
On Romeo and Juliet Problems: Minimizing
Distance-to-Sight
Hee-Kap Ahn
Department of Computer Science and Engineering, POSTECH
Pohang, South Korea
heekap@postech.ac.kr

Eunjin Oh
Department of Computer Science and Engineering, POSTECH
Pohang, South Korea
jin9082@postech.ac.kr

Lena Schlipf
Theoretische Informatik, FernUniversität in Hagen
Hagen, Germany
lena.schlipf@fernuni-hagen.de

Fabian Stehn
Institut für Informatik, Universität Bayreuth
Bayreuth, Germany
fabian.stehn@uni-bayreuth.de

Darren Strash
Department of Computer Science, Colgate University
Hamilton, USA
dstrash@cs.colgate.edu

https://orcid.org/0000-0001-7095-8749

Abstract
We introduce a variant of the watchman route problem, which we call the quickest pair-visibility
problem. Given two persons standing at points s and t in a simple polygon P with no holes, we
want to minimize the distance these persons travel in order to see each other in P . We solve
two variants of this problem, one minimizing the longer distance the two persons travel (min-
max) and one minimizing the total travel distance (min-sum), optimally in linear time. We also
consider a query version of this problem for the min-max variant. We can preprocess a simple
n-gon in linear time so that the minimum of the longer distance the two persons travel can be
computed in O(log2 n) time for any two query positions where the two persons lie.

2012 ACM Subject Classification Theory of computation → Computational geometry, Math-
ematics of computing → Paths and connectivity problems

Keywords and phrases Visibility polygon, shortest-path, watchman problems

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.6

Funding This work by Ahn and Oh was supported by the MSIT (Ministry of Science and ICT),
Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP
(Institute for Information & Communications Technology Promotion).

Acknowledgements This research was initiated at the 19th Korean Workshop on Computational
Geometry in Würzburg, Germany.

© Hee-Kap Ahn, Eunjin Oh, Lena Schlipf, Fabian Stehn, and Darren Strash;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:heekap@postech.ac.kr
mailto:jin9082@postech.ac.kr
mailto:lena.schlipf@fernuni-hagen.de
mailto:fabian.stehn@uni-bayreuth.de
mailto:dstrash@cs.colgate.edu
https://orcid.org/0000-0001-7095-8749
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 On Romeo and Juliet Problems

1 Introduction

In the watchman route problem, a watchman takes a route to guard a given region—that is,
any point in the region is visible from at least one point on the route. It is desirable to make
the route as short as possible so that the entire area can be guarded as quickly as possible.
The problem was first introduced in 1986 by Chin and Ntafos [4] and has been extensively
studied in computational geometry [3, 14]. Though the problem is NP-hard for polygons
with holes [4, 5, 7], an optimal route can be computed in time O(n3 logn) for simple n-gons
[6] when the tour must pass through a specified point, and O(n4 logn) time otherwise.

In this paper, we study a variant we call the quickest pair-visibility problem, which can
be stated as follows.

I Problem (quickest pair-visibility problem). Given two points s and t in a simple polygon P ,
compute the minimum distance that s and t must travel in order to see each other in P .

This problem may sound similar to the shortest path problem between s and t, in which
the objective is to compute the shortest path for s to reach t. However, they differ even for
a simple case: for any two points lying in a convex polygon, the distance in the quickest
pair-visibility problem is zero while in the shortest path problem it is their Euclidean distance.

The quickest pair-visibility problem occurs in optimization tasks. For example, mobile
robots that use a line-of-sight communication model are required to move to mutually-visible
positions to establish communication [8]. An optimization task here is to find shortest paths
for the robots to meet the visibility requirement for establishing communication among them.

Wynters and Mitchell [16] studied this problem for two agents acting in a polygonal
domain in the presence of polygonal obstacles and gave an O(nm)-time algorithm for the
min-sum variant (where m is the number of edges of the visibility graph of all corners) and
an O(n3 logn)-time algorithm for the min-max variant. A query version of the quickest
visibility problem has also been studied [1, 13, 15]. In the query problem, a polygon and a
source point lying in the polygon are given, and the goal is to preprocess them and construct
a data structure that allows, for a given query point, to find the shortest path taken from the
source point to see the query point efficiently. Khosravi and Ghodsi [13] considered the case
for a simple n-gon and presented an algorithm to construct a data structure of O(n2) space
so that given a query, it finds the shortest visibility path in O(logn) time. Later, Arkin et
al. [1] improved the result and presented an algorithm for the problem in a polygonal domain.
Very recently, Wang [15] presented an improved algorithm for this problem for the case that
the number of the holes in the polygon is relatively small. Figure 1(a) illustrates differences
in these problems for a simple polygon and two points, s and t, in the polygon.

1.1 Our results
In this paper, we consider two variants of the quickest pair-visibility problem for a simple
polygon: either we want to minimize the maximum length of a traveled path (min-max
variant) or we want to minimize the sum of the lengths of both traveled paths (min-sum
variant) We give a sweep-line-like approach that “rotates” the lines-of-sight along vertices
on the shortest path between the start positions, allowing us to evaluate a linear number of
candidate solutions on these lines. Throughout the sweep, we encounter solutions to both
variants of the problem. We further show that our technique can be implemented in linear
time.

