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Abstract
Given a set of n points (sites) inside a rectangle R and n points (label locations or ports) on
its boundary, a boundary labeling problem seeks ways of connecting every site to a distinct port
while achieving different labeling aesthetics. We examine the scenario when the connecting lines
(leaders) are drawn as axis-aligned polylines with few bends, every leader lies strictly inside R,
no two leaders cross, and the sum of the lengths of all the leaders is minimized. In a k-sided
boundary labeling problem, where 1 ≤ k ≤ 4, the label locations are located on the k consecutive
sides of R.

In this paper we develop an O(n3 logn)-time algorithm for 2-sided boundary labeling, where
the leaders are restricted to have one bend. This improves the previously best known O(n8 logn)-
time algorithm of Kindermann et al. (Algorithmica, 76(1):225–258, 2016). We show the problem
is polynomial-time solvable in more general settings such as when the ports are located on more
than two sides of R, in the presence of obstacles, and even when the objective is to minimize
the total number of bends. Our results improve the previous algorithms on boundary labeling
with obstacles, as well as provide the first polynomial-time algorithms for minimizing the total
leader length and number of bends for 3- and 4-sided boundary labeling. These results settle
a number of open questions on the boundary labeling problems (Wolff, Handbook of Graph
Drawing, Chapter 23, Table 23.1, 2014).
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12:2 Boundary Labeling for Rectangular Diagrams

(a) (b) (c) (d)

Figure 1 (a) A 1-bend 2-sided boundary labeling (i.e., with po-leaders) on a geographic map
showing (ice cover on the Great Lakes [14]). (b) A 2-bend 2-sided boundary labeling (i.e., with
opo-leaders). This example does not have a feasible solution with 1-bend leaders. (c) Boundary
labeling in 1-bend opposite 2-sided model. (d) A 1-bend 4-sided boundary labeling in the presence
of obstacles.

1 Introduction

Labeling problems appear in a variety of scenarios such as in annotating educational dia-
grams, wiring schematics, system manuals, as well as in many information visualization and
engineering applications. The increasing trend of automation in these areas has motivated
the research in labeling algorithms. Crossings among the leaders (i.e., the lines connecting
labels to the sites), number of bends per leader, and the sum of leader lengths are some
important aesthetics of a diagram labeling. To achieve clarity and better readability, all
these parameters are often preferred to be kept small.

Many labeling problems are NP-hard [12, 5]. A rich body of research attempts to develop
efficient approximation and heuristic algorithms [13, 15, 10, 21, 22], both in the static and
the dynamic settings [3, 10]. In this paper we examine a well-known variant of the labeling
problem called b-bend k-sided boundary labeling, e.g., see Figure 1. The input for this problem
is a set of kn sites and kn ports, where the sites lie in the interior of a rectangle R, the
ports are located on k consecutive sides of R, and each side contains n ports. Both the
sites and ports are represented as points. The goal is to decide whether each site can be
connected to a unique port using axis-aligned leaders such that the leaders are disjoint, each
leader lies strictly inside R and each leader has at most b bends. If such a labeling exists,
then we compute a labeling that optimizes these labeling aesthetics. We examine two such
optimization criteria: one is to minimize the sum of the leader lengths, and the other is to
minimize the total number of bends.

The strict-containment inside R, bend restrictions and orthogonal constraints impose
certain shapes on the leader. An orthogonal leader containing exactly one bend (resp., two
bends) is known as a po-leader (resp., an opo-leader)1 [17]. We note that there are 1-bend
leaders with 135◦ degrees at the bend, which are knowns as do-leaders [2]. Since we are
only interested in orthogonal leaders in this paper, we say 1-bend leaders to always mean
“po-leaders” for the rest of the paper.

Related work. Boundary labeling has been an active area of research in the last decade,
e.g., see the surveys [1, 20]. The boundary labeling problem was first introduced by Bekos
et al. [6]. They gave O(n logn)-time algorithms to decide labeling feasibility for the 1-bend

1 The letters ‘o’ and ‘p’ stand for ‘orthogonal’ and ‘parallel’, respectively. So, an opo-leader starts
orthogonally at the site, and ends orthogonally at the port.
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1-sided and opposite 2-sided models, i.e., the labels are located on two opposite sides of
R. In addition, they gave an O(n2)-time algorithm that minimizes the total leader length.
For the 2-bend 4-sided model, they could test the feasibility in O(n logn) time and reduced
the length minimization to a minimum-cost bipartite matching problem. Benkert et al. [7]
improved Bekos et al.’s [6] result on the 1-bend 1-sided model by devising an O(n logn)-time
algorithm for the length minimization. They also considered general cost functions (i.e.,
beyond Euclidean length), as well as other types of leaders. We refer the reader to [19, 4]
for other variants of boundary labeling problem.

