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Abstract
We consider a classical k-center problem in trees. Let T be a tree of n vertices and every vertex
has a nonnegative weight. The problem is to find k centers on the edges of T such that the
maximum weighted distance from all vertices to their closest centers is minimized. Megiddo and
Tamir (SIAM J. Comput., 1983) gave an algorithm that can solve the problem in O(n log2 n) time
by using Cole’s parametric search. Since then it has been open for over three decades whether the
problem can be solved in O(n logn) time. In this paper, we present an O(n logn) time algorithm
for the problem and thus settle the open problem affirmatively.
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1 Introduction

In this paper, we study a classical k-center problem in trees. Let T be a tree of n vertices.
Each edge e(u, v) connecting two vertices u and v has a positive length d(u, v), and we
consider the edge as a line segment of length d(u, v) so that we can talk about “points”
on the edge. For any two points p and q of T , there is a unique path in T from p to q,
denoted by π(p, q), and by slightly abusing the notation, we use d(p, q) to denote the length
of π(p, q). Each vertex v of T is associated with a weight w(v) ≥ 0. The k-center problem
is to compute a set Q of k points on T , called centers, such that the maximum weighted
distance from all vertices of T to their closest centers is minimized, or formally, the value
maxv∈V (T ) minq∈Q{w(v) ·d(v, q)} is minimized, where V (T ) is the vertex set of T . Note that
each center can be in the interior of an edge of T .

Kariv and Hakimi [20] first gave an O(n2 logn) time algorithm for the problem. Jeger
and Kariv [19] proposed an O(kn logn) time algorithm. Megiddo and Tamir [25] solved the
problem in O(n log2 n log logn) time, and the running time can be reduced to O(n log2 n) by
Cole’s parametric search [12]. Some progress has been made very recently by Banik et al. [3]
for small values of k, where an O(n logn + k log2 n log(n/k))-time algorithm and another
O(n logn+ k2 log2(n/k))-time algorithm were given.

Since Megiddo and Tamir’s work [25], it has been open whether the problem can be
solved in O(n logn) time. In this paper, we settle this three-decade long open problem
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72:2 The k-Center Problem in Trees

affirmatively by presenting an O(n logn)-time algorithm. Note that the previous O(n log2 n)-
time algorithm [12,25] and the first algorithm in [3] both rely on Cole’s parametric search,
which involves a large constant in the time complexity due to the AKS sorting network [2].
Our algorithm, however, avoids Cole’s parametric search.

If each center is required to be located a vertex of T , then we call it the discrete case. The
previously best-known algorithm for this case runs in O(n log2 n) time [26]. Our techniques
also solve the discrete case in O(n logn) time.

Related work. Many variations of the k-center problem have been studied. If k = 1, then
the problem is solvable in O(n) time [23]. If T is a path, the k-center problem was already
solved in O(n logn) time [9, 12, 25], and Bhattacharya and Shi [4] also gave an algorithm
whose running time is linear in n but exponential in k.

For the unweighted case where the vertices of T have the same weight, an O(n2 logn)-time
algorithm was given in [8] for the k-center problem. Later, Megiddo et al. [26] solved the
problem in O(n log2 n) time, and the algorithm was improved to O(n logn) time [17]. Finally,
Frederickson [16] solved the problem in O(n) time. The above four papers also solve the
discrete case and the following problem version in the same running times: All points of T
are considered as demand points and the centers are required to be at vertices of T . Further,
if all points of T are demand points and centers can be any points of T , Megiddo and
Tamir solved the problem in O(n log3 n) time [25], and the running time can be reduced to
O(n log2 n) by applying Cole’s parametric search [12].

As related problems, Frederickson [15] presented O(n)-time algorithms for the following
tree partitioning problems: remove k edges from T such that the maximum (resp., minimum)
total weight of all connected subtrees is minimized (resp., maximized).

Finding k centers in a general graph is NP-hard [20]. The geometric version of the problem
in the plane is also NP-hard [24], i.e., finding k centers for n demanding points. Some special
cases, however, are solvable in polynomial time. For example, if k = 1, then the problem can
be solved in O(n) time [23], and if k = 2, it can be solved in O(n log2 n log2 logn) time [7]
(also refer to [1] for a faster randomized algorithm). If we require all centers to be on a
given line, then the problem of finding k centers can be solved in polynomial time [5, 21, 28].
Recently, problems on uncertain data have been studied extensively and some k-center
problem variations on uncertain data were also considered, e.g., [13, 18,27,29–31].

Our approach. We discuss our approach for the non-discrete problem, and that for the
discrete case is similar (and even simpler). Let λ∗ be the optimal objective value, i.e.,
λ∗ = maxv∈V (T ) minq∈Q{w(v) · d(v, q)} for an optimal solution Q. A feasibility test is to
determine whether λ ≥ λ∗ for a given value λ, and if yes, we call λ a feasible value. Given
any λ, the feasibility test can be done in O(n) time [20].

Our algorithm follows an algorithmic scheme in [16] for the unweighted case, which is
similar to that in [15] for the tree partition problems. However, a big difference is that three
schemes were proposed in [15,16] to gradually solve the problems in O(n) time, while our
approach only follows the first scheme and this significantly simplifies the algorithm. One
reason the first scheme is sufficient to us is that our algorithm runs in O(n logn) time, which
has a logarithmic factor more than the feasibility test algorithm. In contrast, most efforts of
the last two schemes of [15, 16] are to reduce the running time of the algorithms to O(n),
which is the same as their corresponding feasibility test algorithms.

