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Abstract
We consider Superset, a lesser-known yet interesting variant of the famous card game set. Here,
players look for Supersets instead of Sets, that is, the symmetric difference of two Sets that
intersect in exactly one card. In this paper, we pose questions that have been previously posed
for set and provide answers to them; we also show relations between Set and Superset.

For the regular Set deck, which can be identified with F4
3, we give a proof for the fact that

the maximum number of cards that can be on the table without having a Superset is 9. This
solves an open question posed by McMahon et al. in 2016. For the deck corresponding to Fd

3,
we show that this number is Ω(1.442d) and O(1.733d). We also compute probabilities of the
presence of a superset in a collection of cards drawn uniformly at random. Finally, we consider
the computational complexity of deciding whether a multi-value version of Set or Superset is
contained in a given set of cards, and show an FPT-reduction from the problem for set to that
for Superset, implying W[1]-hardness of the problem for Superset.
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12:2 SUPERSET: A (Super)Natural Variant of the Card Game SET

Figure 1 A set is a collection of three cards that, in each of the properties, are either identical
or distinct.

1 Introduction

The famous [1, 20] game set1 [5, 28] is played with cards that have four attributes each:
The number, type, color, and shading of displayed shape(s). Each of these attributes can
take three values, and each of the possible 34 = 81 combinations of these values is contained
exactly once as a card in the deck. A set is a collection of three cards that, in each of the
properties, are either identical or distinct (see Fig. 1). Among the cards that are laid out on
the table, all players have to simultaneously find sets as fast as possible. While possibly
not evident from this description, we can assure you that the game is fun, even for a wider
audience [31], including cats [24, Figure I.5].

However, as players get better and faster, the game becomes quite fidgety and arguably
less fun. One straightforward way of making the game more difficult and thus slowing it
down is adding more properties to the cards. Unfortunately, this creates decks increasing
exponentially in size and possibly odor [14]. Other variants have been proposed [6, 14, 23, 24],
but full-contact set [6] seems only remotely related to mathematics, and projective set [14]
requires a completely different deck and seems incompatible with our gerontocracy [14].

Instead, we started playing a variant that is sufficiently more difficult, shows a rich
mathematical structure, and can be played with the same, typically odor-free, deck of cards
as set: It is easy to see that for any pair of cards there exists exactly one missing card that
completes the pair to a set. Any single card, however, serves as missing card for (actually
40) different pairs. In the variant of set considered here, the four cards from two pairs with
the same missing card form the object (see Fig. 2) that the players look for instead of sets.
Until recently, when it was published in a book [24], this variant seems to have been spread
mostly by word of mouth (as it was to one of the authors [7]), and appeared under different
names on the Internet [6, 11, 13, 23, 32].

To continue the (admittedly short) tradition of overloading2 mathematical terms, we
choose to call the new object and the emerging variant of the game superset. We consider
natural questions regarding superset: How many cards can be on the table without having
a superset? More generally, what is the probability of having a superset in a collection of
cards of a certain size chosen uniformly at random? What is the computational complexity
of finding a superset? Are there any further connections between superset and set?

1 set is a registered trademark of Cannei, LLC. The distinctive set symbols and cards are copyrights of
Cannei, LLC. All rights reserved. Used with permission from Set Enterprises, Inc.

2 Since we typeset the two central objects of this paper as set and superset, at least in written language
we do not overload the corresponding mathematical terms. We however avoid using these mathematical
terms (and thereby hopefully confusion) in this paper.
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Figure 2 A superset is defined to be the symmetric difference of two sets that intersect in
exactly one card. Here, cards 1–3 and 3–5 form the two sets; all but the third card form the
superset.

These questions have, in fact, been considered for set already, which is partly due to the
applications of its study to affine spaces [14, 24], Fourier analysis [4], and error-correcting
codes [19]. Clearly, the study of superset has the corresponding superapplications.

Related work. We briefly survey results related to set. For a very accessible and lovely
introduction to the mathematics of set, we refer to McMahon et al. [24]. An also very
well-written and at the time fairly comprehensive survey for mathematically more versed
readers was published by Davis and Maclagan in 2003 [14].

When playing set, one typically deals 12 cards and then looks for sets among them.
Sometimes, however, there turns out to be no set, naturally leading to the question: How
many cards have to be dealt to guarantee that there is a set on the table? This question
was in fact answered before the invention of the game set in 1974, which is due to the
following connection: One can naturally identify the deck of cards with the vector space F4

3
(by identifying the components with the properties) and then sets in the deck of cards
simply correspond to lines in F4

3. So the above question is equivalent to asking what is the
maximum size of a cap, that is, a line-free collection of elements, in F4

3. This number was
settled to be 20 in 1971 [26]. The most elegant proof known to date is based on counting
so-called marked hyperplanes in two different ways, making use of the symmetries of the
vector space [14].

It is natural to ask the same question for Fd
3 with different d, which translates to a

restricted or extended deck of cards. While this question for d < 4 can be easily answered
using the same techniques as for d = 4 [14], only in 2002 did two breakthrough papers [4, 15]
settle the maximum cap size for d = 5 to be 45 by relating the problem to the Fourier
transform. For d = 6, the maximum cap size is 112 [27], as shown by the techniques similar
to those used for d ≤ 4 [14] along with a computer search, but the same paper claims that
the Fourier-transform techniques could be used instead. Interestingly, at least up to d = 6,
all maximum caps are from the same affine equivalence class, i.e., between any two of them
there is an affine transformation that maps one to the other [15, 18, 24, 27].

