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Abstract
Consider the following FUN problem. Given m, s you want to divide m muffins among s students
so that everyone gets m

s muffins; however, you want to maximize the minimum piece so that
nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal procedure.

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems were of

this form until we found this method, (2) we have used the technique to generate muffin-theorems,
and (3) we conjecture this can be used to solve the general case. We give (1) an algorithm to
find an upper bound for f(m, s) when

⌈ 2m
s

⌉
= 3 (and some ways to speed up that algorithm if

certain conjectures are true), (2) an algorithm that uses the information from (1) to try to find
a lower bound on f(m, s) (a procedure) which matches the upper bound, (3) an algorithm that
uses the information from (1) to generate muffin-theorems, and (4) an algorithm that we think
works well in practice to find f(m, s) for any m, s.
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1 Introduction

Consider the following FUN problem. Given m, s you want to divide m muffins among s
students so that everyone gets m

s muffins; however, you want to maximize the minimum
piece so that nobody gets crumbs. Let f(m, s) be the size of the smallest piece in an optimal
procedure.

We give an example:
You have 47 muffins and 36 students. You want to divide the muffins evenly, but no student
wants a small piece. Find a protocol that maximizes the smallest piece. We show in Section 5
that there is a procedure for this with smallest piece 31

90 and that this is optimal. Hence
f(47, 36) = 31

90 .

Convention. When discussing a muffin being cut we refer to pieces. When discussing a
student receiving we refer to shares. They are the same; however, it will be good to have
different terminologies to focus on what’s important. We treat a piece, a share, and its value
as the same thing. So we may say let x ≥ 1

3 be given to a student.

I Definition 1. Let m, s ∈ N. An (m, s)-protocol is a protocol to cut m muffins into pieces
and then distribute them to the s students so that each student gets m

s muffins. An (m, s)-
protocol is optimal if it has the largest smallest piece of any protocol. f(m, s) is the size of
the smallest piece in an optimal (m, s)-protocol.

Clearly, for all a ∈ N, f(am, as) ≥ f(m, s). All of our theorems indicate that f(am, as) =
f(m, s). We have not been able to prove this; however, we will only consider the cases where
m, s are relatively prime.

We came upon this problem in a pamphlet Julia Robinson Mathematics Festival: A
Sample of Mathematical Puzzles compiled by Nancy Blachman. On Page 2 was The Muffin
Puzzle which asked about the problem for several particular cases. Nancy Blachman attributes
the problem to Alan Frank and points out that it was described by Jeremy Copeland [3]. We
are the first ones to consider this problem seriously for general m, s with one caveat: There
was some discussion of this problem in the math-fun email list in 2009. We have obtained a
copy of their arxives and discovered that they already had Theorem 3 and 11. We will credit
the individuals when we get to those theorems.

Given m, s how hard is it to compute f(m, s)? Computing f(m, s) can be rephrased as a
mixed integer program on O(ms) variables (the proof is in the Section A). Since the input is
of size O(logm+ log s) this result does not even put the problem into NP. One of the upshots
of this paper will be a procedure that we conjecture puts the computation of f(m, s) into P.

We study the case where
⌈ 2m

s

⌉
= 3 because (1) many of our hardest open problems

were of this form until we found this method, (2) we have used the technique to generate
muffin-theorems, (3) we conjecture this can be used to solve the general case.

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.15
https://arxiv.org/abs/1709.02452
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We have a long paper [2] and some programs [1] for computing f(m, s). For 1 ≤ s ≤ 50,
1 ≤ m ≤ 60 we have computed f(m, s). In this paper we focus on a subset of the material
that lends itself to generating theorems about muffins via an algorithm.

2 Summary of Results

In Sections 3,4 we give basic theorems and definitions used throughout the paper. In Section 5
we illustrate the Buddy-Match techniques by proving f(47, 36) ≤ 31

90 . In Section 6 we illustrate
how to obtain lower bounds and present the result f(47, 36) ≥ 31

90 .
In Sections 7 we discuss how to generate theorems from the Buddy-Match Technique.

These theorems are of the form:

If d ∈ N and 1 ≤ a ≤ 3d− 1, a, d relatively primes, then

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
where X is a constant which can depend on a, d but not on k. In Section 8 we discuss how
to generate theorems that are more general. Here is an example:

If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk + a+ d, 3dk + a) ≤ X
360 where X = max{ 2a

5 ,
a+d

6 }.

In Sections 10, 11 we show how, assuming certain conjectures, one can speed up the
Buddy-Match Technique. In Section 12 we give an algorithm that we conjecture puts f(m, s)
into P. In Section 13 we speculate about that algorithm and other muffin-issues.

In the appendix we state and sometimes prove theorems that are needed to fill in some of
the gaps in our narrative. We also give some examples of the theorems we generated.

3 Basic Theorems

In this section we prove two theorems that will enable us, for the rest of the paper, to only
consider m, s and protocols such that (1) m > s ≥ 3, (2) s does not divide m, and (4) every
muffin is cut into exactly two pieces.

The following theorem takes care of the cases s = 1 and s = 2. The proofs are easy and
left to the reader.

I Theorem 2.
1. (∀m)[f(m, 1) = 1]
2. (∀m)[m ≡ 0 (mod 2)→ f(m, 2) = 1]
3. (∀m)[m ≡ 1 (mod 2)→ f(m, 2) = 1

2 ]
4. (∀m, s)[s divides m→ f(m, s) = 1].

The following theorem shows that if you know f(m, s) then you know f(s,m). Combined
with Theorem 2 we need only considerm > s ≥ 3. This theorem was independently discovered
by Erich Friedman, within the math-fun email list, in 2009.

I Theorem 3. Let m, s ∈ N. Then f(s,m) = s
mf(m, s).

Proof. Assume f(m, s) ≥ α. We show f(s,m) ≥ s
mα. Let M1, . . . ,Mm be the muffins. Let

S1, . . . , Ss be the students. The protocol that achieves f(m, s) ≥ α must be of the following
form:
1. For each 1 ≤ i ≤ m divide Mi into pieces (ai1, ai2, . . . , aimi) where

∑mi

j=1 aij = 1.
2. For each 1 ≤ j ≤ s give Sj the shares [b1j , b2j , . . . , bsjj ] where

∑sj

i=1 bij = m
s .

FUN 2018



15:4 A Muffin-Theorem Generator

The following hold:⋃m
i=1
⋃mi

j=1{aij} =
⋃s

j=1
⋃sj

i=1{bij}
The min over all of the aij is α.

The following protocol shows that f(s,m) ≥ s
mα. Let M ′1, . . . ,M ′s be the muffins. Let

S′1, . . . , S
′
m be the students.

