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Abstract
We consider a community formation problem in social networks, where the users are either
friends or enemies. The users are partitioned into conflict-free groups (i.e., independent sets
in the conflict graph G− = (V,E) that represents the enmities between users). The dynamics
goes on as long as there exists any set of at most k users, k being any fixed parameter, that
can change their current groups in the partition simultaneously, in such a way that they all
strictly increase their utilities (number of friends i.e., the cardinality of their respective groups
minus one). Previously, the best-known upper-bounds on the maximum time of convergence were
O(|V |α(G−)) for k ≤ 2 and O(|V |3) for k = 3, with α(G−) being the independence number of
G−. Our first contribution in this paper consists in reinterpreting the initial problem as the study
of a dominance ordering over the vectors of integer partitions. With this approach, we obtain for
k ≤ 2 the tight upper-bound O(|V |min{α(G−),

√
|V |}) and, when G− is the empty graph, the

exact value of order (2|V |)3/2

3 . The time of convergence, for any fixed k ≥ 4, was conjectured to
be polynomial [7, 14]. In this paper we disprove this. Specifically, we prove that for any k ≥ 4,
the maximum time of convergence is an Ω(|V |Θ(log |V |)).
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6:2 How long does it take for all users in a social network to choose their communities?

Foreword: The organizers of a wedding (party) have difficulties in arranging place settings
for the guests as there are many incompatibilities among those who do not want to be at
the same table as an "enemy" (ex girl (boy) friend, boss or employee, student or supervisor,
etc. . . ). The organizers realize that they have no set of 5 pairwise friends and so allow
people place themselves. Successively each person joins a table where she has no enemies
or starts a new table. At any time a person can move from one table to another table (of
course where she has no enemy) if in doing so she increases strictly the number of friends
she has at the new table. The process converges relatively fast (linear time). Some time
later the organizers of FUN having heard about this scenario decide to use the same process
to place the participants in different groups for the social activities of the afternoon. Each
participant registers first in her own group. The organizers decide to accelerate the process
by authorizing not just one person but any subset of 4 persons to change their mind and
leave the group in which they are registered to join another group or create a new group;
these persons move only if they desire to do so, that is, they increase strictly the number
of friends. Surprisingly the process takes a very long (exponential) time and night arrives
before groups are formed. As we will discover, the exponential time derives from the fact
that at FUN all the persons are friends and there are no enemies due to the use of moves
implying 4 persons. At this point the reader (and the organizers) might ask why we see such
a difference in behaviors and how long does it takes for users of a social network to form
groups. The answers to these questions and "all you wanted to know but were afraid to ask"
will be revealed in this paper.

1 Introduction

Community formation is a fundamental problem in social network analysis. It has already
been modeled in several ways, each trying to capture key aspects of the problem. The model
studied in this paper has been proposed in [14] in order to reflect the impact of information
sharing on the community formation process. Although it is a simplified model, we show that
its understanding requires us to solve combinatorial problems that are surprisingly intricate.
More precisely, we consider the following dynamics of formation of groups (communities)
in social networks. Each group represents a set of users sharing about some information
topic. We assume for simplicity that each user shares about a given topic in only one group.
Therefore the groups will partition the set of users. We follow the approach of [14]. An
important feature is the emphasis on incompatibility between some pairs of users that we
will call enemies. Two enemies do not want to share information and so will necessarily
belong to different groups. In the general model one consider different degrees of friendship
or incompatibilities. Here we will restrict to the case where two users are either friends
or enemies – as noted in [14], even a little beyond this case, the problem quickly becomes
intractable. As an example, if we add a neutral (indifference) relation, there are instances
for which there is no stability.

The social network is often modeled by the friendship graph G+ where the vertices are
the users and an edge represents a friendship relation. We will use this graph to present the
first notions and examples. However, for the rest of the article and the proofs we will use the
complementary graph, that we call the conflict graph and denote by G−; here the vertices
represent users and the edges represent the incompatibility relation. We assign each user a
utility which is the number of friends in the group to which she belongs. Equivalently, the
utility is the size of the group minus one, as in a group there is no pair of enemies; in [14]
this is modeled by putting the utility as −∞ when there is an enemy in the group.

In the example of Figure 1, the graph depicted is the friendship graph: the edges represent
the friendship relation, and if there is no edge it corresponds to a pair of enemies. Figure 1(a)
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Figure 1 A friendship graph with 12 vertices (users). (a) 3-stable partition that is not 4-stable
but it is optimal in terms of total utility. (b) k-stable partition for any k ≥ 1 that is not optimal in
terms of total utility.

depicts a partition of 12 users composed of 4 non-empty groups each of size 3. The integers
on the vertices represent the utilities of the users which are all equal to 2. Figure 1(b) depicts
another partition consisting of 5 groups with one group of size 4 (where users have utility 3)
and 4 groups of size 2 (where users have utility 1).

In this study we are interested in the dynamics of formation of groups. Another important
feature of [14], taken into account in the dynamics, is the notion of bounded cooperation
between users. More precisely, the dynamics is as follows: initially each user is alone in her
own group. In the simplest case, a move consists for a specific user to leave the group to
which she belongs to join another group but only if this action increases strictly her utility
(acting in a selfish manner); in particular, it implies that a user does not join a group where
she has an enemy. In the k-bounded mode of cooperation, a set of at most k-users can leave
their respective groups to join another group, again, only if each user increases strictly their
utility. If the group they join is empty it corresponds to creating a new group. We call such
a move a k-deviation. Note that this notion is slightly different from that of (k+ 1)-defection
of [14]. We will say that a partition is k-stable if there does not exist a k-deviation for this
partition.

The partition of Figure 1(a) is k-stable when k ∈ {1, 2, 3}. Indeed each user has at least
one enemy in each non empty other group and so cannot join another group. Furthermore,
when k ≤ 3, if k users join an empty group their utility will be at most 2 and so will not
strictly increase. However, this partition is not 4-stable because there is a 4-deviation: the
four central users can join an empty group and so they increase their utilities from 2 to 3.
The partition obtained after such a 4-deviation is depicted in Figure 1(b). This partition
is k-stable for any k ≥ 1. Note that the utility of the other users is now 1 (instead of 2).
Thus, we deduce that this partition is not optimal in terms of total utility (the total utility
has decreased from 24 to 20); but it is now stable under all deviations. This illustrates the
fact that users act in a selfish manner as some increase their utility, but on the contrary the
global utility decreases. For more information on the suboptimality of k-stable partitions,
i.e., bounds on the price of anarchy and the price of stability, the reader is referred to [14].
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6:4 How long does it take for all users in a social network to choose their communities?

1.1 Related work
This above dynamics has been also modeled in the literature with coloring games. A coloring
game is played on the conflict graph. Players must choose a color in order to construct
a proper coloring of the graph, and the individual goal of each agent is to maximize the
number of agents with the same color as she has. On a more theoretical side, coloring games
have been introduced in [18] as a game-theoretic setting for studying the chromatic number
in graphs. Specifically, the authors in [18] have shown that for every coloring game, there
exists a Nash equilibrium where the number of colors is exactly the chromatic number of
the graph. Since then, these games have been used many times, attracting attention in the
study of information sharing and propagation in graphs [4, 7, 14]. Coloring games are an
important subclass of the more general Hedonic games, of which several variations have
been studied in the literature in order to model coalition formation under selfish preferences
of the agents [10, 12, 15, 5, 8, 16]. We stress that while every coloring game has a Nash
equilibrium that can be computed in polynomial-time [18], deciding whether a given Hedonic
game admits a Nash equilibrium is NP-complete [1].

If the set of edges of the conflict graph is empty (edgeless conflict graph), there exists
a unique k-stable partition, namely, that consists of the group of all the users. In [14], it
is proved that there always exists a k-stable partition for any conflict graph, but that it is
NP-hard to compute one if k is part of the input (this result was also proved independently
in [7]). Indeed, if k is equal to the number of users, a largest group in such a partition must
be a maximum independent set of the conflict graph. In contrast, it can be computed a
k-stable partition in polynomial time for every fixed k ≤ 3, by using simple better-response
dynamics [18, 7, 14]. In such an algorithm one does a k-deviation until there does not exist
any one. That corresponds to the dynamics of formation of groups that we study in this
work for larger values of k.