The 2-sided model considered by Bekos et al. [6] and Benkert et al. [7] is an opposite-sided
model, i.e., ports are placed on two opposite sides of R. This model is different from the
adjacent 2-sided model, where the labels are always placed on adjacent sides. The adjacent
2-sided model was first considered by Kindermann et al. [17]. For the 1-bend 2-sided model,
they gave an O(n2)-time algorithm to check feasibility, and an O(n8 logn)-time algorithm for
total leader length minimization; to our knowledge, this is the fastest algorithm known for
the 1-bend 2-sided model. Note that the labeling problem in this model seems surprisingly
more difficult than the corresponding opposite 2-sided model (also mentioned by Kindermann
et al. [17]). For the 1-bend 3-sided (resp., 4-sided) model, they gave an O(n4)-time (resp.,
O(n9)-time) algorithm for checking the labeling feasibility, but they were unable to solve the
length minimization problem. They posed this as an open question, i.e., can a minimum-
length solution for the 3- and 4-sided boundary labeling be computed in polynomial time?
These challenges motivated us to examine the adjacent model in more detail.

Fink and Suri [11] studied the boundary labeling problem in the presence of obstacles. In
addition to the set of sites, they allowed a set of orthogonal polygons (equivalently, obstacles)
to lie inside R. The objective is to minimize the total leader length with the constraint
that the leaders must not intersect the obstacles. They gave polynomial-time algorithms
for minimizing the total leader length in the 1-sided and opposite 2-sided models, but the
running time of these algorithms while using po- and opo-leaders is fairly high, i.e., O(n4),
O(n8) for the 1-sided model, and O(n9), O(n21) for the opposite 2-sided model. They also
examined the case when the leaders have non-uniform lengths and the leader locations can
be chosen, which they proved to be NP-hard.

A different generalization of boundary labeling considers sliding ports, i.e., labels are
assigned disjoint intervals on the boundary of R, and a site can be connected to any point in
such an interval. In the 1-sided model, Bekos et al. [6] gave an O(n2)-time algorithm that can
minimize the total number of bends using opo-leader (they did not require the opo-leaders to
lie strictly inside R). They posed an open question to determine the time complexity for
the 3- and 4-sided case. Benkert et al. [7] considered bend minimization with po-leaders.
They gave an O(n2)-time algorithm for the 1-sided model, and O(n8)-time algorithm for
the opposite 2-sided model. The ‘Handbook of Graph Drawing’ [20] lists a number of open
problems related to the minimization of the total number of bends for different variants of
boundary labeling.

The 1-, 3- and 4-sided models for the boundary labeling problem are always adjacent
models, but a 2-sided model can be either adjacent or opposite. Throughout the paper we
will refer to the ‘opposite’ variant as an ‘opposite 2-sided’ model.

Our contributions. We give an algorithm for the 1-bend 2-sided boundary labeling problem
that minimizes the total leader length in O(n3 logn) time (if such a labeling exists). Ours is
an adjacent model and uses po-leaders, and hence improves the O(n8 logn)-time algorithm
of Kindermann et al. [17]. Since the best known algorithm for the length minimization in the

SWAT 2018
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1-bend opposite 2-sided model takes O(n2) time [7], our result raises an intriguing question
that whether the adjacent boundary labeling model can further be improved to reach (or,
even break) the O(n2) barrier.

We show that many variants of the boundary labeling problems can be related to
outerstring graphs, where the minimization of total leader lengths or bends reduces to an
optimization problem in those outerstring graphs. We notice that this relation is previously
pointed out in a different context [18]. This idea leads us to the following results:

The first polynomial-time algorithm with a running time of O(n6) for the 1-bend 3-sided
and 4-sided boundary labeling problem that minimize the total leader length. This settles
the time-complexity question posed by Kindermann et al. [17].
Polynomial-time algorithms for minimizing the total leader length or the total number
of bends, even in the presence of obstacles. Our algorithms work for both po- and
opo-leaders, as well as for all possible distributions of the ports to the boundary of R,
i.e., both adjacent and opposite models. The running time for the opposite 2-sided model
is O(n6) for po-leaders and O(n9) for opo-leaders; these improve, respectively, the O(n9)-
and O(n21)-time algorithms of Fink and Suri [11]. This technique can also be applied to
the sliding port model, which settles the time-complexity question posed in [6, 20] related
to the bend minimization.

2 Computing 1-Bend 2-Sided Boundary Labelings

In this section we give an O(n3 logn)-time algorithm to find a solution to the 1-bend 2-sided
boundary labeling problem. Throughout this section, we assume that the sites and ports are
in general position, i.e., no axis-aligned straight line passing through a site intersects a port
or another site. Consequently, each leader must have exactly one bend. We thus omit the
term ‘1-bend’ in the rest of this section. Moreover, we assume that the ports lie on the top
and right sides of the rectangle R.

2.1 Technical Background
Let R(t), R(b), R(l), R(r) be the top, bottom, left and right sides of R, respectively. An xy-
separating curve is an axis-aligned xy-monotone polygonal chain that starts at the bottom-left
corner of R and ends at the top-right corner of R. A 2-sided boundary labeling solution is
xy-separated if there exists an xy-separating curve such that the leaders incident to R(t)
(resp., R(r)) lie on or above (resp., below) the xy-separating curve.