1. For each 1 ≤ j ≤ s divide M ′j into ( s
mb1j ,

s
mb2j , . . . ,

s
mbsjj). Note that

∑sj

i=1
s
mbij =

s
m

∑sj

i=1 bij = s
m ×

m
s = 1.

2. For each 1 ≤ i ≤ m give S′j [ s
mai1,

s
maij , . . . ,

s
maimi

]. Note that
∑mi

j=1
s
maij =

s
m

∑mi

j=1 aij = s
m × 1 = s

m .

Clearly this is a correct protocol and the minimum piece is of size s
mα.

We now show that f(s,m) = s
mf(m, s). By the above we have both (1) f(s,m) ≥

s
mf(m, s), and (2) f(m, s) ≥ m

s f(s,m). Hence

f(s,m) ≥ s

m
f(m, s) ≥ s

m

m

s
f(s,m) = f(s,m).

Therefore f(s,m) = s
mf(m, s). J

I Theorem 4. Let m, s ∈ N.
1. If f(m, s) ≥ α and α > 1

3 via protocol P then protocol P cuts every muffin into 1 or 2
pieces.

2. f(m, s) ≥ α and α ≤ 1
2 via protocol P then there is a protocol P’ such that (1) P’ also

yields f(m, s) ≥ α, and (2) P’ cuts every muffin into 2 or more pieces.

Proof.
a) If any muffin is cut into ≥ 3 pieces then there is a piece ≤ 1

3 < α.
b) If any muffin is uncut and given to (say) Alice then we can add a step where we cut the

muffin into ( 1
2 ,

1
2 ) and give both 1

2 -sized pieces to Alice. Since α ≤ 1
2 adding in some

pieces of size 1
2 does not affect the smallest piece. J

By Theorem 4 we have the following convention.

Convention: When trying to show that f(m, s) ≤ α where 1
3 < α < 1

2 we will assume, by
way of contradiction, that there is a protocol showing f(m, s) > α where every muffin is cut
into exactly 2 pieces.

4 Basic Definitions

I Definition 5. Let m, s ∈ N. Assume there is an (m, s)-protocol.
1. The two pieces that come from the same muffin are called buddies. B(x) is the buddy of

x. Note that B(x) = 1− x.
2. A student that gets A shares is an A-student. A share given to an A-student is an

A-share.
3. 2-Shares that are given to the same 2-student are matched. M(x) is the match of 2-share

x. Note that M(x) = m
s − x.

4. If x is a share given to a 3-student then MS(x) is the smallest share (not including x)
that the student has, and ML(x) is the largest. Note that MS(x) ≤ (m/s)−x

2 . Hence
B(MS(x)) ≥ 1− (m/s)−x

2 .
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Notation: (a, b) will mean the set of shares that have size strictly between a and b. Hence
|(a, b)| will be the number of such shares. We use similar notation for [a, b].

5 An Example is Worth A Thousand Theorems: 43 muffins, 39
Students

The method we demonstrate in this section is called The Buddy-Match Method.

I Theorem 6. f(47, 36) ≤ 31
90 = 124

360 .

Proof. To make the notation easier we write all fractions as having denominator 360.
Assume there is an (47, 36)-procedure. We show that there is a piece ≤ 124

360 . Note that
47
36 = 470

360 .
Case 1: Some student gets ≥ 4 shares. Then some students has a share ≤ 47

36×4 <
124
360 .

Case 2: Some student gets ≤ 1 share. 1 < 47
36 , so this is impossible.

Case 3: Every muffin is cut in 2 pieces and every student gets either 2 or 3 shares. The
total number of shares is 94. Let s2 (s3) be the number of 2-students (3-students).

2s2 + 3s3 = 94
s2 + s3 = 36

So s2 = 14 and s3 = 22.
Case 3.1: There is a 2-share x ≤ 234

360 . M(x) ≥ 470
360 −

234
360 = 236

360 so B(M(x)) ≤ 1− 236
360 = 124

360

Case 3.2: There is a 3-share x ≥ 222
360 . B(MS(x)) ≤ 1−

470
360−

222
360

2 = 124
360 .

Case 3.3: There is a 2-share x ≥ 236
360 . B(x) ≤ 1− 236

360 = 124
360

Case 3.4: There is a 3-share x ≤ 124
360 . This one is self-explanatory.

Case 3.5: All 3-shares are in ( 124
360 ,

222
360 ) and all 2-shares are in ( 234

360 ,
236
360 ).

The following picture captures what we know so far.

( −−− )[ −−− ]( −−− )
124
360 3-shs 222

360 No shs 234
360 2-shs 236

360

Since there are no shares in [ 222
360 ,

234
360 ], there are no shares in B([ 222

360 ,
234
360 ]) = [ 126

360 ,
138
360 ]

The following picture captures what we know so far.

( −−− )[ −−− ]( −−− )[ −−− ]( −−− )
124
360 S3-shs 126

360 No shs 138
360 L3-shs 222

360 No shs 234
360 2-shs 236

360

S3-shs stands for short 3-shares and L3-shs stands for large 3-shares. There are 2s2 = 28
2-shares so there are 28 S3-shares (B is a bijection between 2-shares and S3-shares). Since
there are 3s3 = 66 3-shares total that leaves 38 S3 shares.

Since the midpoint of L3-shs is 360
2 , the Buddy function is a bijection from ( 138

360 ,
180
360 ) to

( 180
360 ,

222
360 ), Hence these two intervals have the same number of shares.

Since the midpoint of 2-shs is 470
2 , the Match function is a bijection from ( 234

360 ,
235
360 ) to

( 235
360 ,

236
360 ). Hence these two intervals have the same number of shares. Applying the Buddy

function to both these intervals we obtain that ( 124
360 ,

125
360 ) and ( 125

360 ,
126
360 ) have the same number

of shares.
In the scenarios above there are an even number of shares of size the midpoint. We

arbitrarily assign half to the left and half to the right.
We define the following intervals.

FUN 2018



15:6 A Muffin-Theorem Generator

I Definition 7.
1. I1 = ( 124

360 ,
125
360 )

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|, |I1 ∪ I2| = 28)

3. I3 = ( 138
360 ,

180
360 )

4. I4 = ( 180
360 ,

222
360 ) (|I3| = |I4|, |I3 ∪ I4| = 38)

Henceforth all of the students considered will be 3-students. We now look at the students
in a more detailed way than 2-students and 3-students.

I Definition 8. Let 1 ≤ i1 ≤ · · · ≤ i3 ≤ 4. An e(i1, i2, i3)-student is a student who has, for
each 1 ≤ j ≤ 3, a share in Iij

. For example, an e(1, 1, 4)-students has two shares in I1 and
one share in I4.

