
How Bad is the Freedom to Flood-It?

Rémy Belmonte
The University of Electro-Communications, Chofu, Tokyo, Japan
remy.belmonte@uec.ac.jp

Mehdi Khosravian Ghadikolaei
Université Paris-Dauphine, PSL Research University, CNRS, UMR,
LAMSADE, 75016 Paris, France
mehdi.khosravian-ghadikolaei@dauphine.fr

Masashi Kiyomi
Yokohama City University, Yokohama, Japan
masashi@yokohama-cu.ac.jp

Michael Lampis
Université Paris-Dauphine, PSL Research University, CNRS, UMR,
LAMSADE, 75016 Paris, France
michail.lampis@dauphine.fr

Yota Otachi
Kumamoto University, Kumamoto, Japan
otachi@cs.kumamoto-u.ac.jp

https://orcid.org/0000-0002-0087-853X

Abstract
Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a
very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to
produce a monochromatic (“flooded”) graph as quickly as possible. Their difference is that in
Free-Flood-It the player has the additional freedom of choosing the vertex to play in each
move. In this paper, we investigate how this freedom affects the complexity of the problem. It
turns out that the freedom is bad in some sense. We show that some cases trivially solvable for
Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable
cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more
involved arguments. We finally present some combinatorial properties connecting or separating
the two problems. In particular, we show that the length of an optimal solution for Fixed-
Flood-It is always at most twice that of Free-Flood-It, and this is tight.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases flood-filling game, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.5

Related Version A full version of the paper is available at http://arxiv.org/abs/1804.08236.

Funding This work is partially supported by JSPS and MAEDI under the Japan-France Inte-
grated Action Program (SAKURA) Project GRAPA 38593YJ.

© Rémy Belmonte, Mehdi Khosravian Ghadikolaei, Masashi Kiyomi,
Michael Lampis, and Yota Otachi;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:remy.belmonte@uec.ac.jp
mailto:mehdi.khosravian-ghadikolaei@dauphine.fr
mailto:masashi@yokohama-cu.ac.jp
mailto:michail.lampis@dauphine.fr
mailto:otachi@cs.kumamoto-u.ac.jp
https://orcid.org/0000-0002-0087-853X
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.5
http://arxiv.org/abs/1804.08236
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 How Bad is the Freedom to Flood-It?

1

1

1

2 2

23

3 3

3
1

1

2 2

23

3 3

3
1

1

1

2 2

2

1

1

1 1

2
2

2 2

2

222

2

2

Figure 1 A flooding sequence on a 3 × 3 grid.

1

1

1

2 2

23

3 3

1

1

2 2

2
1

1

1

1

1

1 111

1

1
1

1

11

Figure 2 A flooding sequence with no restriction on selected monochromatic components.

1 Introduction

Flood-It is a popular puzzle, originally released as a computer game in 2006 by LabPixies (see
[1]). In this game, the player is presented with (what can be thought of as) a vertex-colored
grid graph, with a designated special pivot vertex, usually the top-left corner of the grid.
In each move, the player has the right to change the color of all vertices contained in the
same monochromatic component as the pivot to a different color of her choosing. Doing this
judiciously gradually increases the size of the pivot’s monochromatic component, until the
whole graph is flooded with one color. The goal is to achieve this flooding with the minimum
number of moves. See Figure 1 for an example.

Following the description above, Flood-It immediately gives rise to a natural optimization
problem: given a vertex-colored graph, determine the shortest sequence of flooding moves
that wins the game. This problem has been extensively studied in the last few years (e.g.
[10, 12, 14, 13, 7, 3, 17, 4, 15, 9]; a more detailed summary of known results is given
below), both because of the game’s popularity (and addictiveness!), but also because the
computational complexity questions associated with this problem have turned out to be
surprisingly deep, and the problem has turned out to be surprisingly intractable.

The goal of this paper is to add to our understanding of this interesting, puzzle-inspired,
optimization problem, by taking a closer look at the importance of the pivot vertex. As
explained above, the classical version of the game only allows the player to change the
color of a special vertex and its component and has been studied under the name Fixed-
Flood-It [12, 14, 13] (or Flood-It in some papers [1, 17, 3, 4, 9]). However, it is extremely
natural to also consider a version where the player is also allowed to play a different vertex
of her choosing in each turn. This has also been well-studied under the name Free-Flood-
It [1, 10, 12, 14, 13, 3, 17]. See Figure 2.

Since both versions of this problem have been studied before, the question of the impact
of the pivot vertex on the problem’s structure has (at least implicitly) been considered.
Intuitively, one would expect Free-Flood-It to be a harder problem; after all, the player
has to choose a color to play and a vertex to play it on, and is hence presented with a
larger set of possible moves. The state of the art seems to confirm this intuition, as only
some of the positive algorithmic results known for Fixed-Flood-It are known also for
Free-Flood-It, while there do exist some isolated cases where Fixed-Flood-It is tractable
and Free-Flood-It is hard, for example co-comparability graphs [5, 7] and grids of height 2
[1, 13]. Nevertheless, these results do not completely pinpoint the added complexity brought
by the task of selecting a vertex to play, as the mentioned algorithms for Fixed-Flood-It
are already non-trivial, and hence the jump in complexity is likely to be the result of the
combination of the tasks of picking a color and a vertex. More broadly, [3] presented a

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:3

generic reduction from Fixed-Flood-It to Free-Flood-It that preserves a number of
crucial parameters (number of colors, optimal value, etc.) and gives convincing evidence that
Free-Flood-It is always at least as hard as Fixed-Flood-It, but not necessarily harder.