I Lemma 1 (Kindermann et al. [17]). If a 2-sided boundary labeling problem has an affirmative
solution with 1-bend leaders, then there exists such an xy-separated solution that minimizes
the sum of all leader lengths.

Figure 2(a) illustrates an xy-separated solution of a 2-sided boundary labeling problem.
An xy-separated curve is shown in a light-green. Let I be an instance of a 2-sided boundary
labeling problem. Without loss of generality assume that the ports are distributed along
the sides R(t) and R(r). Let ports(R(t)) (resp., ports(R(r))) be the set of ports along R(t)
(resp., R(r)). A leader is called inward if the 90◦ angle formed at its bend point contains the
top-right corner of R. Otherwise, we call the leader an outward leader. The leaders incident
to ` and `′ in Figure 2(a), are inward and outward leaders, respectively.

Assume that I has an affirmative solution S and let C be a corresponding xy-separating
curve. Let up(C) be the polygonal region above C bounded by R(t) and R(l). Similarly, let
right(C) be the polygonal region to the right of C bounded by R(b) and R(r). By Cu (resp.,
Cr) we denote the xy-separating curve that minimizes the area of up(Cu) (resp., right(Cr)),
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(a) (b) (c)

l1t (= l2t ) l3t

l1r

l2r

l3r

` `′

Cu

Cr

R1
R2

R3

(ax, by)

Figure 2 (a) An xy-separated solution to a 2-sided boundary labeling. The xy-separating curve
C is shown in light-green. (b) Illustration for the curves Cu and Cr. (c) R.

e.g., see Figure 2(b). For a point p, let px and py be its x and y-coordinates, respectively.
Given Cu and Cr, we define a sequence of rectangles R = (R1, R2, . . . , Rk) as follows:

Each rectangle is a maximal rectangle between Cu and Cr.
The bottom-left corner of R1 coincides with that of R.
For i > 1, we first consider Ri−1. Since Ri−1 is maximal, the top and right sides of Ri−1
must be determined by a pair of leaders, e.g., see R1 in Figure 2(c). Denote these leaders
by `i−1

t and `i−1
r , respectively. Let a ∈ `i−1

t be the rightmost point of `i−1
r on the top

side of Ri−1, and let b ∈ `i−1
r be the topmost point on the right side of Ri−1. We define

Ri to be the maximal empty rectangle with the bottom-left corner at (ax, by) and the
sides bounded by Cu and Cr.

2.2 Algorithm
The idea of the algorithm is to employ a dynamic programming algorithm based on the
idea of finding the optimal rectangle sequence R. Note that for any rectangle Rj ∈ R,
we can think of a subproblem λ(Rj) that seeks a solution including the leaders `j

t and `j
r.

More formally, λ(Rj) is an instance of the 2-sided boundary labeling problem for which
the rectangle B(Rj) corresponding to this problem is determined by the vertical segment
of `j

t , the horizontal segment of `j
r as well as the top and right sides of the rectangle R; see

the gray rectangle in Figure 3(a). It is straightforward to add a dummy rectangle R0 with
corresponding leaders `0

t and `0
r such that λ(R0) represents the original 2-sided boundary

labeling problem; e.g., see Figure 3(b).
Given Rj , we try to find Rj+1 by checking all possible candidate rectangles. For conveni-

ence, we defer the details of finding all candidate rectangles, and focus on the computation
of the solution cost (sum of leader length) assuming that we have found Rj+1. Figure 3(c)
illustrates such a scenario. Let Rt

j,j+1 be the region bounded by the lines determined by
the vertical segments of `j

t and `j+1
t , the horizontal segment of `j

t , and R(t). Define Rr
j,j+1

symmetrically, e.g., see the top of Figure 4(i). Observe that λ(Rt
j,j+1) is a 1-sided boundary

labeling problem with leaders `j
t and `j+1

t . In other words, since Rj+1 is an empty rectangle,
all the ports between `j

t and `j+1
t must be connected to some site interior to Rt

j,j+1. We
define λ(Rr

j,j+1) symmetrically. It is now straightforward to express the solution of λ(Rj) in
terms of the solutions of λ(Rt

j,j+1), λ(Rr
j,j+1), and λ(Rj+1).

SWAT 2018
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ljt

ljr

B(Rj)

Rj

l0r
R0

l0t

ljr

Rj

lj+1
tljt

lj+1
r

λ(Rt
j,j+1)

λ(Rr
j,j+1)

λ(Rj+1)

(c)(a) (b)

Figure 3 Illustration for the dynamic programming algorithm.