I Claim 1.
1. The only possible students are:

a. e(1, 1, 4)
b. e(1, 2, 4)
c. e(1, 3, 3)
d. e(1, 3, 4)
e. e(2, 2, 4)
f. e(2, 3, 3)
g. e(2, 3, 4)
h. e(3, 3, 3)
i. e(3, 3, 4)

2. There are no shares in [ 208
360 ,

218
360 ]

3. There are no shares in [ 142
360 ,

152
360 ] (this follows from the prior part and buddying).

Proof of Claim 1.
1) We establish that some students are impossible.

A e(1, 4, 4)-student has more than 124
360 + 2× 180

360 = 484
360

A e(2, 2, 3)-student has less than 2× 126
360 + 180

360 = 432
360

The result follows from these two statements, though the proof is tedious.
2) We look at which I4-shares are used

A e(1, 1, 4) student uses I4-share > 470
360 − 2× 125

360 = 220
360

A e(1, 2, 4) student uses I4-shares > 470
360 −

125
360 −

126
360 = 219

360
A e(1, 3, 4) student uses I4-shares < 470

360 −
124
360 −

138
360 = 208

360
A e(2, 2, 4) student uses I4-shares > 470

360 − 2× 126
360 = 218

360
A e(2, 3, 4) student uses I4-shares < 470

360 −
125
360 −

138
360 = 207

360
A e(3, 3, 4) student uses I4-shares < 470

360 − 2× 138
360 = 194

360
Hence the only shares in I4 that can be used are those < 208

360 or > 218
360 . The result

follows. J

We redefine the intervals.

I Definition 9.
1. I1 = ( 124

360 ,
125
360 )

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|), |I1 ∪ I2| = 28)

3. I3 = ( 138
360 ,

142
360 )

4. I4 = ( 152
360 ,

180
360 )

5. I5 = ( 180
360 ,

208
360 ) (|I4| = |I5|)

6. I6 = ( 218
360 ,

222
360 ) (|I3| = |I6|, |I3 ∪ I4 ∪ I5 ∪ I6| = 38)
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By a proof similar to that of Claim 1 we obtain the following:

I Claim 2.
1. The only possible students are: e(1, 1, 6), e(1, 2, 6), e(1, 3, 5), e(1, 4, 4), e(1, 4, 5), e(2, 2, 6),

e(2, 3, 5), e(2, 4, 4), e(2, 4, 5), e(3, 3, 5), e(3, 4, 4), and e(4, 4, 4).
2. There are no shares in [ 194

360 ,
202
360 ]

3. There are no shares in [ 158
360 ,

166
360 ] (this follows from the prior part and buddying).

We define the following intervals.

I Definition 10.
1. I1 = ( 124

360 ,
125
360 )

2. I2 = ( 125
360 ,

126
360 ) (|I1| = |I2|, |I1 ∪ I2| = 28)

3. I3 = ( 138
360 ,

142
360 )

4. I4 = ( 152
360 ,

158
360 )

5. I5 = ( 166
360 ,

180
360 )

6. I6 = ( 180
360 ,

194
360 ) (|I5| = |I6|)

7. I7 = ( 202
360 ,

208
360 ) (|I4| = |I7|)

8. I8 = ( 218
360 ,

222
360 ) (|I3| = |I8|, |I3 ∪ · · · ∪ I8| = 38)

By a proof similar to that of Claim 1 we obtain:

I Claim 3. The only possible students are: e(1, 1, 8), e(1, 2, 8), e(1, 3, 7), e(1, 4, 6), e(1, 5, 5),
e(2, 2, 8), e(2, 3, 7), e(2, 4, 6), e(2, 5, 5), e(3, 3, 6), and e(4, 4, 4).

Let
1. |e(1, 1, 8)| = a

2. |e(1, 2, 8)| = b

3. |e(1, 3, 7)| = c

4. |e(1, 4, 6)| = d

5. |e(1, 5, 5)| = e

6. |e(2, 2, 8)| = f

7. |e(2, 3, 7)| = g

8. |e(2, 4, 6)| = h

9. |e(2, 5, 5)| = i

10. |e(3, 3, 6)| = j

11. |e(4, 4, 4)| = k

Since |I1| = |I2|, 2a+ b+ c+ d+ e = b+ 2f + g+ h+ i, so 2a+ c+ d+ e = 2f + g+ h+ i

Since |I3| = |I8|, c+ g + 2j = a+ b+ f

Since |I4| = |I7|, d+ h+ 3k = c+ g

Since |I5| = |I6|, 2e+ 2i = d+ h+ j

Since |I1 ∪ I2| = 28, 2a+ 2b+ c+ d+ e+ 2f + g + h+ i = 28
Since there are 22 3-students, a+ b+ c+ d+ e+ f + g + h+ i+ k = 22
From the last two equations we obtain a+ b+ f = 6
We combine I1 and I2 into a single interval. This reduces the system to 6 variables,

resulting in the equation
1 1 1 1 1 1
2 1 1 1 0 0
−1 1 0 0 2 0
0 −1 1 0 0 3
0 0 −1 2 −1 0



p

q

r

s

t

 =


22
28
0
0
0
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However, one can check that eliminating the bottom 3 rows requires the top 2 rows to be in
the ratio 7 : 9. 22 : 28 6= 7 : 9, so there is no solution. J

The above proof used that
⌈ 2m

s

⌉
= 3 since that is the condition that leads to having

2-shares and 3-shares. This is usually important since it gives us symmetry from matches, not
just from buddying; however, in this case we just so happened to not need that symmetry.

6 Finding a Procedure

We now describe the program that finds the procedure showing f(47, 36) ≥ 124
360 . We guess

that all shares are of the form x
360 where 124 ≤ x ≤ 236. But we can cut down those variables

a lot based on the proof. For example, by modifying the proof slightly, we can deduce that
there are no share of size 127

360 ,
128
360 , . . . ,

137
360 . This is a key factor in speeding up the program.

We can also use the symmetries of where shares can be.
For every way to split a muffin we have a variable for how many muffins are split that

way, as follows: ( 124
360 ,

236
360 ) is associated to the variables y124,236, ( 125

360 ,
235
360 ) is associated with

the variable y125,235, etc. This variable is the number of muffins that are split that way.
For every way to give muffin shares to a student we have a variable for how many students

get that set of shares, as follows: [ 87
360 ,

79
360 ,

69
360 ] is associated to the variable z87,79,69, [ 118

360 ,
117
360 ]

is associated to the variables z118,117, etc. This variable is the number of students who get
that share-size.