Our Results: We investigate the complexity of Free-Flood-It, mostly from the point of
view of parameterized complexity,1 as well as the impact on the combinatorics of the game
of allowing moves outside the pivot. Due to space constraints, some proofs are ommited and
marked with F.

Our first result is to show that Free-Flood-It is W[2]-hard parameterized by the number
of moves in an optimal solution. We recall that for Fixed-Flood-It this parameterization
is trivially fixed-parameter tractable: when a player has only k moves available, then we can
safely assume that the graph uses at most (roughly) k colors, hence one can easily consider
all possible solutions in FPT time. The interest of our result is, therefore, to demonstrate
that the task of deciding which vertex to play next is sufficient to make Free-Flood-It
significantly harder than Fixed-Flood-It. Indeed, the W[2]-hardness reduction we give,
implies also that Free-Flood-It is not solvable in no(k) time under the ETH. This tightly
matches the complexity of a trivial algorithm which considers all possible vertices and colors
to be played. This is the first concrete example showing a case where Fixed-Flood-It is
essentially trivial, but Free-Flood-It is intractable.

Motivated by this negative result we consider several other parameterizations of the
problem. We show that Free-Flood-It is fixed-parameter tractable when parameterized
by the number of possible moves and the clique-width. This result is tight in the sense that
the problem is hard when parameterized by only one of these parameters. It also implies
the fixed-parameter tractability of the problem parameterized by the number of colors and
the modular-width. In a similar vein, we present a polynomial kernel when Free-Flood-It
is parameterized by the input graph’s neighborhood diversity and number of colors. An
analogous result was shown for Fixed-Flood-It in [4], but because of the freedom to
select vertices, several of the tricks used there do not apply to Free-Flood-It, and our
proofs are slightly more involved. Our previously mentioned reduction also implies that
Free-Flood-It does not admit a polynomial kernel parameterized by vertex cover, under
standard assumptions. This result was also shown for Fixed-Flood-It in [4], but it does
not follow immediately for Free-Flood-It, as the reduction of [3] does not preserve the
graph’s vertex cover.

Motivated by the above results, which indicate that the complexity of the problem can be
seriously affected if one allows non-pivot moves, we also study some more purely combinatorial
questions with algorithmic applications. The main question we pose here is the following.
It is obvious that for all instances the optimal number of moves for Free-Flood-It is
upper-bounded by the optimal number of moves for Fixed-Flood-It (since the player has
strictly more choices), and it is not hard to construct instances where Fixed-Flood-It needs
strictly more moves. Can we bound the optimal number of Fixed-Flood-It moves needed
as a function of the optimal number of Fixed-Flood-It moves? Somewhat surprisingly, this
extremely natural question does not seem to have been explicitly considered in the literature
before. Here, we completely resolve it by showing that the two optimal values cannot be
more than a factor of 2 apart, and constructing a family of simple instances where they are
exactly a factor of 2 apart. As an immediate application, this gives a 2-approximation for
Free-Flood-It for every case where Fixed-Flood-It is known to be tractable.

1 For readers unfamiliar with the basic notions of this field, we refer to standard textbooks [2, 6].

FUN 2018

5:4 How Bad is the Freedom to Flood-It?

We also consider the problem’s monotonicity: Fixed-Flood-It has the nice property
that even an adversary that selects a single bad move cannot increase the optimal (that is, in
the worst case a bad move is a wasted move). We construct minimal examples which show
that Free-Flood-It does not have this nice monotonicity property, even for extremely
simple graphs, that is, making a bad move may not only waste a move but also make the
instance strictly worse. Such a difference was not explicitly stated in the literature, while
the monotonicity of Fixed-Flood-It was seem to be known or at least assumed. The only
result we are aware of is the monotonicity of Free-Flood-It on paths shown by Meeks and
Scott [12].

Known results: In 2009, the NP-hardness of Fixed-Flood-It with six colors was sketched
by Elad Verbin as a comment to a blog post by Sariel Har-Peled [16]. Independently to the
blog comment, Clifford et al. [1] and Fleischer and Woeginger [5] started investigations of
the complexity of the problem, and published the conference versions of their papers at FUN
2010. Below we mostly summarize some of the known results on Free-Flood-It. For more
complete lists of previous result, see e.g. [7, 10, 4].

Free-Flood-It is NP-hard if the number of colors is at least 3 [1] even for trees with
only one vertex of degree more than 2 [10, 3], while it is polynomial-time solvable for general
graphs if the number of colors is at most 2 [1, 12, 10]. Moreover, it is NP-hard even for
height-3 grids with four colors [12]. Note that this result implies that Free-Flood-It with
a constant number colors is NP-hard even for graphs of bounded bandwidth. If the number
of colors is unbounded, then it is NP-hard for height-2 grids [13], trees of radius 2 [3], and,
proper interval graphs and caterpillars [7]. Also, it is known that there is no constant-factor
approximation with a factor independent of the number of colors unless P = NP [1].

