
Faster Evaluation of Subtraction Games
David Eppstein1

Computer Science Department, University of California, Irvine
eppstein@uci.edu

Abstract
Subtraction games are played with one or more heaps of tokens, with players taking turns re-
moving from a single heap a number of tokens belonging to a specified subtraction set; the last
player to move wins. We describe how to compute the set of winning heap sizes in single-heap
subtraction games (for an input consisting of the subtraction set and maximum heap size n),
in time Õ(n), where the Õ elides logarithmic factors. For multi-heap games, the optimal game
play is determined by the nim-value of each heap; we describe how to compute the nim-values of
all heaps of size up to n in time Õ(mn), where m is the maximum nim-value occurring among
these heap sizes. These time bounds improve naive dynamic programming algorithms with time
O(n|S|), because m ≤ |S| for all such games. We apply these results to the game of subtract-a-
square, whose set of winning positions is a maximal square-difference-free set of a type studied in
number theory in connection with the Furstenberg–Sárközy theorem. We provide experimental
evidence that, for this game, the set of winning positions has a density comparable to that of
the densest known square-difference-free sets, and has a modular structure related to the known
constructions for these dense sets. Additionally, this game’s nim-values are (experimentally) sig-
nificantly smaller than the size of its subtraction set, implying that our algorithm achieves a
polynomial speedup over dynamic programming.
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1 Introduction

Subtraction games were made famous by the French film L’Année dernière à Marienbad
(1961), which showed repeated scenes of two men playing Nim. A subtraction game is
played by two players, with some heaps of game tokens (such as coins, stones, or, in the
film, matchsticks) between them. On each turn, a player may take away a number of tokens
from a single heap. The tokens removed in each turn are discarded, and play continues until
all the tokens are gone. Under the normal winning convention, the last player to move is
the winner [2]. In Nim, any number of tokens may be removed in a turn. This game has
a simple analysis according to which it is a winning move to make the bitwise exclusive-or
of the binary representations of the heap sizes become zero. If this bitwise exclusive-or is
already zero, the player who just moved already has a winning position [4]. However, other
subtraction games require the number of removed tokens to belong to a predetermined set of
numbers, the subtraction set of the game. Different subtraction sets lead to different games
with different strategies.2

1 Supported in part by NSF grants CCF-1618301 and CCF-1616248.
2 Golomb [7] has considered an even more general class of games, in which the subtraction set specifies

combinations of numbers of tokens that may be simultaneously removed from each pile.
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20:2 Faster Evaluation of Subtraction Games

All subtraction games are impartial, meaning that the choice of moves on each turn does
not depend on who is making the move. As such, with the normal winning convention, these
games can be analyzed by the Sprague–Grundy theory, according to which each heap of
tokens in a subtraction game has a nim-value, the size of an equivalent heap in the game of
Nim [4,8,17]. The optimal play in any such game is to move to make the bitwise exclusive-or
of the nim-values zero. The winning positions are the ones in which this bitwise exclusive-or
is already zero. Unlike Nim itself, positions with a single nonempty heap of tokens may
be winning for the player who just moved; this is true when the nim-value of the heap is
zero. The heap sizes whose nim-values are zero are called “cold”, while the remaining heap
sizes are called “hot”. In a game with a single heap of tokens, it is a winning move to take
a number of tokens such that the remaining tokens form a cold position. If the position is
already cold, the player who just moved already has a winning position, because the player
to move must move to a hot position.

Every finite subtraction set leads to a game with periodic nim-values (depending only on
the sizes of the heaps modulo a fixed number). Some natural choices of infinite subtraction
set, such as the prime numbers, also do not lead to interesting subtraction games [7]. However,
a more complicated subtraction game, “subtract-a-square”, has the square numbers as its
subtraction set. That is, on each move, each player may remove any square number of
tokens from any single heap of tokens. The game of subtract-a-square was studied in 1966
by Golomb [7], who calls it “remarkably complex”; Golomb credits its invention to Richard
A. Epstein.3 Its sequence of nim-values,

0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 3, 2, 3, 4, 0, . . .

