases Succinct Data Structures, Range Searching, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.17

1 Introduction and Motivation

This paper studies the dynamic one-dimensional range reporting problem where the goal
is to maintain (under insertion and deletion) a set of integers S from a universe of size m
to answer range reporting queries efficiently: Given an interval [a, b] for some a, b ∈ [m],
report all points in S ∩ [a, b]. We note that the reporting query is equivalent to the query
FindAny(a, b) which asks for an arbitrary point c in S ∩ [a, b]: if the interval [a, b] is not
empty, we can recurse on [a, c− 1] and [c+ 1, b] after obtaining any c ∈ S ∩ [a, b].

We study this problem in the succinct scenario. In the succinct setting the emphasis is on
the space efficiency of the data structure. The goal is to design data structures that occupy
optimal or almost-optimal space and at the same time achieve an efficient query cost. This
area of research is of interest in theory and practice and is motivated by the need to store
a large amount of data using the smallest space possible. In recent years there has been a
surge of interest in succinct data structures for computational geometry [4, 2, 5, 10]. We
refer the reader to the survey by Munro and Rao [11] and the book of Navarro [17] for a
more in-depth coverage of succinct data structures.

1 This work was sponsored by the NSERC of Canada and the Canada Research Chairs Program.

© Hicham El-Zein, J. Ian Munro, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 17; pp. 17:1–17:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:helzein@uwaterloo.ca
mailto:imunro@uwaterloo.ca
mailto:ynekrich@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


17:2 Succinct Dynamic One-Dimensional Point Reporting

Related Work. One-dimensional range reporting is a well studied problem. Miltersen et
al. [13] presented a data structure for the static version of this problem that uses O(n lgm)
words and answers queries in constant time per reported element. Alstrup et al. [1] later
presented an improved data structure with the same query time that uses O(n) words,
i.e., O(n lgm) bits. Goswami et al. [7] presented a succinct data structure that further
improved the space usage to B(n,m) + o(B(n,m)) bits while preserving the query time where
B(n,m) ≈ n lg (m/n) is the minimum number of bits required to represent a set of size n
from a universe of m elements.

For the dynamic version of this problem Mortensen et al. [14] presented a data structure
that uses a linear number of words and answers queries in O(tq) time and updates in expected
O(tu) time where:
tq ≥ lg lg lgm, lg lgm/ lg lg lgm ≤ tu ≤ lg lgm : tu = O(lgtq

lgm) + tpred,
or tq ≤ lg lg lgm, tu ≥ lg lgm : 2tq = O(lgtu

lgm).
The most appealing point of this trade-off in the context of succinct data structures is when
the query time is constant and the update time is O(lgε m) time for a fixed ε > 0.

Our Results. We start with some preliminaries in Section 2. In Section 3 we present a
semi-dynamic succinct range reporting data structure that supports deletions in expected
O(lgε m) time and queries in constant time. In Section 4 we present a fully-dynamic succinct
range reporting data structure that supports updates in expected O(lgε m) time and queries
in constant time. Our results depend on the ability to construct a static succinct one
dimensional point reporting structure in O(n lgε m) time using o(n) workspace. We defer
the details of this construction to the end in Section 5 due to its technical nature.

2 Preliminaries

In this section we review some previous results that will be used in the rest of this paper.

2.1 One-Dimensional Point Reporting
First we review the data structure of Alstrup et al. [1] for static one-dimensional range
reporting. We start by defining some notations. Let x⊕ y denote the binary exclusive-or of
x and y. Given a w-bit integer x let x ↓ i = x/2i denote the rightmost w bits of the result of
shifting x i bits to the right. Similarly let x ↑ i = x · 2i mod 2w denote the rightmost w bits
of the result of shifting x i bits to the left. Finally, denote by msb (x) the position of the
most significant bit (or leftmost one bit) of x.

Given a set of integers S the goal is to store S while supporting the query FindAny(a, b)
which returns an element in S ∩ [a, b]. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w. The leaves are numbered 0, . . . , 2w − 1 from left to right while
the internal nodes are labeled in a manner similar to an implicit binary heap. The root is the
first node, and the children of a node v are 2v and 2v+ 1. As noted in [1] the dth ancestor of
v is v ↓ d and the lowest common ancestor of two leaves a and b is the (1 + msb (a⊕ b))th

ancestor of a or b. Thus the lowest common ancestor of two leaves can be computed in
constant time.