1.2 Additional related work and our results
In this paper we are interested in analyzing in this simple model the convergence of the
dynamics with k-deviations, in particular in the worst case. It has been proved implicitly
in [14] that the dynamics always converges within at most O(2n) steps. Let L(k,G−) be
the size of a longest sequence of k-deviations on a conflict graph G−. We first observe that
the maximum value, denoted L(k, n), of L(k,G−) over all the graphs with n vertices is
attained on the edgeless conflict graph G∅ of order n. Prior to this work, no lower bound on
L(k, n) was known, and the analysis was limited to potential function that only applies when
k ≤ 3 [7, 14] giving upper bounds of O(n2) in the case k = 1, 2 and O(n3) in the case k = 3.
In order to go further in our analysis, the key observation is that when the conflict graph is
edgeless, the dynamics depends only of the size of the groups of the partitions generated.
Following [3], let an integer partition of n ≥ 1, be a non-increasing sequence of integers
Q = (q1, q2, . . . , qn) such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n. If we rank the groups

by non increasing order of their size, there is a natural relation between partition in groups
and integer partitions (the size qi of the group Xi corresponding to the integers qi of the
partition of n). Using this relation, we prove in Section 3 that the better response dynamics
algorithm reaches a stable partition in pn steps, where pn = Θ((eπ

√
2n/3)/n) denotes the

number of integer partitions. This is already far less than 2n, which was shown to be the best
upper bound that one can obtain for k ≥ 4 when using an additive potential function [14].
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Table 1 Previous bounds and results we obtained on L(k, n) and L(k,G−).

k Prior to our work Our results
1 O(n2) [14] exact analysis, which implies L(1, n) ∼ (2n)3/2

3 Theorem 6
2 O(n2) [14] exact analysis, which implies L(2, n) ∼ (2n)3/2

3 Theorem 9
1-2 O(nα(G−)) [18] L(k,G−) = Ω(nα(G−)) for some G− and

α(G−) = O(
√
n)

Theorem 12

3 O(n3) [7, 14] L(3, n) = Ω(n2) Theorem 13
≥ 4 O(2n) [14] L(k, n) = Ω(nΘ(ln(n))), L(k, n) =

O(exp(π
√

2n/3)/n)
Theorem 14

Table 1 summarizes our contributions described below.
For k = 1, 2, we refine the relation between partitions into groups and integer partitions
as follows.

In the case k = 1 (Section 4.1), we prove that there is a one to one mapping between
sequences of 1-deviations in the edgeless conflict graph and chains in the dominance
lattice of integer partitions. Then, we use the value of the longest chain in this
dominance lattice obtained in [9] to determine exactly L(1, n). More precisely, if
n = m(m+1)

2 + r, with 0 ≤ r ≤ m, L(1, n) = 2
(
m+1

3
)

+ mr. The latter implies in
particular L(1, n) is of order O(n 3

2 ), thereby improving the previous bound O(n2).
In Section 4.2, we prove that any 2-deviation can be “replaced” (in some precise way)
either by one or two 1-deviations, and so, L(2, n) = L(1, n).
For k = 1, 2 and a general conflict graph G−, the value of L(k,G−) depends on the
independence number α(G−) (cardinality of a largest independent set) of the conflict
graph. In [18] it was proved that the convergence of the dynamics is in O(nα(G−)).
In the case of edgeless conflict graph, we have seen that L(1, n) = O(n3/2) and so
the preceding upper-bound was not tight. So we inferred that the convergence of
the dynamics was in O(n

√
α(G−)). Yet in fact we prove in Section 4.3 that, for any

α(G−) = O(
√
n), there exists a conflict graph G− with n vertices and independence

number α(G−) for which we need a sequence of at least Ω(nα(G−)) 1-deviations to
reach a stable partition. For the wedding’s example of the foreword, α(G−) = 4 and so
the sequence is linearly bounded.

Finally, our main contribution is obtained for k ≥ 3. Prior to our work, it was known
that L(3, n) = O(n3), which follows from another application of the potential function
method [14]. But nothing proved that L(3, n) > L(2, n), and in fact it was conjectured
in [7] that both values are equal. In Section 5, we prove (Theorem 13) that L(3, n) = Ω(n2)
and thus we show for the first time that deviations can delay convergence and that the
gap between k = 2 and k = 3 obtained from potential function is indeed justified. It was
also conjectured in [14] that L(k, n) was polynomial in n for k fixed. In Section 5.1 we
disprove this conjecture and prove in Theorem 14 that L(4, n) = Ω(nΘ(ln(n))). This shows
that 4-deviations are responsible for a sudden complexity increase, as no polynomial
bounds exist for L(4, n). This explains why in the foreword it takes an exponential time
for the organizers of FUN to schedule the groups.

2 Notations

Conflict graph. We refer to [2] for standard graph terminology. For the remaining of the
paper, we suppose that we are given a conflict graph G− = (V,E) where V is the set of
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6:6 How long does it take for all users in a social network to choose their communities?

vertices (called users or players in the introduction) and edges represent the incompatibility
relation (i.e., an edge means that the two users are enemies). The number of vertices is
denoted by n = |V |. The independence number of G−, denoted α(G−), is the maximum
cardinality of an independent set in G−. In particular, if α(G−) = n then the conflict graph
is edgeless and we denote it by G∅ = (V,E = ∅) and call it the empty graph.

Partitions and utilities. We consider any partition P = X1, . . . , Xi, . . . , Xn of the ver-
tices into n independent sets Xi called groups (colors in coloring games), with some of them
being possibly empty. In particular, two enemies are not in the same group. We rank the
groups by non increasing size, that is |Xi| ≥ |Xi+1|. For any 1 ≤ i ≤ n and for any v ∈ Xi,
the utility of vertex v is the number of other vertices in the same group as it, that is |Xi| − 1.

We use in our proofs two alternative representations of the partition P . The partition
vector associated to P is defined as

−→
Λ (P ) = (λn(P ), . . . , λ1(P )), where λi(P ) is the number

of groups of size i. The integer partition associated to P is defined as Q = (q1, q2, . . . , qn)
such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n, where qi = |Xi|.

In the example of Figure 1(a) we have a partition P of the 12 vertices into 4 groups
each of size 3 and so λ3(P ) = 4 and λi(P ) = 0 for i 6= 3; in other words

−→
Λ (P ) =

(0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0). The corresponding integer partition is Q(P ) =
(3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0). In the example of Figure 1(b) we have a partition P ′ of the 12
vertices into one group of size 4 and 4 groups each of size 2 and so λ4(P ′) = 1, λ2(P ′) = 4
and λi(P ′) = 0 for i 6= 2, 4; in other words

−→
Λ (P ) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0). The

corresponding integer partition is Q(P ′) = (4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0).

k-deviations and k-stability. We can think of a k-deviation as a move of at most k vertices
which leave the groups to which they belong in P , to join another group (or create a new
group) with the necessary condition that each vertex strictly increases its utility, thereby
leading to a new partition P ′. A k-stable partition is simply a partition for which there
exists no k-deviation. We write L(k,G−), resp. L(k, n), for the length of a longest sequence
of k-deviations to reach a stable partition in G−, resp. in any conflict graph with n

vertices. Recall that we start with the partition consisting of n groups of size 1, that is,−→
Λ (P ) = (. . . , 0, 0, 0, n).

We next define a natural vector representation for k-deviations. The difference vector −→ϕ
associated to a k-deviation ϕ from P to P ′ is equal to −→ϕ =

−→
Λ (P ′)−

−→
Λ (P ). In concluding

this section, we define the difference vectors for some of the k-deviations used in our proofs:
−→α [p, q], the 1-deviation where a vertex leaves a group of size q + 1 for a group of size
p− 1 (valid when p ≥ q + 2). In that case αp = 1, αp−1 = −1, αq+1 = −1, αq = −1, and
αi = 0 for any i /∈ {q, q + 1, p− 1, p} (we omit for ease of reading the brackets [p, q]).
−→γ [p], the 3-deviation where one vertex in each of 3 groups of size p− 1 moves to a group
of size p− 3 to form a new group of size p (valid if there are at least 3 groups of size p− 1
and one of size p− 3). In that case γp = 1, γp−1 = −3, γp−2 = 3, γp−3 = −1, and γi = 0
for any i /∈ {p− 3, p− 2, p− 1, p}.
−→
δ [p], the 4-deviation where one vertex in each of 4 groups of size p− 1 moves to a group
of size p − 4 to form a new group of size p (valid if there are at least 4 groups of size
p − 1 and one of size p − 4). In that case δp = 1, δp−1 = −4, δp−2 = 4, δp−4 = −1, and
δi = 0 for any i /∈ {p− 4, p− 2, p− 1, p}. As an example, the move from the partition of
Figure 1(a) to the partition of Figure 1(b), is a 4-deviation with difference vector

−→
δ[4].
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Algorithm 1 Dynamics of the system

Input: a positive integer k ≥ 1, and a conflict graph G−.
Output: a k-stable partition for G−.