For any leader l, we denote its length by |l|. Let |λ(Rj)| be the sum of the leader lengths
in an optimal solution of λ(Rj) (excluding the lengths of `j

t and `j
r). Let ports(B(Rj)) and

sites(B(Rj)) be the number of ports and sites interior to B(Rj), excluding those that are
incident to `j

t and `j
r. We now have the following recursive formula, where C denotes the set

of candidate rectangles.

|λ(Rj)| =


∞, if ports(B(Rj)) 6= sites(B(Rj)).
(|`j

t | + |`j
r|)+

min
Rj+1∈C

{|λ(Rt
j,j+1)|+|λ(Rr

j,j+1)|+|λ(Rj+1)|}, otherwise.

Finding candidate rectangles. Given a rectangle Rj , we now describe how to find a set of
candidate rectangles that must include Rj+1. Recall that we can compute the bottom-left
corner (ax, by) of Rj+1 from Rj . Figures 4(a)–(d) illustrate the scenarios where `j

t and `j
r are

inward. The point (ax, by) is marked with a cross. We claim that the top side or the right
side of Rj+1 must contain a site (Lemma 3). We will use the following result of Benkert et
al. [7] to prove Lemma 3.

I Lemma 2 (Benkert et al. [7]). For any solution S to a 1-bend 1-sided boundary labeling
problem that minimizes the total leader length (possibly with crossings), there exists a crossing-
free labeling with the total leader length at most the total leader length of S.

I Lemma 3. The top side or the right side of Rj+1 must contain a site.

Proof. Suppose for a contradiction that neither the top nor the right side of Rj+1 contains
a site. We now consider four cases.
Case 1 (both `j+1

t and `j+1
r are inward): In this case the leaders `j+1

t and `j+1
r must in-

tersect (see Figure 4(e)), which contradicts that the underlying solution is crossing-free.
Case 2 (`j+1

t is inward and `j+1
r is outward): If `j

r is outward, then it must intersect `j+1
r

(see Figure 4(f)). Therefore, the leader `j
r must be inward, as illustrated in Figure 4(g).

Note that by our general position assumption, the ‘y-intervals’ determined by the vertical
segments of `j

r and `j+1
r must overlap. Consequently, by swapping the site assignments,

we can obtain a solution (possibly with crossings) with strictly smaller total leader length.
Figure 4(i) illustrates such a scenario. By Lemma 2, we can replace this labeling of
λ(Rj,j+1) with a crossing free labeling that lies inside Rr

j,j+1 and does not increase the
total leader length, e.g., see Figure 4(j). Note that the total leader length of the resulting
solution would be strictly smaller, contradicting that the current solution is optimal.
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Rj

Rj+1

(a) (b)

Rj+1

lj+1
t

lj+1
r

lj+1
t

lj+1
r

Rj+1

ljr

(e) (f)

lj+1
r

ljr

ljr

lj+1
r

ljr

lj+1
r

(k)(j)

Rr
j,j+1

Rr
j,j+1

Rr
j,j+1

(l)

s
s

Rj

Rj+1

(c) (d)

lj+1
t

lj+1
r

Rj+1

ljr

lj+1
t

lj+1
r

Rj+1 ljr

ljt

(g) (h)

lj+1
r

ljr

(i)

Rr
j,j+1

w w

Rj

Rj+1

ljr

ljt

Cu

Cr

Figure 4 Illustration for (a)–(d) (ax, by), (e)–(j) Lemma 3, and (k)–(l) candidate rectangles.

Case 3 (`j+1
t is outward and `j+1

r is inward): This case is symmetric to Case 2.
Case 4 (both `j+1

t and `j+1
r are outward): We can process this case in the same way as

we did in Case 2. J

Recall that we know the bottom-left point w of Rj+1. We first assume that the right side
of Rj+1 contains a site. For every site s with sx > wx and sy > wy, we consider all possible
empty rectangles with bottom-left corner w, right side passing through s and the top side
determined by a horizontal line passing through a site above s. Figures 4(k)–(l) illustrate
the candidate rectangles for the bottom left point w. We then assume that the top side of
Rj+1 contains a site, and find the candidate rectangles symmetrically. We can now obtain
an upper bound on the distinct candidate rectangles.

I Lemma 4. The overall number of distinct candidate rectangles is O(n3).

Proof. For a particular bottom-left corner w, it may initially appear that there are O(n2)
possible candidate rectangles to explore. But we can prove an O(n) upper bound, as follows.

Let D be the region dominated by w; i.e., for each point q ∈ D, the x and y-coordinates
of q are at least as large as those of w. Let S = {s1, s2, . . . , sk} be the set of sites in D

(ordered by increasing y-coordinates) such that no site in S is dominated by any other site
in D (except possibly for w). We may assume without loss of generality (see Lemma 3) that
the right side of Rj+1 contains a site. Since the proper interior of the rectangle is empty, for
each si, where 1 ≤ i ≤ k, we only need to consider a set of heights H(si) that lie between si

and si+1 (or, between si and R(t) when i = k). For every pair of sites {s, s′} ∈ S, we have
the property that neither s nor s′ dominates the other. Therefore, we have H(s)∩H(s′) = ∅,∑

i H(si) = O(n), and thus a linear number of candidate rectangles for w.