Given a node v ∈ T let left (v) and right (v) denote the left and right children of v, and
let Sv denote the subset of S that is in the subtree rooted at v. A node v is branching if
both Sleft (v) and Sright (v) are not empty. To answer a query FindAny(a, b) it is sufficient to
compute the lowest common ancestor v of a and b; when v is computed, either maxSleft (v)
or minSright (v) is in [a, b], or [a, b] is empty. Thus by storing the values maxSleft (v) and



H. El-Zein, J. I. Munro, and Y. Nekrich 17:3

minSright (v) for all nodes v with non-empty Sv in O(nw) words, range reporting queries can
be answered in constant time.

To improve the space Alstrup et al. [1] observe the following. Let v be the nearest
branching ancestor of the lowest common ancestor of a and b, and let vl(vr) be the nearest
branching node in v’s left(right) subtree if one exists, otherwise vl = v(vr = v) if there
is no branching node in v’s left(right) subtree. Then either maxSleft (vl), minSright (vl),
maxSleft (vr), or minSright (vr) is in [a, b], or [a, b] is empty. Thus they store a O(n) word
data structure that consists of:
B, D: vectors of size O(n

√
w lgw) bits that return the nearest branching ancestor of the

nodes in T with non empty-subtrees.
V : a vector storing for each branching node v the values maxSv and minSv, in addition to

two pointers to the nearest branching nodes in the left and right subtrees of v.
For the full details we refer the reader to [1].

2.2 Tree Representation
In their paper Geary and Raman [6] present a succinct ordinal tree representation that
answers level ancestor queries. In their tree representation the tree is partitioned into
mini-trees of size O(lg4 n), and then the mini-trees are partitioned into micro-trees of size
O(lgn). Internally a node x is referred to by τ(x) = (τ1(x), τ2(x), τ3(x)) where τ1(x) is the
id of x’s mini-tree, τ2(x) is the id of x’s micro tree, and τ3(x) is the id of x in its micro tree.
If two nodes x and y are in the same micro tree µ then τ1(x) = τ1(y) = p(µ) where p(µ) is
the id of the micro tree µ. Note that micro trees can intersect only at their roots, and if a
node is in different micro trees (i.e. it is the root of several micro trees) it can have different
τ names. That is, if a node x is a root of two different micro-trees µ1 and µ2, it will have
two different τ names where in the first one τ2(x) = p(µ1) and in the second τ2(x) = p(µ2).
Both names are valid and we can select any one of them.

Geary and Raman show how to compute the preorder number of x given τ(x) in constant
time using an index of size o(n) bits. This index can be constructed in O(n) time using a
workspace of O(n) words. Given a tree T partitioned using the above scheme and a node
x ∈ T we denote by root (x) the root of the mini-tree that x belongs to.

2.3 Sparse Arrays
We will use the following Theorem from [12]:

I Theorem 1 ([12]). There is an (m,n,O(n))-family of perfect hash functions H such that
any hash function h ∈ H can be represented in Θ(n lg lgn) bits and evaluated in constant
time for m ≤ 2w. The perfect hash function can be constructed in expected O(n) time.

As noted in [1] a corollary of the previous theorem is the following.

I Corollary 2. A sparse array of size m ≥ n with n initialized entries that contain b =
Ω(lg lgn) bits each can be stored using O(nb) bits, so that any initialized entry can be accessed
in O(1) time. The expected preprocessing time of this data structure is O(n).

3 Semi-Dynamic Succinct One-Dimensional Point Reporting

Although Goswami et al. [7] presented a succinct data structure for one-dimensional range
reporting, it is not clear what is the construction time of their data structure. In Section 5
we utilize succinct data structure techniques to improve the data structure in [1] so that it

SWAT 2018



17:4 Succinct Dynamic One-Dimensional Point Reporting

uses B(n,m) + o(B(n,m)) bits and can be constructed in O(n lgε m) time using o(n) extra
bits of space. The details are deferred to Section 5 due to their technical nature.