1: Let P1 be the partition composed of n singletons groups.
2: Set i = 1.
3: while there exists a k-deviation for Pi do
4: Set i = i+ 1.
5: Choose one k-deviation and compute the partition Pi after this k-deviation.
6: Return the partition Pi.

3 Preliminary results

In [14], the authors prove that there always exists a k-stable partition, but that it is NP-hard
to compute one if k is part of the input (this result was also proved independently in [7]). In
contrast, it can be computed a k-stable partition in polynomial time for every fixed k ≤ 3,
by using simple better-response dynamics [18, 7, 14]. The latter results question the role of
the value of k in the complexity of computing stable partitions.

Formally, a better-response dynamics proceeds as follows. We start from the trivial
partition P1 consisting of n groups with one vertex in each of them. In particular, the
partition vector

−→
Λ (P1) is such that λ1(P1) = n and, for all other j 6= 1, λj(P1) = 0. Provided

there exists a k-deviation with respect to the current partition Pi, we pick any one of these
k-deviations ϕ and in so doing we obtain a new partition Pi+1. If there is no k-deviation,
the partition Pi is k-stable. An algorithmic presentation is given in Algorithm 1.

We now prove in Proposition 1 that better-response dynamics can be used for computing
a k-stable partition for every fixed k ≥ 1 (but not necessarily in polynomial time). It shows
that for every fixed k ≥ 1, the problem of computing a k-stable partition is in the complexity
class PLS (Polynomial Local Search), that is conjectured to lie strictly between P and NP [13].
Recall that the problem becomes NP-hard when k is part of the input.

I Proposition 1. For any k ≥ 1, for any conflict graph G−, Algorithm 1 converges to a
k-stable partition.

Proof. Let Pi, Pi+1 be two partitions for G− such that Pi+1 is obtained from Pi after some
k-deviation ϕ. Let S be the set of vertices which move (|S| ≤ k) and let j be the size of
the group they join (j = 0 if they create a new group). Then, the new group obtained
has size p = j + |S|. Note that all the vertices of S have increased their utilities and so,
they belonged in Pi to groups of size < p. Therefore, the coordinates of the difference
vector −→ϕ satisfy ϕp = 1 and ϕj = 0 for j > p, and so

−→
Λ (Pi) <L

−→
Λ (Pi+1) where <L is the

lexicographical ordering. Finally, as the number of possible partition vectors is finite, we
obtain the convergence of Algorithm 1. J

An instrumental observation for our next proofs is the following:

I Observation 1. L(k, n) is always attained on the empty conflict graph G∅ of order n.

Indeed, any sequence of k-deviations on a conflict graph G− is also a sequence in the empty
conflict graph with the same vertices. Note that the converse is not true as it can happen
that some moves allowed in the empty conflict graph are not allowed in G− as they bring
two enemies in the same group.

FUN 2018
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Figure 2 The lattice of integer partitions for n = 7.

Recall that we can associate to any partition P = X1, . . . , Xi, . . . , Xn of the vertices the
integer partition Q = (q1, q2, . . . , qn) such that q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 and

∑n
i=1 qi = n by

letting qi = |Xi|. The converse is not true in general; as an example it suffices to consider a
partition with q1 > α(G−). However the converse is true when the conflict graph is empty;
indeed it suffices to associate to an integer partition any partition of the vertices obtained by
putting in the group Xi a set of qi vertices .

We can now use the value pn of the number of integer partitions (see [11]) to obtain the
following proposition which follows from Proposition 1.

I Proposition 2. Algorithm 1 reaches a stable partition in at most pn = Θ((eπ
√

2n
3 )/n)

steps.

Note that this is already far less than 2n, which was shown to be the best upper bound
that one can obtain for k ≥ 4 when using an additive potential function [14].

4 Analysis for k ≤ 2

In [14], the authors proved that for k ≤ 2, Algorithm 1 converges to a stable partition in at
most a quadratic time (by using a potential function). Indeed when performing a 1-deviation
−→α [p, q], a vertex moves from a group of size q + 1 to a group of size p− 1 (with p ≥ q + 2);
the utility of this vertex increases by p − q − 1, the utility of the q other vertices of the
group of size q + 1 decreases by 1, while the utility of the vertices of the group of size p− 1
increases by 1. So the global utility increases by 2p− 2q − 2 ≥ 2 as p ≥ q + 2. Furthermore,
in a k-stable partition, the utility of a vertex is at most n − 1 and the global utility is at
most n(n− 1)/2. As a result, L(k, n) = O(n2).

In the next subsections we improve this result as we completely solve this case and give
the exact (non-asymptotic) value of L(k, n) when k ≤ 2. The gist of the proof is to use a
partial ordering that was introduced in [3], and is sometimes called the dominance ordering.

4.1 Exact analysis for k = 1 and empty conflict graph
In [3] the author has defined an ordering over the integer partitions, sometimes called the
dominance ordering which creates a lattice of integer partitions. This ordering is a direct
application of the theory of majorization to integer partitions [17].

I Definition 3. (dominance ordering) Given two integer partitions of n ≥ 1, Q =
(q1, q2, . . . , qn) and Q′ = (q′1, q′2, . . . , q′n), we say that Q′ dominates Q if

∑i
j=1 q

′
j ≥

∑i
j=1 qj ,

for all 1 ≤ i ≤ n.

The example of Figure 2 shows the dominance lattice for n = 7. We did not write in the
figure the integers equal to 0.

The two next lemmas show that there is a one to one mapping between chains in the
dominance lattice and sequences of 1-deviations in the empty conflict graph.
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I Lemma 4. Let P be a partition of the vertices and P ′ be the partition obtained after a
1-deviation ϕ. Then, the integer partition Q′ = Q(P ′) dominates Q = Q(P ).

Proof. In the 1-deviation ϕ a vertex v moves from a group Xk to a group Xj with qj =
|Xj | ≥ qk = |Xk|. W.l.o.g. we can suppose that the groups (ranked in non increasing
order of size) are ranked in a such a way that Xj is the first group with size |Xj | and Xk

the last group with size |Xk|. Thus, the integer partition Q(P ) associated to P satisfies
q1 ≥ q2 . . . ≥ qj−1 > qj ≥ qj+1 . . . ≥ qk > qk+1 . . . ≥ qn. After the move the groups of P ′
are the same as those of P except we have replaced Xj with the group Xj ∪ v and Xk with
Xk − v. Therefore the integer partition Q′ associated to P ′ has the same elements as Q
except q′j = qj + 1 and q′k = qk − 1 and so, Q′ dominates Q. Note that this lemma holds for
any conflict graph. J

In the case n = 7, consider the partition P with one group of size 3, one of size 2 and
two of size 1. The integer partition associated to P is Q = (3, 2, 1, 1, 0, 0, 0). Let ϕ be the
1-deviation where a vertex in the group of size 1 moves to the group of size 3. We obtain the
partition P ′ with one group of size 4, one of size 2 and one of size 1. The integer partition
associated to P ′ is Q′ = (4, 2, 1, 0, 0, 0, 0) which dominates Q.

I Lemma 5. Let G∅ be the empty conflict graph and let Q,Q′ be two integer partitions
of n = |V | such that Q′ dominates Q. For any partition P associated to Q, there exists
another partition P ′ associated to Q′ such that P ′ is obtained from P by doing a sequence of
1-deviations.

Proof. As proved in [3], we have that if Q′ dominates Q then there is a finite sequence of
integer partitions Q0, . . . , Qr, . . . , Qs,with Q = Q0 and Q′ = Qs such that for each 0 ≤ r < s,
Qr+1 dominates Qr and differs from it only in two elements jr and kr with qr+1

jr
= qrjr

+ 1
and qr+1

kr
= qrkr

− 1.
The proof is now by induction on r, starting from any partition P 0 = P associated to Q.

For r > 0, we consider the partition P r associated to Qr. Recall that Qr and Qr+1 differ
only in the two groups Xjr and Xkr . As qr+1

jr
= qrjr

+ 1 and qr+1
kr

= qrkr
− 1, P r+1 can be

obtained from P r by moving a vertex from Xkr
to Xjr

. This move is valid as the conflict
graph is empty. (Note that the lemma is not valid for a general conflict graph.) J

As an example, consider the two integer partitions Q = (2, 2, 2, 1, 0, 0, 0) and Q′ =
(5, 1, 1, 0, 0, 0, 0) where Q′ dominates Q. The sequence of integer partitions is Q0 = Q,
Q1 = (3, 2, 1, 1, 0, 0, 0), Q2 = (4, 1, 1, 1, 0, 0, 0), Q3 = (5, 1, 1, 0, 0, 0, 0). Partition P 1 is
obtained from P 0 by moving a vertex of a group of size 2 to another group of size 2. Then,
P 2 is obtained by moving a vertex of the group of size 2 to the group of size 3 and P ′ is
obtained from P 2 by moving a vertex of one group of size 1 to that of size 4.