Finding maximum supercaps for increasingly larger fixed integers d will probably keep
(parts of) humanity busy for a while, but yet more forward-looking works have considered the
asymptotic behavior of the maximum cap size as d→∞. While {0, 1}d is easily seen to be a
cap of size 2d, more sophisticated product constructions [8, 16] yield caps of size Ω(2.217d).
On the upper-bound side, Fourier transforms yield O(3d/d) [25] and further far-from-trivial
insights about the spectrum yield O(3d/d1+ε) for some ε > 0 [3]. However, truly improving
(i.e., in terms of the base of the exponential) upon the trivial upper bound of O(3d) has been
a famous open problem [29] until recently. Only in 2016, the so-called polynomial method [12]
was utilized [17, 30] to show quite compactly that the maximum cap size is O(2.756d).
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Table 1 Bounds on the maximum cap and supercap sizes.

dimension 1 2 3 4 5 · · · d

maximum cap size 2 4 9 20 45 · · · Ω(2.217d) ∩O(2.756d)
maximum supercap size 3 4 6 9 14 · · · Ω(1.442d) ∩O(1.733d)

One may also wonder what the probability of the presence of a set is in the initial
layout of cards or, more generally, in a k-element collection chosen uniformly at random
from Fd

3. This question has been answered exactly for small values of k and d [24] and has
been considered computationally for arbitrary values of k and d [21, 24]. An overview of
the vast amount of interesting probabilistic questions, for example, the one for the expected
number of sets, can be found in the book of MacMahon et al. [24].

Let us look at the problem of deciding whether a given set of cards has a set. As this
question is boring in terms of asymptotic running time for F4

3, we first consider Fd
3 where d

is part of the input. Saving all cards in a dictionary and then checking the dictionary for the
missing card of each pair yields an O(n2)-time randomized algorithm and an O(n2 log n)-
time deterministic algorithm [9]. Despite obvious resemblance to the 3SUM problem (three
elements a, b, c ∈ Fd

3 form a set iff a+b+c = 0), 3SUM-hardness has only been conjectured [9].
To still be able to write computational-complexity papers about the problem, Fd

v has been
considered, where v is part of the input as well. Note that a set for a larger number of values
per property can be defined either through lines (line sets, at least for v prime) or by asking
for identical or distinct values in each component (combinatorial sets), but both variants
are different [14] (see Section 2). Indeed, defining sets through lines only adds a factor
of v in the running time (because all v elements on the line have to be checked), but the
problem is NP-hard for combinatorial sets, as shown by a reduction from a multi-dimensional
matching problem [9]. This result has been subsequently improved to W[1]-hardness for
parameter v [22].

Unfortunately, none of these results is super enough yet. Yet, to date superset has
not been rigorously studied. There are only a few Internet sources: experiments showing
that there is a collection of 9 cards for d = 4 that does not have a superset [32] and
some providing estimates for the probabilities of the presence of a superset in random
collections [13, 32].

Our contribution. Analogous to the study of caps, we initiate the (rigorous) study of
supercaps, that is, collections of cards that do not contain supersets. The same as for
caps, we are interested in the maximum size of supercaps, but our techniques are different.
For d = 2, by simply counting the number of pairs within the supercap and then using the
pigeonhole principle, one can easily show an upper bound of 4 on the size of any supercap.
A bound that can be easily matched from below by hand. In three dimensions, the same
upper-bound technique allows us to prove an upper bound of 7. Yet, constructed lower-bound
examples imply a maximum size of 6. To prove an upper bound of 6, we develop a refined
counting technique that is based on the following observation [2, 11, 24]. If two pairs of
points are disjoint and their induced vectors are parallel, then they form a superset (see
Lemma 1). In F4

3, which corresponds to the actual set deck, we use the same counting
technique and a relatively short case distinction to show an upper bound of 9, which is
tight [2, 32] and thus solves an open problem [24, Question 8]. For d = 5, using the same
techniques, we can narrow down the maximum supercap size to at most 16 and at least 14,
but an exhaustive computer search shows that the maximum supercap size is indeed 14.
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Regarding asymptotic results, we utilize the simple pigeonhole-principle technique to
obtain a non-trivial upper bound of O(3d/2) ⊂ O(1.733d) on the cardinality of any supercap.
To obtain a non-trivial lower bound, we essentially analyze an algorithm that greedily adds
elements to the supercap. The critical observation is that each card that we cannot add is
excluded by a triple of cards with which it would form a superset. Counting the number of
triples and the number of elements that each triple can exclude, we obtain a lower bound
of Ω(3d/3) ⊂ Ω(1.442d). We summarize our results on maximum supercaps along with those
known for maximum caps in Table 1.

The preceding structural insights about supercaps suffice to compute the probability of
the presence of the a superset in a k-element collection of elements from Fd

3 when k = 4
and d is arbitrary (or, alternatively, the probability of the collection being a supercap). We
also manage to compute the same probability for d = 3 and k = 5, 6, which is based on
a complete characterization of the corresponding supercaps. Since this characterization is
already fairly complicated, we do not compute the exact probabilities for d = 4 and k > 5
but experimentally determine estimates (107 samples for every k).

To consider the computational complexity of deciding whether a given collection of cards
has a superset, we define a superset (more generally) to be the symmetric difference of
two (line or combinatorial) sets that intersect in exactly one element. We note that the
polynomial-time algorithm known for deciding if a given collection of cards from Fd

v (for v

possibly fixed) has a set can be essentially generalized to the corresponding problem for
superset: One iterates through the pairs. If at least v − 3 other elements of the emerging
line are present, one then checks a dictionary for entries of the corresponding missing card(s)
and, if there are none, one saves the missing card(s) there. We then establish a close relation
between the two problems by providing an FPT reduction from the problem for combinatorial
set to the corresponding one for superset, so that the W[1]-hardness [9] carries over.

Overview of this paper. In Section 2, we give formal definitions and preliminary obser-
vations. Then, we provide bounds on the maximum supercap sizes for various d and the
asymptotic case in Section 3. In Section 4, we use insights from the previous section and
new structural properties to obtain probabilities for the presence of supersets in the random
collections of cards. We obtain results on the computations complexity in Section 5 and
conclude the paper in Section 6.