We also consider a query version of this problem for the min-max variant. We can
preprocess a simple n-gon in linear time so that the minimum of the longer distance the two
query points travel can be computed in O(log2 n) time for any two query points.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:3

s
t

s1 t1

t2

t
s

s′

s = v1

v2

v3

v4

v5

v6 = t

6 vi−1vivi+1 < 90◦

(a) (b) (c)

P

Figure 1 (a) The quickest pair-visibility problem finds two paths π(s, s1) and π(t, t1) such that
s1t1 ⊂ P and max{|π(s, s1)|, |π(t, t1)|} or |π(s, s1)|+ |π(t, t1)| is minimized. The quickest visibility
problem for query point t finds a shortest π(s, t2) with tt2 ⊂ P . (b) min-max: Every pair (s′, t∗),
where t∗ is some point within the geodesic disk centered in t with radius π(s, s′), is an optimal
solution to the min-max problem. (c) min-sum: Every pair (vi, vi+1) for 1 ≤ i < 6 is an optimal
solution to this instance.

2 Preliminaries

Let P be a simple polygon and ∂P be its boundary. The vertices of P are given in counter-
clockwise order along ∂P . We denote the shortest path within P between two points p, q ∈ P
by π(p, q) and its length by |π(p, q)|. Likewise, we denote the shortest path within P between
a point p ∈ P and a line segment ` ∈ P by π(p, `). We say a point p ∈ P is visible from
another point q ∈ P (and q is visible from p) if and only if line segment pq is completely
contained in P .

For two starting points s and t, our task is to compute a pair (s′, t′) of points such that s′
and t′ are visible to each other, where we wish to minimize the lengths of π(s, s′), and π(t, t′).
In the min-max setting, we wish to minimize max{|π(s, s′)|, |π(t, t′)|}. For the min-sum
setting, we wish to minimize |π(s, s′)|+ |π(t, t′)|. Note that, for both variants, the optimum
is not necessarily unique; see Figure 1(b) and (c).

For our discussion, let (s∗, t∗) be an optimal solution for the instance at hand. Let V (p)
denote the visible region for a point p in P , that is, the portion of P that is visible from
p. Clearly, V (p) is a star-shaped polygon. Moreover, every boundary edge of V (p) is either
(part of) an edge of P or a segment vq that is contained in P and parallel to pv, where v
is a vertex of P visible from p and q is a point on the boundary of P . We call an edge of
the latter type a window edge of the visibility region. The structure of V (p) may change as
p moves along a path contained in P . It is known that a change to the structure of V (p)
occurs if and only if two vertices of P become collinear with p [2].

We say a segment g is tangent to a path π at a vertex v if v ∈ g ∩ π and v’s neighboring
vertices on π are on the same side of g.

I Lemma 1. Unless s and t are visible to each other, the segment s∗t∗ is tangent to the
shortest path π(s, t) at a vertex v of π(s, t).

Proof. We first show that there is a vertex of P lying on s∗t∗. Consider the visibility regions
V (s∗) and V (t∗). If s∗ lies on a window edge e of V (t∗), then e has a vertex v of P as its
endpoint closer to t∗. Therefore v lies on s∗t∗. The case that t∗ lies on a window edge of V (s∗)
can be shown similarly. So assume that this is not the case, that is, s∗ is in V (t∗) but not in
a window edge of V (t∗) and t∗ is in V (s∗) but not in a window edge of V (s∗). Then there
is a point s′ on π(s, s∗) ∩ V (t∗) infinitesimally close to s∗ and a point t′ on π(t, t∗) ∩ V (s∗)
infinitesimally close to t∗ such that |π(s, s′)| < |π(s, s∗)| and |π(t, t′)| < |π(t, t∗)|, and s′ and
t′ still see each other. This contradicts the optimality of (s∗, t∗).

SWAT 2018

6:4 On Romeo and Juliet Problems

s

t

t∗
s∗

(a) (b) (c)

s

t∗s∗

t(t′) s

t∗

s∗

s′ s′ s′

t′

v v v

t(t′)

` `

`

v′

Figure 2 (a) Both s and t lie on the same side of ` through s∗ and t∗. (b) If there is only one
vertex v of P lying on s∗t∗, we can always find another optimal pair of points by rotating ` around
v and taking the closest points from s and t on the rotated ` under the geodesic metric. (c) The
shortest path π(s, t) passes through v and v′.

We now show that s∗t∗ contains a vertex of π(s, t). Let s′ be the last vertex that π(s, t)
and π(s, s∗) have in common from s, and let t′ be the last vertex that π(s, t) and π(t, t∗)
have in common from t. Since a subpath of a shortest path is also shortest, π(s′, t′) is the
subpath of π(s, t) from s′ to t′. Assume to the contrary that π(s′, t′) (and therefore π(s, t))
contains no vertex of P that is also on s∗t∗. There are two cases: (a) both s and t lie on the
same side of the line ` through s∗ and t∗, or (b) s and t lie on different sides of `.

For case (a), ∂P touches ` at a vertex v lying between s∗ and t∗ locally from the same
side of ` that s and t lie. Otherwise, (s∗, t∗) is not optimal as both π(s, `) and π(t, `) become
shorter by a rotation of `. See Figure 2(a). Consider the portion (line segment) of ` visible
from v, which is split into two segments by v, one containing s∗ and one containing t∗. Since
π(s′, t′) does not contain v, it has to cross the segment containing s∗. But then it must cross
` again in the segment containing t∗ to reach t′. Since the portion of the path between the
two crossing points can be shortened by the segment connecting them, which contradicts to
the assumption that π(s′, t′) is a shortest path. Thus v lies on π(s, t) and s∗t∗ is tangent to
π(s, t) at v.