(sequence A014586 in the Online Encyclopedia of Integer Sequences, OEIS) displays no
obvious patterns.

Subtract-a-square has another reason for interest, beyond investigations related to combi-
natorial game theory. The set C of cold positions in this game,

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 34, 39, 44, 52, 57, 62, 65, 67, 72, 85, 95, . . .

(sequence A030193 in the OEIS) has the property that no two elements of C differ by a
square number. A sequence with this property is called a square-difference-free set. The
cold positions of subtract-a-square are square-difference-free because, whenever c is a cold
position, and i is a positive integer, c+ i2 must be hot, as one could win by moving from
c + i2 to c. The square-difference-free sets have been extensively investigated in number
theory, following the work of Furstenberg [6] and Sárközy [14], who showed that they have
natural density zero. This means that, for all ε, there exists an N such that, for all n > N ,
the fraction of positive integers up to n that belong to the set is at most ε.

More strongly, the set C of cold positions in subtract-a-square is a maximal square-
difference-free set. Every positive integer that is not in C (a hot position) has a move to a
cold position, so it could not be added to C without destroying the square-difference-free
property. Every maximal square-difference-free subset of the range [0, n] must have size at
least Ω(

√
n) (otherwise there would not be enough sums or differences of set elements and

squares to prevent the addition of another number in this range)4 and size at most

O

(
n

(logn) 1
4 log log log log n

)

3 No relation.
4 See Golomb [7], Theorem 4.1.

https://oeis.org/A014586
https://oeis.org/A030193
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by quantitative forms of the Furstenberg–Sárközy theorem [12]. In particular, these bounds
apply to |C ∩ [0, n]|, the number of cold positions of subtract-a-square up to n. However, it
is not known whether these upper and lower bounds are tight or where the number of cold
positions lies with respect to them. In the densest known maximal square-difference-free sets,
the number of elements up to n is

Ω
(
n(1+log205 12)/2

)
≈ n0.733412.

The construction for these dense sets involves finding a square-difference-free set modulo some
base b, and selecting the numbers whose base-b representation has these values in its even
digit positions and arbitrary values in its odd digit positions [13]. The bound given in the
formula above comes from applying this method to a square-difference-free set of 12 values
modulo 205 [1, 10]. Plausibly, a greater understanding of the nim-values of subtract-a-square
could lead to progress in this area of number theory.

Algorithmically, for a subtraction game in which the allowed moves are to take a number
of tokens in a given set S, the nim-values can be computed by dynamic programming, using
the recurrence

nimvalue(n) = mex
i∈S,i≤n

nimvalue(n− i).

Here, the “mex” operator (short for “minimum excludent” [4]) returns the smallest non-
negative integer that cannot be represented by an expression of the given form. No separate
base case is needed, because in the base case (when n = 0), the set of available moves
(numbers in S that are at most n) is empty and the mex of an empty set of choices is zero.
Evaluating this recurrence, for all heap sizes up to a given threshold n, takes time O(n|S|).
The set C of cold positions can be determined within the same time bound, by applying this
recurrence and then returning the set of positions whose nim-value is zero.

However, in the study of algorithms, many naive dynamic programming algorithms turn
out to be suboptimal: they can be improved by more sophisticated algorithms for the same
problem. Is that the case for this one? We will see that it is. We provide the following two
results:

We show how to compute the set of cold positions in a given subtraction game, for heaps
of size up to a given threshold n, in time Õ(n).
We show how to compute the nim-values of a given subtraction game, for heaps of size
up to a given threshold n, in time Õ(mn).

In these time bounds, the Õ notation elides logarithmic factors in the time bound, and the
parameter m refers to the maximum nim-value of any position within the given range.