There are a few positive results on Free-Flood-It. Meeks and Scott [14] showed that
every colored graph has a spanning tree with the same coloring such that the minimum
number of moves coincides in the graph and the spanning tree. Using this property, they
showed that if a graph has only a polynomial number of vertex subsets that induce connected
subgraphs, then Free-Flood-It (and Fixed-Flood-It) on the graph can be solved in
polynomial time. This in particular implies the polynomial-time solvability on subdivisions
of a fixed graph. It is also known that Free-Flood-It for interval graphs and split graphs
is fixed-parameter tractable when parameterized by the number of colors [7].

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. Given a graph G = (V, E), a
coloring function col : V → [cmax], where cmax is a positive integer, and u ∈ V , we denote by
Comp(col, u) the maximal set of vertices S such that for all v ∈ S, col(u) = col(v) and there
exists a path from u to v such that for all its internal vertices w we have col(w) = col(u).
In other words, Comp(col, u) is the monochromatic connected component that contains u

under the coloring function col.
Given G, col, a move is defined as a pair (u, i) where u ∈ V , i ∈ [cmax]. The result

of the move (u, c) is a new coloring function col′ defined as follows: col′(v) = c for all
v ∈ Comp(col, u); col′(v) = col(v) for all other vertices. In words, a move consists of
changing the color of u, and of all vertices in the same monochromatic component as u,
to c. Given the above definition we can also define the result of a sequence of moves
(u1, c1), (u2, c2), . . . , (uk, ck) on a colored graph with initial coloring function col0 in the
natural way, that is, for each i ∈ [k], coli is the result of move (ui, ci) on coli−1.

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:5

The Free-Flood-It problem is defined as follows: given a graph G = (V, E), an
integer k, and an initial coloring function col0, decide if there exists a sequence of k moves
(u1, c1), (u2, c2), . . . , (uk, ck) such that the result colk obtained by applying this sequence of
moves on col0 is a constant function (that is, ∀u, v ∈ V we have colk(u) = colk(v)).

In the Fixed-Flood-It problem we are given the same input as in the Free-Flood-It
problem, as well as a designated vertex p ∈ V (the pivot). The question is again if there
exists a sequence of moves such that colk is monochromatic, with the added constraint that
we must have ui = p for all i ∈ [k].

We denote by OPTFree(G, col),OPTFixed(G, col, p) the minimum k such that for the
input (G, col) (or (G, col, p) respectively) the Free-Flood-It problem (respectively the
Fixed-Flood-It problem) admits a solution.

Graph parameters: The graph parameters considered in this paper are the vertex cover
number vc(G), the neighborhood diversity nd(G), the modular-width mw(G), and the clique-
width cw(G). It is known that cw(G) ≤ mw(G) ≤ nd(G) ≤ 2vc(G) + vc(G) for every graph
G [8, 11]. (See [11, 8, 2] for definitions.)

3 W[2]-hardness of Free-Flood-It

The main result of this section is that Free-Flood-It is W[2]-hard when parameterized by
the minimum length of any valid solution (the natural parameter). The proof consists of a
reduction from Set Cover, a canonical W[2]-complete problem.

Before presenting the construction, we recall two basic observations by Meeks and Vu [15],
both of which rest on the fact that any single move can (at most) eliminate a single color
from the graph, and this can only happen if a color induces a single component.

I Lemma 3.1 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, we have OPTFree(G, col) ≥ cmax − 1.

I Lemma 3.2 ([15]). For any graph G = (V, E), and coloring function col that uses cmax
distinct colors, such that for all c ∈ [cmax], G[col−1(c)] is a disconnected graph, we have
OPTFree(G, col) ≥ cmax.

The proof of Theorem 3.6 relies on a reduction from a special form of Set Cover, which
we call Multi-Colored Set Cover (MCSC for short). MCSC is defined as follows:

I Definition 3.3. In Multi-Colored Set Cover (MCSC) we are given as input a set of
elements R and k collections of subsets of R, S1, . . . ,Sk. We are asked if there exist k sets
S1, . . . , Sk such that for all i ∈ [k], Si ∈ Si, and ∪i∈[k]Si = R.

Observe that MCSC is just a version of Set Cover where the collection of sets is given
to us pre-partitioned into k parts and we are asked to select one set from each part to form
a set cover of the universe. It is not hard to see that any Set Cover instance (S, R) where
we are asked if there exists a set cover of size k can easily be transformed to an equivalent
MCSC instance simply by setting Si = S for all i ∈ [k], since the definition of MCSC does
not require that the sub-collections Si be disjoint. We conclude that known hardness results
for Set Cover immediately transfer to MCSC, and in particular MCSC is W[2]-hard when
parameterized by k.

FUN 2018

5:6 How Bad is the Freedom to Flood-It?

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

I1

I2

Ik

L1

L2

Lk

R

u

Figure 3 The graph G = (V, E) of Free-Flood-It constructed from the given MCSC instance.
All the vertices in each Ii have color i and all black vertices have color k + 1. Boxes containing black
vertices have size 3k. Also each vertex in Li has k neighbors with degree 1 colored 1, ..., k.