For case (b), without loss of generality, assume that s lies below ` and t lies above `. If
there is only one vertex v of P lying on s∗t∗, we can always find another pair of points (ŝ, t̂)
such that ŝ and t̂ are visible to each other and they satisfy either (1) |π(s, ŝ)| < |π(s, s∗)| and
|π(t, t̂)| ≤ |π(t, t∗)| or (2) |π(s, ŝ)| ≤ |π(s, s∗)| and |π(t, t̂)| < |π(t, t∗)|. (The equality holds
if s∗ or t∗ coincides with v.) Such points ŝ and t̂ can be obtained by rotating ` around v
and taking the closest points from s and t, respectively, on the rotated ` under the geodesic
metric. See Figure 2(b) for an illustration. Therefore we assume that there are two vertices v
and v′ that touch s∗t∗ from above and from below, respectively. Since s lies below `, v′ comes
before v from s∗ along s∗t∗ to t∗. See Figure 2(c). Consider the portion (line segment) of `
visible from v, which is split into two segments by v, one contains s∗ and one contains t∗. If
π(s′, t′) crosses the segment containing s∗, it must cross ` again in the segment containing t∗
to reach t′. Then the path between the two crossing points can be shortened by the segment
connecting them, which is a contradiction. Thus, π(s′, t′) passes through v′. The proofs for v
and v′ are symmetric, and thus both vertices v and v′ are on the shortest path π(s, t) which
in turn also establishes, that s∗t∗ is (locally) tangent to π(s, t) at v and at v′. J

3 Computing All Events for a Sweep-Line-Like Approach

For each vertex v on π(s, t) we compute a finite collection of lines through v, each being
a configuration at which the combinatorial structure of the shortest paths π(s, s∗) and/or
π(t, t∗) changes. To be more precise, at these lines either the vertices of π(s, s∗) or π(t, t∗)

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:5

s

t

s

t

s

t

v2

v1

(a) (b) (c)

Figure 3 Path-, boundary-, and bend-events. (a) The endpoints of the line-of-sight through
sv1 make up the first path-event. The line-of-sight rotates until it hits the next path-event: the
endpoints of the line-of-sight through v1v2. (b) All path- and boundary-events: the event-queue
is initialized with these events. (c) A bend-event (marked with a cross) occurs between the two
boundary-events. The shortest path from s to these segments changes at the bend-event.

(except for s∗ and t∗) change or the edge of ∂P changes that is intersected by the extension
of s∗t∗. Notice that in the remaining part of the paper (s∗, t∗) is the optimal solution pair
from s, t to the a given line (and not necessarily a global optimal solution for the quickest
pair-visibility problem). To explain how to compute these lines, we introduce the concept of
a line-of-sight.

I Definition 2 (line-of-sight). We call a segment ` a line-of-sight if (i) ` ⊂ P , (ii) both
endpoints of ` lie on ∂P , and (iii) ` is tangent to π(s, t) at a vertex v ∈ π(s, t).

The algorithm we present is in many aspects similar to a sweep-line strategy, except that we
do not sweep over the scene in a standard fashion but rotate a line-of-sight ` in P around
the vertices of the shortest path π(s, t) := (s = v0), v1, . . . , vk−1, (t = vk), making use of
Lemma 1. The process will be initialized with a line-of-sight that contains s and v1 and is
then rotated around v1 (while remaining tangent to v1) until it hits v2, see Figure 3(a). In
general, the current line-of-sight is rotated around vi in a way so that it remains tangent to
vi (it is rotated in the interior of P) until the line-of-sight contains vi and vi+1, then the
process is iterated with vi+1 as the new rotation center. The process terminates as soon as
the line-of-sight contains vk−1 and t.

While performing these rotations around the shortest path vertices, we encounter all
combinatorially different lines-of-sight. As for a standard sweep-line approach, we will
compute and consider events at which the structure of a solution changes: this is either
because the interior vertices of π(s, s∗) or π(t, t∗) change or because the line-of-sight starts
or ends at a different edge of ∂P . These events will be represented by points on ∂P (actually,
we introduce the events as vertices on ∂P unless they are already vertices). Between two
consecutive lines-of-sight, we compute the local minima of the relevant distances for the
variant at hand in constant time and hence encounter all global minima eventually.

There are three event-types to distinguish:
1. Path-Events are endpoints of lines-of-sight that contain two consecutive vertices of the

shortest path π(s, t). See Figure 3(a).
2. Boundary-Events are endpoints of lines-of-sight that are tangent at a vertex of π(s, t)

and contain at least one vertex of P \π(s, t) (potentially as an endpoint). See Figure 3(b).
3. Bend-Events are endpoints of lines-of-sight where the shortest path from s (or t) to the

line-of-sight gains or loses a vertex while rotating the line-of-sight around a vertex v. See
Figure 3(c). Note that bend-events can coincide with path- or boundary-events.

We will need to explicitly know both endpoints of the line-of-sight on ∂P at each event
and the corresponding vertex of π(s, t) on which we rotate.