In summary we conclude that a sequence of 1-deviations with an empty conflict graph
corresponds to a chain of integer partitions, and vice versa. Therefore, by Observation 1, the
length of the longest sequence of 1-deviations with an empty conflict graph is the same as
the length of the longest chain in the dominance lattice of integer partitions. Since it has
been proven in [9] that for n = m(m+1)

2 + r, the longest chain in the Dominance Lattice has
length 2

(
m+1

3
)

+mr, we obtain the exact value for L(1, n).

I Theorem 6. Let m and r be the unique non negative integers such that n = m(m+1)
2 + r,

and 0 ≤ r ≤ m. Then, L(1, n) = 2
(
m+1

3
)

+mr.

We note that the proof in [9] is not straightforward. One can think that the longest
chain is obtained by taking among the possible 1-deviations the one which leads to the
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smallest partition in the lexicographic order. Unfortunately this is not true. Indeed let
n = 9. After 6 steps we get the integer partition (3, 3, 2, 1, 0, 0, 0, 0, 0). Then, by choosing
the 1-deviation that gives the smallest partition (in the lexicographic order), we get the
partition (3, 3, 3, 0, 0, 0, 0, 0, 0) and then (4, 3, 2, 0, 0, 0, 0, 0, 0). But there is a longer chain
of length 3 from (3, 3, 2, 1, 0, 0, 0, 0, 0) to (4, 3, 2, 0, 0, 0, 0, 0, 0), namely, (4, 2, 2, 1, 0, 0, 0, 0, 0),
(4, 3, 1, 1, 0, 0, 0, 0, 0), (4, 3, 2, 0, 0, 0, 0, 0, 0). However the proof in [9] implies that the following
simple construction works for any n. (see the full version).

I Proposition 7. A longest sequence of 1-deviations in the empty conflict graph is obtained
by choosing, at a given step, among all the possible 1-deviations, any one of which leads to
the smallest increase of the global utility.

4.2 Analysis for k = 2

Interestingly we will prove that any 2-deviation can be replaced either by one or two
1-deviations and so, we will prove in Theorem 9 that L(2, n) = L(1, n).

I Claim 8. If the conflict graph G− is empty, then any 2-deviation can be replaced either by
one or two 1-deviations

Proof. Consider a 2-deviation which is not a 1-deviation. In that case case two vertices ui
and uj leave their respective group Xi and Xj (which can be the same) to join a group
Xk. Let |Xi| ≥ |Xj |; in order for the utility of the vertices to increase, we should have
|Xk| ≥ |Xi| − 1 (≥ |Xj | − 1).

Case 1: |Xk| ≥ |Xj |. In that case the 2-deviation can be replaced by a sequence of two
1-deviations where firstly a vertex uj leaves Xj to join Xk and then a vertex ui leaves Xi

to join the group Xk ∪ uj whose size is now at least that of Xi.
Case 2: |Xk| = |Xi| − 1 = |Xj | − 1 = p− 2 and Xi = Xj . In that case the effect of the
2-deviation is to replace the group Xi of size p−1 with a group of size p−3 and to replace
the group Xk of size p− 2 with a group of size p. Said otherwise, the difference vector
−→ϕ associated to the 2-deviation has as non null coordinates ϕp = 1, ϕp−1 = −1, ϕp−2 =
−1, ϕp−3 = 1. We obtain the same effect by doing the 1-deviation −→α [p− 1, p− 2] where
a vertex leaves Xk to join Xi.
Case 3: |Xk| = |Xi| − 1 = |Xj | − 1 = p − 2 and Xi 6= Xj . In that case the effect
of the 2-deviation is to replace the 2 groups Xi and Xj of size p − 1 with two groups
of size p − 2 and to replace the group Xk of size p − 2 with a group of size p. Said
otherwise, the difference vector −→ϕ associated to the 2-deviation has as non null coordinates
ϕp = 1, ϕp−1 = −2, ϕp−2 = 1. We obtain the same effect by doing the 1-deviation
−→α [p− 1, p− 1] where a vertex leaves Xj to join Xi.

Note that the fact that G− is empty is needed for the proof. Indeed, in the case 2, it might
happen that all the vertices of Xk have some enemy in Xi and so, the 1-deviation we describe
is not valid. Similarly, in case 3, it might happen that all the vertices of Xi have some enemy
in Xj and so, the 1-deviation we describe is not valid. J

I Theorem 9. L(2, n) = L(1, n).

Proof. Clearly, L(2, n) ≥ L(1, n) as any 1-deviation is also a 2-deviation. By Observation 1,
the value of L(2, n) is obtained when the conflict graph G− is empty. In that case, Claim 8
implies that L(2, n) ≤ L(1, n). J
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4.3 Analysis for k ≤ 2 and a general conflict graph
Using the potential function introduced at the beginning of this section, Panagopoulou and
Spirakis ([18]) proved that for every conflict graph G− with independence number α(G−),
the convergence of the dynamics is in O(nα(G−)). Indeed as we have seen each 1-deviation
increases the global utility by at least 2. But the global utility of a stable partition is at most
n(α(G−)− 1) as the groups have maximum size α(G−). If the conflict graph is empty we
have seen that L(1, n) = Θ(n3/2) that is in that case O(n

√
α(G−)). This led one of us ([6],

page 131) to conjecture that in the case of 1-deviations the worst time of convergence of the
dynamics is O(n

√
α(G−)). We disprove the conjecture by proving the following theorem:

I Theorem 10. For n =
(
m+1

2
)
, there exists a conflict graph G− with α(G−) = m = Θ(

√
n)

and a sequence of
(
m+1

3
)
valid 1-deviations, that is a sequence of Ω(n 3

2 ) = Ω(nα(G−))
1-deviations.

Proof. We will use part of the construction of Greene and Kleitman ([9]). Namely, they
prove that, if n =

(
m+1

2
)
, there is a sequence of

(
m+1

3
)

1-deviations transforming the partition
P1 consisting of n groups each of size 1 (the coordinates of

−→
Λ (P1) satisfy λ1 = n) into the

partition Pm consisting of m groups, one of each possible size i for 1 ≤ i ≤ m (the coordinates
of
−→
Λ (Pm) satisfy λi = 1 for 1 ≤ i ≤ m). Furthermore they prove that the moves used

are V -steps (see the proof of proposition 7 in the full version) which are nothing else than
−→α [p+ 1, p− 1] for some p (one vertex leaves a group of size p to join a group of the same size
p). One can note that in such a move the utility increases only by 2 and as the total utility
of Pm is

∑m
i=1 i(i− 1) = (m+ 1)m(m− 1)/3 the number of moves is (m+ 1)m(m− 1)/6.

The conflict graph of the counterexample will consist of m complete graphs Kj , 1 ≤ j ≤ m
where Kj has exactly j vertices. An independent set is therefore formed by taking at most
one vertex in each Kj and α(G−) = m. We will denote the elements of Kj by {xji} with
1 ≤ i ≤ j ≤ m. The group of Pm of size i will be Xi =

⋃
xji with m + 1 − i ≤ j ≤ m. So

these groups are independent sets.
Recall that n = m(m + 1)/2. For each p, 1 ≤ p ≤ m let us denote by Pp the partition

consisting of 1 group of each size i for 1 ≤ i ≤ p and n− p(p+ 1)/2 groups of size 1 (said
otherwise the coordinates of

−→
Λ (Pp) satisfy λi = 1 for 2 ≤ i ≤ p and λ1 = 1 + n− p(p+ 1)/2).

We will now describe the sequence −→σ [p− 1] of p(p− 1)/2 1-deviations which transform the
partition Pp−1 into Pp. One way to do the Greene-Keitman sequence is obtained by doing
successively the sequences

∑m
p=2
−→σ [p − 1]. More precisely we will prove by induction the

following fact:

I Claim 11. There exists a sequence −→σ [p−1] of p(p−1)/2 valid 1-deviations which transform
the partition Pp−1 into Pp such that after this sequence the group Xi[p] of size i, 1 ≤ i ≤ p
contains exactly the vertices Xi[p] =

⋃
xji+m−p with m+ 1− i ≤ j ≤ m.