I Theorem 3. There exists a succinct B(n,m) + o(B(n,m))-bit data structure that supports
one-dimensional range reporting queries in O(k + 1) time where k is the number of points
within the query. Additionally given the point set in sorted order, this data structure can be
constructed in expected O(n lgε m) time using o(n)-bits workspace.

The data structure for one-dimensional range reporting can be dynamized so that queries
are supported in deterministic O(k) time and updates in expected O(lgε m) time while the
space usage is O(n) words [14]. Our aim is to reduce the space to the information theoretic
lower bound plus a lower order term. In this section we present a semi-dynamic succinct
one-dimensional range reporting data structure that supports queries and deletions but does
not support insertions.

Data Structure. We store the data structure from Theorem 3 and call it P . We divide the
points into blocks of size lg2 m and we store predecessor and successor data structures that
can answer queries in each block independently using o(B(n,m)) bits as described in [4]. We
also store a dynamic data structure [14] D on the endpoints of each block. Furthermore,
each block is divided into subblocks of size lgn/2 and stores a dynamic data structure [14]
Di (1 ≤ i ≤ n/ lg2 m) on the ranks (within the block) of the endpoints of each subblock. We
also store a compressed bit vector([8], Theorem 2) B of size n that indicates which points
were deleted. Finally, we store a lookup table T that can report for any range the 0 bits in a
bit vector of size lgn/2.

Query. To report the points within an interval [a, b] we query D on the interval. Then for
each point reported with rank k we query the (bk/2c)th and (bk/2c+ 1)st blocks.

To query the kth block we first reduce the problem to the rank space by finding the rank
of the successor of a and the predecessor of b within the block. Next, we query Dk for the
non-empty subblocks within the block and use T to report the points in the subblock.

If the query to D does not return any point then either [a, b] is empty or [a, b] is contained
fully within a block. To determine which block contains [a, b] we query P to get the rank of
a random point in [a, b] from that we determine which block contains [a, b]. Afterwards we
proceed within the block as described above.

Deletions. To delete a point p we first query to check that the interval [p, p] is not empty.
We obtain the rank k of p by querying P , and then we set the kth bit in T to 1. Now we
know that the point p is in the s = (2(k mod lg2 m)/ lgn)th subblock of the b = (k/ lg2 m)th

block. We check if the sth subblock is empty. If that is so we remove its endpoints from
D(k/ lg2 m). Then we check if the bth block is empty. In that case we remove its endpoints
from D. The expected running time is O(lgε m).

Space Analysis. P uses B(n,m) + o(B(n,m)) bits and D contains O(n/ lg2 m) points
thus uses O(n/ lgm) bits. Each Di (1 ≤ i ≤ n/ lg2 m) contains O(lg2 m/ lgn) points
from a universe if size lg2 m thus uses O(lg2 m lg lgm/ lgn) bits. The Di structures use
O(n lg lgm/ lgn) bits in total. If lg lgm /∈ o(lgn) then n < lgc m for some constant c. In
that case we use a slightly different approach. We reduce the problem to the rank space from
the beginning to make the universe size n, so D uses O(n/ lgn) bits and the Di structures
use O(n lg lgn/ lgn) bits in total. The table T uses O(

√
n lg3 n lg lgn) bits and finally the

compressed bit vector uses o(n) as long as the number of deletions is o(n). In total the space
remains B(n,m) + o(B(n,m)) bits.



H. El-Zein, J. I. Munro, and Y. Nekrich 17:5

Construction Time and Workspace. P can be constructed in expected O(n lgε m) time
using o(n) extra bits of space. D can be constructed in expected O(n/ lg2−ε m) time using
O(1) extra words of space. Each Di can be constructed in expected O((lg2 m/ lgn) lgε lgm)
time using O(1) extra words of space, so all the Di’s can be constructed in expected
O((n/ lgn) lgε lgm) time using O(1) extra words of space. T can be constructed in o(n) time
using o(n) extra bits of space. In total the construction time and workspace are dominated
by the cost of constructing P and remain the same as in Theorem 3.