For each size we express how many pieces are of that size in two ways.
The number of pieces of that size based on the muffins. For example, the number of
pieces of size 131

360 is y131,256. The number of pieces of size 180
360 is 2× y180,180.

The number of shares of that size based on the students. For example, the number of
shares of size 131

360 is

z124,131,215 + · · ·+ z130,131,209 + 2z131,131,208 + z132,131,207 + · · ·+ z215,131,124

For each size we get an equation by equating the muffin-based and student-based ex-
pressions. We have more equations based on the number of pieces and the number in each
interval which falls out of the proof of the upper bound. This leads to a set of linear equations
whose solution leads to a procedure.

Here is the procedure for f(47, 36) ≥ 124
360 = 117

180 we obtained with this method:
1. Divide 1 muffin ( 90

180 ,
90

180 )
2. Divide 2 muffins ( 93

180 ,
87

180 )
3. Divide 2 muffins ( 101

180 ,
79

180 )
4. Divide 2 muffins ( 104

180 ,
76

180 )
5. Divide 6 muffins ( 109

180 ,
71

180 )
6. Divide 6 muffins ( 111

180 ,
69

180 )
7. Divide 14 muffins ( 117

180 ,
63

180 )
8. Divide 14 muffins ( 118

180 ,
62

180 )
9. Give 2 students [ 87

180
79

180
69

180 ]
10. Give 2 students [ 90

180
76

180
69

180 ]
11. Give 2 students [ 93

180
71

180
71

180 ]
12. Give 2 students [ 101

180
71

180
63

180 ]
13. Give 2 students [ 104

180
69

180
62

180 ]
14. Give 6 students [ 109

180
63

180
63

180 ]
15. Give 6 students [ 111

180
62

180
62

180 ]
16. Give 14 students [ 118

180
117
180 ]
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The reader should be able to see how to generalize the method outlined above.
What is described above is not quite what we have coded up (though we will). The

Interval Method (see Section B) is another method to find lower bounds that gives information
that can be used to cut down the time to find a procedure. We have coded up a version of
what is outlined above with the interval method.

We denote the algorithm given above (the one using Buddy-Match) VLOWER(m, s, α)
where one finds a procedure showing f(m, s) ≥ α, hence verifying that f(m, s) ≥ α.

7 The Proof that f(47, 36) ≤ 31
90 Reveals Much More

The proof that f(47, 36) ≤ 31
90 can be modified very slightly (just notation) to obtain the

following result (which we write in a strange way for later exposition):

(∀k ≥ 1)
[
f(3× 11× k + 11 + 3, 33k + 3) ≤

11k + 7
5

3× 11× 3k + 3

]
More generally the following seems to be true empirically:

for all d (d stands for difference and is m− s), for all 1 ≤ a ≤ 3d− 1 (a, d relatively primes),
there exists X:

(∀k ≥ 1)
[
f(3dk + d+ a, 3dk + a) ≤ dk +X

3dk + a

]

For d = 1 to 8, for all relevant a, we have found X. In many concrete cases we have
shown that it is also an upper bound. In Section C we present the results for the d = 7 case.

Note that we need k ≥ 1 since if k = 0 then we no longer have
⌈ 2m

s

⌉
= 3.

8 Generating More General Theorems

The techniques discussed in Section 7 generate theorems of the form

(∀k ≥ 1)
[
f(3dk + a+ d, 3dk + a) ≤ dk +X

3dk + a

]
.

However, the program can be modified to obtain more general theorems. As noted in
Section 7 our program finds interesting values of X. That is, the program may find that
(say) if X ≤ 7

6 then there are no e(1, 3, 4)-students. What is it about X ≤ 7
6 that makes this

happen? It may be that (say) 1 ≤ a ≤ 5d
7 and a 6= 2d

3 makes this work, and it may be that
X = max{ 2a

5 ,
a+d

6 }.
We have taken the results from the program and, with the help of additional programs

and our own ingenuity generated many theorems (we hope to fully automate it soon). These
theorems are a great time saver since often the result we want falls out of them directly. We
present a sample of such theorems in the Section D.

9 How to find X

The proof of Theorem 6 can be summarizes as follows: The assumption f(47, 36) > 31
90

implies that a certain system of linear equations have a solution where all of the variables
are natural numbers between 0 and s3 = 22. The system had no such solution, hence a
contradiction.
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Imagine that we want an upper bound on f(47, 36) but do not know what it is ahead of
time. Following the line of reasoning in Section 7 we seek X such that

f(33 + 3 + 11, 33 + 3) ≤ 11 +X

33 + 3 .

We use a program to simulate the proof of Theorem 6 but with X instead of the actual
numbers. This program will produce many values of X where something interesting happens,
such as a type of student no longer being allowed. The program looks at the (finite) set of
interesting values of X and finds the least one that causes the resulting system of linear
equations to be unsolvable using natural numbers between 0 and 22. Hence we have a value
of X. We then use VLOWER(47, 36, 11+X

36 ) to find the matching lower bound (if this does
not work then the algorithm failed to find f(m, s)).

For the values 47, 36 it was easy to find the value of X. For larger m, s it may be that
verifying f(m, s) ≤ α is faster than finding the α. In the next two sections we examine how
to speed up finding X.

We leave it to the reader to generalize the algorithm to any m, s where
⌈ 2m

s

⌉
= 3; however,

we give the following picture which represents intervals where 3-shares can be. In the picture
each nonempty interval has the number of 3-shares in it (though y is not known) and a label
such as I1 so we can refer to it. This picture is the result of many buddy-match sequences.

( a+ d (I1) | a+ d (I2) )[ 0 ]
dk+X
3dk+a

dk+ a
2

3dk+a
dk+a−X

3dk+a
dk+2X
3dk+a

( y (I3) )[ 0 ]
dk+2X
3dk+a

dk+a+d−3X
3dk+a

dk+d−a+2X
3dk+a

( 2d− a− y (I4) | 2d− a− y (I5) )
dk+d−a+2X

3dk+a

dk+ a+d
2

3dk+a
dk+2a−2X

3dk+a

)[ 0 ]( y (I6) )
dk+2a−2X

3dk+a
dk+3X
3dk+a

dk+a+d−2X
3dk+a

Facts and Caveats:
1. |I1| = |I2|
2. |I4| = |I5|
3. In the picture it is unclear if the endpoint of I1 is included in I1. We do not include

it; however, we take the even number of shares that are at that endpoint and arbitrary
assign half to I1 and half to I2.