SWAT 2018

6:6 On Romeo and Juliet Problems

I Lemma 3 (Computing path- and boundary-events). For a simple polygon P with n vertices
and points s, t ∈ P , the queue Q of all path- and boundary-events of the rotational sweep
process, ordered according to the sequence in which the sweeping line-of-sight encounters
them, can be initialized in O(n) time.

Proof. Consider some line-of-sight ` that is tangent to a vertex vi ∈ π(s, t) for some
0 < i < k. Then ` subdivides P into a number of subpolygons. Consider ` as the union of
two (sub)segments `+ and `− of ` induced by vi such that `+ ∩ `− = {vi} and `− is incident
to the subpolygon of P induced by ` containing s.

We will discuss the computation of all boundary- and path-events swept by `+. The
other events swept by `− can be computed in a second round by changing the roles of s
and t. We do not maintain a queue for the events explicitly; instead we will introduce new
vertices on ∂P or label existing vertices of ∂P as events. Later the events will be considered
by following two pointers to vertices on ∂P and hence by processing the vertices in the order
that they appear on ∂P .

We start with computing all path-events swept by `+. For this we compute the shortest
path mapMs of s in P . The shortest path map of s is a decomposition of P in O(n) triangular
cells such that the shortest path from s to any point within a cell is combinatorially the
same. It can be obtained by extending every edge of the shortest path tree of s towards its
descendants until it reaches ∂P in linear time [10]. A path-event occurs when a line-of-sight
contains two consecutive vertices of π(s, t). Note that for each path-event, `+ appears as an
edge of Ms and its endpoints appear as vertices of Ms. For each index i with 0 < i ≤ k, we
find the edge incident to vi and parallel to vi−1vi by considering every edge of Ms incident
to vi. This takes O(n) time in total since there are O(n) edges of Ms and we consider every
edge at most once.

For computing the boundary-events, we use the following properties. While rotating
around vi from the position where ` contains vi−1 to the position in which ` contains vi+1,
let A+

i (A−i) be the region of P that is swept over by `+ (`−). (See Figure 4.) Observe that
P1 all A+

i for 1 < i < k are pairwise disjoint,
P2 all A−i for 1 < i < k are pairwise disjoint,
P3 for all 1 < i < k and all points p ∈ A+

i the shortest path π(p, s) contains vi,
P4 for all 1 < i < k and all points p ∈ A−i the shortest path π(p, t) contains vi.

To compute all boundary-events that are vertices of P swept by `+, we will make use of
the shortest path tree Ts for s in P . A boundary-event x is defined by a vertex vi ∈ π(s, t)
such that the line-of-sight that contains x (potentially as one endpoint) is tangent to π(s, t) in
vi. It follows from Property P3, that vix is an edge of Ts (and by that it cannot be obstructed
by other edges of P) and x /∈ π(s, t). So the vertices of P whose parent vertex in Ts is a vertex
of π(s, t) are possible boundary-events. In order to compute all boundary-events we consider
all consecutive path-events and compute all corresponding boundary-events by following ∂P
and checking the vertices within the candidate set. We compute the boundary-events which
are vertices of P swept by `− in a similar way.

So far we labeled all vertices x on ∂P that are boundary-events. We still need to compute
the other endpoint x̃ of the line-of-sight xx̃ that is tangent in vi. Let xix̃i be the line-of-sight
at the path-event xi so that x̃i, vi−1, vi, xi ∈ `. (See Figure 4.) While rotating ` around vi,
`+ sweeps over A+

i until the next path-event is met. Let E+
i be the sequence of the path-

and boundary-events in A+
i we obtained so far sorted in counter-clockwise order along ∂P .

The order of events in E+
i is the same as the order in which `+ sweeps over them. Our goal

is to compute x̃ for every event in E+
i in order. To do this, we consider the (triangular) cells

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:7

vi

vi+1

xi,1

xi,2

xi,3

xi

A+
i

A−
i

x̃i

x̃i,1

vi−1

∂P

Figure 4 Let E+
i = 〈xi,1, . . . , xi,k〉 for an index 1 ≤ k ≤ n. We start at x̃i and follow the

(triangular) cells of Mt incident to vi in counter-clockwise order around vi until we find x̃i,1. Then
we continue to follow such cells until we find x̃i,2, and so on.

of Mt incident to vi one by one in counter-clockwise order around vi starting from the cell
incident to x̃i. Since every point in such cells is visible from vi, we can determine if x̃ is
contained in a cell in constant time for any event x ∈ E+

i . Therefore, we can compute x̃ for
every event x in E+

i in time linear in the number of the cells of Mt incident to vi and the
number of events of E+

i , giving us all path- and boundary-events in O(n) total time. J

Once we initialized the event queue Q, we can now compute and process bend-events as
we proceed in our line-of-sight rotations.

I Lemma 4. All bend-events can be computed in O(n) time, sorted in the order as they
appear on the boundary of P .

Proof. We assume that all path- and boundary-events are already computed. Additionally, we
assume that all vertices of the boundary- and path-events (the endpoints of the corresponding
line-of-sights) are inserted on ∂P . Recall that, for each event, we know both endpoints of
the line-of-sight ` on ∂P and the corresponding vertex of π(s, t) on which we rotate.