Proof. (see example given after the proof)
We suppose we have built the sequence till p− 1 and that, for 1 ≤ i ≤ p− 1, Xi[p− 1] =⋃
xji+m−p+1 with m+1− i ≤ j ≤ m. In a first phase we consider the subpartition of n−p+1

elements obtained by removing the group Xp−1[p − 1]. Namely, this above subpartition
consists of the groups Xi[p − 1] for 1 ≤ i ≤ p − 2 and groups of size 1. In particular, the
subpartition is isomorphic to Pp−2 with p− 1 singleton groups removed. Our construction
ensure that these p − 1 singleton groups that are missing are not used for −→σ [p − 2]. So,
we can do the transformation −→σ [p − 2] consisting of (p − 1)(p − 2)/2 valid moves on the
partition of n − p + 1 elements not contained in Xp−1[p − 1]. It gives rise to the groups
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Figure 3 Illustration for Example 4.

Xi[p] = Xi−1[p − 1] + xm+1−i
i+m−p. Note that at this stage we have two groups of size p − 1,

namely, the original one Xp−1[p − 1] and the new one constructed Xp−1[p]. The second
phase consists in doing p− 1 successive 1-deviations with the vertex xm+1−p

m . More precisely
we move this vertex to the group X1[p] created in the first phase, then from this group to
X2[p] and so on till Xp−2[p] and finally from Xp−2[p] to the original Xp−1[p− 1]. The moves
are valid as we move a vertex from Km+1−p and the groups did not contain any vertex of
this complete graph. Groups created in the first phase are eventually left unchanged as
xm+1−p
m joins such groups and then leaves them. Finally we have constructed a new group
Xp[p] = Xp−1[p− 1] ∪ xm+1−p

m . The groups are exactly those described in the claim. J

In order to end the proof of Theorem 10, it suffices to note that the groups Xi form an
independent set and that after

∑m
p=2
−→σ [p− 1] we have obtained the desired groups of Pm

which gives the counterexample. J

Example for m = 4. (See Figure 3.)
After −→σ [1], we have the 2 groups X2[2] = x4

4 ∪ x3
4 and X1[2] = x4

3.
First phase of −→σ [2]: we do the move of −→σ [1] on the vertices not in X2[2] and create the
groups X2[3] = x4

3 ∪ x3
3 and X1[3] = x4

2.
Second phase of −→σ [2]: now we move x2

4 to X1[3] and then from X1[3] to the original
X2[2] = x4

4 ∪ x3
4, thereby creating the group X3[3] = x4

4 ∪ x3
4 ∪ x2

4.
First phase of −→σ [3]: we do the 3 moves of −→σ [2] on the vertices not in X3[3] and create
the groups X3[4] = x4

3 ∪ x3
3 ∪ x2

3, X2[4] = x4
2 ∪ x3

2, X1[4] = x4
1.

Second phase of −→σ [3]: now we move x1
4 to X1[4] , then from X1[4] to X2[4] and finally

from X2[4] to the original X3[3] = x4
4 ∪ x3

4 ∪ x2
4, thereby creating the group X4[4] =

x4
4 ∪ x3

4 ∪ x2
4 ∪ x1

4.

We can prove a theorem analogous to Theorem 10 for any independence number α(G−).

I Theorem 12. For any α = O(
√
n), there exists a conflict graph G− with n vertices and

independence number α(G−) = α, and a sequence of at least Ω(nα) 1-deviations to reach a
stable partition.

Proof. Let G−0 be the graph of Theorem 10 for m = α. G−0 has n0 = O(α2) vertices,
independence number α, and furthermore there exists a sequence of Θ(α3) valid 1-deviations
for G−0 . Let G− be the graph obtained by taking the complete join of k = n/n0 copies of
G−0 (i.e., we add all possible edges between every two copies of G−0 ). By construction, G−
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has order n = kn0 = O(nα2) and the same independence number α as G−0 . Furthermore,
there exists a sequence of kΘ(α3) = Ω(nα) valid 1-deviations for G−. J

Note that in any 2-deviation the global utility increases by at least 2 and so the number
of 2 deviations when the conflict graph has independence number α(G−) is also at most
O(nα(G−)). This bound is attained by using only 1-deviations as proved in Theorem 12,
which is also valid for k = 2.

5 Lower bounds for k > 2

The classical dominance ordering does not suffice to describe all k-deviations as soon as k ≥ 3.
As noted before, there is only one k-stable partition Pmax in the empty conflict graph G∅,
namely, the one consisting of one group of size n, with integer partition Qmax = (n, 0, . . . , 0)
and partition vector (1, 0, . . . , 0). Let d(Q) be the length of a longest sequence in the
dominance lattice from the integer partition Q to the integer partition Qmax. For k = 4
let P be the partition consisting of 4 groups of size 4 and one group of size 1 with integer
partition Q = (4, 4, 4, 4, 1). Apply the 4-deviation where one vertex of each group of size 4
joins the group of size 1; it leads to the partition P ′ with integer partition Q′ = (5, 3, 3, 3, 3).
Q is covered in the dominance lattice by the integer partition (5, 4, 4, 3, 1) while Q′ is at
distance 3 from it via (5, 4, 3, 3, 2) and (5, 4, 4, 2, 2) and so, d(Q′) = d(Q) + 2.

Prior to our work, it was known that L(3, n) = O(n3) ( [14]). But nothing proved that
L(3, n) > L(2, n), and in fact it was conjectured in [7] that both values are equal. Theorem 13
proves for the first time that deviations can delay convergence and that the gap between
k = 2 and k = 3 obtained from potential function is indeed justified. It was also conjectured
in [14] that L(k, n) was polynomial in n for k fixed. We disprove this conjecture and prove
in Theorem 14 a much more significant result: 4-deviations are responsible for a sudden
complexity increase, as we prove that no polynomial bounds exist for L(4, n).

I Theorem 13. L(3, n) = Ω(n2).

I Theorem 14. L(4, n) = Ω(nΘ(ln(n))).

The main idea of the proofs consists in doing repeated shifted sequences (called cascades)
of deviations similar to the ones given in the example above. The proof of Theorem 13 can
be found in the full version. In the next section, we give the proof of Theorem 14 for k = 4.
We use sequences (cascades) of 4-deviations, called δ[p], and various additional tricks such
that the repetition of the process by using cascades of cascades. Our motivation for using
δ[p] as a basic building block for our construction is that it is the only type of 4-deviation
which decreases the global utility.

5.1 Case k = 4. Proof of Theorem 14
Definition of δ[p]: Consider a partition P containing at least 4 groups of size p− 1 and 1
group of size p− 4. In the 4-deviation δ[p] one vertex in each of the 4 groups of size p− 1
moves to the group of size p− 4 to form a new group of size p. The example given at the
beginning of this section corresponds to the case p = 5. The coordinates of the associated
difference vector (where we omit the bracket [p] for ease of reading) are:

Figure 4 gives a visual description of these cascades. Here we start with a sequence of
t 4-deviations δ[p] represented by black rectangles (t = 16 in the figure). The cascade so
obtained, called

−→
δ 1[p, t], is represented in red. Then we do (t− 2) such cascades represented
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Table 2 Difference vector of δ[p].

... δp δp−1 δp−2 δp−3 δp−4 ...
...0 1 -4 4 0 -1 0...

Figure 4 Cascades of cascades.

by red rectangles getting the cascade
−→
δ 2[p, t − 2] represented in yellow which contains

224(= 16 · 14) 4-deviations. We apply some 1-deviations to get a deviation called
−→
ζ 2[p] with

the so-called Nice Property enabling us to do recursive constructions. We do a cascade of
these

−→
ζ 2[p] (shifted by 2) represented by yellow rectangles getting the blue cascade called

−→
ζ 3[p]. We do a cascade of these

−→
ζ 3[p] (shifted by 3) represented by blue rectangles getting

the green cascade called
−→
ζ 4[p] and we finally do a cascade of these

−→
ζ 4[p] (shifted by 5)

represented by green rectangles getting the grey cascade called
−→
ζ 5[p]. The reader has to

realize that, in this example,
−→
ζ 5[p] contains 3 cascades

−→
ζ 4[p] each containing 5 cascades

−→
ζ 3[p] each consisting of 7 cascades

−→
ζ 2[p]. Altogether the cascade

−→
ζ 5[p] of this example

contains 23520 4-deviations δ[p].

The cascade
−→
δ 1[p, t]: we first do a cascade consisting of a sequence of t shifted 4-deviations

δ[p], δ[p − 1], . . . , δ[p − t + 1], for some parameter t which will be chosen later to give the
maximum number of 4-deviations.

The reader can follow the construction in Table 3 with t = 7. The coordinates of
−→
δ 1[p, t],

are given in Claim 15 and Table 4. We note that there are lot of cancellations and only 8
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Table 3 Computation of δ1[p, 7].