2 Preliminaries

Definitions. We begin with considering Fd
3. A collection S = {a, b, c} ⊆ Fd

3 is called a set
if a + b + c = 0. Further, a collection of elements S = {a, b, c, d} ⊂ Fd

3 is called a superset
if for some element z ∈ Fd

3 and for some x, y ∈ S, both {x, y, z} and (S \ {x, y}) ∪ {z} are
sets. We say that two pairs {a1, b1}, {a2, b2} ⊂ Fd

3 are parallel if a2 − b2 = r(a1 − b1) for
some r ∈ F3 \ {0}. Note that if S = {a1, b1, a2, b2} contains a set, then S is (ironically) not
a superset.

Moreover, a collection S of elements from Fd
3 is a cap if no set is contained in it; it is a

supercap if no superset is contained in it. We will be looking at both maximum and maximal
(super)caps: The first type of (super)cap has largest-possible size among all (super)caps; the
addition of any card to the second type of (super)cap revokes its (super)cap property. Note
that any maximum (super)cap is maximal.

To consider the complexity of determining of a given collection of cards contains a set
or superset, we define two different, yet equally natural, generalizations of a set and a
superset. For an element a ∈ Fd

v, we denote with a[i] the value of the i-th dimension of a.

FUN 2018



12:6 SUPERSET: A (Super)Natural Variant of the Card Game SET

Given a collection S = {c1, . . . , cv} ⊆ Fd
v of v elements, we say it is a combinatorial

set (or just set when not stated differently) if for all dimensions i ∈ {1, . . . , d}, either
c1[i] = . . . = cv[i] or the values c1[i], . . . , cv[i] are distinct. For prime v, we say that a
collection S ⊆ Fd

v is a line set if it is a line on Fd
v. It is not hard to see that these two

generalizations are equivalent only for v ≤ 3.
We obtain two generalizations for a superset in straightforward manner from the

generalizations of a set. A collection S ⊆ Fd
v of 2(v − 1) elements is a combinatorial (line)

superset if there is an element z ∈ Fd
v and a partition S = A ∪ B such that A ∪ {z} and

B ∪ {z} are both combinatorial (line) sets.

Preliminary observations. The following observation is used frequently in the technical
part of the paper. Given two elements a, b ∈ Fd

3, there is a unique third element in Fd
3,

namely −(a + b), that completes {a, b} to a set. More generally, for a, b ∈ Fd
v there are v− 2

unique elements x1, x2, . . . xv2 ∈ Fd
v such that {a, b, x1, x2, . . . xv2} is a line set, but there are

various ways of completing {a, b} to a combinatorial set. Regarding supersets, consider
any three elements a, b, c ∈ Fd

3: If they form a set, there is no element that completes
them to a superset; if they do not form a set, they can be extended to precisely the
supersets {a, b, c,−(a + b)}, {a, b, c,−(a + c)}, and {a, b, c,−(b + c)}. The situation for
supersets is a bit more complicated in Fd

v but irrelevant for this paper.
The following lemma contains the formal statement of a fairly well-known fact for those

that have concerned themselves with supersets [2, 11, 24]. For completeness, we still provide
a proof.

I Lemma 1. A collection S ⊂ Fd
3 with four distinct elements is a superset if and only

if {x, y} and S \ {x, y} are parallel pairs for some x, y ∈ S.

Proof. Let S = {a, b, c, d} be as in the statement. Suppose, without loss of generality, that
{a, c} and {b, d} are parallel pairs. In this case, xa,b = −(a + b) and xc,d = −(c + d) are
the (unique) elements that complete the sets Sa,b = {a, b, xa,b} and Sc,d = {x, d, xc,d}.
Now, since {a, c} and {b, d} are parallel, we can assume that b − d = −(a − c) (otherwise
b − d = a − c, and we switch a and c). Thus we have −(c + d) = −(a + b), and hence
xa,b = xc,d, which implies that S is a superset.

Now, suppose that S is a superset. We may assume, without loss of generality, that
there is an element z ∈ Fd

3 such that {a, b, z} and {c, d, z} are sets. Thus, we have
a + b + z = c + d + z = 0, and hence a + b = c + d, which implies a− c = d− b. Therefore
{a, c} and {b, d} are parallel. J

3 Bounds for supercaps

In this section we exactly determine the maximum sizes of supercaps of F2
3, F3

3, and F4
3. We

also prove non-trivial upper and lower bounds on the asymptotic behavior of the maximum
supercap size as d→∞.

3.1 Bounds for small d

In this subsection we present some auxiliary structural results along with the exact maximum
sizes of supercaps of Fd

3, for d = 2, 3, 4.

I Proposition 2. A collection of four elements of F2
3 is a supercap if and only if it contains

a set.
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(a) (b)

Figure 3 Maximum supercaps in F2
3 and F3

3.

Proof. Let S be a collection with precisely four distinct elements of F2
3. For every pair of

elements a, b ∈ S, there is a (unique) third element xab ∈ F2
3 such that {a, b, xab} is a set.

If S does not contain a set, then xab /∈ S, for every pair of elements of S. Since there
are precisely 6 such pairs, and |F2

3 − S| = 33 − 4 = 5, there must be two different pairs,
say {a, b} and {c, d}, such that xab = xcd. Therefore, S contains a superset. Now, suppose
that S contains a set, say {a, b, c}, and another element d. If S is a superset, then we
may suppose that there is an element w in F2

3 such that, without loss of generality, {a, b, w}
and {c, d, w} are sets. Since there is a unique w such that {a, b, w} is a set, we have w = c,
which implies that {c, d, w} = {c, d} is not a set. J

This proposition immediately implies the lower-bound part of the following theorem.

I Theorem 3. A maximum supercap in F2
3 has four elements.