I Theorem 4. There exists a semi-dynamic succinct B(n,m) + o(B(n,m))-bit data structure
that supports one-dimensional range reporting queries in O(k+ 1) time where k is the number
of points within the query, and point deletions in expected O(lgε m) time as long as the number
of deletions is o(n). Additionally given the point set in sorted order, this data structure can
be constructed in expected O(n lgε m) time using o(n)-bits workspace.

4 Fully-Dynamic Succinct One-Dimensional Point Reporting

4.1 Fully-Dynamic Structure with Amortized Updates
We first present a fully dynamic solution that uses B(n,m) + o(B(n,m)) bits of space and
supports queries in O(k) time and updates in amortized expected O(lgε m) time.

We divide the universe of size m into n/ lg2 m chunks of equal size and maintain a fully
dynamic [14] data structure B to keep track of the nonempty chunks. B is maintained
throughout the data structure updates. Whenever a point is inserted we insert both endpoints
of its chunk into B. Moreover whenever a chunk becomes empty we remove its endpoints
from B. For each chunk bi (1 ≤ i ≤ n/ lg2 m) we maintain two data structures: Si and Di.
Si is the compressed semi-dynamic range reporting structure described in Theorem 4 and
Di is the fully dynamic data structure described in [14]. We maintain the invariant that
size (Di) < size (Si)/ lgε n for all i where n =

∑
i size (Si). Once size (Di) = size (Si)/ lgε n

we rebuild Si and merge Di with it. The time needed to rebuild Si will be O(size (Si) lgε m

which we can charge to the elements inserted into Di at a cost of O(lg2ε m) per element.
Moreover if the total number of elements increase by a constant factor or if n/ lgε n elements
were deleted from the collections Si we rebuild the whole data structure. The time needed to
rebuild the whole structure is O(n lgε m) and will be charged to the new elements inserted if
the size doubles at a cost of O(lgε m) per element, or to the elements deleted at a cost of
O(lg2ε m) per element.

To report all the points within an interval [a, b] we query B to get the non-empty chunks.
Whenever a non-empty chunk i is reported we query both Si and Di. If [a, b] is completely
within one chunk we get its index i = bb lg2 m/nc, and then we query Si and Di.

The space used by B is at most O(n/ lgm) bits. and the space used by all the Di

structures is:

O(n lg (m lg2 m/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lgn/ lgε n))
= o(B(n,m)).

The space used by all the structures Si is B(n,m) + o(B(n,m)) bits. In total the space used
is B(n,m) + o(B(n,m)) bits.

I Theorem 5. There exist a dynamic succinct B(n,m) + o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number of
points within the query, and updates in amortized expected O(lgε m) time.

SWAT 2018



17:6 Succinct Dynamic One-Dimensional Point Reporting

4.2 Fully-Dynamic Structure with Worst Case Updates
Next, we present a fully-dynamic succinct one-Dimensional range reporting structure that
supports queries in O(k) time and insertions and deletions in expected O(lgε m) time. Our
data structure uses techniques similar to the ones presented in [9, 15, 16].

Data Structure. We define a parameter nf = Θ(n); the value of nf changes as n becomes
too large or too small. We divide m into (nf/ lg2 nf ) chunks each of size ((m lg2 nf )/nf )
and we store a dynamic range reporting structure B with a universe of size 2(nf/ lg2 nf ) on
the endpoints of the non-empty chunks. For each chunk b where 1 ≤ b ≤ (nf/ lg2 nf ) we
store the following:
kb

f an estimate of k the number of points in the chunk. kb
f = Θ(k), the value of kb

f changes
as k becomes too large or too small.

Data Structures Cb
1, . . . , Cb

lgε nf
. These structures are the succinct semi-dynamic structures

described in the previous section. They partition the chunk into sub-chunks of possibly
different sizes, each containing Θ(kb

f/ lgε nf ) points.
Data Structures Db

1, . . . ,Db
lgε nf

. These structures are the fully dynamic structures described
in [14].

Fb a fusion tree on the endpoints of the Cb
i data structures.

Queries are answered in a manner similar to the previous subsection. To report all
the points within an interval [a, b] we query B to get the non-empty chunks. Whenever a
non-empty chunk (say the bth chunk) is reported we query Fb to get the sub-chunks it spans.
For each sub-chunk (say the sth sub-chunk) we query both Cb

s and Db
s.