As in the proof of Lemma 3, we consider the line-of-sight ` tangent to a vertex v ∈ π(s, t)
as the union of two (sub)segments `+ and `− of ` induced by v such that `+ ∩ `− = {v} and
`− is incident to the subpolygon of P induced by ` containing s. We discuss the computation
of all bend-events that are encountered by `−. The bend-events that are swept over by `+

can be computed in a second round by changing the roles of s and t.
We start with the path-event defined by s and v1, and consider all events in the order

they appear. Let ` be the current line-of-sight rotating around a vertex v and denote by
x the endpoint of `− other than v. To find the bend-events efficiently, we compute and
maintain the shortest path π(s, `) over the events.

While ` rotates around v, the combinatorial structure of π(s, `) may change. Specifically,
let e` = (u,w) denote the edge of π(s, `) incident to ` with w on `. Note that during the
rotation of `, all the edges of π(s, `) are stationary, except that e` rotates around u. Therefore,
a change in the combinatorial structure of π(s, `) occurs only when (1) e` hits a vertex u′ of
P and splits into two edges sharing u′ or (2) the two edges of π(s, `) incident to u become
parallel. (Then they merge into one and u disappears from the shortest path.) See Figure 5.
From any event of the two event types above, e`, u, and π(s, `) are updated accordingly.
Additionally, x is updated and its new position is inserted as vertex on ∂P as it represents a
bend-event.

I Lemma 5. An event of type (1) occurs only when (a) x reaches a vertex u′, or (b) e` hits a
vertex u′ of π(s, t) in its interior. Moreover, for case (b), u and u′ are consecutive in π(s, t).

SWAT 2018

6:8 On Romeo and Juliet Problems

(a) (b)

s

t

v

(c)

u

u′ `−

w

s

t

v

u

u′
`−

w

s

t

w

u

`−
v

Figure 5 (a) A bend-event of type (1) occurs when x = u` reaches u′. (b) A bend-event of type
(1) occurs when e` = uw hits a vertex u′ of π(s, t). (c) A bend-event of type (2) occurs when two
edges incident to u are parallel.

Proof. Consider the case that e` is not orthogonal to `. Then the closest point in ` from s is
x. Thus, the only way that e` hits a vertex of P is that x reaches u′. See Figure 5(a).

Now consider the case that e` is orthogonal to `. Then u′ is contained in π(u, v). See
Figure 5(b). Since π(u, v) is a subpath of π(s, t), u′ is a vertex of π(s, t), and thus u is the
vertex of π(s, t) previous to u′ from s. J

I Lemma 6. Once a vertex disappears from π(s, `), it never appears again on the shortest
path during the rotation of the current line-of-sight `.

Proof. Assume to the contrary that there is a vertex u that disappears from π(s, `1), but
then appears again on π(s, `2) for two line-of-sights `1 and `2 during the rotation. Since
both π(s, `1) and π(s, `2) contain u in its interior, both of them also contain π(s, u). Since
u disappears from π(s, `1), the edge of π(s, `1) incident to u is orthogonal to `1. We claim
that u appears on π(s, `2) due to case (b) of type(1), that is, the edge of π(s, `2) incident
to `2 hits u. Assume to the contrary that u appears on π(s, `2) due to case (a) of type (1).
However, u (and its event vertex on ∂P) is already swept by a line-of-sight before we consider
`2 because it appears on π(s, `1). Thus, u appears on π(s, `2) due to case (b) of (2), and the
edge of π(s, `2) incident to u is orthogonal to `2. This means that `1 and `2 are parallel.

Since `1 and `2 are parallel, they are tangent to π(s, t) at two distinct vertices, say v1
and v2, respectively. Moreover, the path π(p1, p2) contains v1 for any two points p1 ∈ P1 and
p2 ∈ `2, where P1 is the subpolygon bounded by `−1 containing s. Thus, π(s, `2) contains
π(s, v1), and no vertex in P1 other than the vertices of π(s, v1) appears on π(s, `2). Since u
is contained in P1, it cannot appear on π(s, `2), which is a contradiction. J

We can update u, e`, x and π(s, `) in constant time for a type (1) event. We can update
them in O(n) time for all type (2) events in total by Lemma 6. The vertices representing the
bend-events can be inserted on ∂P in the same time. J

4 Algorithm Based on a Sweep-Line-Like Approach

In this section, we present a linear-time algorithm for computing the minimum distance that
two points s and t in a simple polygon P travel in order to see each order. We compute all
events defined in Section 3 in linear time. The remaining task is to handle the lines-of-sight
lying between two consecutive events.

I Lemma 7. For any two consecutive events, the line-of-sight ` lying between them that
minimizes the sum of the distances from s and t to ` can be found in constant time.

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:9

Proof. Let L be the set of all lines-of-sight lying between the two consecutive events. Every
line-of-sight in L contains a common vertex v of π(s, t). We assume that L contains no
vertical line-of-sight. Otherwise, we consider the set containing all lines-of-sight of L with
positive slopes, and then the set containing all lines-of-sight of L with negative slopes.

By construction, the second to the last vertex u of π(s, `) (and π(t, `)) for any ` ∈ L
remains the same. We already obtained v and u while computing the events. We will give
an algebraic function for the length of π(s, `) for ` ∈ L. An algebraic function for the length
of π(t, `) can be obtained by changing the roles of s and t.