SWAT 2018



12:8 Boundary Labeling for Rectangular Diagrams

The number of possible intersections (i.e., bottom-left corners) among the horizontal and
vertical lines passing through the ports and sites is O(n2). Therefore, the number of distinct
candidate rectangles that may appear over the run of the algorithm is O(n3). J

Data structures and time complexity. If we use an O(n2)×O(n2) dynamic programming
table and compute each entry by checking O(n) candidate rectangles, then we need at least
O(n5) time. To improve the running time to O(n3 logn), we preprocess the input. For every
possible matching of a pair of ports (on the same side of R) to a pair of sites, we compute and
store the solution to the corresponding 1-sided boundary labeling problem. Since there are
O(n4) such 1-sided problems, and each of them can be answered in O(n logn) time [7], this
takes O(n5 logn) time. We first show how to reduce this preprocessing time to O(n3 logn).

Consider a subproblem λ(Rt
j,j+1). Such a problem can easily be expressed by the ports

and sites incident to `j
t and `j+1

t . Here we encode λ(Rt
j,j+1) in a slightly different way. We

use the parameters p, p′, α, β, where p, p′ are the ports incident to `j
t and `j+1

t , α is either
∞ or the y-coordinate of a site that indicates the top side of an “empty rectangle”, which
is used in our preprocessing, and β is the ‘type’ of λ(Rt

j,j+1). We will express λ(Rt
j,j+1) as

S(p, p′, α, β). In the following we describe the details of S(p, p′, α, β).
Note that to solve λ(Rt

j,j+1) affirmatively, we need exactly as many free sites as the
number of ports between p and p′. Thus for any subproblem, if the number of free sites
and free ports interior to Rt

j,j+1 do not match, then we can immediately return a negative
answer. We assume that the points and ports are stored in an orthogonal range counting
data structure (with O(n logn)-time preprocessing) such that given an orthogonal rectangle,
one can report the number of ports and points interior to the rectangle in O(logn) time [9].
We only focus on those instances that have the same number of free sites and ports, and
express them in the form S(p, p′, α, β).

Let s, s′ be the sites that are incident to `j
t and `j+1

t , respectively. By the property of the
optimal solution, we may assume that sy < s′y. We define λ(Rt

j,j+1) as having Type 1, 2, 3
or 4 depending on whether s, s′ belongs to Rt

j,j+1 or not.
Type 1 (both s, s′ are outside Rt

j,j+1): In this case the rectangle determined by the bend
points of `j

t and `j+1
t must be empty (i.e., the gray region in Figure 5(a)). We set α to

be ∞, and β to be 1. During the algorithm execution, if λ(Rt
j,j+1) is of Type 1, then we

will seek a solution to S(p, p′,∞, 1).
Note that for any instance of the form S(p, p′,∞, 1), we can determine in O(1) time2
the point s′′ such that the rectangle B determined by p, p′, s′′ contains an equal number
of free ports and sites. Note that the solution to the labeling problem inside B will be
equivalent to that of λ(Rt

j,j+1). We will precompute the solutions of S(p, p′,∞, 1) so
that λ(Rt

j,j+1) can be answered in O(1) time by a table look-up. This general idea of
answering a problem λ(·) using S(·) applies also to the other types; i.e., Types 2, 3 and 4.

Type 2 (both s, s′ are inside Rt
j,j+1): In this case the rectangle determined by the bend

point of `j+1
t and s must be empty; see Figures 5(c). (Notice that the case shown in

Figure 5(b) is not possible in an optimal solution because re-routing p′ to s and p to s′
would result in a feasible solution with a smaller total leader length.) We thus set α to
be y(s′), and β to be 2. Observe now that given S(p, p′, α, 2), we can find both s and s′
in O(1) time2 by counting the number of ports between p and p′, and using α.

2 It is straightforward to preprocess the ports and sites in O(n3) time in a data structure to answer such
queries in O(1) time.
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S(p, p′,∞, 1) S(p, p′, y(s′), 2) S(p, p′, y(s′), 2) S(p, p′, y(s′), 3) S(p, p′, y(s′), 4)

s′

s

s′′ s′

s

`jt `j+1
t

s

s′

s

s′ s′

s

s′′

s′′

p p′ p p′ p p′ p p′p′p

(a) (b) (c) (d) (e)

s′′ s′′

Figure 5 (a)–(e) Illustration for different Types of subproblems.

Type 3 (s ∈ Rt
j,j+1 and s′ 6∈ Rt

j,j+1): In this case the rectangle determined by the bend
point of `j+1

t and s must be empty (Figure 5(d)). We thus set α to be y(s′), and β to be
3. Given S(p, p′, α, 3), we can recover s and s′ using the range counting data structures2.
The same argument holds even when sx > p′x.