4. There is a similar comment for I2, I4, and I5.

We denote the version where you do not already have upper bound to check
BUDMAT(m, s) and the version where you do BUDMAT(m, s, α) where α is the bound. We
will avoid using BUDMAT(m, s) unless m, s are small since it may be slow.

10 How to find X Cheating a Little

Say you want to find f(213, 200). Since
⌈ 2×213

200
⌉

= 3 you could run BUDMAT(213, 200).
But the numbers are large! Following the line of reasoning in Section 7 we note that
d = 213− 200 = 13 and generalize the problem to finding an X such that

f(39k + 5 + 13, 39k + 5) ≤ 13k +X

39k + 5 .



G. Cui et al. 15:11

Lets look at the k = 1 case: f(57, 44). Since
⌈ 2×57

44
⌉

= 3 you could run BUDMAT(57, 44).
But the numbers are small! Oh, thats a good thing! Lets say the answer is α. Run
VLOWER(57, 44, α) to verify that its a lower bound. If it is then solve α = 13+X

39+5 to find
X. The proof you did for f(57, 44) ≤ 13+X

39+5 can be modified to show (∀k ≥ 1)[f(39k + 5 +
13, 39k + 5) ≤ 13k+X

39k+5 ]. In particular f(213, 200) ≤ 13×5+X
39×5+5 = β. Run VLOWER(213, 300, β)

to verify the lower bound (if this does not work then the algorithm failed to find f(57, 44)).
This is cheating a little since we don’t really know that the such an X exists. But it has

so far. And we do verify in the end.
We leave it to the reader to generalize this procedure. We denote this algorithm

CHEATALITTLE(m, s).

11 How to find X Cheating a Lot

Say you want to find f(1717, 1650). Since
⌈ 2×1717

1650
⌉

= 3 you could run BUDMAT(1717, 1650).
But the numbers are really large! Following the line of reasoning in Section 7 we note that
d = 1717− 1650 = 67 and generalize the problem to finding an X such that

f(201k + 42 + 67, 201k + 42) ≤ 67k +X

201k + 42 .

Lets look at the k = 1 case: f(310, 243). These numbers are still big!
Lets look at the k = 0 case: f(109, 42). These numbers are small! Since

⌈ 2×109
42

⌉
≥ 4 you

cannot run BUDMAT(109, 42)). But the situation is worse than that. Even if we bound
f(109, 42) the proof will not use BUDMAT and hence cannot be modified to get an upper
bound for f(201k + 42 + 67, 201k + 42). In fact, the answer for f(109, 42) should have no
bearing on our problem.

Except for one thing. Empirically it does. In all cases that we looked at the X obtained
from knowing an upper bound on the k = 0 case of f(3dk + a+ d, 3dk + a) was the correct
X for k ≥ 1. We proceed as if this is always true.

We cannot use BUDMAT(109, 42); however, there are other techniques that to find
an upper bound on f(m, s). They summarized in Section B. Use them. Lets say the
answer is α. Run VLOWER(109, 42, α) to verify that its a lower bound. If it is then solve
α = X

42 to find X. The proof you did for f(109, 42) ≤ X
42 cannot be modified to show

(∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42 ]. But you have a very good conjecture.

Run BUDMAT(109, 42, 67+X
201+42 ). If it returns YES and a proof then modify the proof to

obtain (∀k ≥ 1)[f(201k + 42 + 67, 201k + 42) ≤ 67k+X
201+42 ] (if this does not work then the

algorithm failed to find f(1717, 1650)). In particular f(1717, 1658) ≤ 67×5+X
201×5+5 = β. Run

VLOWER(1717, 1658, β) to verify the lower bound (if this does not work then the algorithm
failed to find f(1717, 1650)).

This is cheating a lot since we don’t really know that the k = 0 case has any bearing on
the k ≥ 1 case. But it has so far, and we verify in the end.

We leave it to the reader to generalize this procedure. We denote this algorithm
CHEATALOT(m, s).

12 A General Algorithm

We present an algorithm that we conjecture always finds f(m, s) and operates in polynomial
time.

The reader should read Section B since we will be using FC, INT, and BUD which are
explained there. They are other methods to find or verify upper bounds on f(m, s).
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1. Input(m, s).
2. If m = s output 1. If gcd(m, s) = d ≥ 1 then call the algorithm recursively with

f(m/d, s/d). If s = 2 then output 1
2 . If m < s then call the algorithm recursively to find

f(s,m) and output m
s f(s,m).

3. Compute α = FC(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower
bound. If it is then output α and stop.

4. Compute α = INT(m, s). Compute VLOWER(m, s, α) to see if α is a matching lower
bound. If it is then output α and stop.

5. If
⌈ 2m

s

⌉
= 3 then:

a. Compute α = CHEATALOT(m, s). Compute VLOWER(m, s, α) to see if α is a
matching lower bound. If it is then output α and stop. (This might fail if the methods
of Section B do not work on the input they are given.)

b. Compute α = CHEATALITTLE(m, s). Compute VLOWER(m, s, α) to see if α is a
matching lower bound. If it is then output α and stop.

6. If
⌈ 2m

s

⌉
≥ 4 then let a = s and d = m−a. We seek f(3d×0+a+d, 3d×0+a). Recursively

call f(3d+ a+ d, 3d+ a) (we could tell it to not bother with CHEATALOT(m, s) since
that just asks to compute f(a+ d, a) using FC and INT). If the computation succeeds
and returns α then run BUD(m, s, α) to verify that f(m, s) ≤ α. If this is verified then
compute VLOWER(m, s, α) to see if α is a matching lower bound. If it is then output α
and stop.

7. If nothing above works then output FAILED!

This can be sped up by, upon first seeing m, s, see if any of the general theorems such as
those in Sections C and D apply to get an upper bound α and then run VLOWER(m, s, α).

13 Open Problems and Speculation

We would like to think that the algorithm in the last section will always work and hence
computing f(m, s) is in P. But we’ve been down this road before where we think we can
compute all f(m, s) only to come to a troublesome case which leads to a new technique
and more co-authors. The following are possible outcomes: (1) we prove that the algorithm
always works, (2) we keep running the algorithm and it always works but when the numbers
get too big we can’t tell, (3) we come across a value the algorithm does not work on and this
leads to a a new technique and more co-authors.

We believe that computing f(m, s) is in P. One piece of evidence for this is that for all s,
for all m ≥ s3, f(m, s) = FC(m, s). Hence if you fix s then for large enough s the problem is
very easy. One might call this Fixed Parameter very tractable.

We believe that f(m, s) only depends on m
s . This seems provable.

References
1 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob

Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. Code for muffin problems,
2017. https://github.com/jeprinz/MuffinProblem.