Ignoring the logarithmic factors hidden in the Õ notation, our time bounds are always
at least as good as the O(n|S|) time for naive dynamic programming, because for any
subtraction game m ≤ |S| (if there are only |S| possible moves, the mex of their values can
be at most m). But are they actually a significant improvement? To answer this, we need to
know how quickly m grows compared to the known growth rate of |S|.

To determine whether our algorithms provide a speedup for the game of subtract-a-square,
we performed a sequence of computational experiments to determine the density of this
game’s cold positions and the growth rate of its largest nim-values. We find experimentally
that, up to a given n, the largest nim-value appears to grow as O(n0.35), significantly more
slowly than the O(n1/2) growth rate of the subtraction set. The difference in the growth
rates for these quantities shows that our algorithms are indeed an asymptotic improvement
by a polynomial factor. Additionally, the number of cold positions appears to grow at least
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20:4 Faster Evaluation of Subtraction Games

as quickly as n0.69. That is, the cold positions of this game provide an unexpectedly large
square-difference-free set, competitive with the best theoretical constructions for these sets.
Examining the modular structure of the set of cold positions, we find that it appears to be
similar to the structure of these theoretical constructions, with a square-difference-free set of
digit values in even positions and arbitrary values in odd positions.

2 Algorithms

2.1 Subtraction with hotspots
In order to evaluate subtraction games efficiently, it will be convenient to generalize them
somewhat, to a class of subtraction games with hotspots. Given two sets S and H (of positive
and non-negative integers respectively), we define a subtraction game with subtraction set S
and hotspot set H as follows. The game starts with a single pile of some number of tokens,
and the players alternate in choosing a number from S and removing that number of tokens
from the pile, as before. However, if any move leaves a pile whose remaining number of
tokens belongs to H, then the player who made that move immediately loses. (This is not
quite the same as allowing the other player to remove all the tokens from piles whose size
belongs to H, because H might contain the number zero, in which case removing all the
tokens could be a losing move instead of a winning move.)

The presence of these hotspots makes defining a nim-value for these games problematic:
they are not played by the normal winning convention, so what would happen if we played a
game with multiple piles and one player moved to a hotspot? Nevertheless, a recurrence of
the usual form suffices to determine the set of hot and cold positions of such a game:

hot(n) = n ∈ H ∨
∨

i∈S,i≤n

¬hot(n− i).

2.2 Finding the hotspots
In a subtraction game (with subtraction set S, with or without hotspots), suppose that some
set C of positions has already been determined to be cold. Then all positions H that can
reach C in a single move are automatically hot. We can formulate membership in this set of
hot positions as a Boolean formula in conjunctive normal form (2-CNF):

(i ∈ H)⇐⇒
∨

j+k=i

(j ∈ C) ∧ (k ∈ S).

Now suppose that C and S are both represented as bitvectors: arrays of binary values
that are 0 for non-members and 1 for members of each set. Then the problem of computing
the bitvector representation of H from the above formula is a standard problem known as
Boolean convolution, studied for its applications in string matching [5,9,11]. It is an instance
of a more general class of convolution problems in which we compute

C[i] = ⊕
j+k=i

A[j]⊗B[j]

for an “addition” operation ⊕ and “multiplication” operation ⊗. In Boolean convolution, ⊗
is conjunction (∧), and ⊕ is disjunction (∨).

If the input bitvectors have total length n, their Boolean convolution can be computed in
O(n logn) time by replacing their Boolean values with the numbers 0 and 1 and computing
a numerical convolution (with addition as ⊕ and multiplication as ⊗) using the fast Fourier
transform algorithm.
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2.3 Divide and conquer
We are now ready to describe our algorithm for finding the hot and cold positions of a
subtraction game with hotspots. We assume that we are given as input a range [x, y) of
integer values to evaluate (following the Python convention for half-open integer ranges
where the bottom delimiter is inside the range and the top delimiter is outside it), together
with two sets: the subtraction set S and a set H of predetermined hotspots.