Since the topology of π(s, `) for every ` ∈ L remains the same, we consider only the
length of π(u, `). Observe that π(u, `) is a line segment for any ` ∈ L, and thus its length
is the same as the Euclidean distance between u and `. The length is either the Euclidean
distance between u and the line containing `, or the Euclidean distance between u and the
endpoint of ` closest to u. We show how to handle the first case only because the second
case can be handled analogously.

To use this observation, we use `(α) to denote the line of slope α passing through v for
any α > 0. There is an interval I such that `(α) contains a line-of-sight in L if and only
if α ∈ I. The Euclidean distance between u and `(α) is the same as the distance between
u and the line-of-sight contained in `(α). Thus, in the following, we consider the distance
between u and `(α) for every α ∈ I.

Since `(α) passes through a common vertex, the line `(α) can be represented as the form
of y = αx+ f(α), where f(α) is a function linear in α. Then, the distance between u and
`(α) can be represented as the form of |c1α+ c2|/

√
α2 + 1, where c1 and c2 are constants

depending only on v and u.
Then our problem reduces to the problem of finding a minimum of the function of the form

of (|c1α+ c2|+ |c′1α+ c′2|)/
√
α2 + 1 for four constants c1, c2, c

′
1 and c′2, and for all α ∈ I.

We can find a minimum in constant time using an elementary analysis. J

I Lemma 8. For any two consecutive events, the line-of-sight ` lying between the them that
minimizes the maximum of the distances from s and t to ` can be found in constant time.

I Theorem 9. Given a simple n-gon P with no holes and two points s, t ∈ P , a point-pair
(s∗, t∗) such that i) s∗t∗ ⊂ P and ii) either |π(s, s∗)|+ π(t, t∗)| or max{|π(s, s∗)|, |π(t, t∗)|}
is minimized can be computed in O(n) time.

Proof. Our algorithm first computes all path- and boundary-events as described in Lemma 3.
The number of events introduced during this phase is bounded by the number of vertices
of the shortest path maps, Ms and Mt, respectively, which are O(n). In the next step, it
computes the bend-events on ∂P as described in Lemma 4, which can be done in O(n) time.
Finally, our algorithm traverses the sequence of events. Between any two consecutive events,
it computes the respective local optimum in constant time by Lemma 7. It maintains the
smallest one among the local optima computed so far, and return it once all events are
processed. Therefore the running time of the algorithm is O(n).

For the correctness, consider the combinatorial structure of a solution and how it changes.
The path-events ensure that all vertices of π(s, t) are considered as being the vertex lying on
the segment connecting the solution (s∗, t∗). While the line-of-sight rotates around one fixed
vertex of π(s, t), either the endpoints of line-of-sight sweep over or become tangent to a vertex
of ∂P . These are exactly the boundary-events. Or the combinatorial structure of π(s, s∗) or
π(t, t∗) changes as interior vertices of π(s, s∗) or π(t, t∗) appear or disappear. These happen
exactly at bend-events. Therefore, our algorithm returns an optimal point-pair. J

SWAT 2018

6:10 On Romeo and Juliet Problems

5 Quickest Pair-Visibility Query Problem

In this section, we consider a query version of the min-max variant of the quickest pair-
visibility problem: Preprocess a simple n-gon P so that the minimum traveling distance for
two query points s and t to see each other can be computed efficiently. We can preprocess a
simple n-gon in linear time and answer a query in O(log2 n) time by combining the approach
in Section 4 with the data structure given by Guibas and Hershberger [9, 11]. For any
two query points s and t in P , the query algorithm for their data structure returns π(s, t)
represented as a binary tree of height O(logn) in O(logn) time [11]. Thus, we can apply
binary search on the vertices (or the edges) on π(s, t) efficiently.

Imagine that we rotate a line-of-sight along the vertices of π(s, t) for two query points s
and t in P . Lemma 1 implies that there is a line-of-sight containing s∗ and t∗, where (s∗, t∗)
is an optimal solution. We call it an optimal line-of-sight. We define the order of any two
lines-of-sight as the order in which they appear during this rotational sweep process. By the
following lemma, we can apply binary search on the sequence of events along ∂P and find
two consecutive events such that the respective local optimum achieved between them is a
global optimal solution.

I Lemma 10. The geodesic distance between s (and t) and the rotating line-of-sight increases
(and decreases) monotonically as the line-of-sight rotates along the vertices of π(s, t) from s.

Proof. Let ` be a line-of-sight which is tangent to π(s, t) at a vertex v. Consider the
subdivision of P induced by ` and let Ps be the subpolygon that contains s. Let `′ be a
line-of-sight that comes after ` during the rotational sweep process. We claim that `′ does
not intersect the interior of Ps. If `′ is tangent to π(s, t) at v, it never intersects the interior
of Ps as shown in the proof of Lemma 3. Assume that `′ is tangent to π(s, t) at a vertex
u that comes after v along π(s, t) from s, but intersects the interior of Ps. Without loss of
generality, assume that ` is horizontal and Ps lies locally below `. Then u must lie strictly
above the line containing `. However, since both v and u are vertices of π(s, t) and ` is
tangent to π(s, t) at v, there must be another vertex u′ of π(s, t) that lies on or below the
line containing ` and appears between v and u along π(s, t). Thus, u is not visible from any
point on `, and `′ does not intersect the interior of Ps. Since π(s, `′) intersects `, we have
π(s, `′) ≥ π(s, `). The claim for t and the rotating line-of-sight can be shown analogously. J