Proof. By Proposition 2, there exists a supercap of size 4 in F2
3. We illustrate one in

Figure 3a.
We now prove that any collection S of elements of F2

3 of size 5 contains a superset.
First, note that, if S contains two sets S1 and S2, they need to intersect, because S has
only size 5. Since S1 and S2 are non-identical, they intersect exactly in one element w,
so (S1 ∪ S2) \ {w} is a superset. Thus, if S does not contain a superset, then S contains
at most one set. If S contains a set, say P , then let x be an element of P , otherwise, let x

be any element of S. Now, note that S \ {x} contains four elements, and no set. Therefore,
by Proposition 2, S \ {x} is a superset. J

Next, note that if ϕ : Fd
3 → Fd

3 is an invertible affine transformation and S ⊂ Fd
3, then ϕ(S)

is a set (resp. superset) if and only if S is a set (resp. superset), because ϕ preserves
addition. The following result implies a lower bound for the size of a maximum supercap
of F3

3.

I Proposition 4. If S is a collection of elements of F3
3 consisting of two skew (disjoint

non-parallel) sets, then S is a supercap.

Proof. Let S be as in the statement. Since these sets are skew, their two direction vectors
and an arbitrary vector connecting them are linearly independent. So we can construct an
invertible linear transformation that maps these vectors into v1 = (1, 0, 0), v2 = (0, 1, 0),
and (0, 0, 1), respectively. We can further determine a translation such that the emerging
invertible affine transformation ϕ maps the sets into P1 = {iv1 : i ∈ F3} and P2 = {(0, 0, 1) +
jv2 : j ∈ F3}. Therefore, the element (−i,−j, 2) is the unique element that forms a set
with iv1 ∈ P1 and (0, 0, 1)+jv2 ∈ P2. Since there are precisely nine pairs consisting of a vertex
of P1 and a vertex of P2, no element in {(−i,−j, 2) : i, j ∈ F3} may complete to two different
such pairs to sets. This implies that P1∪P2 is a supercap of F3

3, so S = {ϕ−1(s) : s ∈ P1∪P2}
is as well. J

FUN 2018
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Let S be a collection of elements of Fd
3, for a fixed integer d. Each pair a, b ∈ S defines

a direction a − b. We say that S generates a vector v ∈ Fd
3 if there is a pair a, b ∈ S such

that v = a−b. In this case, we also say that v is generated by the pair {a, b}. By Lemma 1, if
there are distinct a, b, c, d ∈ S such that a− b is parallel to c−d, then S contains a superset.
So, to obtain an upper bound on the size of a supercap S, one can compare the number of
parallel vectors that S generates and the number of equivalence classes of parallel vectors
in the entire space. The following lemma formalizes this idea and will be used for the next
upper-bound proofs.

I Lemma 5. Let S be a supercap in Fd
3 with s elements and r sets. Then

r ≥
⌈

s2 − s− 3d + 1
4

⌉
.

Proof. Let S, s, and r be as in the statement. The number of pairs of elements of S is
(

s
2
)
.

Note that each set in S generates exactly 3 parallel vectors without creating a superset,
but there are r sets in S. Only considering one vector per set, S still generates

(
s
2
)
− 2r

vectors. Note that, since we only consider one vector per set and all sets are pairwise
disjoint (otherwise there would be a superset), any two pairs that generate parallel vectors
need to be disjoint. So, by Lemma 1, any two of the

(
s
2
)
− 2r must not be parallel. On the

other hand, we give an upper bound on the equivalence classes of parallel vectors in Fd
3 by

counting the sets that go through the origin 0 = (0, . . . , 0): Since, for any other a ∈ Fd
3,

there is a unique set containing 0 and a, and each set has size 3, there are exactly (3d−1)/2
such sets. Thus(

s

2

)
− 2r ≤ 3d − 1

2 ,

and the result follows by solving for r. J

We now apply Proposition 4 and Lemma 5 to get the following theorem.

I Theorem 6. A maximum supercap in F3
3 has six elements.

Proof. By Proposition 2, there exists a supercap of size 6 in F3
3. We illustrate one in

Figure 3b.
Now assume that S ⊂ F3

3 is a supercap of size 7. By Lemma 5, the number of sets in S

is at least 4 but there are at most two non-intersecting sets in S, a contradiction. J

The proof of the next theorem goes one step further. In this case, the application of
Lemma 5 does not directly imply a tight upper bound.

I Theorem 7. A maximum supercap in F4
3 has nine elements.

Proof. A supercap of F4
3 of size 9 was previously known [32, 2] and is illustrated in Figure 4.

For the upper bound, let S be a supercap with precisely ten different elements of F4
3. By

Lemma 5, the number of sets in S is at least d(100− 10− 81 + 1)/4e = 3. Analogously to
the proof of Proposition 4, by applying a certain invertible affine transformation, we can
suppose that two of these sets are P1 = {kv1 : k ∈ F3} and P2 = {(0, 0, 1, 0) + kv2 : k ∈ F3},
where v1 = (1, 0, 0, 0) and v2 = (0, 1, 0, 0).

Now, let P3 = {(a, b, c, d) + kv3 : k ∈ F3}. We first show that v3 = (e1, e2, 0, 0),
where e1, e2 ∈ F3 \ {0}. Let v3 = (e1, e2, e3, e4). If e4 6= 0, then P3 has an element q of the
form (x, y, z, 0). Thus, the restriction S′ of S to the affine subspace F0 = {(x, y, z, 0) : x, y, z ∈
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Figure 4 Maximum supercap in F4
3.

F3} contains the seven elements P1∪P2∪{q}. Since F0 is isomorphic to F3
3, by Theorem 6, S′

contains a superset, a contradiction. In fact, S may not contain any element of the
form (·, ·, ·, 0) different from the elements in P1∪P2. Now, suppose that e3 6= 0. Then P3 con-
tains elements q1 and q2 of the form (·, ·, 0, d) and (·, ·, 2, d), with d 6= 0. Let A1 = (0, 0, 0, 0)
and A2 = (0, 0, 1, 0), and for i = 1, 2, consider the sets P ′1 and P ′2 defined by

P ′i = {r : s + qi + r = 0, s ∈ Pi}
= {−(s + qi) : s ∈ Pi}
= {−(Ai + kvi + qi) : k ∈ F3}
= {−(Ai + qi) + 2kvi : k ∈ F3}
= {−(Ai + qi) + kvi : k ∈ F3}.