As a base case, if the range has zero or one values in it, we can solve the problem directly:
each value in the range is hot or cold accordingly as it belongs or does not belong to H,
respectively. Otherwise, we perform the following steps:
1. Find the midpoint m = (x + y)/2 of the range, and partition the range into the two

subranges [x,m) and [m, y).
2. Recursively evaluate the lower subrange [x,m), determining its hot and cold positions

(Hx and Cx respectively).
3. Use Boolean convolution to find the positions Hm in the upper subrange [m, y) that are

hot because they can be reached in a single step from a cold position Cx in the lower
subrange.

4. Recursively evaluate the upper subrange [m, y), with hotspot set H ∪Hm, determining
its hot and cold positions (Hy and Cy respectively).

5. Return the hot set Hx ∪Hy and cold set Cx ∪ Cy.

The time for this algorithm can be analyzed using the master method, as is standard for
such divide-and-conquer algorithms, giving the following result:

I Theorem 1. We can determine which positions are hot and which are cold, in a range of
n positions of a subtraction game with hotspots, in time O(n log2 n).

2.4 Nim-values
We can reduce the computation of nim-values in a subtraction game to the computation of
hot and cold positions in a subtraction game with hotspots, via the following lemma.

I Lemma 2. Let S be a subtraction set, and let H be the set of positions in the subtraction
game for S that have nim-value at most t. Then the positions that have nim-value t+ 1 are
exactly the cold positions of the subtraction game with hotspots with subtraction set S and
hotspot set H.

Proof. A position has nim-value t+ 1 if it does not belong to H (else it would have a smaller
nim-value) and does not have a move to a smaller position with nim-value t+ 1 (else t+ 1
would not be one of its excluded values). But this is exactly the defining condition for the
cold positions of the subtraction game with hotspots. J

I Theorem 3. In any subtraction game with subtraction set S, we can determine the nim-
values of the first n positions in time O(mn log2 n), where m is the maximum nim-value of
any of these positions.

Proof. We loop over the range of nim-values from 0 to s, using Theorem 2 to compute the
set of positions having each successive nim-value in time O(n log2 n) per nim-value. The
loop terminates when all of the first n positions have been assigned a nim-value. J

The maximum nim-value of a subtraction game is |S|, so (except for the logarithmic
factors) this time bound compares favorably with a naive O(n|S|) dynamic programming
algorithm for computing the nim-values of each position by finding the minimum excluded
value among the other positions reachable from it.
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m = 1.3251885340723 * n**0.350735691549274

Figure 1 The maximum nim-values m seen among the first n positions in subtract-a-square.

3 Experiments

To compare the performance of our Boolean convolution based evaluation algorithms to naive
algorithms for subtract-a-square, we performed some computational experiments, which we
describe here.

3.1 Maximum nim-value
Figure 1 plots (on a doubly logarithmic scale) the maximum nim-values m seen among the
first n positions in subtract-a-square. Only the positions where a new maximum is attained
are included in the plot.

We fitted a function of the form cne (a monomial with constant coefficient c and exponent
e) to these points, by using Siegel’s repeated median estimator [16], a form of robust statistical
regression that is insensitive to outliers (as would be expected to occur in the lower left
parts of the plot). This estimator fits a line through a sample of points by, for each point,
computing the median of the slopes formed by it and the other points, and then choosing
the slope of the fit line to be the median of these medians. It similarly chooses the height of
the fit line so that it passes above and below an equal number of points. We applied this to
the points on our log-log plot, using the mblm library of the R statistical package, which
implements this estimator, and then transformed the fit line back to a monomial over the
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Figure 2 The number of cold positions among the first n positions in subtract-a-square.