Construction
We are now ready to describe our reduction which, given a MCSC instance with universe R

and k collections of sets Si, i ∈ [k], produces an equivalent instance of Free-Flood-It, that
is, a graph G = (V, E) and a coloring function col on V . We construct this graph as follows:

for every set S ∈ Si, construct a vertex in V . The set of vertices in V corresponding
to sets of Si is denoted by Ii and col(v) = i for each v ∈ Ii. I1 ∪ ... ∪ Ik induces an
independent set colored {1, ..., k}.
for each i ∈ [k], construct 3k new vertices, denoted by Li and connect all of them to all
vertices of Ii such that Li ∪ Ii induces a complete bipartite graph of size 3k × |Ii|. Then
set col(v) = k + 1 for each v ∈ Li, for all i ∈ [k].
for each vertex v ∈ Li for 1 ≤ i ≤ k, construct k new leaf vertices connected to v with
distinct colors 1, ..., k.
for each element e ∈ R, construct a vertex e. For each S ∈ Si such that e ∈ S we connect
e to the vertex of Ii that represents S.
add a special vertex u with col(u) = k + 1 which is connected it to all vertices in Ii for
i ∈ [k].

An illustration of G is shown in Fig.3. In the following we will show that (G, col) as
an instance of Free-Flood-It is solvable with at most 2k moves if and only if the given
MCSC instance has a set cover of size k which contains one set of each Si.

I Lemma 3.4. If (S1, . . . ,Sk, R) is a YES instance of MCSC then OPTFree(G, col) ≤ 2k.

Proof. Suppose that there is a solution S1, . . . , Sk of the given MCSC instance, with Si ∈ Si,
for i ∈ [k] and ∪i∈[k]Si = R. Recall that for each Si there is a vertex in Ii in the constructed
graph representing Si. Our first k moves consist of changing the color of each of these k

vertices to k + 1 in some arbitrary order.
Observe that in the graph resulting after these k moves the vertices with color k + 1 form

a single connected component: because ∪Si is a set cover, all vertices of R have a neighbor
with color k + 1; all vertices with color k + 1 in some Ii are in the same component as u; and
all vertices of ∪i∈[k]Li are connected to one of the vertices we played. Furthermore, observe

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:7

that this component dominates the graph: all remaining vertices of ∪Ii, as well as all leaves
attached to vertices of ∪i∈[k]Li are dominated by the vertices of ∪i∈[k]Li. Hence, we can
select an arbitrary vertex with color k + 1, say u, and cycle through the colors 1, . . . , k on
this vertex to make the graph monochromatic. J

Now we establish the converse of Lemma 3.4.

I Lemma 3.5. If OPTFree(G, col) ≤ 2k, then (S1, . . . ,Sk, R) is a YES instance of MCSC.

Proof. Suppose that there exists a sequence of at most 2k moves solving (G, col). We can
assume without loss of generality that the sequence has length exactly 2k, since performing a
move on a monochromatic graph keeps the graph monochromatic. Let (u1, c1), . . . , (u2k, c2k)
be a solution, let col0 = col, and let coli denote the coloring of G obtained after the first i

moves. The key observation that we will rely on is the following:

(i) For all i ∈ [k], there exist j ∈ [k], v ∈ Ii such that colj(v) = k + 1.

In other words, we claim that for each group Ii there exists a vertex that received color
k + 1 at some point during the first k moves. Before proceeding, let us prove this claim.
Suppose for contradiction that the claim is false. Then, there exists a group Ii such that no
vertex in that group has color k + 1 in any of the colorings col0, . . . , colk. We now consider
the vertices of Li and their attached leaves. Since Li contains 3k > k + 2 vertices, there
exist two vertices v1, v2 of Li such that {u1, . . . , uk} contains neither v1, v2, nor any of their
attached leaves. In other words, there exist two vertices of Li on which the winning sequence
does not change colors by playing them or their private neighborhood directly. However,
since v1, v2 only have neighbors in I1 (except for their attached leaves), and no vertex of
I1 received color k + 1, we conclude that colk(v1) = colk(v2) = k + 1, that is, the colors
of these two vertices have remained unchanged, and the same is true for their attached
leaves. Consider now the graph G with coloring colk: we observe that this coloring uses
k + 1 distinct colors, and that each color induces a disconnected graph. This is true for colors
1, . . . , k because of the leaves attached to v1, v2, and true of color k + 1 because of v1, v2 and
the fact that no vertex of Ii has color k + 1. We conclude that OPTFree(G, colk) ≥ k + 1 by
Lemma 3.2, which is a contradiction, because the whole sequence has length 2k.

Because of claim (i) we can now conclude that for all i ∈ [k] there exists a j ∈ [k] such
that colj−1(uj) = i. In other words, for each color i there exists a move among the first k

moves of the solution that played a vertex which at that point had color i. To see that this
is true consider again for contradiction the case that for some i ∈ [k] this statement does not
hold: this implies that vertices with color i in col0 still have color i in col1, . . . , colk, which
means that no vertex of Ii has received color k + 1 in the first k moves, contradicting (i).