Insertions. To insert the new point p we compute the chunk b = b(p lg2 nf )/nfc that p
belongs to. If the bth chunk is empty we insert its endpoints into B. Next, we check if
any structure in the Cb collection is being rebuilt. In that case we spend Θ(lg3ε nf ) time
rebuilding it. Then we determine the sth sub-chunk that p belongs to using Fb. Finally, we
insert p into Db

s.
In each chunk we run the following background process. After each series of δ =

kb
f/(lg

2ε nf lg lgnf ) insertions we identify the sth sub-chunk with the largest number of
inserted points and rebuild Cb

s during the next δ updates in that chunk. The re-building
works as follows. We construct a semi-dynamic data structure Cb

s = Cb
s ∪ Db

s. If a point is
inserted into this sub-chunk, we store it in the additional data structure Db. When Cb

s is
completed we set Cb

s := Cb

s and Db
s := Db. Thus at any time only one sub-chunk of a chunk

is re-built. This method guarantees that the number of inserted elements into Db does not
exceed kb

f/ lgε n as follows from a Theorem of Dietz and Sleator:

I Lemma 6 ([3], Theorem 5). Suppose that x1, . . . , xg are variables that are initially zero.
Suppose that the following two steps are iterated:
(i) we add a non-negative real value ai to each xi such that

∑
ai = 1

(ii) set the largest xi to 0.
Then at any time xi ≤ 1 + hg−1 for all i, 1 ≤ i ≤ g, where hi denotes the i-th harmonic
number.

Let ms be the number of inserted elements into Db
s and xs = ms/δ. Every iteration of

the background process sets the largest xs to 0 and during each iteration
∑
xs increases by

1. Hence the value of xs can be bounded from above by: xs ≤ 1 +hlgε nf
for all s at all times.



H. El-Zein, J. I. Munro, and Y. Nekrich 17:7

Thus ms = O((kb
f/ lg2ε nf lg lgnf ) lg lgnf ) = O(kb

f/ lg2ε nf ) for all i because hi = O(lg i),
and the total size of the Db collection is O((kb

f/ lg2ε nf ) lgε nf ) = O(kb
f/ lgε nf ).

Once the value of kb
f becomes too big or too small we rebuild the whole chunk during

the next kb
f/ lg3ε nf updates (spending O(lg4ε nf ) time per update). The old chunk is locked

such that only deletions are allowed. We rebuild the chunk with an updated value of kb
f and

as points are inserted into the new chunk we delete them from the old one to preserve space.
If the size of the sub-chunk becomes too big we split it into two and update Fb accordingly.

Deletions. Deletions are similar to insertions. To delete a point p we compute the chunk
b = b(p lg2 nf )/nfc that p belongs to. Then we check if any structure in the Cb collection is
being rebuilt. In that case we spend Θ(lg3ε nf ) time rebuilding it. Next, we determine the
sub-chunk s that p belongs to using Fb. Finally, we delete p from Cb

s and Db
s.

In each chunk we run a background process similar to the process run for insertions.
After each series of δ deletions, we identify the sth sub-chunk with the largest number of
deletions and rebuild Cb

s during the next δ updates in that chunk. This method guarantees
that the number of deleted elements in the Cb collection does not exceed kb

f/ lgε n. If the size
of a sub-chunk becomes too small we merge it with the neighboring sub-chunk and update
Fb accordingly. Moreover if a chunk becomes empty we delete its endpoints from B.

Space Analysis. The space used by B is O(n/ lgn). The space used by all the Ci structures
in all chunks is B(n,m)+o(B(n,m)) bits. The total size of all the D structures is O(nf/ lgε nf )
so they use at most:

O(n lg (m lg2 n/n)/ lgε n) = O((n lg (m/n)/ lgε n) + (n lg lgn/ lgε n))
= o(B(n,m)).

The space used by the fusion trees in all chunks is:

O(n lgε n lg (m lg2 n/n)/ lg2 n) = O((n lg (m/n)/ lg2−ε n) + (n lg lgn/ lg2−ε n))
= o(B(n,m)).