Note that hence P ′i is parallel to Pi, for i = 1, 2. Moreover, since the vertices of P1 and P2 are
of the form (·, ·, ·, 0), the vertices of P ′1 and P ′2 are of the form (·, ·, ·, 3− d). Also, since the
vertices of P1 and q1 are of the form (·, ·, 0, ·), the vertices of P ′1 are of the form (·, ·, 0, ·); and
since the vertices of P2 are of the form (·, ·, 1, ·), and q2 is of the form (·, ·, 2, ·), the vertices
of P ′2 are of the form (·, ·, 0, ·). We conclude that P ′1 and P ′2 belong to the 2-dimensional
affine subspace F0,3−d = {(x, y, 0, 3− d) : x, y ∈ F3}. Note that P ′1 and P ′2 are not disjoint
because they are parallel, respectively, to P1 and P2. Thus, there is a vertex q∗ in P ′1 ∩ P ′2
such that s1 +q1 +q∗ = s2 +q2 +q∗ = 0, for some s1 ∈ P1 and s2 ∈ P2. Therefore, S contains
a superset, a contradiction. Now, if e1 = 0 or e2 = 0, then P3 is parallel to either P1 or P2,
a contradiction.

Now, let Fi,j = {(x, y, i, j) : x, y ∈ F3}, for i, j ∈ F3. Since v3 = (e1, e2, 0, 0), the set P3
must be contained in some affine subspace Fi∗,j∗ . Further, we must have j 6= 0 since otherwise
there are again seven elements of the form (·, ·, ·, 0). Assume, by adapting the invertible
affine transformation accordingly, that i∗ = 0 and j∗ = 1. Analogously to the proof of
Proposition 4, each element of F2,0 is the unique element that forms a set with a vertex of P1
and of P2; each element of F0,2 is the unique element that forms a set with a vertex of P1
and of P3; and each element of F2,2 is the unique element that forms a set with a vertex
of P2 and of P3; Recall that S has ten elements, i.e., there is an element q in S \ (P1∪P2∪P3).
Note that the collections F0,0 ∪F1,0 ∪F2,0, F0,0 ∪F0,1 ∪F0,2, and F1,0 ∪F0,1 ∪F2,2 are affine
subspaces isomorphic to F3

3, and, by Theorem 6, q may not belong to any of these collections.
Now, suppose that q ∈ F1,1. For each q1 ∈ P1 ⊂ F0,0, there is a vertex q2,2 ∈ F2,2 such
that q1 + q + q2,2 = 0. As noted above, each element of F2,2 forms a set with a vertex
of P2 and of P3, say q2, q3. Therefore {q1, q2, q3, q} is a superset. Analogously, if q belongs
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Figure 5 Maximum supercap in F5
3.

to F2,1 or F1,2, we can find elements q1 ∈ P1, q2 ∈ P2, and q3 ∈ P3 such that {q1, q2, q3, q}
is a superset. This contradicts the assumption that S is a supercap and concludes the
proof. J

We conclude the subsection with a discussion of open questions, preliminary answers,
and fascinating phenomena. In F5

3, the largest supercap we can construct has size 14 (see
Figure 5), but Lemma 5 only shows an upper bound of 16 on the size of supercaps. While
an exhaustive computer search shows that 14 is indeed the right answer, we still believe
in (super) elegant proofs. Indeed, looking at the lower bounds in this section, one may
notice that, interestingly, all of them contain the maximum number of sets possible. Also,
Lemma 5 gives the loosest upper bound when the maximum number of sets are present. So
one may conjecture that, for each d, a maximum supercap is attained by a union of sets
and at most 2 additional points.

On the other hand, it has been observed [24] that the maximum supercap in four
dimensions can be partitioned into ten pairs each of which is completed to a set by the
same element. So it seems that caps and supercaps are somewhat complementary in that
maximum supercaps are far from being caps and vice versa. Unfortunately, however, we need
to push back on this line of thought a bit. As we will see in Section 4, already in F3

3 there
are maximum supercaps with only one (instead of two) sets. Also, there is a maximum
supercap in F4

3 that does not have a set at all. On a slightly different matter, this situation
is somewhat different from the one for caps in that, for any d ∈ {1, . . . , 6}, there is an affine
transormation that takes any maximum cap to any other maximum cap [15, 18, 24, 27].

As all of the phenomena pointed at here may simply be due to the (small) dimensions we
are working with, we now look at the asymptotic case.

3.2 Asymptotic supercaps

In this section we present upper and lower bounds for the size of a maximum supercap in Fd
3.

The next theorem gives the upper bound; its proof is analogous to the proof of Theorems 6
and to some of the cases of the proof of Theorem 7.

I Theorem 8. A maximum supercap in Fd
3 has less than 2 · 3 d

2 elements.

Proof. It is sufficient to prove for d ≥ 2 that, if a collection S ⊆ Fd
3 has size s = 2 · 3 d

2 , then
it contains a superset. Let S be such a collection, and suppose that S is a supercap. By
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Lemma 5, the number of non-intersecting sets in S is at least⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
.

On the other hand, there are at most bs/3c non-intersecting sets in S. Thus, we have⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
≤
⌊

2 · 3d/2

3

⌋
.

Note that for any d ≥ 2 we have

4 · 3d − 2 · 3d/2 − 3d + 1
4 >

3 · 3d − 2 · 3d/2

4 >
3d

4 >
2 · 3d/2

3 .

Therefore, we have⌈
4 · 3d − 2 · 3d/2 − 3d + 1

4

⌉
≥ 4 · 3d − 2 · 3d/2 − 3d + 1

4 >
2 · 3d/2

3 ≥
⌊

2 · 3d/2

3

⌋
,

a contradiction. Therefore, for any superset S in Fd
3 we have |S| < 2 · 3d/2. J

The next theorem gives a lower bound for the size of a maximum supercap in Fd
3.