As a result of the above, we therefore claim that for all j ∈ [k], we have colj−1(uj) 6= k+1.
In other words, we claim that none of the first k moves changes the color of a vertex that
at that point had color k + 1. This is because, as argued, for each of the other k colors,
there is a move among the first k moves that changes a vertex of that color. We therefore
conclude that for all vertices v for which col0(v) = k + 1 we have colj(v) = k + 1 for all
j ∈ [k]. In addition, because in col0 all colors induce independent sets, each of the first k

moves changes the color of a single vertex. Because of claim (i), this means that for each
i ∈ [k] one of the first k moves changes the color of a single vertex from Ii to k + 1. We
select the corresponding set of Si in our MCSC solution.

We now observe that, since all vertices of ∪i∈[k]Li retain color k + 1 throughout the first
k moves, colk is a coloring function that uses k + 1 distinct colors, and colors 1, . . . , k induce
disconnected graphs (because of the leaves attached to the vertices of each Li). Thanks to

FUN 2018

5:8 How Bad is the Freedom to Flood-It?

Lemma 3.2, this means that col−1
k (k + 1) must induce a connected graph. Hence, all vertices

of R have a neighbor with color k + 1 in colk, which must be one of the k vertices played
in the first k moves; hence the corresponding element is dominated by our solution and we
have a valid set cover selecting one set from each Si. J

We are now ready to combine Lemmas 3.4 and 3.5 to obtain the main result of this
section.

I Theorem 3.6. Free-Flood-It is W[2]-hard parameterized by OPTFree, that is, param-
eterized by the length of the optimal solution. Furthermore, if there is an algorithm that
decides if a Free-Flood-It instance has a solution of length k in time no(k), then the ETH
is false.

Proof. The described construction, as well as Lemmas 3.4 and 3.5 give a reduction from
MCSC, which is W[2]-hard parameterized by k, to an instance of Free-Flood-It with k +1
colors, where the question is to decide if OPTFree(G, col) ≤ 2k. Furthermore, it is known
that MCSC generalizes Dominating Set, which does not admit an algorithm running in
time no(k), under the ETH [2]. Since our reduction only modifies k by a constant, we odtain
the same result for Free-Flood-It. J

We note that because of Lemma 3.1 we can always assume that the number of colors
of a given instance is not much higher than the length of the optimal solution. As a
result, Free-Flood-It parameterized by OPTFree is equivalent to the parameterization
of Free-Flood-It by OPTFree + cmax and the result of Theorem 3.6 also applies to this
parameterization. Also, as a byproduct of the reduction above, we can show a kernel lower
bound for Free-Flood-It parameterized by the vertex cover number.

I Theorem 3.7 (F). Free-Flood-It parameterized by the vertex cover number admits no
polynomial kernel unless PH = Σp

3 .

4 Clique-width and neighborhood diversity

In this section, we consider as a combined parameter for Free-Flood-It the length of an
optimal solution and the clique-width. We show that this case is indeed fixed-parameter
tractable by using the theory of the monadic second-order logic on graphs. As an application
of this result, we also show that combined parameterization by the number of colors and the
modular-width is fixed-parameter tractable.

I Theorem 4.1 (F). Given an instance (G, col) of Free-Flood-It such that G has
n vertices and clique-width at most w, it can be decided in time O(f(k, w) · n3) whether
OPTFree(G, col) ≤ k, where f is some computable function.

I Corollary 4.2 (F). Given an integer k and an instance (G, col) of Free-Flood-It such
that G has n vertices and modular-width at most w, it can be decided in time O(f(cmax, w)·n3)
whether OPTFree(G, col) ≤ k, where f is some computable function.

Since the modular-width of a graph is upper bounded by its neighborhood diversity, the
corollary above implies that Free-Flood-It is fixed-parameter tractable when parameterized
by both the neighborhood diversity and the number of colors. Here we show that Free-
Flood-It admits a polynomial kernel with the same parameterization.

I Theorem 4.3. Free-Flood-It admits a kernel of nd(G) ·cmax ·(nd(G)+cmax−1) vertices.

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:9

Our reduction rules are as follows:
Rule TT : Let u and v be true twins of the same color in (G, col). Remove v.
Rule FT : Let F be a set of false-twin vertices of the same color in (G, col) such that
|F | = nd(G) + cmax. Remove arbitrary one vertex in F .

Observe that after applying TT and FT exhaustively in polynomial time, the obtained
graph can have at most nd(G) · cmax · (nd(G) + cmax − 1) vertices. This is because each set of
twin vertices can contain at most nd(G) + cmax − 1 vertices. Hence, to prove Theorem 4.3, it
suffices to show the safeness of the rules.

I Lemma 4.4 (F). The rules TT and FT are safe.

5 Relation Between Fixed and Free Flood-It

The main theorem of this section is the following:

I Theorem 5.1. For any graph G = (V, E), coloring function col on G, and p ∈ V we have

OPTFree(G, col) ≤ OPTFixed(G, col, p) ≤ 2OPTFree(G, col).

Theorem 5.1 states that the optimal solutions for Free-Flood-It and Fixed-Flood-It
can never be more than a factor of 2 apart. It is worthy of note that we could not hope to
obtain a constant smaller than 2 in such a theorem, and hence the theorem is tight.