Thus the total space is B(n,m) + o(B(n,m)) bits.
Once the value of nf becomes too big or too small, we rebuild the whole data structure in

the background during the next nf/ lg3ε nf updates (spending O(lg4ε nf ) time per update).
We replace the chunks from left to right. The chunk being replaced is locked such that
only deletions are allowed. We rebuild that chunk with an updated value and as points are
inserted into the new chunk we delete them from the old one to preserve space.

I Theorem 7. There exist a dynamic succinct B(n,m) + o(B(n,m))-bit data structure that
supports one-dimensional range reporting queries in O(k + 1) time where k is the number of
points within the query, and updates in expected O(lgε m) time.

5 Succinct Static One-Dimensional Point Reporting With Fast
Construction Time

In this section we prove Theorem 3. Denote by T the classic binary tree with 2w leaves
where all leaves have depth w as described in subsection 2.1. Let P be the set of nodes in T
with non-empty subtrees and V the set of branching nodes in T union the leaves of T and
its root. Let TV be the tree formed from T by deleting all vertices in T −P then contracting

SWAT 2018



17:8 Succinct Dynamic One-Dimensional Point Reporting

all vertices in P − V . Given a node x ∈ TV denote by T (x) its corresponding node in T ,
conversely, given a node x ∈ V denote by TV (x) its corresponding node in TV . We fix a
constant ε = 1/k, and let Hi = lg(k−i)/k m where 1 ≤ i < k. Finally, given a node u in T we
define πi(u) to be the nearest ancestor of u whose depth is a multiple of Hi.

Data Structure. We store the coordinates of the points in B(n,m) + o(B(n,m)) bits. Also
we store TV using 4n+ o(n) bits using the tree representation of Navarro and Sadakane [18]
which allows the following operations in constant time:
lmost-leaf(i) / rmost-leaf(i): given the preorder number of a node return the preorder

number of the leftmost(rightmost) leaf of node i.
leaf-rank(i): given the preorder number of a leaf i returns the number of leafs to the left of i.
In addition we store in o(n) bits the index described in [6] that enables conversion between
τ -names of the nodes in TV and their preorder numbers.

To maintain the mapping between the labels of the branching nodes in T with their
preorder numbers in TV we store the following tables using Corollary 2:
M1: for each node x ∈ V with root (TV (x)) = TV (x) we store the value τ1(TV (x)) in a table

M1. Since TV is a binary tree, it is possible that TV (x) belongs to two different micro
trees µ0 and µ1. In that case we store both p(M0) and p(M1).

M2: for each node x ∈ V we store in a table M2 the values τ2(TV (x)), τ3(TV (x)), and a bit
that indicates to which micro tree does TV (x) belongs to if root (TV (x)) belongs to two
different micro trees.

M3: for each node x ∈ V we store the distance from x to T (root (TV (x))) in a table M3.

Finally, given a node in P we need to compute its nearest branching ancestor. To achieve
this we use the same technique as in [1] but with bootstrapping. We store k − 1 tables
D1, . . . , D(k−1) using Corollary 2. D1 contains the distances to the nearest branching ancestor
for all nodes u in P satisfying π1(u) = u. Di (2 ≤ i < k − 1) contains the distances to the
nearest branching ancestor for all nodes u in P satisfying the conditions π(i−1)(u) is closer
to u than the nearest branching ancestor of u and πi(u) = u. Finally, D(k−1) contains the
distances to the nearest branching ancestor for all nodes u in P satisfying the conditions:
π(k−2)(u) is closer to u than the nearest branching ancestor of u and π(k−1)(u) = u, or
π(k−1)(u) and π(k−2)(u) are closer to u than the nearest branching ancestor of u. More
formally we define:
B1: B1(z) = 1 if π1(z) = z and ∃u ∈ V such that π1(u) = z, otherwise B1(z) = 0.
Bi(1 < i < k): Bi(z) = 1 if B(i−1)(π(i−1)(z)) = 1, πi(z) = z, and ∃u ∈ V such that

πi(u) = z, otherwise Bi(z) = 0
and store the following tables using Corollary 2:
D1: which contain the distance to the nearest branching ancestor for all nodes u in P

satisfying π1(u) = u.
Di (2 ≤ i < k − 1): which contain the distance to the nearest branching ancestor for all

nodes u in P satisfying: B(i−1)(π(i−1)(u)) = 1 and πi(u) = u.
D(k−1): which contain the distance to the nearest branching ancestor for all nodes u in P

satisfying: B(k−2)(π(k−2)(u)) = 1 and (π(k−1)(u) = u or B(k−1)(π(k−1)(u)) = 1).