...0 p p-1 p-2 p-3 p-4 p-5 p-6 p-7 p-8 p-9 p-10 0...
δ[p] ...0 1 -4 4 0 -1 0 0 0 0 0 0 0...

+δ[p− 1] ...0 0 1 -4 4 0 -1 0 0 0 0 0 0...
+δ[p− 2] ...0 0 0 1 -4 4 0 -1 0 0 0 0 0...
+δ[p− 3] ...0 0 0 0 1 -4 4 0 -1 0 0 0 0...
+δ[p− 4] ...0 0 0 0 0 1 -4 4 0 -1 0 0 0...
+δ[p− 5] ...0 0 0 0 0 0 1 -4 4 0 -1 0 0...
+δ[p− 6] ...0 0 0 0 0 0 0 1 -4 4 0 -1 0...
=
−→
δ 1[p, 7] ...0 1 -3 1 1 0 0 0 -1 3 -1 -1 0...

Table 4 Difference vector δ1[p, t].

... δ1
p δ1

p−1 δ1
p−2 δ1

p−3 ... δ1
p−t δ1

p−t−1 δ1
p−t−2 δ1

p−t−3 ...
...0 1 -3 1 1 0...0 -1 3 -1 -1 0...

non zero coordinates. Indeed consider the groups of size p − i for 4 ≤ i ≤ t − 1; we have
deleted such a group when doing the 4-deviation

−→
δ [p+ 4− i], then created 4 such groups

with
−→
δ [p+ 2− i], then deleted 4 such groups with

−→
δ [p+ 1− i], and finally created one with

−→
δ [p− i]. The reader can follow these cancellations in Table 3 for i = 4, 5, 6. The variation
of the number of groups of a given size p− i (which correspond to the coordinate δ1

p−i) is
obtained by summing the coefficients appearing in the corresponding column and so is 0 for
p− 4, p− 5, p− 6.

I Claim 15. For 3 ≤ t ≤ p − 3, the coordinates of the cascade
−→
δ 1[p, t] =

∑t−1
i=0
−→
δ [p − i]

satisfy: δ1
p = 1, δ1

p−1 = −3, δ1
p−2 = 1, δ1

p−3 = 1, δ1
p−t = −1, δ1

p−t−1 = 3, δ1
p−t−2 = −1,

δ1
p−t−3 = −1, and δ1

j = 0 for all the others j (see Table 4).

Proof. We have δ1
j =

∑t−1
i=0 δj [p − i]. For a given j, δj [p − i] = 0 except for the following

values of i such that 0 ≤ i ≤ t−1: i = p−j where δj [j] = 1; i = p−j−1 where δj [j+1] = −4;
i = p−j−2 where δj [j+2] = 4; i = p−j−4 where δj [j+4] = −1 (in the table it corresponds
to the non zero values in a column, whose number is at most 4). Therefore, for j > p:
δ1
j = 0 ; δ1

p = 1; δ1
p−1 = −4 + 1 = −3; δ1

p−2 = 4 − 4 + 1 = 1; δ1
p−3 = 0 + 4 − 4 + 1 = 1;

for p − 4 ≥ j ≥ p − t + 1, δ1
p−j = −1 + 0 + 4 − 4 + 1 = 0; δ1

p−t = −1 + 0 + 4 − 4 = −1;
δ1
p−t−1 = −1 + 0 + 4 = 3; δ1

p−t−2 = −1 + 0 = −1; δ1
p−t−3 = −1 and, for j ≤ p − t − 4,

δ1
j = 0. J

Validity of the cascades. We have to see when the cascades are valid, that is, to determine
how many groups we need at the beginning. For the cascade

−→
δ 1[p, t] we note that the

coordinates of any subsequence of the cascade, i.e., the coordinates of some
−→
δ 1[p, r], are all

at least −1 except δ1
p−1: which is −4 when r = 1 and then −3. Therefore such a cascade is

valid as soon as we have at least 4 groups of size p− 1 and one group of each other size p− i
(2 ≤ i ≤ t + 3). To deal in general with the validity of cascades let us now introduce the
notion of h-balanced sequence.

I Definition 16. Let h be a positive integer and let −→Φ =
∑s
j=1
−→ϕ j be a cascade consisting

of s k-deviations. We call this cascade h-balanced if, for any 1 ≤ i ≤ s, the sum of the i first
vectors, namely,

∑i
j=1
−→ϕ j , has all its coordinates greater than or equal to −h.
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Table 5 Computation of δ2[p, 5].

... p p-1 p-5 p-9 p-13 p-14 ...
δ1[p, 7] ...0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...

+δ1[p-1,7] ...0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-2,7] ...0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-3,7] ...0 0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0 ...
+δ1[p-4,7] ...0 0 0 0 0 1 -3 1 1 0 0 0 -1 3 -1 -1 0...
=
−→
δ 2[p, 5] ...0 1 -2 -1 0 0 -1 2 0 2 1 0 0 1 -2 -1 0...

Table 6 Difference vector δ2[p, t− 2].

... δ2
p δ2

p−1 δ2
p−2 ... δ2

p−t+2 δ2
p−t+1 δ2

p−t δ2
p−t−1 δ2

p−t−2 ... δ2
p−2t+2 δ2

p−2t+1 δ2
p−2t ...

0 1 -2 -1 0 -1 2 0 2 1 0 1 -2 -1 0

For example, the cascade
−→
δ 1[p, t] described before is 4-balanced. The interest of this

notion lies in the following fact: Let pmax be the largest index j that satisfies −→Φ j 6= 0. Then,
if we start from a partition with at least h groups of each size j, for 1 ≤ j ≤ pmax, an
h-balanced sequence is valid.

Note that a sequence is itself composed of sub-sequences and the following lemma will be
useful to bound the value h of a sequence.

I Lemma 17. Let −→Φ 1 be an h1-balanced sequence and −→Φ 2 be an h2-balanced sequence. Then,−→Φ 1 +−→Φ 2 is a (max {h1, h2 −miniΦ1
i })-balanced sequence.

Proof. As −→Φ 1 is h1-balanced, the coordinates of any subsequence of −→Φ 1 are greater than or
equal to −h1. Consider a subsequence −→Φ 1 +−→Φ 3 where −→Φ 3 is a subsequence of −→Φ 2. The j-th
coordinate is Φ1

j +Φ3
j ; by definition Φ3

j ≥ −h2 and so, Φ1
j +Φ3

j ≥ Φ1
j −h2 ≥ miniΦ1

i −h2. J

The cascade
−→
δ 2[p, t−2]: We do now the following sequence of t−2 cascades

−→
δ 2[p, t−2] =∑t−3

i=0
−→
δ 1[p− i, t]. Altogether we have a sequence of t(t− 2) 4-deviations. There are a lot of

cancellations and in fact, as shown in Claim 18,
−→
δ 2[p, t− 2] has only 10 non zero coordinates.

Table 5 describes an example of computation of
−→
δ 2[p, t− 2] with t = 7.

I Claim 18. For 3 ≤ t ≤ p
2 , the coordinates of the cascade

−→
δ 2[p, t− 2] =

∑t−3
i=0
−→
δ 1[p− i, t]

satisfy: δ2
p = 1, δ2

p−1 = −2, δ2
p−2 = −1, δ2

p−t+2 = −1, δ2
p−t+1 = 2, δ2

p−t−1 = 2, δ2
p−t−2 = 1,

δ2
p−2t+2 = 1, δ2

p−2t+1 = −2, δ2
p−2t = −1, and δ2

j = 0 for all the others j (see Table 6).
Furthermore this cascade is 4-balanced.

Proof. We have δ2
j =

∑t−3
i=0 δ

1
j [p− i, t]. Using the values of δ1

j [p− i, t], we get that: for j > p,
δ2
j = 0; δ2

p = 1; δ2
p−1 = −3 + 1 = −2; δ2

p−2 = 1 − 3 + 1 = −1; for p − 3 ≥ j ≥ p − t + 3,
δ2
j = 1 + 1 − 3 + 1 = 0; δ2

p−t+2 = 1 + 1 − 3 = −1; δ2
p−t+1 = 1 + 1 = 2; δ2

p−t = −1 + 1 = 0;
δ2
p−t−1 = 3−1 = 2; δ2

p−t−2 = −1+3−1 = 1; for p−t−3 ≥ j ≥ p−2t+3, δ2
j = −1−1+3−1 = 0;

δ2
p−2t+2 = −1− 1 + 3 = 1; δ2

p−2t+1 = −1− 1 = −2, δ2
p−2t = −1, and for j < p− 2t, δ2

j = 0.
Using Lemma 17 we get that

−→
δ 2[p, t − 2] is 7-balanced; but a careful analysis shows

that this sequence is in fact 4-balanced. Indeed we will prove by induction that
−→
δ 2[p, r] =∑r−1

i=0
−→
δ 1[p − i, t] is 4-balanced for any r ≤ t − 3. That is true for r = 1, as

−→
δ 1[p, t] is

4-balanced. Suppose that it is true for r. We have
−→
δ 2[p, r + 1] =

−→
δ 2[p, r] +

−→
δ 1[p− r − 1, t].