More specifically, our algorithm consists of two phases. The first phase will gather
information so that each feasibility test can be done faster in sub-linear time. By using the
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faster feasibility test algorithm, the second phase computes the optimal objective value λ∗.
As in [16], we also use a stem-partition of the tree T . In addition to a matrix searching
algorithm [14], we utilize some other techniques, such as 2D sublist LP queries [10] and line
arrangements searching [11], etc.

In the following, in Section 2, we review some previous techniques that will be used later
in our algorithm. In Section 3, we describe our techniques for dealing with a so-called “stem”.
We finally solve the k-center problem on T in Section 4. Due to the space limit, many details
(including the algorithm for the discrete case) are omitted but can be found in the full paper.

2 Preliminaries

2.1 The feasibility test FTEST0
Given any value λ, the feasibility test is to determine whether λ is feasible, i.e., whether
λ ≥ λ∗. We say that a vertex v of T is covered (under λ) by a center q if w(v) · d(v, q) ≤ λ.
Note that λ is feasible if and only if we can place k centers in T such that all vertices
are covered. In the following we describe a linear-time feasibility test algorithm, which is
essentially the same as the one in [20] although our description is much simpler.

We pick a vertex of T as the root, denoted by γ. For each vertex v, we use T (v) to
denote the subtree of T rooted at v. Following a post-order traversal on T , we place centers
in a bottom-up and greedy manner. For each vertex v, we maintain two values sup(v) and
dem(v), where sup(v) is the distance from v to the closest center that has been placed in
T (v), and dem(v) is the maximum distance from v such that if we place a center q within
such a distance from v then all uncovered vertices of T (v) can be covered by q. We also
maintain a variable count to record the number of centers that have been placed so far.

Initially, count = 0, and for each vertex v, sup(v) = ∞ and dem(v) = λ
w(v) . Following

a post-order traversal on T , suppose vertex v is being visited. For each child u of v, we
update sup(v) and dem(v) as follows. If sup(u) ≤ dem(u), then we can use the center
of T (u) closest to u to cover the uncovered vertices of T (u), and thus we reset sup(v) =
min{sup(v), sup(u)+d(u, v)}. Note that since u connects v by an edge, d(v, u) is the length of
the edge. Otherwise, if dem(u) < d(u, v), then we place a center on the edge e(u, v) at distance
dem(u) from u, so we update count = count+1 and sup(v) = min{sup(v), d(u, v)−dem(u)}.
Otherwise (i.e., dem(u) ≥ d(u, v)), we update dem(v) = min{dem(v), dem(u)− d(u, v)}.

After the root γ is visited, if sup(γ) > dem(γ), then we place a center at γ and update
count = count + 1. Finally, λ is feasible if and only if count ≤ k. The algorithm runs in
O(n) time. We use FTEST0 to refer to the algorithm. To solve the k-center problem, the
key is to compute λ∗, after which we can find k centers by applying FTEST0 with λ = λ∗.

Remark. The algorithm FTEST0 actually partitions T into at most k disjoint connected
subtrees such that the vertices in each subtree is covered by the same center that is located
in the subtree. We will make use of this observation later.

2.2 A matrix searching algorithm
We review an algorithm MSEARCH, which was proposed in [14] and was widely used,
e.g., [15–17]. A matrix is sorted if elements in every row and every column are in nonincreasing
order. Given a set of sorted matrices, a searching range (λ1, λ2) such that λ2 is feasible and
λ1 is not, and a stopping count c, MSEARCH will produce a sequence of values one at a
time for feasibility tests, and after each test, some elements in the matrices will be discarded.

SoCG 2018



72:4 The k-Center Problem in Trees

Suppose a value λ is produced. If λ 6∈ (λ1, λ2), we do not need to test λ. If λ is feasible, then
λ2 is updated to λ; otherwise, λ1 is updated to λ. MSEARCH will stop once the number of
remaining elements in all matrices is at most c. Lemma 1 is proved in [14] and we slightly
change the statement to accommodate our need.

I Lemma 1 ([14–17]). Let M be a set of N sorted matrices {M1,M2, . . . ,MN} such that
Mj is of dimension mj × nj with mj ≤ nj, and

∑N
j=1 mj = m. Let c ≥ 0. The number

of feasibility tests needed by MSEARCH to discard all but at most c of the elements is
O(max{log maxj{nj}, log( m

c+1 )}), and the total time of MSEARCH exclusive of feasibility
tests is O(κ ·

∑N
j=1 mj log( 2nj

mj
)), where O(κ) is the time for evaluating each matrix element

(i.e., the number of matrix elements that need to be evaluated is O(
∑N
j=1 mj log( 2nj

mj
))).

2.3 The 2D sublist LP queries
Let H = {h1, h2, . . . , hm} be a set of m upper half-planes in the plane. Given two indices i
and j with 1 ≤ i ≤ j ≤ m, a 2D sublist LP query asks for the lowest point in the common
intersection of hi, hi+1, . . . , hj . The line-constrained version of the query is: Given a vertical
line l and two indices i and j with 1 ≤ i ≤ j ≤ m, the query asks for the lowest point on l
in the common intersection of hi, hi+1, . . . , hj . Lemma 2 was proved in [10] (i.e., Lemma 8
and the discussion after it; the query algorithm for the line-constrained version is used as a
procedure in the proof of Lemma 8).

I Lemma 2 ([10]). We can build a data structure for H in O(m logm) time such that each
2D sublist LP query can be answered in O(log2 m) time, and each line-constrained query can
be answered in O(logm) time.