5.1 Binary Search for the Path-Events
We first consider the path-events, and find two consecutive path-events containing an optimal
line-of-sight between them. Let π(s, t) := (s = v0), v1, . . . , vk−1, (t = vk). Due to the
shortest-path data structure by Guibas and Hershberger, we can obtain π(s, t) represented
as a binary tree of height O(logn) in O(logn) time. Consider an edge vivi+1 of π(s, t). We
can determine whether or not an optimal line-of-sight is tangent to π(s, t) at a vertex lying
after vi along π(s, t) in O(logn) time. To do this, we compute the line-of-sight ` containing
vivi+1 in O(logn) time [12] and compute the length of π(s, `) and π(t, `) in O(logn) time [9].
An optimal line-of-sight is tangent to π(s, t) at a vertex lying after vi if and only if π(s, `) is
shorter than π(t, `). Therefore, we can compute the two consecutive path-events with an
optimal solution lying between them in O(log2 n) time.

5.2 Binary Search for the Boundary-Events
Now we have the vertex vi of π(s, t) contained in an optimal line-of-sight. We find two
consecutive boundary-events defined by lines-of-sight tangent to π(s, t) at vi such that an
optimal line-of-sight lies between them. Let x̃i and xi be the first points of ∂P hit by the

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:11

rays from any point in vi−1vi towards vi−1 and vi, respectively. See Figure 4. Similarly, let
x̃i+1 and xi+1 be the first points of ∂P hit by the rays from any point in vivi+1 towards
vi and vi+1, respectively. These four points of ∂P can be found in O(logn) time by the
ray-shooting data structure [12]. Without loss of generality, we assume that a line-of-sight
rotates around vi in the counter-clockwise direction in the rotational sweep process. Let γ̃
be the part of ∂P lying from x̃i to x̃i+1 in counter-clockwise order, and γ be the part of
∂P lying from xi to xi+1 in counter-clockwise order. An optimal line-of-sight `∗ has one
endpoint on γ̃ and the other endpoint on γ.

We first find the edge of γ̃ (resp. γ) containing an endpoint of `∗ by applying binary
search on the vertices of γ̃ (resp. γ). This gives two consecutive boundary-events such that
`∗ lies between them. We now show how to find the edge of γ containing an endpoint of `∗.
The edge on γ̃ can be found analogously.

We perform a binary search on the vertices in γ as follows. Let x∗ be the endpoint of `∗
contained in γ. For any vertex u of γ, we can determine which part of γ with respect to u
contains x∗ in O(logn) time. To do this, we consider the line-of-sight ` containing the edge
of π(vi, u) incident to vi. Observe that ` intersects π(vi, u) only in the edge including its
endpoints as π(vi, u) is a shortest path. See Figure 6(a). Since we can obtain the edge of
π(vi, u) incident to vi in O(logn) time using the shortest-path data structure, we can obtain
` in the same time. Here, to obtain the endpoint of ` on γ, we use the ray-shooting data
structure that supports O(logn) query time [12]. Then we compare d(s, `) and d(t, `) in
O(logn) time. The point x∗ comes after u from xi if and only if d(s, `) < d(t, `). Therefore,
we can determine which part of γ with respect to u contains x∗ in O(logn) time, and thus the
binary search is completed in O(log2 n) time. In this way, we can compute two consecutive
boundary-events such that an optimal line-of-sight lies between them in O(log2 n) time.

5.3 Binary Search for the Bend-Events
Now we have two consecutive events in the sequence of all path- and boundary-events
that contain an optimal line-of-sight `∗ between them. Let `1 and `2 be two lines-of-sight
corresponding to the two consecutive events such that `2 comes after `1. The remaining task
is to handle the bend-events lying between them. For the bend-events, we perform a binary
search on the edges of π(s, `1) ∪ π(s, `2) in O(log2 n) time. Then we perform binary search
on the edges of π(t, `1) ∪ π(t, `2) in O(log2 n) time. In the following, we describe the binary
search on π(s, `1) ∪ π(s, `2). The other one can be done analogously.

We find the point s′ such that π(s, s′) is the maximal common subpath of π(s, `1) and
π(s, `2) from s in O(logn) time using the shortest-path data structure [11]. See Figure 6(b).
Then we obtain π′ = π(s′, `1) ∪ π(s′, `2) represented as a binary tree of height O(logn) in
O(logn) time. For an edge e of π′, we use `(e) to denote the line-of-sight containing vi and
orthogonal to the line containing e. Observe that `(e) comes after `(e′) if and only if e comes
after e′ along π′ from `1. Also, given an edge e of π′, we can compute `(e) in constant time.
Using these properties, we can find two consecutive edges e and e′ of π′ such that `∗ lies
between `(e) and `(e′) in O(log2 n) time by applying binary search on π′ as we did for path-
and boundary-events.