Type 4 (s 6∈ Rt
j,j+1 and s′ ∈ Rt

j,j+1): In this case the rectangle determined by the bend
points of `j

t and `j+1
t must be empty (Figure 5(e)). We thus set α to be y(s′), and β to

be 4. Given S(p, p′, α, 4), we can recover s′ using α. Here we do not need to find s since
the solution must lie inside the rectangle determined by p, p′ and s′.

I Lemma 5. The solution to the problems S(p, p′, α, β) can be computed in O(n3 logn) time.

Proof. Since there are O(n) possible choices for each of p, p′, α, and a constant number of
choices for β, we have at most O(n3) subproblems. We can employ a dynamic programming
to compute the solution to these problems. The idea is to select the bottommost free point s′′
and connect it to a port p′′ between p and p′. This splits the problem into two subproblems,
which can again be expressed in the form S(p, p′, α, β). Such a split may generate a new
type of subproblem Q, where `j

t has a shorter height than that of `j+1
t . Since `j

t was initially
incident to s′′, we can process Q as follows: For every pair of ports, we use Benkert et al.’s [7]
algorithm to precompute the solution to the boundary labeling problem inside the stripe
bounded by the vertical lines through p, p′. If there are k ports between p and p′, then we
use the topmost k sites in the stripe (if it exists). This preprocessing takes O(n3 logn) time.
To answer Q, we use the precomputed solution for the corresponding stripe.

Since the number of choices for p′′ is at most n, we can compute an entry of the dynamic
programming table by a linear number of table look-up. Since the number of entries is
O(n3), the running time is bounded by O(n4). An involved analysis shows that there is only
O(1) candidate choices for p′′, and these candidates can be found in O(logn) time. The full
version of the paper [8] includes the details. Since an entry of the dynamic programming
table can now be computed using O(1) number of table look-ups, the running time reduces
to O(n3 logn). J

I Theorem 6. Given a 1-bend 2-sided boundary labeling problem with O(n) sites and labels,
one can find a labeling (if exists) that minimizes the total leader length in O(n3 logn)-time.

Proof. Every subproblem λ(Rj) can be defined by a pair of leaders, and hence we can define
an O(n2)×O(n2) table T to store the solutions to the subproblems. To compute an entry
of the table T , we look at a set of candidate rectangles with two nice properties. First, all
these rectangles have the same bottom-left corner, and second, none of these rectangles can
be a candidate rectangle for any other entry of T . Therefore, the number of ‘candidate
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rectangle queries’ to fill all the entries of T is bounded asymptotically by the number of
distinct candidate rectangles, which is O(n3) (by Lemma 4). Since we do not recompute
solutions, and the table look-up takes O(1) time, the total running time is bounded by O(n4),
which dominates the preprocessing time.

Observe that the complexity O(n4) comes from considering all possible pairs of leaders,
whereas only O(n3) options are relevant (by Lemma 4). Therefore, instead of a table, we
can keep the relevant entries in a dynamic binary search tree, which increases the cost for
solution look-up to O(logn), but limits the time for both the memory initialization and
look-up queries to O(n3 logn). Thus the total running time improves to O(n3 logn). J

3 Relating Boundary Labeling to Outerstring Graphs

In this section, we reduce the boundary labeling problem to the independent set problem
on a class of weighted geometric intersection graphs in the plane called outerstring graphs.
We show that if one can discretize a boundary labeling problem such that the number of
candidate leaders is a polynomial in n, then our approach will yield a polynomial-time
algorithm for the problem.

An outerstring graph is an intersection graph of a set of curves in the Euclidean plane that
lie inside a polygon such that one of the endpoints of each curve is attached to the boundary
of the polygon. Keil et al. [16] gave an O(N3)-time algorithm for the maximum-weighted
independent set problem on outerstring graphs. The algorithm requires an outerstring
graph as an input, where each curve is given as a polygonal line (i.e., a chain of straight
line segments) and N is the number of segments in the representation. We show that by
discretizing the boundary labeling problem and assigning an appropriate weight to each
candidate leader, one can reduce the boundary labeling problem to the maximum-weighted
independent set problem on outerstring graphs. Here, as an example, we show the reduction
for the boundary labeling problem using po- and opo-leaders in the presence of obstacles.

Boundary labeling with orthogonal obstacles. Fink and Suri [11] gave O(n9) and O(n21)-
time algorithms for the opposite 2-sided boundary labeling with po- and opo-leaders, respect-
ively. Our approach will yield O(n6) and O(n12)-time algorithms for po- and opo-leaders,
respectively, irrespective of the labeling model (opposite, adjacent, or for any port distribution
on the boundary). For the opposite 2-sided case, the running time reduces to O(n6) and
O(n9) (for po- and opo-leaders, respectively). This will settle the time complexity question of
1-bend 3- and 4-sided boundary labeling [17]. In the rest of this section, we relax the general
position assumption and denote n to be the total number of sites and obstacle vertices.