I Theorem 5.2. There exist instances of Fixed-Flood-It such that OPTFixed(G, col, p) =
2OPTFree(G, col)

Proof. Consider a path on 2n + 1 vertices properly colored with colors 1, 2. If we set the
pivot to be one of the endpoints then OPTFree = 2n. However, it is not hard to obtain a
Free-Flood-It solution with n moves by playing every vertex at odd distance from the
pivot. J

Before we proceed to give the proof of Theorem 5.1, let us give a high-level description of
our proof strategy and some general intuition. The first inequality is of course trivial, so
we focus on the second part. We will establish it by induction on the number of non-pivot
moves performed by an optimal Free-Flood-It solution. The main inductive argument is
based on observing that a valid Free-Flood-It solution will either at some point play a
neighbor u of the component of p to give it the same color as p, or if not, it will at some
point play p to give it the same color as one of its neighbors. The latter case is intuitively
easier to handle, since then we argue that the move that changed p’s color can be performed
first, and if the first move is a pivot move we can easily fall back on the inductive hypothesis.
The former case, which is the more interesting one, can be handled by replacing the single
move that gives u the same color as p, with two moves: one that gives p the same color as u,
and one that flips p back to its previous color. Intuitively, this basic step is the reason we
obtain a factor of 2 in the relationship between the two versions of the game.

The inductive strategy described above faces some complications due to the fact that
rearranging moves in this way may unintentionally re-color some vertices, which makes it
harder to continue the rest of the solution as before. To avoid this we define a somewhat
generalized version of Free-Flood-It, called Subset-Free-Flood-It.

I Definition 5.3. Given G = (V, E), a coloring function col on G, and a pivot p ∈ V ,
a set-move is a pair (S, c), with S ⊆ V and S = Comp(col, u) for some u ∈ V , or
{p} ⊆ S ⊆ Comp(col, p). The result of (S, c) is the coloring col′ that sets col′(v) = c for
v ∈ S; and col′(v) = col(v) otherwise.

FUN 2018

5:10 How Bad is the Freedom to Flood-It?

We define Subset-Free-Flood-It as the problem of determining the minimum number
of set-moves required to make a graph monochromatic, and Subset-Fixed-Flood-It as
the same problem when we impose the restriction that every move must change the color of
p, and denote as OPTS-Free,OPTS-Fixed the corresponding optimum values.

Informally, a set-move is the same as a normal move in Free-Flood-It, except that
we are also allowed to select an arbitrary connected monochromatic set S that contains p

(even if S is not maximal) and change its color. Intuitively, one would expect moves that
set S to be a proper subset of Comp(col, p) to be counter-productive, since such moves
split a monochromatic component into two pieces. Indeed, we prove below in Lemma 5.4
that the optimal solutions to Fixed-Flood-It and Subset-Fixed-Flood-It coincide, and
hence such moves do not help. The reason we define this version of the game is that it gives
us more freedom to define a solution that avoids unintentionally recoloring vertices as we
transform a given Free-Flood-It solution to a Fixed-Flood-It solution.

I Lemma 5.4. For any graph G = (V, E), coloring function col on G, and pivot p ∈ V we
have OPTFixed(G, col, p) = OPTS-Fixed(G, col, p).

Proof. First, observe that OPTS-Fixed(G, col, p) ≤ OPTFixed(G, col, p) is trivial, as any
solution of Fixed-Flood-It is a solution to Subset-Fixed-Flood-It by playing the same
sequence of colors and always selecting all of the connected monochromatic component of p.

Let us also establish the converse inequality. Consider a solution (S1, c1), . . . , (Sk, ck) of
Subset-Fixed-Flood-It, where by definition we have p ∈ Si for all i ∈ [k]. We would like
to prove that (p, c1), (p, c2), . . . , (p, ck) is a valid solution for Fixed-Flood-It. Let coli be
the result of the first i set-moves of the former solution, and col′i be the result of the first i

moves of the latter solution. We will establish by induction the following:
1. For all i ∈ [k] we have Comp(coli, p) ⊆ Comp(col′i, p).
2. For all i ∈ [k], u ∈ V \Comp(col′i, p) we have coli(u) = col′i(u).

The statements are true for i = 0. Suppose that the two statements are true after i− 1
moves. The first solution now performs the set-move (Si, ci) with Si ⊆ Comp(coli−1, p) ⊆
Comp(col′i−1, p). We now have that Comp(coli, p) contains Si plus the neighbors of Si

which have color ci in coli−1. Such vertices either also have color ci in col′i−1, or are contained
in Comp(col′i−1, p); in both cases they are included in Comp(col′i, p), which establishes
the first condition. To see that the second condition continues to hold observe that every
vertex for which coli−1(u) 6= coli(u) or col′i−1(u) 6= col′i(u) belongs in Comp(col′i, p); the
colors of other vertices remain unchanged. Since in the end Comp(colk, p) = V the first
condition ensures that Comp(col′k, p) = V . J

We are now ready to state the proof of Theorem 5.1.