2.4 Line arrangement searching
Let L be a set of m lines in the plane. Denote by A(L) the arrangement of the lines of L, and
let y(v) be the y-coordinate of each vertex v of A(L). Let v1(L) be the lowest vertex of A(L)
whose y-coordinate is a feasible value, and let v2(L) be the highest vertex of A(L) whose
y-coordinate is smaller than that of v1(L). Hence, y(v2(L)) < λ∗ ≤ y(v1(L)), and A(L) does
not have a vertex v with y(v2(L)) < y(v) < y(v1(L)). Lemma 3 was proved in [11].

I Lemma 3 ([11]). Both vertices v1(L) and v2(L) can be computed in O((m+ τ) logm) time,
where τ is the time for a feasibility test.

Remark. Alternatively, we can use Cole’s parametric search [12] to compute the two vertices.
First, we sort the lines of L by their intersections with the horizontal line y = λ∗, and this
can be done in O((m + τ) logm) time by Cole’s parametric search [12]. Then, v1(L) and
v2(L) can be found in additional O(m) time because each of them is an intersection of two
adjacent lines in the above sorted order. The line arrangement searching technique, which
modified the slope selection algorithms [6, 22], avoids Cole’s parametric search [12].

We will often talk about some problems in the plane R2, and if the context is clear, for
any point p ∈ R2, we use x(p) and y(p) to denote its x- and y-coordinates, respectively.

3 The algorithms for stems

In this section, we first define stems, which are similar in spirit to those proposed in [16] for
the unweighted case. Then, we will present two algorithms for solving the k-center problem
on a stem, and both techniques will be used later for solving the problem in the tree T .



H. Wang and J. Zhang 72:5

v1
v2

v3

v4
v5

v6

u2 u5

w3
w5

Figure 1 Illustrating a stem.
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Figure 2 Illustrating the definitions of the lines de-
fined by a backbone vertex vi and its thorn vertex ui.

Let P̂ be a path of m vertices, denoted by v1, v2, . . . , vm, sorted from left to right. For
each vertex vi, other than its incident edges in P̂ , vi has at most two additional edges
connecting two vertices ui and wi that are not in P̂ . Either vertex may not exist. Let P
denote the union of P̂ and the above additional edges (e.g., see Fig. 1). For any two points p
and q on P , we still use π(p, q) to denote the unique path between p and q in P , and use
d(p, q) to denote the length of the path. With respect to a range (λ1, λ2), we call P a stem
if the following holds: For each i ∈ [1,m], if ui exists, then w(ui) · d(ui, vi) ≤ λ1; if wi exists,
then w(wi) · d(wi, vi) ≥ λ2.

Following the terminology in [16], we call e(vi, ui) a thorn and e(vi, wi) a twig. Each ui
is called a thorn vertex and each wi is called a twig vertex. P̂ is called the backbone of P ,
and each vertex of P̂ is called a backbone vertex. We define m as the length of P . The total
number of vertices of P is at most 3m.

Remark. Our algorithm in Section 4 will produce stems P as defined above, where P̂ is a
path in T and all vertices of P are also vertices of T . However, each thorn e(ui, vi) may not
be an original edge of T , but it corresponds to the path between ui and vi in T in the sense
that the length of e(ui, vi) is equal to the distance between ui and vi in T . This is also the
case for each twig e(wi, vi). Our algorithm in Section 4 will maintain a range (λ1, λ2) such
that λ1 is not feasible and λ2 is feasible, i.e., λ∗ ∈ (λ1, λ2]. Since any feasibility test will be
made to a value λ ∈ (λ1, λ2), the above definitions on thorns and twigs imply the following:
For each thorn vertex ui, we can place a center on the backbone to cover it (under λ), and
for each twig vertex wi, we need to place a center on the edge e(wi, vi) \ {vi} to cover it.

In the sequel we give two different techniques for solving the k-center problem on the
stem P . In fact, in our algorithm for the k-center problem on T in Section 4, we use these
techniques to process a stem P , rather than directly solve the k-center problem on P . Let
λ∗ temporarily refer to the optimal objective value of the k-center problem on P in the rest
of this section, and we assume λ∗ ∈ (λ1, λ2].

3.1 The first algorithm
This algorithm is motivated by the following easy observation: there exist two vertices v and v′
in P such that a center q is located in the path π(v, v′) and w(v)·d(q, v) = w(v′)·d(q, v′) = λ∗.

We assume that all backbone vertices of P are in the x-axis of an xy-coordinate system
R2 where v1 is at the origin and each vi has x-coordinate d(v1, vi). Each vi defines two lines
l+(vi) and l−(vi) both containing vi and with slopes w(vi) and −w(vi), respectively (e.g.,
see Fig. 2). Each thorn ui also defines two lines l+(ui) and l−(ui) as follows. Define uli
(resp., uri ) to be the point in R2 on the x-axis with x-coordinate d(v1, vi)− d(ui, vi) (resp.,
d(v1, vi) + d(ui, vi)). Hence, uli (resp., uri ) is to the left (resp., right) of vi with distance
d(ui, vi) from vi. Define l+(ui) to be the line through uli with slope w(ui) and l−(ui) to be the

SoCG 2018



72:6 The k-Center Problem in Trees

line through uri with slope −w(ui). Note that l+(ui) and l−(ui) intersect at the point whose
x-coordinate is the same as that of vi and whose y-coordinate is equal to w(ui) · d(ui, vi).
For each twig vertex wi, we define points wli and wri , and lines l+(wi) and l−(wi), in the
same way as those for ui.