original coordinates of the data points. The result is shown in red in the figure.
As the figure shows, the maximum nim-value m among the first n positions of subtract-a-

square is accurately estimated by a function of the form O(n0.351), well below the O(n0.5)
size of the subtraction set for this game. Therefore, we would expect our O(mn log2 n)-time
convolution-based algorithm for computing the nim-values of this game to be asymptotically
faster than the O(n3/2) time for dynamic programming. However, even if we ignore the
different constant factors in the running times of these two algorithms, n needs to be
approximately 1026 in order for n1.35 log2

2 n to be smaller than n1.5, so we would not expect
this speedup to be applicable to practically relevant ranges of n. Because of the simplicity
and relative efficiency of the dynamic programming algorithm for small n, the values in
Figure 1 (for n up to 224) were computed by dynamic programming rather than convolution.

3.2 Number of cold positions

Our next experiment measures the number of cold positions among the first n positions in
subtract-a-square (Figure 2). In order to provide more data points in the lower left part of
the log-log plot than would be visible if we used uniform sampling of the range of values
of n, the plot of Figure 2 shows the number of cold positions for each value of n that is a
perfect cube (that is, for the values 1, 8, 27, 64, . . . ) up to 230. As in the previous experiment,
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20:8 Faster Evaluation of Subtraction Games

we fitted a monomial function to these points using Siegel’s repeated median estimator.
The number of cold positions does not directly affect the time bound for our convolution-

based algorithm. However, it does affect the time for a different algorithm, for computing
the set of cold positions (but not their nim-values) directly, in any subtraction game. This
algorithm is analogous to the sieve of Eratosthenes, which finds prime numbers iteratively,
for each one marking off the numbers that are not prime. To compute the cold positions
among the first n positions, it performs the following steps:
1. Initialize a Boolean array H of length n (indicating whether each position is hot) to be

false in each cell.
2. For each position i from 0 to n, test whether H[i] is still false. If it is, perform the

following steps:
a. Output i as one of the cold positions.
b. For each value s in the subtraction set S, mark i+ s as hot by setting H[i+ s] to be

true.
If the set of cold positions up to n is C, and the subtraction set is S, then this sieving
algorithm takes time O(|C| · |S|).

In some subtraction games, C could be as small as n/|S|, in which case the sieving
algorithm would take linear time. However, our experiments show that, for subtract-a-square,
C appears to grow more like n0.7, giving the sieving algorithm a running time of approximately
n1.2, compared to the O(n log2 n) time bound of the convolution based algorithm. Again
ignoring the constant factors in the time bounds, n would need to be approximately 1018 for
the convolution-based algorithm to be faster than the sieving algorithm. Because it is simple
to code and fast for smaller values of n, the results in Figure 2 were calculated using the
sieving algorithm.

3.3 Modularity
The high density of cold positions in subtract-a-square is surprising, especially in view of
earlier conjectures in the theory of square-difference-free sets that the number of values up to
n in such a set could be at most n1/2+o(1) [15]. These conjectures were disproven by finding
sets of numbers of a special form: numbers whose radix-b representation, for a carefully
chosen base b, use only base-b digits from a square-difference-free set (modulo b) in their even
digit positions [1,10,13]. Although the cold positions of subtract-a-square have somewhat
lower density than these constructions, they arise more naturally, and it is of interest to
investigate their modular structure and compare it to the structure of these other known
dense square-difference-free sets.

The idea of considering the base-b structure of these positions, for different choices of
the base b, also arises from the consideration of a different subtraction game, described by
Golomb [7]. This game has as its subtraction set the Moser–de Bruijn sequence

0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, . . .

of numbers that are sums of distinct powers of four. That is, when written in base 4, the
numbers of the subtraction set have only 0 and 1 as their base-4 digits. The nim-value
of any position n may be obtained by writing n in base 4, taking each digit modulo 2
(reducing it to 0 or 1), and then reinterpreting the resulting string of 0’s and 1’s as a binary
number. Because of this simple formula for its nim-values, the Moser–de Bruijn subtraction
game has both a maximum nim-value and a number of cold positions (among the first n
positions) proportional to Θ(

√
n). It subtraction set size, also Θ(

√
n), is comparable to that
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Figure 3 The distribution of digit values among the three low-order base-5 digits of cold positions
(for n < 230) in subtract-a-square.

for subtract-a-square. In particular, for this game, convolution is neither asymptotically
faster than dynamic programming nor than sieving, although all of these algorithms can be
improved by using the formula instead. What makes subtract-a-square so different from the
Moser–de Bruijn subtraction game?