All the coordinates of
−→
δ 2[p, r] are by the computation above at least −3, and the coordinates
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Table 7 Difference vector ζ2[p].

... ζ2
p ζ2

p−1 ζ2
p−2 ζ2

p−3 ... ζ2
p−t ζ2

p−t−1 ... ζ2
p−2t+2 ζ2

p−2t+1 ζ2
p−2t ζ2

p−2t−1 ...
...0 1 0 -1 -1 0...0 1 1 0...0 -1 -1 0 1 0...

of
−→
δ 1[p− r− 1, t] are greater than −1 except for j = p− r− 2 where δ1

p−r−2[p− r− 1] = −4;
but δ2

p−r−2[p, r] = 1 (case r = 1) or 2 (case r > 1) and so, all the coordinates of
−→
δ 2[p, r + 1]

are at least −4. J

At this stage we could continue and do a cascade of
−→
δ 2[p, t − 2] but there is no more

the phenomenon of cancellation. In fact we will use the following “symmetrization” trick.
We will transform the cascade

−→
δ 2[p, t− 2] into a sequence

−→
ζ 2[p] by doing some sequence

of 1-deviations whose coordinates are given in Claim 19 The sequence obtained has only 8
non zero coefficients (4 with values 1 and 4 with values −1) arranged in a very symmetric
nice way (that we will call Nice Property). Furthermore we will be able to iterate a cascade
process on it many times keeping the property.

For p ≥ q + 2, we will denote by −→α [p, q] the 1-deviation, where a vertex leaves a group of
size q+ 1 for a group of size p− 1 (valid as p ≥ q+ 2). Let −→α 1[p, q, r] =

∑r−1
i=0
−→α [p− i, q+ i]

denote a cascade of r such 1-deviations (we need p− r + 1 ≥ q + r + 2 in order it is valid).
The coordinates of −→α 1[p, q, r] are given in the following Claim 19.

I Claim 19. For p− r ≥ q + r + 1, −→α 1[p, q, r] =
∑r−1
i=0
−→α [p− i, q + i] has only 4 non zero

coordinates namely, α1
p = 1, α1

p−r = −1, α1
q+r = −1, and α1

q = 1.

I Claim 20. For 3 ≤ t ≤ p+1
2 , the coordinates of the sequence

−→
ζ 2[p] =

−→
δ 2[p, t− 2] +−→α 1[p−

1, p− 2t− 1, t− 2] +−→α 1[p− 1, p− 2t, 2] +−→α 1[p− t+ 2, p− 2t+ 1, 1] +−→α 1[p− t, p− t− 3, 1]
satisfy: ζ2

p = 1, ζ2
p−2 = −1, ζ2

p−3 = −1, ζ2
p−t = 1, ζ2

p−t−1 = 1, ζ2
p−2t+2 = −1, ζ2

p−2t+1 = −1,
ζ2
p−2t−1 = 1 (see Table 7). Furthermore this cascade is still 4-balanced.

Proof. By Claim 19, we have the following coordinates:
for −→α 1[p− 1, p− 2t− 1, t− 2], α1

p−1 = 1, α1
p−t+1 = −1, α1

p−t−3 = −1, α1
p−2t−1 = 1;

for −→α 1[p− 1, p− 2t, 2], α1
p−1 = 1, α1

p−3 = −1, α1
p−2t+2 = −1, α1

p−2t = 1;
for −→α 1[p− t+ 2, p− 2t+ 1, 1], α1

p−t+2 = 1, α1
p−t+1 = −1, α1

p−2t+2 = −1, α1
p−2t+1 = 1;

for −→α 1[p− t, p− t− 3, 1], α1
p−t = 1, α1

p−t−1 = −1, α1
p−t−2 = −1, α1

p−t−3 = 1.
Therefore, using these values and the values of the coordinates of δ2

j given in claim 18, we
get ζ2

p = 1, ζ2
p−1 = −2 + 1 + 1 = 0, ζ2

p−2 = −1, ζ2
p−3 = 0 − 1 = −1, ζ2

p−t+2 = −1 + 1 = 0,
ζ2
p−t+1 = 2 − 1 − 1 = 0, ζ2

p−t = 0 + 1 = 1, ζ2
p−t−1 = 2 − 1 = 1, ζ2

p−t−2 = 1 − 1 = 0,
ζ2
p−t−3 = 0−1+1 = 0, ζ2

p−2t+2 = 1−1−1 = −1, ζ2
p−2t+1 = −2+1 = −1, ζ2

p−2t = −1+1 = 0
ζ2
p−2t−1 = 0 + 1.

To prove that
−→
ζ 2[p] is 4-balanced, apply Lemma 17 with −→Φ 1 =

−→
δ 2[p, t− 2] and −→Φ 2 =

−→α 1[p−1, p−2t−1, t−2]+−→α 1[p−1, p−2t, 1]+−→α 1[p−t+2, p−2t+1, 1]+−→α 1[p−t, p−t−3, 1].
We have that h1 = 4 and furthermore all the coefficients of −→Φ 1 are greater than −2 and −→Φ 2

is 2-balanced. Hence,
−→
ζ 2[p] is max(4, 2 + 2) = 4-balanced. J

Table 8 shows an example with t = 7.

I Definition 21. Nice Property: Let k ≥ 2 be a positive integer. We will say the
sequence

−→
ζ k[p] has the Nice Property, if there exist 3 integers a(k), b(k), and s(k) satisfying

1 < a(k) < b(k) < 2a(k) and b(k) < s(k)− 1 < p/2 and such that all coordinates of
−→
ζ k are

null except for:
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Table 8 Computation of ζ2[p] with t = 7.

... p p-1 ... p-7 p-8 ... p-15 ...
δ2[p, 5] 0 1 -2 -1 0 0 -1 2 0 2 1 0 0 1 -2 -1 0

+α[p-1,p-15,5] 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0
+α[p-1,p-14,2] 0 0 1 0 -1 0 0 0 0 0 0 -1 0 -1 0 1 0 0
+α[p-5,p-13,1] 0 0 0 0 0 0 1 -1 0 0 0 0 0 -1 1 0 0 0
+α[p-7,p-10,1] 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0

=
−→
ζ 2[p] 0 1 0 -1 -1 0 0 0 1 1 0 0 0 -1 -1 0 1 0

ζkp = ζkp+1−2s(k) = 1,
ζkp−a(k) = ζkp−b(k) = ζkp+1−2s(k)+b(k) = ζkp+1−2s(k)+a(k) = −1, and
ζkp+1−s(k) = ζkp−s(k) = 1.

We note the symmetry of the coordinates, as for any j, ζkp−j = ζkp+1−2s(k)+j . As an
example, the sequence

−→
ζ 2[p] satisfies the Nice Property with a(2) = 2, b(2) = 3 and

s(2) = t + 1 and is 4-balanced. Now we will show how starting with a sequence
−→
ζ k[p]

satisfying the Nice Property we can construct a sequence
−→
ζ k+1[p] having still the Nice

Property.

I Claim 22. Main construction: Let
−→
ζ k[p] be a sequence satisfying the Nice Property

with parameters a(k), b(k), s(k). Then, we can construct a sequence
−→
ζ k+1[p] satisfying the

following properties:−→
ζ k+1[p] satisfies the Nice Property with parameters
a(k + 1) = b(k),
b(k + 1) = b(k) + a(k),
s(k+1) = s(k)+a(k)r(k)/2, where r(k) is the greatest even integer such that r(k)a(k)+
b(k) < s(k)− 1;

if
−→
ζ k[p] is h(k)-balanced, then

−→
ζ k+1[p] is (h(k) + 1)-balanced;

−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p].