Consider a point q on the backbone of P to the right side of vi. It can be verified that
the weighted distance w(vi) · d(vi, q) from vi to q is exactly equal to the y-coordinate of the
intersection between l+(vi) and the vertical line through q. If q is on the left side of vi, we
have a similar observation for l−(vi). This is also true for ui and wi.

Let L denote the set of the lines in R2 defined by all vertices of P . Note that |L| ≤ 6m.
Based on the above observation, λ∗ is equal to the y-coordinate of a vertex of the line
arrangement A(L) of L. More precisely, λ∗ is equal to the y-coordinate of v1(L), as defined
in Section 2. By Lemma 3, we can compute λ∗ in O((m+ τ) logm) time.

3.2 The second algorithm
This algorithm relies on the algorithm MSEARCH. We first form a set of sorted matrices.

For each i ∈ [1,m], we define the two lines l+i (vi) and l−i (vi) in R2 as above in Section 3.1.
If ui exists, then we also define l+i (ui) and l−i (ui) as before; otherwise, both l+i (ui) and l−i (ui)
refer to the x-axis. Let h4(i−1)+j , 1 ≤ j ≤ 4, denote respectively the four upper half-planes
bounded by the above four lines (their index order is arbitrary). In this way, we have a set
H = {h1, h2 . . . , h4m} of 4m upper half-planes.

For any i and j with 1 ≤ i ≤ j ≤ m, we define α(i, j) as the y-coordinate of the lowest
point in the common intersection of the upper half-planes of H from h4(i−1)+1 to h4j , i.e.,
all upper half-planes defined by ut and vt for t ∈ [i, j]. Observe that if we use one center
to cover all backbone and thorn vertices ut and vt for t ∈ [i, j], then α(i, j) is equal to the
optimal objective value of this one-center problem.

We define a matrix M of dimension m×m: For any i and j in [1,m], if i+ j ≤ m+ 1,
then M [i, j] = α[i,m+ 1− j]; otherwise, M [i, j] = 0.

For each twig wi, we define two arrays Ari and Ali of at most m elements each as follows.
Let h+(wi) and h−(wi) denote respectively the upper half-planes bounded by the lines l+(wi)
and l−(wi) defined in Section 3.1. The array Ari is defined on the vertices of P on the right
side of vi, as follows. For each j ∈ [1,m− i+ 1], if we use a single center to cover wi and
all vertices ut and vt for t ∈ [i,m+ 1− j], then Ari [j] is defined to be the optimal objective
value of this one-center problem, which is equal to the y-coordinate of the lowest point in the
common intersection of h+(wi) and the upper half-planes of H from h4(i−1)+1 to h4(m+1−j).
Symmetrically, array Ali is defined on the left side of vi. Specifically, for each j ∈ [1, i], if we
use one center to cover wi and all vertices ut and vt for t ∈ [j, i], then Al[j] is defined to be
the optimal objective value, which is equal to the y-coordinate of the lowest point in the
common intersection of h−(wi) and the upper half-planes of H from h4(j−1)+1 to h4i.

Let M be the set of the matrices M and Ari and Ali for all 1 ≤ i ≤ m. The following
lemma implies that we can apply MSEARCH onM to compute λ∗.

I Lemma 4. Each matrix of M is sorted, and λ∗ is an element of a matrix in M.

Proof. Refer to the full paper for the proof that every matrix ofM is sorted. In the following,
we show that λ∗ must be an element of one of these matrices. We only sketch the proof.

Imagine that we apply algorithm FTEST0 on λ = λ∗ and the stem P by considering P as
a tree with root vm. Then, FTEST0 will compute at most k centers in P . FTEST0 actually
partitions P into at most k disjoint connected subtrees such that the vertices in each subtree
is covered by the same center that is located in the subtree. Further, there must be a subtree
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P1 that has a center q and two vertices v′ and v such that w(v) ·d(v, q) = w(v′) ·d(v′, q) = λ∗.
Since P1 is connected and both v and v′ are in P1, the path π(v, v′) is also in P1.

Depending on whether one of v and v′ is a twig vertex, there are two cases.
If neither vertex is a twig vertex, then we claim that all thorn vertices connecting to the

backbone vertices of π(v, v′) are covered by the center q (see the full paper for the proof of
the claim). If v is a backbone vertex, then let i be its index, i.e., v = vi; otherwise, v is a
thorn vertex and let i be the index such that v connects the backbone vertex vi. Similarly,
define j for v′. Without loss of generality, assume i ≤ j. The above claim implies that λ∗
is equal to the y-coordinate of the lowest point in the common intersection of all upper
half-planes defined by the backbone vertices vt and thorn vertices ut for all t ∈ [i, j], and
thus, λ∗ = α(i, j), which is equal to M [i,m+ 1− j]. Therefore, λ∗ is in the matrix M .

Next, we consider the case where at least one of v and v′ is a twig vertex. For each twig
vertex wi of P , by definition, w(wi) · d(wi, vi) ≥ λ2, and since λ∗ ≤ λ2, the twig e(wi, vi)
must contain a center. Because both v and v′ are covered by q, only one of them is a twig
vertex. Without loss of generality, we assume that v is a twig vertex, say, wi. If v′ is a
backbone vertex, then let j be its index; otherwise, v′ is a thorn vertex and let j be the index
such that v′ connects the backbone vertex vj . Without loss of generality, we assume i ≤ j.