Query. Given a query FindAny(a, b) we first find the nearest common ancestor p of a
and b. Then we get k − 1 candidate nearest branching ancestor v1, . . . , v(k−1) of p using
D1, . . . , D(k−1). Afterwards for each vi we need to compute the preorder number of vi in TV .
To achieve this goal we get τ2(TV (vi)), τ3(TV (vi)), and the bit b indicating which micro tree
vi belongs to from M2. Next, we compute ui = T (root (TV (v))) after obtaining its distance



H. El-Zein, J. I. Munro, and Y. Nekrich 17:9

from vi using M3. Afterwards we query M1 for τ1(TV (ui)) = p(µb). After obtaining the
τ -name of TV (vi) we get its preorder number, and then we check the ranks of the leftmost
and rightmost leaves of vi’s left and right child. If one of them is within [a, b] we return its
value. If for all vi no element was found within [a, b] we return that S ∩ [a, b] is empty.

Space Analysis. Storing the points coordinates uses B(n,m) bits. The tree TV uses
4n + o(n) bits. The tables M2,M3 contain O(n) entries each of size O(lg lgm) so they
use O(n lg lgm) bits. The table M1 contains O(n/ lgn) entries each of size O(lgn) so it
uses O(n) bits. The table D1 contains O(n lgm/ lg(k−1)/k m) = O(n lgε m) entries of size
O(lg lgm) bits each so it uses O(n lgε m lg lgm) bits. Moreover each table Di (1 < i < k− 1)
contains O(n(H(i−1)/Hi)) = O(n lgε m) entries each of size O(lg lgm) bits so they use a
total of O(n lgε m lg lgm) bits. Finally, we need to bound the size of Dk−1. The number of
entries due to πk−1(u) = u is O(n(H(k−1)/Hk)) = O(n lgε m). To bound the entries due to
Bk−1(πk−1(u)) = 1 notice that the subtree Tz of height H(k−1) rooted at z = π(k−1)(u) will
contain s > 1 entries, and will have at most s+ 1 < 2s leaves that are nodes in P . Thus it
will contribute at most (2H(k−1)s) entries. Since there are at most n− 1 branching nodes
the total number of entries due to B(k−1)(π(k−1)(u)) = 1 is 2H(k−1)n = O(n lgε m). Dk−1
uses O(n lgε m lg lgm) bits because each entry in D(k−1) is of size O(lg lgm) bits. In total
the space used is B(n,m) +O(n) +O(n lgε m lg lgm) bits.

Construction Time. In a manner similar to [1] we can identify V in O(n) time, and then
construct TV also in O(n) time. The tables M1,M2,and M3 can be constructed in expected
O(n(lg lgm)) time. Finally, the tables Bi where 1 ≤ i < k can be constructed in expected
O(n lgε m) time by identifying the O(n lgε m) entries and building the tables. The workspace
is O(n) words.

Reducing Space. To further reduce the space we use a well known trick and split the
universe [m] into n ranges r1, . . . , rn each of size m/n. We construct a bit vector B of size 2n
bits with rank and select queries. B stores a zero for each range ri followed by ni ones where
ni is the number of points in the range ri. To count the number of points before a range ri we
use a select query to get the position of the ith zero in B, and then use a rank query to count
the number of ones before that position. We store a separate data structure for each range.
To locate the data structures for any range ri within A we count the number of points in the
ranges rj for j < i, and then scale that number. Given a query FindAny(a, b) we check if [a, b]
spans a non-empty range as follows. We use a rank query to get the number of ones k before
the b(an/m)c zero. Then we check if the (k+1)th element is within [a, b] and return it in that
case. Otherwise we query the data structure corresponding to the (d(an/m)e)th range. The
total space used is B(n,m)+O(n)+O(n(lg (m/n))ε lg lg (m/n)) = B(n,m)+o(B(n,m))+O(n)
bits.