2 Guangiqi Cui, John Dickerson, Naveen Durvasula, William Gasarch, Erik Metz, Jacob
Prinz, Naveen Raman, Daniel Smolyak, and Sung Hyun Yoo. The muffin problem, 2017.
https://arxiv.org/abs/1709.02452.

3 Alan Frank. The muffin problem, 2013. Described to Jeremy Copeland and in the New
York Times Numberplay Online Blog wordplay.blogs.nytimes.com/2013/08/19/cake.

https://github.com/jeprinz/MuffinProblem
https://arxiv.org/abs/1709.02452
wordplay.blogs.nytimes.com/2013/08/19/cake


G. Cui et al. 15:13

A A Mixed Integer Program for f(m, s)

The following theorem shows that f(m, s) always exists (as opposed to having better and
better algorithms), is rational, and is computable. This theorem was independently discovered
by Veit Elser, within the math-fun email list, in 2009.

I Theorem 11. Let m, s ≥ 1.
1. There is a mixed integer program with O(ms) binary variables, O(ms) real variables,

O(ms) constraints, and all coefficients integers of absolute value ≤ max{m, s} such that,
from the solution, one can extract f(m, s) and a protocol that achieves this bound. This
MIP can easily be obtained given m, s.

2. f(m, s) is always rational. This follows from part 1.
3. In every optimal protocol for m muffins and s students all of the pieces are of rational

size. This follows from part 1.
4. The problem of, given m, s, determine f(m, s), is decidable. This follows from part 1.

Proof. Consider the following (failed) attempt to solve the problem using linear programming.
1. The variables are xij where 1 ≤ i ≤ m and 1 ≤ j ≤ s. The intent is that xij is the

fraction of muffin i that student j gets.
2. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, 0 ≤ xij ≤ 1.
3. For each 1 ≤ i ≤ m,

∑s
j=1 xij = 1.

This says that the amount of muffin i that student 1 gets, students 2 gets, . . ., student s
gets all adds up to 1.

4. For each 1 ≤ j ≤ s,
∑m

i=1 xij = m
s .

This says that the amount that student j gets from muffin 1, muffin 2, . . ., muffin m all
adds up to m

s .
5. For all 1 ≤ i ≤ m, 1 ≤ j ≤ s, xij ≥ z.
6. Maximize z.

This does not work. The problem is that (say) x13 could be 0. In fact it is likely that
some xij is 0. This makes z = 0. What we really want is

xij 6= 0 =⇒ xij ≥ z

It is easy to show that f(m, s) ≥ 1
s . Hence every nonzero xij is ≥ 1

s . We will use this in
our proof.

For 1 ≤ i ≤ m, 1 ≤ j ≤ s modify the linear program above as follows.
1. Add variable yij which is in {0, 1}.
2. Add the constraint xij + yij ≤ 1. Note that

xij = 0 =⇒ xij + yij ≤ 1, so the constraint imposes no condition on yij .
xij > 0 =⇒ yij < 1 =⇒ yij = 0 =⇒ xij + yij = xij .

3. Add the constraint xij + yij ≥ 1
s . Note that

xij = 0 =⇒ yij ≥ 1
s =⇒ yij = 1 =⇒ xij + yij = 1

xij > 0 =⇒ xij ≥ 1
s (since we know all non-zero pieces are ≥ 1

s ) =⇒ xij + yij ≥ 1
s ,

so the constraint imposes no condition on yij .
4. Replace the constraint z ≤ xij with z ≤ xij + yij .

If xij = 0 then the constraint

z ≤ xij + yij = 1

FUN 2018
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is always met and hence is (as it should be) irrelevant. If xij > 0 then the constraint

z ≤ xij + yij = xij

is the constraint we want.
Solve the resulting mixed integer program. Since all of the coefficients are rational the

answer will be rational. J

B Other Methods

We discuss three methods for finding an upper bound on f(m, s).
The method from the following theorem is called The Floor Ceiling Method or just

FC-method. Note that it is very fast and gives you the upper bound.

I Theorem 12. Assume that m, s ∈ N and m
s /∈ N.

f(m, s) ≤ max
{

1
3 ,min

{
m

s d2m/se , 1−
m

s b2m/sc

}}
.

Proof. Assume we have an optimal (m, s) protocol. Since m
s /∈ N we can assume every

muffin is cut into at least 2 pieces.
Case 1: Some muffin is cut into u ≥ 3 pieces. Then some piece is ≤ 1

3 .
Case 2: All muffins are cut into 2 pieces.
Since there are 2m shares and s students both of the following happen:

Some student gets t ≥ d2m/se shares, so some share is ≤ m
sd2m/se .

Some student gets t ≤ b2m/sc shares, so some share x is ≥ m
sb2m/sc . B(x)) ≤ 1− m

sb2m/sc .

Putting together Cases 1 and 2 yields the theorem. J

We denote the function from Theorem 12 FC(m, s).
The other two methods are to long to describe fully here so we just sketch.
The Interval Method is a primitive version of the Buddy-Match method where we do

not use symmetry and (since we have shares other than 2-shares and 3-shares) cannot use
the Match in Buddy-Match. This method is fast and can be used to derive the answer. We
denote the result INT(m, s).

The Buddy Method is like the Buddy-Match Method only we do not use the Match part
since we have shares other than 2-shares and 3-shares. And like the Buddy-Match Method
this one is faster if you already have the answer. We denote the version where you do not
already an upper bound to check BUD(m, s) and the version where you do BUD(m, s, α)
where α is the bound.

C Everything You Ever Wanted to Know About f(s + 7, s)

By either cheating a little (Section 10) or cheating a lot (Section 11) we have obtained
formulas for f(3dk+a+d, 3dk+a) for 1 ≤ d ≤ 50 and 1 ≤ a ≤ 3d−1 (a, d relatively primes).
We present the results for d = 7. Note that for most of the formulas the formula which is
supposed to only hold for k ≥ 1 also holds for k = 0 (with a different proof).

I Theorem 13.
1. a. f(8, 1) = 1. For all k ≥ 1, f(21k + 8, 21k + 1) ≤ 7k+X

21k+1 where X = 1
2 .

b. For all k ≥ 0, f(21k + 9, 21k + 2) ≤ 7k+X
21k+2 where X = 1.
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2. For all k ≥ 0, f(21k + 10, 21k + 3) ≤ 7k+X
21k+3 where X = 4

3 .
3. For all k ≥ 0, f(21k + 11, 21k + 4) = 7k+X

21k+4 where X = 9
5 .