I Theorem 9. A maximum supercap in Fd
3 has more than 3 d

3 elements.

Proof. We prove that every maximal supercap has size at least 3 d
3 . Given a supercap S in

Fd
3, let S̄ be the collection of elements v of Fd

3−S for which there is at least one triple T in S

such that T ∪ {v} is a superset. Note that if x ∈ Fd
3 \ (S ∪ S̄), then S ∪ {x} is a supercap.

Thus, if S is a maximal supercap, then S ∪ S̄ = Fd
3. Given a, b ∈ Fd

3, let xab be the (unique)
element of Fd

3 such that {a, b, xab} is a set; and given a triple {a, b, c} ⊂ Fd
3 that is not a set,

let yc be the (unique) element of Fd
3 such that {c, xab, yc} is a set. Note that for every such

triple {a, b, c} in a supercap S, we have ya, yb, yc ∈ S̄. Moreover, if {a, b, c, y} is a superset,
then y = yz for some z ∈ {a, b, c}. Therefore, |S̄| ≤ 3

(|S|
3
)
for every supercap S in Fd

3.
Now, suppose that S is a maximal supercap and that |S| = s ≤ 3 d

3 . Since S is maximal,
we have 3d = |Fd

3| ≤ |S|+ |S̄|. Thus, we have

s3 ≤ 3d ≤ s + 3
(

s

3

)
.

Yet, s3 > s + 3
(

s
3
)
for all s > 1, contradicting our assumption, since a maximal supercap

has at least three elements. We conclude that if S is maximal, then |S| > 3 d
3 . J

4 Probabilities of the presence of a superset in random collections

In the section, we compute probabilities of k-element collections in Fd
3 being supercaps. Using

structural insights from Section 3, we get the following result, settling the question for d = 2.

I Theorem 10. A collection of four elements drawn uniformly at random without replacement
from Fd

3 is a supercap with probability 3d−5
3d−2 .

Proof. Let S = {a, b, c, d} be a collection of four elements drawn uniformly at random
without replacement from Fd

3. Consider the four elements of S in (alphabetical) order. As
noted earlier in Proposition 2, if S contains a set, then it is a supercap. Without loss of
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generality, fix the first two elements {a, b}. The third element, c, completes a set with
probability 1

3d−2 , since exactly one of the remaining 3d − 2 elements from Fd
3 forms a set

with {a, b}. If {a, b, c} does not form a set, then there are three pairs, {a, b}, {b, c}, and {a, c}
that define different elements with which they form a set. Thus, there are exactly three
elements that can complement {a, b, c} into a superset. Therefore

Pr(S is a supercap) = 1
3d − 2 + 3d − 3

3d − 2 ·
3d − 6
3d − 3 = 3d − 5

3d − 2 . J

For d = 3, we require new structural insights.

I Proposition 11. Let S be a collection with five elements in F3
3. Then S is a supercap if

and only if either
S contains a set P and the elements not in P form a pair skew with P

or S does not contain a set and there is no hyperplane in F3
3 containing at least four

elements of S.

Proof. Let S be a collection of five elements with a set P . It is clear that if S \ P forms a
pair not skew with P , then S contains a superset either by the intersection of P and the
set containing S \ P , or by P being parallel to S \ P . Now, suppose that S \ P = {a, b}
is skew with P . It is not hard to check that a superset admits three partitions into two
pairs, and one of these partitions consists of two pairs that miss the same third element
to complete a set; and the other two of these partitions consist of two parallel pairs (see
Lemma 1). Since {a, b} is skew with P , for any c, d ∈ P , the pair ({a, b}, {c, d}) forms
a partition of {a, b, c, d} that does not consist of two pairs with a common missing third
element, and does not consist of two parallel pairs. Thus, {a, b, c, d} is not a superset.
Suppose now that S does not contain a set. Since a hyperplane in F3

3 is isomorphic to F2
3

and every superset is in a hyperplane, by proposition 2, S contains a superset if and
only if there is a set of four vertices contained in a hyperplane. J

I Proposition 12. Let S be a collection of six elements in F3
3. Then S is a supercap if and

only if either
S contains two sets that are skew, or
there are three parallel planes H1, H2, H3 that partition F3

3 such that S ∩H1 = {a, b, c, d},
S ∩H2 = {e}, and S ∩H3 = {f} where {a, b, c} = P is a set and f /∈ {−(x + e) : x ∈
S ∩H1} ∪ {x + d− e : x ∈ P}.

Proof. Let S be as in the statement and first suppose that S is a supercap. First note
that Lemma 5 implies that S must contain at least one set. If S contains two sets, they
must be skew, because otherwise the two sets (and thus at least five elements) are within
a two-dimensional affine subspace, contradicting Theorem 3. If S contains precisely one
set {a, b, c} = P , we can find a plane H1 that contains P and any fourth element d ∈ S.
Note that H1 may not contain any other element of S, because this would be a contradiction
to Theorem 3 again. Next, consider the case that there is a plane H ′ parallel to H2 such
that |S ∩ H ′| = 2. But this is not possible: Since H1 and H ′ generate 5 vectors parallel
to H1 and, among the vectors parallel to H1, there are only 4 equivalence classes of parallel
vectors, we get a contradiction to Lemma 1. Hence, there are planes H2 and H3 parallel
to H1 with S ∩H2 = {e} and S ∩H3 = {f} for some e, f ∈ F3