Proof of Theorem 5.1. As mentioned, we focus on proving the second inequality as the first
inequality follows trivially from the definition of the problems. Given a graph G = (V, E), an
initial coloring function col = col0, and a pivot p ∈ V , we suppose we have a solution to Free-
Flood-It (u1, c1), (u2, c2), . . . , (uk, ck). In the remainder, we denote by coli the coloring
that results after the moves (u1, c1), . . . , (ui, ci). We can immediately construct an equivalent
solution to Subset-Free-Flood-It from this, producing the same sequence of colorings:
(Comp(col0, u1), c1), (Comp(col1, u2), c2), . . . , (Comp(colk−1, uk), ck). We will transform
this solution to a solution of Subset-Fixed-Flood-It of length at most 2k, and then invoke
Lemma 5.4 to obtain a solution for Fixed-Flood-It of length at most 2k. More precisely,
we will show that for any G, col, p we have OPTS-Fixed(G, col, p) ≤ 2OPTS-Free(G, col, p).

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:11

For a solution S = (S1, c1), (S2, c2), . . . , (Sk, ck) to Subset-Free-Flood-It we define
the number of bad moves of S as b(S) = |{(Si, ci) | p 6∈ Si}|. We will somewhat more strongly
prove the following statement for all G, col, p: for any valid Subset-Free-Flood-It solution
S, we have

OPTS-Fixed(G, col, p) ≤ |S|+ b(S).

Since |S|+ b(S) ≤ 2|S|, the above statement will imply the promised inequality and the
theorem.

We prove the statement by induction on |S|+ 2b(S). If |S|+ 2b(S) ≤ 2 then S is already
a Subset-Fixed-Flood-It solution, so the statement is trivial. Suppose then that the
statement holds when |S|+ 2b(S) ≤ n and we have a solution S with |S|+ 2b(S) = n + 1.
We consider the following cases:

The first move (S1, c1) has p ∈ S1. By the inductive hypothesis there is a Subset-Fixed-
Flood-It solution of length at most |S|+ b(S)− 1 for (G, col1, p). We build a solution
for Subset-Fixed-Flood-It by appending this solution to the move (S1, c1), since this
is a valid move for Subset-Fixed-Flood-It.
There exists a move (Si, ci) with Si = Comp(coli−1, u), for some vertex u in
N(Comp(coli−1, p)) \ Comp(coli−1, p) such that ci = coli−1(p). That is, there ex-
ists a move that plays a vertex u that currently has a different color than p, and as a
result of this move the component of u and p merge, because u receives the same color as
p and u has a neighbor in the component of p.
Consider the first such move. We build a solution S ′ as follows: we keep moves
(S1, c1) . . . (Si−1, ci−1); we add the moves (Comp(coli−1, p), coli−1(u)), (Comp(coli−1, p)
∪Comp(coli−1, u), coli−1(p)); we append the rest of the previous solution (Si+1, ci+1),
To see that S ′ is still a valid solution we observe that Comp(coli−1, p)∪Comp(coli−1, u)
is monochromatic and connected when we play it, and that the result of the first i− 1
moves, plus the two new moves is exactly coli. We also note that S ′ + b(S ′) = S + b(S)
because we replaced one bad move with two good moves. However, S ′+2b(S ′) < S+2b(S),
hence by the inductive hypothesis there exists a Subset-Fixed-Flood-It solution of
the desired length.
There does not exist a move as specified in the previous case. We then show that this
reduces to the first case. If no move as described in the previous case exists and the
initial coloring is not already constant, S must have a move (Si, ci) where {p} ⊆ Si ⊆
Comp(col0, p) and ci = coli−1(u) for u ∈ N(Comp(col0, p)) \Comp(col0, p). In other
words, this is a good move (it changes the color of p), that adds a new vertex u to the
connected monochromatic component of p. Such a move must exist, since if the initial
coloring is not constant, the initial component of p must be extended, and we assumed
that no move that extends it by recoloring one of its neighbors exists.

Consider the first such good move (Si, ci) as described above. We build a solution S ′ as
follows: the first move is (Comp(col0, p), col0(u)), where u is, as described above, the
neighbor of Comp(col0, p) with coli−1(u) = ci. For j ∈ [i− 1] we add the move (Sj , cj) if
u 6∈ Sj , or the move (Comp(colj−1, u) ∪Comp(col0, p), cj) if u ∈ Sj . In other words, we
keep other moves unchanged if they do not affect u, otherwise we add to them Comp(col0, p).
We observe that these moves are valid since we maintain the invariant that Comp(col0, p)
and u have the same color and since none of the first i− 1 moves of S changes the color of p

(since we selected the first such move). The result of these i moves is exactly coli. We now
append the remaining move (Si+1, ci+1), . . ., and we have a solution that starts with a good
move, has the same length and the same (or smaller) number of bad moves as S and is still
valid. We have therefore reduced this to the first case. J

FUN 2018

5:12 How Bad is the Freedom to Flood-It?

2

12 2 113 3

2

12 3 113 3

v v
(G, col) (G, col′)

u u

Figure 4 Non-monotonicity of Free-Flood-It.

6 Non-monotonicity of Free-Flood-It

As a final remark, we consider the (non-)monotonicity of the problem. A game has the
monotonicity property if no legal move makes the situation worse. That is, if Fixed-Flood-
It (or Free-Flood-It) has the monotonicity property, then no single move increases
the minimum number of steps to make the input graph monotone. We believe that the
monotonicity of Fixed-Flood-It was known as folklore and used implicitly in the literature.
On the other hand, we are not sure that the non-monotonicity of Free-Flood-It was widely
known. The only result we are aware of is by Meeks and Scott [12] who showed that on
paths Free-Flood-It has the monotonicity property. Figure 4 shows that Free-Flood-It
loses its monotonicity property as soon as the underlying graph becomes a path with one
attached vertex. The instance (G, col′) is obtained from (G, col) by playing the move (v, 3).
We can show that OPTFree(G, col) < OPTFree(G, col′).