By the same argument as the above, all thorn vertices ut with t ∈ [i, j] are covered by q.
This implies that λ∗ is the y-coordinate of the lowest point in the common intersection of
h+(wi) and all upper half-planes defined by the backbone vertices vt and thorn vertices ut
for all t ∈ [i, j]. Thus, λ∗ = Ari [m+ 1− j]. Therefore, λ∗ is in the array Ari . J

Note thatM consists of a matrix M of dimension m×m and 2m arrays of lengths at
most m. With the help of the 2D sublist LP query data structure in Lemma 2, the following
lemma shows that the matrices ofM can be implicitly formed in O(m logm) time.

I Lemma 5. With O(m logm) time preprocessing, each matrix element ofM can be evaluated
in O(log2 m) time.

Proof. We build a data structure of Lemma 2 on the upper half-planes of H in O(m logm)
time. Then, each element of M can be obtained in O(log2 m) time by a 2D sublist LP query.

Now consider an array Ali. Given any index j, to compute Ali[j], recall that Ali[j] is equal
to the y-coordinate of the lowest point p∗ of the common intersection of the upper half-plane
h+(wi) and those in H ′, where H ′ is the set of the upper half-planes of H from h4(j−1)+1 to
h4i. The lowest point p′ of the common intersection of the upper half-planes of H ′ can be
computed in O(log2 m) time by a 2D sublist LP query with query indices 4(j − 1) + 1 and 4i.
Computing p∗ can also be done in O(log2 m) time by slightly modifying the query algorithm
for computing p′. We briefly discuss it below and the interested reader should refer to [10]
for details (the proof of Lemma 8 and the discussion after the lemma).

The query algorithm for computing p′ is similar in spirit to the linear-time algorithm for
the 2D linear programming problem in [23]. It is a binary search algorithm. In each iteration,
the algorithm computes the highest intersection p′′ between a vertical line l and the bounding
lines of the half-planes of H ′, and based on the local information at the intersection, the
algorithm will determine which side to proceed for the search. For computing p∗, we need to
incorporate the additional half-plane h+(wi). To this end, in each iteration of the binary
search, after we compute the highest intersection p′′, we compare it with the intersection of l
and the bounding line of h+(wi) and update the highest intersection if needed. This costs
only constant extra time for each iteration. Therefore, computing p∗ takes O(log2 m) time.

Computing the elements of arrays Ari can be done similarly. The lemma thus follows. J
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Figure 3 Left: the tree T where the numbers are the vertex weights. Right: the path partition of T .

By applying algorithm MSEARCH onM with stopping count c = 0 and κ = O(log2 m),
according to Lemma 1, MSEARCH produces O(logm) values for feasibility tests, and the
total time exclusive of feasibility tests is O(m log3 m) because we need to evaluate O(m logm)
matrix elements ofM. Hence, the total time for computing λ∗ is O(m log3 m+ τ · logm).

Remark. Clearly, the first algorithm is better than the second one. However, later when
we use the techniques of the second algorithm, m is often bounded by O(log2 n) and thus
log3 m = O(logn). In fact, we use the techniques of the second algorithm mainly because we
need to set the stopping count c to some non-zero value.

4 Solving the k-center problem on T

In this section, we present our algorithm for solving the k-center problem on T . We will focus
on computing the optimal objective value λ∗. Frederickson [15] proposed a path-partition
of T , which is a partition of the edges of T into paths where a vertex v is an endpoint of
a path if and only if the degree of v in T is not equal to 2 (e.g., see Fig. 3). A path in a
partition-partition of T is called a leaf-path if it contains a leaf of T .

As in [16], we generalize the path-partition to stem-partition as follows. During the course
of our algorithm, a range (λ1, λ2] that contains λ∗ will be maintained and T will be modified
by removing some edges and adding some thorns and twigs. At any point in our algorithm,
let T ′ be T with all thorns and twigs removed. A stem of T is a path in the path-partition of
T ′, along with all thorns and twigs that connect to vertices in the path. A stem-partition of
T is to partition T into stems according to a path-partition of T ′. A stem in a stem-partition
of T is called a leaf-stem if it contains a leaf of T that is a backbone vertex of the stem.

Our algorithm follows the first algorithmic scheme in [16]. There are two main phases:
Phase 1 and Phase 2. Let r = log2 n. Phase 1 gathers information so that the feasibility
test can be made in sublinear O(nr log3 r) time. Phase 2 computes λ∗ by using the faster
feasibility test. If T has more than 2n/r leaves, then there is an additional phase, called
Phase 0, which reduces the problem to a tree with at most 2n/r leaves. In the following, we
consider the general case where T has more than 2n/r leaves.

4.1 The preprocessing and computing the vertex ranks
We first perform some preprocessing. Recall that γ is the root of T . We compute the distances
d(v, γ) for all vertices v in O(n) time. Then, if u is an ancestor of v, d(u, v) = d(γ, v)−d(γ, u),
which can be computed in O(1) time. In the following, whenever we need to compute a
distance d(u, v), it is always the case that one of u and v is an ancestor of the other, and
thus d(u, v) can be obtained in O(1) time.
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Next, we compute a “rank” rank(v) for each vertex v of T . These ranks will facilitate our
algorithm later. For each vertex v, we define a point p(v) on the x-axis with x-coordinate
equal to d(γ, v) in an xy-coordinate system R2, and define l(v) as the line through p(v) with
slope equal to −w(v). Let L be the set of these n lines. Consider the line arrangement A(L)
of L. Let v1(L) and v2(L) be the vertices as defined in Section 2. By Lemma 3, both vertices
can be computed in O(n logn) time. Let l be a horizontal line strictly between v1(L) and
v2(L). We sort all lines of L by their intersections with l from left to right, and for each
vertex v, we define rank(v) = i if there are i − 1 lines before l(v) in the above order. By
the definitions of v1(L) and v2(L), the above order of L is also an order of L sorted by their
intersections with the horizontal line y = λ∗.