3. Now, since S contains only
the set P , x + e + f 6= 0 for all x ∈ H1, so f /∈ {−(x + e) : x ∈ S ∩H1}. Similarly, since S

is a supercap x + d 6= e + f for all x ∈ P , so f /∈ {x + d − e : x ∈ P}. Thus we are in the
second situation.
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If S contains two sets that are skew, then Proposition 4 shows that S is a supercap.
If the second condition is fulfilled, then let a, . . . , f and H1, H2, H3 be as in the statement.
Note that H1 does not contain a superset by Proposition 2. If for a superset Q ⊂ S,
we have |Q ∩ H1| = 3, then, for any pair x1, x2 ∈ H1, x1 + x2 ∈ H1, but x3 + x4 /∈ H1
where {x3, x4} = Q \ {x1, x2}, a contradiction. So, if S contains a superset Q, then Q =
{e, f, y1, y2} for some y1, y2 ∈ S ∩H1. But yi + e ∈ H3 while yi + f ∈ H2 for any i ∈ {1, 2}.
If d /∈ Q, then −(y1 + y2) ∈ P , but f 6= −(x + e) for all x ∈ P by the choice of f ; a
contradiction. So Q = {e, f, d, x} for some x ∈ P . But then we must have x + d = e + f ; a
contradiction to the choice of f . J

Using these insights and counting the numbers of the corresponding objects yields the
following theorem, which settles the central question of this section for d = 3.

I Theorem 13. A collection of five (six) elements drawn uniformly at random without
replacement from F3

3 is a supercap with probability 54
115 ≈ 46.96% ( 18

253 ≈ 7.11%).

Proof. We count the number of supercaps of five elements using Proposition 11. The ones
that contain a set and a pair skew with it can be constructed as follows. Choose a set,
then any of the remaining (3d − 3) cards and finally any of the (3d − 9) cards that do not
complete an intersecting set or creates a parallel vector with the set. Since the last pair is
counted twice this way, the total number is

N5
set,skew = 33(33 − 1)

6 (33 − 3)(33 − 9) · 1
2 = 25272

For the ones that do not contain a set and in which no four elements are in a hyperplane,
we count first the number of collections with a set: pick first one of the 1

3
(33

2
)
possible

sets, then pick any pair on the remaining cards. With this procedure we double count the
collections composed by two intersecting sets, so the total number of collections of five
elements with a set is

N5
set = 1

3

(
33

2

)
·
(

33 − 3
2

)
− 1

3

(
33

2

)
· 1

4
(
33 − 3

)
· 3 = 30186

We now compute the number of collections without a set but with a hyperplane. It is clear
that only one hyperplane contains four points of such a collection. Pick then the first four
elements to be the ones in the same hyper plane. There are 33 options for the first, (33 − 1)
for the second, (33−3) for the third without forming a set, and only 3 for the fourth so it lies
in the same hyperplane and does not form a set. We divide by the number of permutations
of 4 elements to avoid multiple counting. For the fifth element the only condition is that it is
outside the hyperplane, so there are 33−1 · 2 options. The number of such collections is then

N5
!set,HP4 = 1

4!3
3(33 − 1)(33 − 3) · 3 · (33−12) = 37908

Now, the number of collections of five elements without a set is N5
!set =

(33

5
)
−N5

set = 50544,
and the amount of collections without a set and with no four elements in a hyperplane
is N5

!set,!HP4 = N5
!set − N5

!set,HP4 = 12636. Finally, the number of supercaps of size five
is N5

set,skew + N5
!set,!HP4 = 37908, which divided by

(33

5
)
gives the probability that a random

collection S of five elements in F3
3 is a supercap, so

Pr(S is a supercap) = 37908
80730 = 54

115 ≈ 46.96%.
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Table 2 Probabilities (and estimates thereof) of a k-element collection from Fd
3 being a supercap,

expressed as percentages rounded to two decimals. We used a computer to estimate the probability
where indicated by an asterisk (107 samples for each corresponding cell); the other probabilities are
exact.

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

d = 2 57.14% 0 0 0 0 0
d = 3 88.00% 46.96% 7.11% 0 0 0
d = 4 96.20% 81.68%∗ 52.08%∗ 19.25%∗ 2.34%∗ 0.01%∗

We count the number of supercaps S of six elements using Proposition 12. Note that the
number of two skew sets is exactly a sixth the number of five cards formed by a set and a
pair that is skew with it, so

N6
2sets,skew =

(33

2
)

3 · (33 − 3) · (33 − 9) · 1
12 = 4212.

Now consider the second situation in Proposition 12, and let a, . . . , f and H1, H2, H3 be as
in the statement. First note that f /∈ {−(x + e) : x ∈ S ∩H1} ensures that there is exactly
one set in S, so the two situations cannot happen simultaneously. We count the number of
collections S that fall into this situation the following way: First fix any set {a, b, c} = P

and any fourth point d. There are 9 choices for e. Since {−(x + e) : x ∈ S ∩ H1}
and {x + d− e : x ∈ P} are both contained in H3 and are disjoint, there are 2 choices left
for f . As we count each collection three times (any of the points outside the set can be the
fourth point), the total number of collections S that fall into the second situation is

N6
Case 2 =

(33

2
)

3 · (33 − 3) · 9 · 2 · 1
3 = 16848.

In total, we get

Pr(S is a supercap) =
N6

2sets,skew + N6
Case 2(33

6
) = 4212 + 16848

296010 = 18
253 ≈ 7.11%.

This concludes the proof. J

Considering the name of this conference, we leave proving similar statements for d = 4
to future work. To not disappoint the reader, we however provide probabilities that were
determined experimentally with the computer. We summarize the results in Table 2.

5 Algorithms and complexity

Chaudhuri et al. [9] as well as Lampis and Mitsou [22] consider decision problem versions
for set and show complexity results for them. In these decision problems, we are given a
collection of n elements from Fd

v and ask if the collection contains a set3. In this section, we
obtain similar results for decision problem versions of superset.

We define the problems Combinatorial Superset and Line Superset as follows:
Given a collection of elements C ⊆ Fd

v for any v, d > 0, is there a combinatorial (line)

3 Previously only these decision versions of Combinatorial Sets were considered [9, 22]. More restricted
versions with given number of values (k-Value Set) or given number of dimensions (k-Dimensional
Set) have also been considered by the same authors.
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Superset S ⊆ C? We define k-Value Combinatorial (Line) Superset as the restricted
versions where v = k is fixed, and k-Dimensional Combinatorial (Line) Superset as
the restricted versions where d = k instead.