To approach these questions, we performed more computational experiments studying the
distribution of digit values for the cold positions in subtract-a-square, for various bases. This
study follows the earlier work of Golomb [7], who observed that the low-order base-5 digits
of the cold positions among the first first 20,000 game positions were highly non-uniformly
distributed, and of Bush [3], who extended this study to the first 40,000,000 game positions.
Figure 3 shows an extension of this study to the first 230 game positions, and to the three
low-order base-5 digits of each cold position. As the figure shows, with a few exceptions,
the ones digit of the cold positions lies within the square-difference-free set {0, 2} (mod 5).
The fives digit shows no significant non-uniformities, but the twentyfives digit is quite non-
uniformly distributed, and is possibly heading towards the same square-difference-free set
{0, 2} (mod 5). In this way, the cold positions of subtract-a-square appear to be emulating
the strategy of the known dense square-difference-free sets [1, 10, 13] of having a square-
difference-free set of digits in even digit positions and all possible digits in odd positions
modulo a base b. In this case b = 5, and following this strategy perfectly for b = 5 would lead
to a set of size nlog10 25 ≈ n0.71534. The slightly slower growth rate of the cold positions in
subtract-a-square can be explained by the slow convergence of its higher-order base-5 digits
to square-difference-free sets of digits.

FUN 2018
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Figure 4 The distribution of digit values among the low-order base-7 and base-13 digits of cold
positions (for n < 230) in subtract-a-square.

What about other bases? Figure 4 shows the results of the same experiment (for the
low-order digits only) for base 7 and base 13. Because 7 is 3 modulo 4, there are no nontrivial
square-difference-free sets modulo 7: every two numbers modulo 7 differ by a square (mod 7).
Perhaps because of this, the digit values in base 7 show no significant nonuniformities.
However, modulo 13, the squares are 0, ±1, ±3, and ±4. Because 13 is 1 modulo 4, each of
the nonzero squares occurs four times among the squares of values mod 13; for instance, ±3 is
the square of 4, 6, 7, and 9 (mod 13). As the figure shows, the low-order digits of the base-13
representations of the cold positions in subtract-a-square appear to be converging towards
the square-difference-free set {0, 2, 7} (mod 13). Perhaps subtract-a-square implements the
modular strategy for finding dense square-difference-free sets in all prime bases (congruent
to 1 mod 4) simultaneously?

4 Conclusions

We have developed new convolution-based methods for evaluating arbitrary subtraction
games (either to determine the set of cold positions or to evaluate the nim-value of each
position). Our experiments on the subtract-a-square game show that its maximum nim-value
is lower than the theoretical value for games with subtraction sets of the same size, and
its number of cold positions is higher than the theoretical value. These results show that,
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asymptotically, our new algorithms are faster than alternative dynamic programming or
sieving approaches for the same problems on this game. However, the breakeven point for
the new algorithms is high enough that our convolution-based approach is not yet practical.
It would be of interest to develop improved algorithms that are both asymptotically faster
and more practical than existing approaches.

In an attempt to investigate why the cold positions of subtract-a-square produce a dense
square-difference-free set, we investigated the base-b representations of the cold positions
for several small prime choices of b. Our tests found significant irregularities in the even
positions of these base-b representations, when b is congruent to 1 mod 4. We leave the
problem of finding a theoretical explanation for these patterns, and for the density of the
cold positions in subtract-a-square, as open for future research.
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