4.2 Phase 0
Recall that T has more than 2n/r leaves. In this section, we reduce the problem to the
problem of placing centers in a tree with at most 2n/r leaves. Our algorithm will maintain a
range (λ1, λ2] that contains λ∗. Initially, λ1 = y(v2(L)), the y-coordinate of v2(L), which is
already computed in the preprocessing, and λ2 = y(v1(L)). We form a stem-partition of T ,
which is actually a path-partition since there are no thorns and twigs initially, and this can
be done in O(n) time.

Recall that r = log2 n. While there are more than 2n/r leaves in T , we do the following.
Recall that the length of a stem is defined as the number of backbone vertices. Let

S be the set of all leaf-stems of T whose lengths are at most r. Let n′ be the number of
all backbone vertices on the leaf-stems of S. For each leaf-stem of S, we form matrices
by Lemma 5. Let M denote the collection of matrices for all leaf-stems of S. We call
MSEARCH onM, with stopping count c = n′/(2r), by using the feasibility test algorithm
FTEST0. After MSEARCH stops, we have an updated range (λ1, λ2) and matrix elements
ofM in (λ1, λ2) are called active values. Since c = n′/(2r), at most n′/(2r) active values of
M remain, and thus at most n′/(2r) leaf-stems of S have active values.

For each leaf-stem P ∈ S without active values, we perform the following post-processing
procedure. The backbone vertex of P closest to the root is called the top vertex. We place
centers on P , subtract their number from k, and replace P by either a thorn or a twig
connected to the top vertex (P is thus removed from T except the top vertex), such that
solving the k-center problem on the modified T also solves the problem on the original T .
The post-processing procedure can be implemented in O(m) time, where m is the length of
P . The details are given below.

The post-processing procedure on P . Let z be the top vertex of P . We run FTEST0 on
P with z as the root and λ = λ′ that is an arbitrary value in (λ1, λ2). After z is finally
processed, depending on whether sup(z) ≤ dem(z), we do the following.

If sup(z) ≤ dem(z), then let q be the last center that has been placed. In this case, all
vertices of P are covered and z is covered by q. According to algorithm FTEST0 and as
discussed in the proof of Lemma 4, q covers a connected subtree of vertices, and let V (q)
denote the set of these vertices excluding z. Note that V (q) can be easily identified during
FTEST0. Let k′ be the number of centers excluding q that have been placed on P . Since
λ′ ∈ (λ1, λ2) and the matrices formed based on P do not have any active values, we have the
following key observation: if we run FTEST0 with any λ ∈ (λ1, λ2), the algorithm will also
cover all vertices of P \ (V (q) ∪ {z}) with k′ centers and cover vertices of V (q) ∪ {z} with
one center. Indeed, this is true because the way we form matrices for P is consistent with
FTEST0, as discussed in the proof of Lemma 4. In this case, we replace P by attaching a
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twig e(u, z) to z with length equal to d(u, z), where u is a vertex of V (q) with the following
property: For any λ ∈ (λ1, λ2), if we place a center q′ on the path π(u, z) at distance λ/w(u)
from u, then q′ will cover all vertices of V (q) under λ, i.e., u “dominates” all other vertices
of V (q) and thus it is sufficient to keep u (since λ2 is feasible, any subsequent feasibility test
in the algorithm will use λ ∈ (λ1, λ2)). The following lemma shows that u is the vertex of
V (q) with the largest rank. The proof of the lemma is omitted.

I Lemma 6. Let u be the vertex of V (q) with the largest rank. For any λ ∈ (λ1, λ2), the
following holds.
1. λ

w(u) ≤ d(u, z).
2. If q′ is the point on the path π(u, z) with distance λ

w(u) from u, then q′ covers all vertices
of V (q) under λ, i.e., w(v) · d(v, q′) ≤ λ for all v ∈ V (q).

Due to the preprocessing in Section 4.1, we can find u from V (q) in O(m) time. This
finishes our post-processing procedure for the case sup(z) ≤ dem(z). Since λ

w(u) ≤ d(u, z)
for any λ ∈ (λ1, λ2), we have w(u) · d(u, z) ≥ λ2, and thus, e(u, z) is indeed a twig.

Next, we consider the other case sup(z) > dem(z). In this case, P has some vertices
other than z that are not covered yet, and we would need to place a center at z to cover
them. Let V be the set of all uncovered vertices other than z, and V can be identified during
FTEST0. In this case, we replace P by attaching a thorn e(u, z) to z with length equal to
d(u, z), where u is a vertex of V with the following property: For any λ ∈ (λ1, λ2), if there
is a center q outside P covering u through z (by “through”, we mean that π(q, u) contains
z) under distance λ, then q also covers all other vertices of V (intuitively u “dominates” all
other vertices of V ). Since later we will place centers outside P to cover the vertices of V
through z under some λ ∈ (λ1, λ2), it is sufficient to maintain u. The following lemma shows
that u is the vertex of V with the largest rank. The proof is omitted.

I Lemma 7. Let u be the vertex of V with the largest rank. Then, for any center q outside
P that covers u through z under any λ ∈ (λ1, λ2), q also covers all other vertices of V .

Since a center at z would cover u, it holds that w(u) · d(u, z) ≤ λ for any λ ∈ (λ1, λ2),
which implies that w(u) · d(u, z) ≤ λ1. Thus, e(u, z) is indeed a thorn.