Note that, in order to get interesting complexity questions, the number of possible values
v of each attribute needs to be variable, as we see from the following result.

I Theorem 14. The problem k-Value Combinatorial Superset and k-Value Line
Superset can be solved in Õ(dknk−1) time, for any given k > 0.

Proof. Consider the algorithm that iteratively checks all
(

n
k−1
)
subsets of size k − 1 and

keeps an AVL tree [10] of missing k-th elements to complete a set, if such an element exists.
Then checking if the ordered list contains any duplicates decides if there is a superset in
the given collection of elements. This algorithm works independent of the considered type of
superset (combinatorial or line) and runs in Õ(dknk−1) time. J

I Theorem 15. The problem Line Superset can be solved in Õ(dvn2) time.

Proof. Each pair of elements defines exactly one line, so it suffices to check for each pair if
the collection contains v − 1 elements of the line. If so, the missing element is stored in an
ordered list. J

Note that, by similar reasoning, Line Set can also be solved in Õ(dvn2) time.

I Theorem 16. There is a O(k2n)-time reduction from k-Dimensional Combinatorial
Set to (k +1)-Dimensional Combinatorial Superset. Furthermore, it sends an instance
on v values to an instance on v + 1 values.

Proof. Let S ∈ Fk
v be an instance of k-Dimensional Combinatorial Set. That is, S is a

collection of n elements in k dimensions, each with v possible values. Through the following
procedure, we construct an instance of k + 1-Dimensional Combinatorial Superset
consisting of collection of elements S′ ∈ Fk+1

v+1 of size at most (v + 1) · n, in k + 1 dimensions,
each with v + 1 possible values.

Create a copy S0 of S on k + 1 dimensions, filling the (k + 1)-th dimension of every
element with the value v + 1. Then, create (k + 1)-dimensional copies S1, . . . , Sk of S, where
the (k + 1)-th dimension of elements in Si have value equal to the i-th dimension of that
element elements. That is, for an element c′ ∈ Si there is an element c ∈ S, such that
c′ = (c[1], . . . , c[k], c[i]).

Now, we show that S contains a set in Fk
v if and only if S′ =

⋃k
i=0 Si contains a superset

in Fk+1
v+1 (note that the union might be non disjoint). Suppose S contains a set in Fk

v , say A,
and let Ai ⊆ Si be the corresponding copy of A for all i ∈ {0, . . . , v}. Let z ∈ Fk+1

v+1 be the
element that for all j ∈ {1, . . . , k} has z[j] = a1[j], if a1[j] = a2[j], and z[j] = v +1, otherwise,
and z[k + 1] = v + 1. Then A0 ∪ {z} is a set in Fk+1

v+1. Since the elements a1, . . . , av ∈ A are
distinct and A is a set in Fk

v , there must be at least one dimension 1 ≤ j ≤ k such that the
values a1[j], . . . , av[j] are all distinct. Then Aj ∪ {z} forms a set in k + 1 dimensions and
v + 1 values, because the first k dimensions are the same as A0 ∪ {z}, and dimension k + 1
has the same values as dimension j, so the missing value in Aj is v + 1. Since by construction
we have A0 ∩Aj = ∅, we conclude that A0 ∪Aj is a superset in Fk+1

v+1.
Next, let A∪B ⊆ S′ be a superset in Fk+1

v+1 such that A∩B = ∅ and there is an element
z such that A ∪ {z} and B ∪ {z} are sets in Fk+1

v+1. This implies that |A| = |B| = v. Let
A = {a1, . . . , av} and let a′j ∈ S denote the projection of aj onto its first k dimensions, which
is the original of aj in S. If all elements a′1, . . . , a′v are different, then they form a set in Fk

v .
Now, assume that there are two elements ak and a` in A, such that a′k = a′`. Since A ∪ {z}
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is a set, this implies that a′1 = a′2 = . . . = a′v. Moreover, the projection of z onto the first k

dimensions is equal to a′1. Therefore, if the same holds for B, then the projections of each of
the elements of B onto the first k dimensions are all equal and these projections are also
equal to a′1. However, this is a contradiction, as S′ contains at most v + 1 copies of the same
element in S (and |A ∪B| = 2v). Thus, without loss of generality, we can assume that the
elements in A are copies of different elements in S and the projection of A onto the first k

dimensions is a set in S. J

Chaudhuri et al. [9] prove that k-Dimensional Combinatorial Set is NP-complete
for k ≥ 3, and Lampis and Mitsou [22] prove that Combinatorial Set parametrized by
the number of values is W[1]-hard. These two results, together with Theorem 16, yield the
following hardness results for superset.

I Corollary 17. The problem k-Dimensional Combinatorial Superset for k ≥ 4 and
Combinatorial Superset are NP-complete.

I Corollary 18. The problem Combinatorial Superset parametrized by the number of
values v is W[1]-hard.

6 Conclusion

While it is plausible that we have exhausted (hopefully not gone beyond) the reader’s
tolerance of jokes including “super" in this paper, we believe that we have not done so to
their curiosity regarding superset. In fact, while we have made progress on many natural
questions in this paper, a few remain open: As for caps, the gaps for the maximum supercap
size for larger fixed dimensions and its asymptotic behavior would be interesting to investigate.
Also figuring out whether a subquadratic algorithm for deciding the presence of a set or
superset exists in Fd

3 seems to be an interesting open problem.
Just like set became too easy one day, we will eventually demand a variant of set more

difficult than superset. In fact, note that the term powerset is yet to be overloaded. For
instance, a powerset could be the union of three (or more) pairs that are all completed
to a set by a same element [24] or, alternatively, the symmetric difference between two
supersets that intersect in exactly one element.
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