References
1 Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Benjamin Sach. The com-

plexity of flood filling games. Theory Comput. Syst., 50(1):72–92, 2012. doi:10.1007/
s00224-011-9339-2.

2 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

3 Michael R. Fellows, Uéverton dos Santos Souza, Fábio Protti, and Maise Dantas da Silva.
Tractability and hardness of flood-filling games on trees. Theor. Comput. Sci., 576:102–116,
2015. doi:10.1016/j.tcs.2015.02.008.

4 Michael R. Fellows, Fábio Protti, Frances A. Rosamond, Maise Dantas da Silva, and Uéver-
ton dos Santos Souza. Algorithms, kernels and lower bounds for the Flood-It game pa-
rameterized by the vertex cover number. Discrete Applied Mathematics, 2017. in press.
doi:10.1016/j.dam.2017.07.004.

5 Rudolf Fleischer and Gerhard J. Woeginger. An algorithmic analysis of the honey-bee game.
Theor. Comput. Sci., 452:75–87, 2012. doi:10.1016/j.tcs.2012.05.032.

6 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

7 Hiroyuki Fukui, Yota Otachi, Ryuhei Uehara, Takeaki Uno, and Yushi Uno. On complexity
of flooding games on graphs with interval representations. In Jin Akiyama, Mikio Kano,
and Toshinori Sakai, editors, Computational Geometry and Graphs - Thailand-Japan Joint
Conference, TJJCCGG 2012, Bangkok, Thailand, December 6-8, 2012, Revised Selected
Papers, volume 8296 of Lecture Notes in Computer Science, pages 73–84. Springer, 2012.
doi:10.1007/978-3-642-45281-9_7.

8 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Ex-
act Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France,
September 4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer
Science, pages 163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

http://dx.doi.org/10.1007/s00224-011-9339-2
http://dx.doi.org/10.1007/s00224-011-9339-2
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/j.tcs.2015.02.008
http://dx.doi.org/10.1016/j.dam.2017.07.004
http://dx.doi.org/10.1016/j.tcs.2012.05.032
http://dx.doi.org/10.1007/978-3-642-45281-9_7
http://dx.doi.org/10.1007/978-3-319-03898-8_15

R. Belmonte, M. Khosravian Ghadikolaei, M. Kiyomi, M. Lampis, and Y. Otachi 5:13

9 Wing-Kai Hon, Ton Kloks, Fu-Hong Liu, Hsiang Hsuan Liu, and Hung-Lung Wang. Flood-
it on AT-free graphs. CoRR, abs/1511.01806, 2015. arXiv:1511.01806.

10 Aurélie Lagoutte, Mathilde Noual, and Eric Thierry. Flooding games on graphs. Discrete
Applied Mathematics, 164:532–538, 2014. doi:10.1016/j.dam.2013.09.024.

11 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

12 Kitty Meeks and Alexander Scott. The complexity of flood-filling games on graphs. Discrete
Applied Mathematics, 160(7-8):959–969, 2012. doi:10.1016/j.dam.2011.09.001.

13 Kitty Meeks and Alexander Scott. The complexity of free-flood-it on 2×n boards. Theor.
Comput. Sci., 500:25–43, 2013. doi:10.1016/j.tcs.2013.06.010.

14 Kitty Meeks and Alexander Scott. Spanning trees and the complexity of flood-filling games.
Theory Comput. Syst., 54(4):731–753, 2014. doi:10.1007/s00224-013-9482-z.

15 Kitty Meeks and Dominik K. Vu. Extremal properties of flood-filling games. CoRR,
abs/1504.00596, 2015. arXiv:1504.00596.

16 Elad Verbin. Comment to “Is this game NP-Hard? by Sariel Har-Peled. http://sarielhp.
org/blog/?p=2005#comment-993, 2009. Accessed: 2018-01-18.

17 Uéverton ßdos Santos Souza, Fábio Protti, and Maise Dantas da Silva. An algorithmic
analysis of Flood-it and Free-Flood-it on graph powers. Discrete Mathematics & Theoretical
Computer Science, 16(3):279–290, 2014. URL: http://dmtcs.episciences.org/2086.

FUN 2018

http://arxiv.org/abs/1511.01806
http://dx.doi.org/10.1016/j.dam.2013.09.024
http://dx.doi.org/10.1016/j.dam.2011.09.001
http://dx.doi.org/10.1016/j.tcs.2013.06.010
http://dx.doi.org/10.1007/s00224-013-9482-z
http://arxiv.org/abs/1504.00596
http://sarielhp.org/blog/?p=2005#comment-993
http://sarielhp.org/blog/?p=2005#comment-993
http://dmtcs.episciences.org/2086

	Introduction
	Preliminaries
	W[2]-hardness of Free-Flood-It
	Clique-width and neighborhood diversity
	Relation Between Fixed and Free Flood-It
	Non-monotonicity of Free-Flood-It