Now we have two consecutive events in the sequence of all path-, boundary- and bend-
events that contains `∗ between them. Recall that the combinatorial structure of π(s, `)
(and π(t, `)) is the same for every lines-of-sight lying between the two events. Let (us, ws)
and (ut, wt) be the edges of π(s, `) and π(t, `) incident to ` at ws and wt, respectively, for
any line-of-sight ` lying between the two events. Using the shortest-path data structure,
we can obtain us, ut, d(s, us) and d(t, ut) in O(logn) time. Then we apply the algorithm in

SWAT 2018

6:12 On Romeo and Juliet Problems

vi u

vi−1

vi+1

xi

xi+1

π(vi, u)

(a) (b)

vi

`1

`2

ss′

e

`(e)`

π′

Figure 6 (a) The line-of-sight intersecting π(vi, u) contains the edge of π(vi, u) incident to vi.
(b) The maximal common subpath of π(s, `1) and π(s, `2) from s is π(s, s′).

Lemma 7 to find an optimal line-of-sight in constant time. In this way, we can obtain an
optimal line-of-sight in O(log2 n) time in total.

Therefore, we can find two consecutive events with an optimal solution between them,
and we can obtain an optimal solution in O(log2 n) time in total.

I Theorem 11. Given a simple n-gon P , we can preprocess it in O(n) time to find the
minimum of the longer distance that s and t travel in order to see each other in P can be
computed in O(log2 n) time for any two query points s, t ∈ P .

References
1 Esther M. Arkin, Alon Efrat, Christian Knauer, Joseph S. B. Mitchell, Valentin Polishchuk,

Günter Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest
visibility queries. Journal of Computational Geometry, 7(2):77–100, 2016. doi:10.20382/
jocg.v7i2a5.

2 Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries and
maintenance in simple polygons. Discrete & Computational Geometry, 27(4):461–483, 2002.
doi:10.1007/s00454-001-0089-9.

3 Svante Carlsson, Håkan Jonsson, and Bengt J. Nilsson. Finding the shortest watchman
route in a simple polygon. Discrete & Computational Geometry, 22(3):377–402, 1999. doi:
10.1007/PL00009467.

4 Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. In Alok Aggarwal, ed-
itor, Proceedings of the Second Annual ACM SIGACT/SIGGRAPH Symposium on Compu-
tational Geometry, Yorktown Heights, NY, USA, June 2-4, 1986, pages 24–33. ACM, 1986.
doi:10.1145/10515.10518.

5 Wei-pang Chin and Simeon C. Ntafos. Optimum watchman routes. Inf. Process. Lett.,
28(1):39–44, 1988. doi:10.1016/0020-0190(88)90141-X.

6 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of the
35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA,
USA, pages 473–482. ACM, 2003. doi:10.1145/780542.780612.

7 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. Comput.
Geom., 45(7):326–333, 2012. doi:10.1016/j.comgeo.2012.02.001.

8 Anurag Ganguli, Jorge Cortes, and Francesco Bullo. Visibility-based multi-agent deploy-
ment in orthogonal environments. In Proceedings of the 2007 American Control Conference
(ACC ’07), pages 3426–3431, 2007. doi:10.1109/ACC.2007.4283034.

9 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. J. Comput. Syst. Sci., 39(2):126–152, 1989. doi:10.1016/0022-0000(89)90041-X.

10 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre
Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209–233, 1987. doi:10.1007/BF01840360.

http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.20382/jocg.v7i2a5
http://dx.doi.org/10.1007/s00454-001-0089-9
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1007/PL00009467
http://dx.doi.org/10.1145/10515.10518
http://dx.doi.org/10.1016/0020-0190(88)90141-X
http://dx.doi.org/10.1145/780542.780612
http://dx.doi.org/10.1016/j.comgeo.2012.02.001
http://dx.doi.org/10.1109/ACC.2007.4283034
http://dx.doi.org/10.1016/0022-0000(89)90041-X
http://dx.doi.org/10.1007/BF01840360

H. Ahn, E. Oh, L. Schlipf, F. Stehn, and D. Strash 6:13

11 John Hershberger. A new data structure for shortest path queries in a simple polygon. Inf.
Process. Lett., 38(5):231–235, 1991. doi:10.1016/0020-0190(91)90064-O.

12 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18(3):403–431, 1995. doi:10.1006/jagm.1995.1017.

13 Ramtin Khosravi and Mohammad Ghodsi. The fastest way to view a query point in simple
polygons. In Proceedings of the 21st European Workshop on Computational Geometry,
pages 187–190, 2005.

14 Joseph S. B. Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor, Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 844–855. SIAM,
2013. doi:10.1137/1.9781611973105.60.

15 Haitao Wang. Quickest visibility queries in polygonal domains. In Boris Aronov and Mat-
thew J. Katz, editors, 33rd International Symposium on Computational Geometry, SoCG
2017, July 4-7, 2017, Brisbane, Australia, volume 77 of LIPIcs, pages 61:1–61:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.SoCG.2017.61.

16 Erik L. Wynters and Joseph S. B. Mitchell. Shortest paths for a two-robot rendez-vous. In
Proceedings of the 5th Canadian Conference on Computational Geometry, pages 216–221,
1993.

SWAT 2018

http://dx.doi.org/10.1016/0020-0190(91)90064-O
http://dx.doi.org/10.1006/jagm.1995.1017
http://dx.doi.org/10.1137/1.9781611973105.60
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.61

	Introduction
	Our results

	Preliminaries
	Computing All Events for a Sweep-Line-Like Approach
	Algorithm Based on a Sweep-Line-Like Approach
	Quickest Pair-Visibility Query Problem
	Binary Search for the Path-Events
	Binary Search for the Boundary-Events
	Binary Search for the Bend-Events