The above replaces P by attaching to z either a thorn or a twig. We perform the following
additional processing.

Suppose z is attached by a thorn e(z, u). If z already has another thorn e(z, u′), then we
discard one of u′ and u whose rank is smaller, because any center that covers the remaining
vertex will cover the discarded one as well. This makes sure that z has at most one thorn.

Suppose z is attached by a twig e(z, u). If z already has another twig e(z, u′), then we
can discard one of u and u′ whose rank is larger (and subtract 1 from k). The reason is
the following. Without loss of generality, assume rank(u) < rank(u′). Since both e(z, u)
and e(z, u′) are twigs, if we apply FTEST0 on any λ ∈ (λ1, λ2), then the algorithm will
place a center q on e(z, u) with distance λ/w(u) from u and place a center q′ on e(z, u′) with
distance λ/w(u′) from u′. As rank(u) < rank(u′), we have Lemma 8.

I Lemma 8. d(q, z) ≤ d(q′, z).

Lemma 8 tells that any vertex covered by q′ in the subsequent algorithm will also be
covered by q. Thus, it suffices to maintain the twig e(z, u). Since we need to place a center
at e(z, u′), we subtract 1 from k after removing e(z, u′). Hence, z has at most one twig.

This finishes the post-processing procedure for P . Due to the preprocessing in Section 4.1,
the running time of the procedure is O(m).
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Let T be the modified tree after the post-processing on each stem P without active values.
If T still has more than 2n/r leaves, then we repeat the above. The algorithm stops once T
has at most 2n/r leaves. This finishes Phase 0. The following lemma gives the time analysis.

I Lemma 9. Phase 0 runs in O(n(log logn)3) time.

Proof. We first argue that the number of iterations of the while loop is O(log r).
We consider an iteration of the while loop. Suppose the number of leaf-stems in T ,

denoted by m, is at least 2n/r. Then, at most n/r leaf-stems are of length larger than r.
Hence, at least half of the leaf-stems are of length at most r. Thus, |S| ≥ m/2. Recall that
n′ is the total number of backbone vertices in all leaf-stems of S. Because at most n′/(2r)
leaf-stems have active values after MSEARCH, at least |S| − n′/(2r) ≥ m/2 − n′/(2r) ≥
m/2 − n/(2r) ≥ m/2 −m/4 = m/4 leaf-stems will be removed. Note that removing two
such leaf-stems may make an interior vertex become a new leaf in the modified tree. Hence,
the tree resulting at the end of each iteration will have at most 7/8 of the leaf-stems of the
tree at the beginning of the iteration. Therefore, the number of iterations of the while loop
needed to reduce the number of leaf-stems to at most 2n/r is O(log r).

We proceed to analyze the running time of Phase 0. In each iteration of the while loop,
we call MSEARCH on the matrices for all leaf-stems of S. Since the length of each stem P

of S is at most r, there are O(r) matrices formed for P . We perform the preprocessing of
Lemma 5 on the matrices, so that each matrix element can be evaluated in O(log2 r) time.
The total time of the preprocessing on stems of S is O(n′ log r). SinceM has O(n′) matrices
and the stopping account c is n′/(2r), each call to MSEARCH produces O(log r) values for
feasibility tests in O(n′ log3 r) time (i.e., O(n′ log r) matrix elements will be evaluated). For
each leaf-stem without active values, the post-processing time for it is O(r). Hence, the total
post-processing time in each iteration is O(n′).

Since there are O(log r) iterations, the total number of feasibility tests is O(log2 r), and
thus the overall time for all feasibility tests in Phase 0 is O(n log2 r). On the other hand,
after each iteration, at most n′/(2r) leaf-stems of S have active values and other leaf-stems
of S will be deleted. Since the length of each leaf-stem of S is at most r, the leaf-stems
with active values have at most n′/2 backbone vertices, and thus at least n′/2 backbone
vertices will be deleted in each iteration. Therefore, the total sum of such n′ in all iterations
is O(n). Hence, the total time for the preprocessing of Lemma 5 is O(n log r), the total
time for MSEARCH is O(n log3 r), and the total post-processing time for leaf-stems without
active values is O(n).

In summary, the overall time of Phase 0 (excluding the preprocessing in Section 4.1) is
O(n log3 r), which is O(n(log logn)3) since r = log2 n. J

4.3 Phase 1
We assume that the tree T now has at most 2n/r leaves and we want to place k centers in T
to cover all vertices. Note that T may have some thorns and twigs. The main purpose of
this phase is to gather information so that each feasibility test can be done in sublinear time,
and specifically, O(n/r log3 r) time. Recall that we have a range (λ1, λ2] that contains λ∗.

We first form a stem-partition for T . Then, we further partition the stems into substems,
each of length at most r, such that the lowest backbone vertex v in a substem is the highest
backbone vertex in the next lower substem (if v has a thorn or/and a twig, then they are
included in the upper substem). So this results in a partition of edges. Let S be the set of
all substems. Let Tc be the tree in which each node represents a substem of S and node µ in
Tc is the parent of node ν if the highest backbone vertex of the substem for ν is the lowest
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backbone vertex of the substem for µ, and we call Tc the stem tree. As in [15,16], since T
has at most 2n/r leaves, |S| = O(n/r) and the number of nodes of Tc is O(n/r).