First consider the case of po-leaders. Let I be an instance of the boundary labeling
problem. Given a site and a port, there is at most one way of connecting them. Let M
denote the set of all possible leaders that do not intersect any obstacle. Then |M | ∈ O(n2).
It is straightforward to compute M in O(n3) time. Observe that each leader l ∈M can be
viewed as an outerstring, and let st(l) be the corresponding outerstring. Let |l| be the length
of the leader l, and define x := maxl∈M |l| and y := minl∈M |l|. Let C be a number such
that C > nx − (n − 1)y > 0. For each leader l ∈ M , we assign a weight w(st(l)) to st(l),
where w(st(l)) := C − |l|. The following lemma and Keil et al.’s [16] algorithm lead us to the
results for po-leaders (Theorem 8).

I Lemma 7. I has a feasible solution with total leader length L if and only if the corresponding
outerstring graph GI has a feasible solution with total weight (nC − L).
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Proof. A feasible solution S of I with total leader length L gives a feasible solution for GI

with total weight∑
l∈S

w(st(l)) =
∑
l∈S

(C − |l|) = nC −
∑
l∈S

|l| = (nC − L).

We now assume that GI has a feasible solution S′ with total weight W = (nC − L),
and show that the corresponding leaders S yields a feasible solution of I of total leader
length L. Since S′ is an independent set, the leaders in S are crossing-free, as well as
no site or port is incident to more than one leader. It now suffices to show that every
site is connected to a string, i.e., |S| = n and the total leader length is L. Observe that
W = nC − L ≥ nC − nx > nC − (n− 1)y − C = (n− 1)(C − y). If |S| < n, then the total
leader length is at most (n−1)x, and S′ has weight at most (n−1)(C−y), which contradicts
that W > (n− 1)(C − y). Therefore, |S| = n, and we have

W =
∑
s∈S′

w(s) =
∑
s∈S′

(C − |li|) = nC −
∑
l∈S′

|l|.

Since W = (nC − L), we have
∑

l∈S′ = L. J

I Theorem 8. The boundary labeling problem can be solved in O(n6) time using po-leaders,
for both adjacent and opposite sided models, even in the presence of obstacles (where n is the
total number of sites and vertices of the obstacles).

Consider now the case for opo-leaders. For opposite 2-sided case, Fink and Suri [11]
showed that one can discretize the problem such that if there exists a feasible solution, then
there is one where the x-coordinate of the middle segment of every leader lies in the set of all
x-coordinates of the sites and obstacle vertices. Therefore, we have O(n) potential leaders
for each port-site pair, and thus O(n3) leaders in total. Hence applying Keil et al.’s [16]
algorithm gives a running time of O(n9).

The discretization of [11] does not apply to the 3- and 4-sided case. However, consider a
grid H determined by the axis-aligned lines through the ports, sites and obstacle vertices.
For each pair of consecutive parallel lines of H, place a set of n parallel lines in between. Let
the resulting grid be H ′. If there is a feasible solution to the boundary labeling problem,
then for any pair of consecutive parallel vertical lines `, `′ (similarly for horizontal) of H, we
can have at most n middle vertical segments of the leaders. We thus can distribute them
by moving horizontally to the n lines of H ′ (e.g., see [11]), which does not change the total
leader length. By construction, there is no site, port or obstacle vertex between ` and `′.
Hence such a modification can be performed without introducing any crossing. Since H ′ is
an O(n2)×O(n2) grid and since we have O(n2) potential leaders for each port-site pair, the
number of candidate leaders is O(n4). Hence applying Keil et al.’s [16] algorithm gives a
running time of O(n12).

I Theorem 9. The adjacent boundary labeling problem can be solved in O(n12) time using
opo-leaders, even in the presence of obstacles (where n is the total number of sites and vertices
of the obstacles). For opposite 2-sided models, the running time reduces to O(n9).

Sliding ports and bend minimization. The outerstring-graph approach can also be applied
to the sliding port model, where each label is assigned a distinct interval on the boundary of
R and a site can be connected to any point of an interval. The goal here is to minimize the
total leader length or the number of bends. We only need to discretize the problem such
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that the number of strings that we need to consider is a polynomial in n. Define H to be
a grid determined by the axis-aligned lines through sites, interval boundaries and obstacle
vertices. Construct H ′ from H by introducing for every pair of consecutive parallel lines of
H, a set of 2n parallel lines in between.

The grid H ′ can be used to discretize the problem, as follows. The segments incident
to the sites are already on H. Consider now a vertical (similarly for horizontal) segment
` that is incident to an interval I, but not incident to any site. Let `′ and `′ be a pair of
consecutive horizontal lines of H such that ` lies between them. There can be at most 2n
horizontal lines between `, `′, which we can distribute to the lines of H ′ by moving vertically
(e.g., see [11]). Since there cannot be any site, interval boundary or obstacle vertex between
`, `′, such a modification neither introduce crossings nor increase the number of total bends.
By the construction of H, the boundary of R between `, `′ lies in the interval I. Hence `
will still be incident to I. Finally, the middle segments of the leaders can be processed in
the same way as we did for Theorem 9. It is straightforward to observe that the number of
potential strings is a polynomial in n. We can now assign certain weights to these strings
such that the maximum-weight independent set of the corresponding outerstring graph yields
a minimum-bend solution for the boundary labeling problem.