If O(n) is not a lower order term then n > m/c for some constant c. In that case we adopt
a different approach and store the points in a compressed bit vector of size m. To answer a
query FindAny(a, b) we use a rank query to get the number of ones k before position a, and
then we use a select query to get the position of the (k + 1)th one. If that position is within
[a, b] we return it otherwise S ∩ [a, b] is empty. The space used is now B(n,m) + o(B(n,m))
bits.

Reducing Construction Workspace. To further improve the construction workspace we
divide n into lg2 m ranges each containing n/ lg2 m points and build a separate data structure
for each of them. We note that the universe size in each range may vary. Additionally we

SWAT 2018



17:10 Succinct Dynamic One-Dimensional Point Reporting

store a fusion tree F on the endpoints of each range. Given a query FindAny(a, b), we check
if the successor of a in F is within [a, b] and return it in that case. Otherwise we query the
range containing the successor of a.

References
1 Stephen Alstrup, Gerth Brodal, and Theis Rauhe. Optimal static range reporting in one

dimension. In Proceedings of the thirty-third annual ACM symposium on Theory of com-
puting, pages 476–482. ACM, 2001.

2 Prosenjit Bose, Eric Y. Chen, Meng He, Anil Maheshwari, and Pat Morin. Succinct geomet-
ric indexes supporting point location queries. In Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, pages 635–644, 2009.

3 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 365–372. ACM,
1987.

4 Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct color searching in one di-
mension. In 28th International Symposium on Algorithms and Computation, ISAAC 2017,
December 9-12, 2017, Phuket, Thailand, pages 30:1–30:11, 2017.

5 Arash Farzan, J. Ian Munro, and Rajeev Raman. Succinct indices for range queries with ap-
plications to orthogonal range maxima. In Proceedings of the 39th International Colloquium
on Automata, Languages, and Programming, Part I, pages 327–338, 2012.

6 Richard F Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with level-
ancestor queries. ACM Transactions on Algorithms (TALG), 2(4):510–534, 2006.

7 Mayank Goswami, Allan Grønlund Jørgensen, Kasper Green Larsen, and Rasmus Pagh.
Approximate range emptiness in constant time and optimal space. In Proceedings of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 769–775, 2015.

8 Roberto Grossi, Rajeev Raman, Satti Srinivasa Rao, and Rossano Venturini. Dynamic com-
pressed strings with random access. In International Colloquium on Automata, Languages,
and Programming, pages 504–515. Springer, 2013.

9 Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. A framework for
dynamizing succinct data structures. In International Colloquium on Automata, Languages,
and Programming, pages 521–532. Springer, 2007.

10 Meng He. Succinct and implicit data structures for computational geometry. In Space-
Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on
the Occasion of His 66th Birthday, pages 216–235, 2013.

11 J Ian Munro and S Srinivasa Rao. Succinct representation of data structures. In Handbook
of Data Structures and Applications, chapter 37. Chapman and Hall/CRC, 2004.

12 Christiaan TM Jacobs and Peter Van Emde Boas. Two results on tables. Information
Processing Letters, 22(1):43–48, 1986.

13 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures
and asymmetric communication complexity. In Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 103–111. ACM, 1995.

14 Christian Worm Mortensen, Rasmus Pagh, and Mihai Patrascu. On dynamic range re-
porting in one dimension. In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 104–111. ACM, 2005.

15 Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Dynamic data structures for docu-
ment collections and graphs. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 277–289. ACM, 2015.

16 J Ian Munro and Yakov Nekrich. Compressed data structures for dynamic sequences. In
Algorithms-ESA 2015, pages 891–902. Springer, 2015.



H. El-Zein, J. I. Munro, and Y. Nekrich 17:11

17 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University
Press, 2016.

18 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Transactions on Algorithms (TALG), 10(3):16, 2014.

SWAT 2018


	Introduction and Motivation
	Preliminaries
	One-Dimensional Point Reporting
	Tree Representation
	Sparse Arrays

	Semi-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Succinct One-Dimensional Point Reporting
	Fully-Dynamic Structure with Amortized Updates
	Fully-Dynamic Structure with Worst Case Updates

	Succinct Static One-Dimensional Point Reporting With Fast Construction Time