For each substem P ∈ S, we compute the set LP of lines as in Section 3.1. Let L be the set
of all the lines for all substems of S. We define the lines of L in the same xy-coordinate system
R2. Clearly, |L| = O(n). Consider the line arrangement A(L). Define vertices v1(L) and
v2(L) of A(L) as in Section 2. With Lemma 3 and FTEST0, both vertices can be computed
in O(n logn) time. We update λ1 = max{λ1, y(v2(L))} and λ2 = min{λ2, y(v1(L))}. Hence,
we still have λ∗ ∈ (λ1, λ2]. We again call the values in (λ1, λ2) active values.

For each substem P ∈ S, observe that each element of the matrices formed based on P
in Section 3.2 is equal to the y-coordinate of the intersection of two lines of LP , and thus
is equal to the y-coordinate of a vertex of A(L). By the definitions of v1(L) and v2(L), no
matrix element of P is active.

In the future algorithm, we will only need to test feasibilities for values λ ∈ (λ1, λ2). We
compute a data structure on each substem P of S, so that it will help make the feasibility
test faster. We have the following lemma and use FTEST1 to denote the feasibility test
algorithm in the lemma. The lemma proof is omitted.

I Lemma 10. After O(n logn) time preprocessing, each feasibility test can be done in
O(n/r · log3 r) time.

4.4 Phase 2
In this phase, we will finally compute the optimal objective value λ∗, using the faster feasibility
test FTEST1. Recall that we have computed a range (λ1, λ2] that contains λ∗ after Phase 1.

We first form a stem-partition of T . While there is more than one leaf-stem, we do the
following. Let S be the set of all leaf-stems. For each stem P ∈ S, we compute the set of
lines as in Section 3.1, and let L be the set of the lines for all stems of S. With Lemma 3 and
FTEST1, we compute the two vertices v1(L) and v2(L) of the arrangement A(L) as defined
in Section 2. We update λ1 = max{λ1, y(v2(L))} and λ2 = min{λ2, y(v1(L))}. As discussed
in Phase 1, each stem P of S does not have any active values (in the matrices defined by P ).
Next, for each stem P of S, we perform the post-processing procedure as in Section 4.2, i.e.,
place centers on P , subtract their number from k, and replace P by attaching a twig or a
thorn to its top vertex. Let T be the modified tree.

After the while loop, T is a single stem. Then, we apply above algorithm on the only stem
T , and the obtained value λ2 is λ∗. The running time of Phase 2 is bounded by O(n logn),
which is proved in the following theorem.

I Theorem 11. The k-center problem on T can be solved in O(n logn) time.

Proof. As discussed before, Phases 0 and 1 run in O(n logn) time. We focus on Phase 2.
First of all, as in [16], the number of iterations of the while loop is O(logn) because

the number of leaf-stems is halved after each iteration. In each iteration, let n′ denote the
total number of backbone vertices of all leaf-stems in S. Hence, |L| = O(n′). Thus, the call
to Lemma 3 with FTEST1 takes O((n′ + n/r · log3 r) logn′) time. The total time of the
post-processing procedure for all leaf-stems of S is O(n′). Since all leaf-stems of S will be
removed in the iteration, the total sum of all such n′ is O(n) in Phase 2. Therefore, the
total time of the algorithm in Lemma 3 in Phase 2 is O(n logn+ n/r · log3 r log2 n), which
is O(n logn) since r = log2 n. Also, the overall time for the post-processing procedure in
Phase 2 is O(n). Therefore, the total time of Phase 2 is O(n logn). J

The pseudocode in Algorithm 1 summarizes the overall algorithm.



H. Wang and J. Zhang 72:13

Algorithm 1: The k-center algorithm.
Input: A tree T and an integer k
Output: The optimal objective values λ∗ and k centers in T

1 Perform the preprocessing in Section 4.1 and compute the “ranks” for all vertices of
T ;

/* Phase 0 */
2 r ← log2 n;
3 Form a stem-partition of T ;
4 while do
5 there are more than 2n/r leaves in T
6 Let S be the set of all leaf-stems of lengths at most r;
7 Form the setM of matrices for all leaf-stems of S by Lemma 5;
8 Let n′ be the total number of all backbone vertices of the leaf-stems of S;
9 Call MSEARCH onM with stopping count c = n′/(2r), using FTEST0 ;

10 for do
11 each leaf-stem P of S with no active values
12 Perform the post-processing on P , i.e., place centers on P , subtract their number

from k, replace P by a thorn or a twig, and modify the stem-partition of T ;
/* Phase 1 */

13 For a stem-partition of T , and for each stem, partition it into substems of lengths at
most r;

14 Let S be the set of all substems, and form the stem-tree Tc;
15 Compute the set L of lines for all stems of S in the way discussed in Section 3.1;
16 Compute the two vertices v1(L) and v2(L) of A(L) by Lemma 3 and FTEST0, and

update λ1 and λ2;
17 for do
18 each substem P of S
19 Compute the data structure for the faster feasibility test FTEST1 ;

/* Phase 2 */
20 Form a stem-partition of T ;
21 while do
22 there is more than one leaf-stem in T
23 Compute the set L of lines for all stems of S in the way discussed in Section 3.1;
24 Compute the two vertices v1(L) and v2(L) of A(L) by Lemma 3 and FTEST1, and

update λ1 and λ2;
25 for do
26 each leaf-stem of S
27 Perform the post-processing on P , i.e., place centers on P , subtract their number

from k, replace P by a thorn or a twig, and modify the stem-partition of T ;
28 Compute the set L of the lines for the only leaf-stem T ;
29 Compute the two vertices v1(L) and v2(L) of A(L) by Lemma 3 and FTEST1, and

update λ1 and λ2;
30 λ∗ = λ2;
31 Apply FTEST0 on λ = λ∗ to find k centers in the original tree T ;
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