We first consider the case of po-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) ∈ M , we assign the weight
w(st(l)), where

w(st(l)) =
{
n+ 2, if l has no bends.
n+ 1, if l has one bend.

(1)

This forms our instance GI of an outerstring graph on which we solve the maximum-weighted
independent set problem by running Keil et al.’s algorithm [16].

I Lemma 10. Let I be an instance of the boundary labeling problem with po-leaders. Then
I has a feasible solution with k bends if and only if the instance GI has a feasible solution
W with total weight at least (n2 + 2n− k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S′ is a feasible solution for GI . Let k be the total number of bends in S. Then the weight of
S′ is

∑
l∈S w(l) ≥ (n+ 1)k + (n+ 2)(n− k) = n2 + 2n− k.

Assume now that GI has a feasible solution S with weight at least n2 + 2n− k. Let S′
be the corresponding set of leaders in I. Since S is an independent set, a port or site can be
incident to at most one leader of S. If a site is not connected to any port in S′, then at most
(n− 1) sites are incident to a leader. Since the maximum weight of a leader can be at most
(n+ 2), the weight of S is at most (n−1)(n+ 2) = (n2 +n−2), which is a contradiction since
the weight of S is at least n2 + 2n− k > (n2 + n− 2) (because n ≥ k). Therefore, |S′| = n.

It now remains to show that the weight of S′ is at most k. Suppose for a contradiction
that S′ has at least (k + 1) po-leaders. Therefore, the weight of S is at most (n+ 1)(k + 1) +
(n+ 2)(n− k − 1) = n2 + 2n− (2k + 1) < (n2 + 2n− k), which is a contradiction that the
weight of S is at least (n2 + 2n− k). J

Now, we consider the case of opo-leaders. Let I be an instance of this problem. Consider
the set M of outerstrings as before. For each outerstring st(l) ∈ M , we assign the weight
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w(st(l)) as follows:

w(st(l)) =


α+ 3, if l has no bends,
α+ 2, if l has one bend,
α+ 1, if l has two bends.

(2)

Here, α = 2n.

I Lemma 11. Let I be an instance of the boundary labeling problem with opo-leaders. Then
I has a feasible solution with k bends if and only if the instance GI has a feasible solution
W with total weight at least (αn+ 3n− k).

Proof. Let S be a feasible solution of I. Clearly, the strings corresponding to the leader of
S′ is a feasible solution for GI . Let k be the total number of bends in S, and let k1 and k2 be
the number of strings with 1-bend and 2-bends, respectively. Therefore, k1 +2k2 = k, and the
weight of S′ is

∑
l∈S w(l) = (α+2)k1 +(α+1)k2 +(α+3)(n−k1−k2) = αn+3n−k1−2k2 =

αn+ 3n− k.
Assume now that GI has a feasible solution S with weight at least (αn+ 3n− k). Let S′

be the corresponding set of leaders in I. Since S is an independent set, a port or site can
be incident to at most one leader of S. If a site is not connected to any port in S′, then at
most (n− 1) sites are incident to a leader. Since the maximum weight of a leader can be
at most (α+ 3), the weight of S is at most (n− 1)(α+ 3) = (αn+ 3n− α− 3), which is a
contradiction since the weight of S is at least αn + 3n − k > (αn + 3n − α − 3) (because
α = 2n ≥ k). Therefore, |S′| = n.

It now remains to show that the leaders of S′ has at most k bends. Suppose for a
contradiction that S′ has at least k1 po-leaders and k2 opo-leaders such that k1 + 2k2 ≥ k+ 1.
Therefore, the weight of S is at most (α + 2)k1 + (α + 1)k2 + (α + 3)(n − k1 − k2) =
αn+ 3n− (k1 + 2k2)− (2k1 +k2) + (2k1 +k2) = αn+ 3n− (k1 + 2k2). Since k1 + 2k2 ≥ k+ 1,
the weight of S is strictly less than αn+ 3n− k, which is a contradiction. J

By Lemmas 10 and 11, we have the following theorem (which settles two open questions
of [20, Table 23.1]).

I Theorem 12. A boundary labeling that minimizes the total number of bends can be computed
(if exists) in polynomial time for both adjacent and opposite models (with sliding ports, po
and opo-leaders), even in the presence of obstacles.

4 Conclusion

The most natural directions for future research is to improve the time complexity of our
algorithm for the 1-bend adjacent 2-sided model. A number of intriguing questions follow:
Can we find a non-trivial lower bound on the time-complexity? Is the problem 3-sum hard
or, as hard as ‘sorting X + Y ’? Can we check the feasibility in near-linear time? It would
also be interesting to find fast approximation algorithms for boundary labeling problems.
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