4. For all k ≥ 0, f(21k + 12, 21k + 5) ≤ 7k+X
21k+5 where X = 2.

5. For all k ≥ 0, f(21k + 13, 21k + 6) ≤ 7k+X
21k+6 where X = 13

5 .
6. For all k ≥ 0, f(21k + 15, 21k + 8) ≤ 7k+X

21k+8 where X = 3.
7. For all k ≥ 0, f(21k + 16, 21k + 9) ≤ 7k+X

21k+9 where X = 11
3 .

8. For all k ≥ 0, f(21k + 17, 21k + 10) ≤ 7k+X
21k+10 where X = 4.

9. For all k ≥ 0 f(21k + 18, 21k + 11) ≤ 7k+X
21k+11 where X = 9

2 .
10. For all k ≥ 0 f(21k + 19, 21k + 12) ≤ 7k+X

2ak+12 where X = 19
4 .

11. For all k ≥ 0 f(21k + 20, 21k + 13) ≤ 7k+X
21k+13 where X = 5.

12. For all k ≥ 0: f(21k + 22, 21k + 15) = 1
3 ,

13. For all k ≥ 0: f(21k + 23, 21k + 16) = 1
3 ,

14. For all k ≥ 0: f(21k + 24, 21k + 17) = 1
3 ,

15. For all k ≥ 0: f(21k + 25, 21k + 18) = 1
3 ,

16. For all k ≥ 0: f(21k + 26, 21k + 19) = 1
3 ,

17. For all k ≥ 0: f(21k + 27, 21k + 20) = 1
3 .

Note that the last few answers were 1
3 and there is an equality. The 1

3 follows from
Theorem 14. The equality holds since we have proven that, for all m > s, f(m, s) ≥ 1

3 .

D A Sample of General Theorems

In all cases a, d are relatively prime.

I Theorem 14. If a ∈ {2d + 1, . . . , 3d − 1} then f(3dk + a + d, 3dk + a) ≤ dk+X
3dk+a where

X = a
3 , so f(3dk + a+ d, 3dk + a) ≤ 1

3 .

I Theorem 15. If a ∈ {1, . . . , 3d− 1}, a 6= d, then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{a
3 ,

a+d
5 , 2a−d

3 }.

I Theorem 16. If 1 ≤ a ≤ 3d− 1 and 5a 6= 7d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{a
3 ,

a+d
5 , a+2d

6 , 3a−2d
4 }.

I Theorem 17. If 1 ≤ a ≤ 5d
7 and a 6= 2d

3 then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{ 2a
5 ,

a+d
6 }.

I Theorem 18. If 5d
7 ≤ a ≤ d− 1 then f(3dk + a+ d, 3dk + a) ≤ dk+X

3dk+a where
X = max{ 2a

5 ,
3a−d

4 }.

I Theorem 19. If 5d
13 ≤ a ≤

13d
29 and a 6= 2

5d then f(3dk + a+ d, 3dk + a) ≤ dk+X
3dk+a where

X = max{ 5a−d
6 , a+d

8 , 3a
7 }.

E If m ≥ s then f(m, s) ≥ 1/3

Before showing the general technique we give an example.

I Example. f(19, 17) ≥ 1
3 .

We express 19
17 as 57

51 since other fractions will have a denominator of 51.
We initially divide the 19 muffins ( 1

3 ,
1
3 ,

1
3 ). There are now 57 pieces 1

3 -shares. We
initially give 11 students 3 1

3 -shares and 6 students 4 1
3 -shares. (In the proof below W = 3,
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sW = s3 = 11, and sW +1 = s4 = 6.) A student who gets 3 (4) shares is called a 3-student
(4-student).

We describe a process whereby students give pieces of muffins, called gifts, to other
students so that, in the end, all students have 57

51 . Each gift leads to a change in how the
muffins are cut in the first place; however, there will never be a muffin of size < 1

3 .
Each 4-student has 4

3 = 68
51 and hence has to give (perhaps in several increments)

68
51 −

57
51 = 11

51 to get down to 57
51 . Realize that if a 4-student gives 11

51 to a 3-student, then
the 3-student now has 51

51 + 11
51 = 62

51 >
57
51 .

Each 3-student has 51
51 and hence has to receive 57

51 −
51
51 = 6

51 to get up to 57
51 .

Call the 11 3-students g1, . . . , g11.
Call the 6 4-students f1, . . . , f6.
We use a notation that we just give an example of:
f1 gives x to g1 by taking two 1

3 -pieces, combining them, cutting off a piece of size x,
giving it to g1 while keeping the rest. g1 takes the piece given to him and combines it with a
1
3 piece. Notice that in terms of pieces we are taking three pieces of size 1

3 (2 from f1 and 1
from g1) and turning them into 1 piece of size 2

3 − x and one of size 1
3 + x. Hence we can

easily rearrange how the muffins are cut.
x(f1 → g1)
We need to make sure this procedure never results in a piece that is < 1

3 . In the above
example (1) f1 now has a piece of size 2

3 − x, hence we need x ≤ 1
3 , (2) g1 now has a piece of

size 1
3 + x, which is clearly ≥ 1

3 . Hence the only restriction is x ≤ 1
3 .

1. 11
51 (f1 → g1). Now f1 has 57

51 . YEAH. However, g1 has 62
51 .

2. 5
51 (g1 → g2). Now g1 has 62

51 −
5

51 = 57
51 . YEAH. However, g2 has 51

51 + 5
51 = 56

51 .
3. 1

51 (f2 → g2). Now g2 has 57
51 . YEAH. However, f2 has 67

51 .
4. 10

51 (f2 → g3). Now f2 has 57
51 . YEAH. However, g3 has 61

51 .
5. 4

51 (g3 → g4). Now g3 has 57
51 . YEAH. However, g4 has 55

51 .
6. 2

51 (f3 → g4). Now g4 has 57
51 . YEAH. However, f3 has 66

51 .
7. 9

51 (f3 → g5). Now f3 has 57
51 . YEAH. However, g5 has 60

51 .
8. 3

51 (g5 → g6). Now g5 has 57
51 . YEAH. However, g6 has 54

51 .
9. 3

51 (f4 → g6). Now g6 has 57
51 . YEAH. However, f4 has 65

51 .
10. 8

51 (f4 → g7). Now f4 has 57
51 . YEAH. However, g7 has 59

51 .
11. 2

51 (g7 → g8). Now g7 has 57
51 . YEAH. However, g8 has 53

51 .
12. 4

51 (f5 → g8). Now g8 has 57
51 . YEAH. However, f5 has 64

51 .
13. 7

51 (f5 → g9). Now f5 has 57
51 . YEAH. However, g9 has 58

51 .
14. 1

51 (g9 → g10). Now g9 has 58
51 . YEAH. However, g10 has 52

51 .
15. 5

51 (f6 → g10). Now g10 has 57
51 . YEAH. However, f6 has 63

51 .
16. 6

51 (f6 → g11). Now f6 has 57
51 . YEAH. However, g11 has 57

51 . OH. thats a good thing!