Proof. We will first do a cascade of
−→
ζ k[p], but we will take values of the parameters differing

by a multiple of a(k) in order for some of the coordinates to cancel. Specifically, let us define
−→Ψr =

∑r
j=0
−→
ζ k[p− ja(k)]. Using the values of Definition 21, we get the following values for

the non zero coordinates:
(1) ψrp = 1; ψrp−ja(k) = −1 + 1 = 0 for 0 < j ≤ r (cancellation phenomenom); ψrp−(r+1)a(k) =
−1;

(2) ψrp+1−2s(k)+a(k) = −1; ψrp+1−2s(k)−(j−1)a(k) = 1 − 1 = 0 for 0 < j ≤ r (cancellation);
ψrp+1−2s(k)−ra(k) = 1;

(3) for 0 ≤ j ≤ r, ψrp−b(k)−ja(k) = −1;
(4) for 0 ≤ j ≤ r, ψrp+1−2s(k)+b(k)−ja(k) = −1;
(5) for 0 ≤ j ≤ r, ψrp+1−s(k)−ja(k) = ψrp−s(k)−ja(k) = 1.
Since a(k) < b(k) < 2a(k), all the indices of the coordinates are different provided we
choose r even and nonzero such that p − b(k) − ra(k) > p + 1 − s(k) (that is equivalent
to ra(k) + b(k) < s(k) − 1). Let us denote a(k + 1) = b(k), b(k + 1) = b(k) + a(k) and
s(k + 1) = s(k) + a(k)r/2. Then −→Ψr has already part of the Nice Property for k + 1. Indeed
we have:

ψrp = 1 by (1) and ψrp+1−2s(k+1) = 1 by (2) with j = r (as 2s(k + 1) = 2s(k) + ra(k));
ψrp−a(k+1) = ψrp−b(k) = −1, ψrp−b(k+1) = ψrp−b(k)−a(k) = −1 by (3) with j = 0, 1;
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ψrp+1−2s(k+1)+b(k+1) = −1 , ψrp+1−2s(k+1)+a(k+1) = −1 by (4) with j = r − 1, r;
ψrp+1−s(k+1) = ψrp−s(k+1) = 1 by (5) with j = r/2.

The remaining non zero coordinates are in number 4r: firstly there are r values −1,
namely, ψrp−b(k)−ja(k) = −1, for 2 ≤ j ≤ r, and ψrp−(r+1)a(k) = −1; then there are 2r values 1,
namely, ψrp+1−s(k+1) = ψrp−s(k+1) = 1, for j 6= r/2; and finally there are r values −1, namely,
ψrp+1−2s(k)+a(k) = −1 and ψrp+1−2s(k)+b(k)−ja(k) = −1, for 0 ≤ j ≤ r − 2. These values are
disposed in a very symmetric way and can be written: for the values −1, in the form ψrp−xm

and ψrp+1−2s(k+1)+xm
; and for the values 1, in the form ψrp−ym

and ψrp+1−2s(k+1)+ym
with

xm < ym (0 ≤ m ≤ r − 1). Furthermore, these r quadruples of values can be canceled by
adding to −→Ψr the r sequences −→α 1[p− xm, p+ 1− 2s(k + 1) + xm, ym − xm].

We claim that the sequence so obtained, with partition vector −→Ψr +
∑r−1
m=0
−→α 1[p−xm, p+

1− 2s(k + 1) + xm, ym − xm], satisfies the Nice Property with parameters a(k + 1), b(k + 1)
and s(k + 1). Indeed a(k + 1) = b(k) < b(k) + a(k) = b(k + 1), b(k + 1) = b(k) + a(k) <
b(k) + b(k) = 2a(k + 1) and b(k + 1) = b(k) + a(k) < s(k)− 1 + a(k) ≤ s(k + 1)− 1 as r ≥ 2.
We also have to ensure in the computations that p is chosen so that p ≥ 2s(k)− 1. In order
to get the maximum number of deviations we will consider this sequence for the largest
possible even integer r satisfying ra(k) + b(k) < s(k)− 1, denoted r(k) and we will denote
the sequence for this r(k) by

−→
ζ k+1[p].

We now prove that
−→
ζ k+1[p] is (h(k)+1)-balanced. We first prove by induction that −→Ψr is

(h(k) + 1)-balanced. That is true for r = 0 as
−→
ζ k[p] is h(k)-balanced. Then suppose it is true

for some r ; we apply Lemma 17 with −→Φ 1 = −→Ψr and −→Φ 2 =
−→
ζ k[p− (r+1)a(k)]. We have that

h1 = h(k) + 1 by induction hypothesis and furthermore all the coefficients of −→Φ 1 are greater
than −1; furthermore −→Φ 2 is h(k)-balanced and so, −→Ψr+1 is (max(h(k)+1, h(k)+1) = h(k)+1)-
balanced. Then when we add an −→α 1[p − xm, p + 1 − 2s(k + 1) + xm, ym − xm] which is
1-balanced we still get an (max(h(k) + 1, 1 + 1) = h(k) + 1-balanced sequence.

Finally, by construction, we get that
−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p]. J

End of the proof of Theorem 14. At this stage we have built a sequence
−→
ζ 2[p] which

satisfies the Nice Property with a(2) = 2, b(2) = 3 and s(2) = t+ 1 and is h(2)=4-balanced.
Furthermore, it contains t(t− 2) 4-deviations. See Claim 20. Then, for some well-chosen K
(to be defined later) we can apply K − 2 times the main construction (Claim 22) to construct
a sequence

−→
ζ K [p] which satisfies the Nice Property with parameters a(K), b(K) and s(K)

and is h(K)-balanced.
We have a(k) = b(k − 1), b(k) = b(k − 1) + a(k − 1) = b(k − 1) + b(k − 2) and so, we

recognize the Fibonacci recurrence relation. The kth Fibonacci number F (k) is denoted as
follows:

F (k) = 1√
5

((
1 +
√

5
2

)k
−
(

1−
√

5
2

)k)
.

Then, as a(2) = 2 = F (3) and b(2) = 3 = F (4), we get a(K) = F (K + 1) and b(K) =
F (K + 2). In fact in what follows we will only use that a(K) ≤ 2K−1 and b(K) ≤ 2K .
We have s(k + 1) = s(k) + a(k)r(k)/2; but a(k)r(k) < s(k − 1) − b(k) < s(k − 1) and so,
s(k + 1) < (3/2)× s(k) and s(K) < s(2)(3/2)K−2 = (t+ 1)(3/2)K−2.

Recall that we should have p ≥ 2s(K) − 1 so we choose p = 2s(K). Furthermore by
induction we have that h(K) = K + 2. So we need to start with a partition containing at
least K + 2 groups of each size i, 1 ≤ i ≤ p. It is easy to obtain such a starting partition
from the initial partition — which consists of n groups of size 1 — by doing a sequence of
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1-deviation of size (K − 2)p(p+ 1)/2; indeed we can create a group of any size i with (i− 1)
1-deviations. Therefore, we will take n = (K − 2)p(p + 1)/2 ≤ (K − 2)s(K)(2s(K) + 1).
Using the inequality s(K) < (t+ 1)(3/2)K−2 we get that

n = O(t2K(3/2)2K). (1)

On the other hand we have to lower bound the number of deviations. By construction−→
ζ k+1[p] contains r(k) + 1 sequences

−→
ζ k[p] and so, contains t(t − 2)

∏K−1
k=2 (r(k) + 1) 4-

deviations, as
−→
ζ 2[p] contains t(t − 2) 4-deviations. Recall that r(k) is the greatest even

integer r such that ra(k) + b(k) < s(k) − 1 and so, r(k) ≥ b s(k)−1−b(k)
a(k) c − 1. Using the

fact that b(k) + 1 ≤ 2a(k) and s(k) > s(2) − 1 = t, and a(k) ≤ a(K) < 2K−1 we get
r(k) ≥ t

2K−1 − 3. Then
∏K−1
k=2 (r(k) + 1) ≥ ( t

2K−1 − 2)K−2 and the number D of deviations
satisfies:

D = Ω(t2( t

2K−1 − 2)K−2). (2)

We have now to choose K as a function of t. In order for the number of deviations
as given by Equation 2 to increase we need that 2K−1 is small compared to t, that is,
K << log2(t). However in view of Equation 1 we want to choose the largest possible
K. Therefore, a good choice is K = 1/2(log2(t)). In that case, we get by Equation 1
that n = O(t2 log2(t)(3/2)log2(t)), or equivalently log2(n) = O(2 log2(t) + log2(log2(t) +
log2(t)(log2(3) − log2(2))). Using log2(3) − log2(2) > 0.585 and the fact that for t large
enough log2(log2(t)) < 0.014 log2(t) we get log2(n) = O(2.6 log2(t)), that is, n = O(t2.6).
On the other hand we get by Equation 2: D = Ω((t1/2)1/2 log2(t)) = Ω(t1/4 log2(t)) and so,
D = Ω(nclog2(n)) with c = 1

4×(2.6)2 ' 1/27, thereby proving Theorem 14.
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