YEAH- we are done.
Note that the first x was 11

51 ≤
1
3 and the remaining x were all ≤ 11

51 ≤
1
3 . Hence all pieces

in the final protocol are ≥ 1
3 .

I Theorem 20. For all m ≥ s, f(m, s) ≥ 1
3 .

Proof. Divide all the muffins into ( 1
3 ,

1
3 ,

1
3 ). Initially distribute them as evenly as possible

among the students. There will be a number W such that some students get W shares and
some get (W + 1)-shares. Let sW (sW +1) be the number of students who get W (W + 1)
shares.
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We do not need the following but are noting it anyway. If s does not divide 3m then
W = 3m

s and sW , sW +1 are unique and determined by:

WsW + (W + 1)sW +1 = 3m
sW + sW +1 = s

(Technically, if s | 3m there are two possible values of W .)
A student who gets W (W + 1) shares we call a W -student ((W + 1)-student). All

W -students get W
3 . All (W + 1)-students get W +1

3 .
A W -student must get < m

s : if a W -student got > m
s then all students would get > m

s

and hence there would be > sm
s = m muffins total. A (W + 1)-student must get > m

s : if
a (W + 1)-student got < m

s then all students would get < m
s and hence there would be

< sm
s = m muffins total.
Hence we have:

m

s
− W

3 ≤
1
3 (1)

W + 1
3 − m

s
≤ 1

3 (2)

Now we will need to smooth out the distribution so that everyone receives m
s . We will do

this by doing a sequence of moves of the form x(fi → gj) or x(gi → gj). as defined in the
example.

We will assume sW +1 and sW are relatively prime (this only comes up in Claim 3 below).
This is fine because if they have a common factor d, we can just use the procedure for the
sW +1

d , sW

d case repeated d times.

I Claim 1.
1. If sW +1 < sW then W +1

3 − m
s > m

s −
W
3 .

2. If sW < sW +1 then W +1
3 − m

s > m
s −

W
3 .

Proof of Claim 1.

sW +1 ×
W + 1

3 + sW ×
W

3 = m

sW +1 ×
(
m

s
+ W + 1

3 − m

s

)
+ sW

(
m

s
+ W

3 −
m

s

)
= m.

(
sW +1 + sW

)
m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

s× m

s
+ sW +1

(
W + 1

3 − m

s

)
+ sW

(
W

3 −
m

s

)
= m

W + 1
3 − m

s
= sW

sW +1

(
m

s
− W

3

)
Both parts follow. J

We give the procedure to obtain f(m, s) ≤ 1
3 . There are two cases.
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Case 1: sW +1 < sW . Hence by Claim 1 W +1
3 − m

s > m
s −

W
3 .

Call the sW W -students g1, . . . , gsW
.

Call the sW +1 (W + 1)-students f1, . . . , fsW +1 .

1. Let x = W +1
3 − m

s . Note that x ≤ 1
3 . Do x(f1 → g1). Now f1 has m

s . YEAH. However,
g1 has W

3 + W +1
3 − m

s > m
s . (This is where we use sW +1 < sW , or more accurately the

consequence of that from Claim 1.)
2. Let x = 2W +1

3 − 2 m
s . Do x(g1 → g2). Now g1 has m

s . YEAH.
3. If g2 has > m

s then g2 gives enough to g3 so that g2 has m
s . Keep up this chain of

g1, g2, g3, . . . until there is a gi such that gi end up with < m
s (though more than the W

3
that gi had originally).

4. Do x(f2 → gi) where x is such that gi will now have m
s .

5. Do x(f2 → gi+1) where x is such that f2 will now have m
s . Repeat the same chain of gi’s

as in step 3.
6. Repeat the above steps until you are done.

We need to show that (1) there is never a piece of size < 1
3 , and (2) the process ends with

every student getting m
s .

I Claim 2. The first gift is ≤ 1
3 and no gift is larger.

Proof of Claim 2. Let C = W +1
3 − m

s which is the size of the first gift. By equation (2)
C ≤ 1

3 .
Assume that all gifts so far have been ≤ C. We analyze the three kinds of gifts and show

that in all cases the gift is ≤ C.
x(fi → gj) where (1) initially fi has > m

s , gj has < m
s , and (2) after the gift fi has m

s .
When this occurs it is fi’s first or second gift giving. (This happens in steps 1 and 5
above, and later as well.) Before the gift fi has at least m

s but at most W +1
3 , so this gift

has size at most W +1
3 − m

s = C.
x(gi → gi+1) where (1) initially gi has > m

s , gj has < m
s , and (2) after the gift gi has

m
s . When this occurs gi has received a gift once and this is gi’s first time giving. (This
happens in steps 2 and in the chain referred to in step 5.) Since gi just received a gift of
size ≤ C she has ≤ W

3 + C. Hence the gift is ≤ W
3 −

m
s + C ≤ C.

x(fi → gj) where (1) initially fi has > m
s , gj has < m

s , and (2) after the gift gj has m
s .

This will be fi’s first time giving. (This happens in step 4 above.) Before the gift fi has
at least W

3 but at most m
s , so this gift has size at most m

s −
W
3 ≤ C (by Claim 1). J

I Claim 3. If sW and sW +1 are relatively prime then the process terminates with all students
having m

s .

Proof of Claim 3. In each step all of the fi have at least m
s . In each step the number of

students who have the correct amount of muffin goes up. One may be worried that at some
point we will try to do step 4 (for example) of the procedure and there will be no gi left
who need more muffin. But this is not possible because until the process terminates the f ’s
always have more muffin than they need, so there is always a g with insufficient muffin.

One may also be worried that eventually we will get all of the f ’s to have m
s , but the g’s

will not all have m
s . This is not possible either, because whenever we only make gifts from f

to g when there is no g with more than m
s .

Finally, if sW and sW +1 are not relatively prime, it is possible that the procedure will
terminate early because in step 5 the size of the donation x is 0. If this occurred it would
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mean that there is some subset of F f ’s and G g’s each of which having exactly m
s , who only

made donations amongst themselves. But then F
G = sW +1

sW
, a contradiction. J

Case 2: sW < sW +1. This is similar to Case 1 except that instead of f1 giving g1 so that
f1 has m

s , f1 gives to g1 so that g1 has m
s . Hence we have a chain of fi’s instead of a chain

of gi’s. J
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