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Abstract
We study the complexity of geometric problems on spaces of low fractal dimension. It was
recently shown by [Sidiropoulos & Sridhar, SoCG 2017] that several problems admit improved
solutions when the input is a pointset in Euclidean space with fractal dimension smaller than
the ambient dimension. In this paper we prove nearly-matching lower bounds, thus establishing
nearly-optimal bounds for various problems as a function of the fractal dimension.

More specifically, we show that for any set of n points in d-dimensional Euclidean space, of
fractal dimension δ ∈ (1, d), for any ε > 0 and c ≥ 1, any c-spanner must have treewidth at least
Ω
(
n1−1/(δ−ε)

cd−1

)
, matching the previous upper bound. The construction used to prove this lower

bound on the treewidth of spanners, can also be used to derive lower bounds on the running time
of algorithms for various problems, assuming the Exponential Time Hypothesis. We provide two
prototypical results of this type:

For any δ ∈ (1, d) and any ε > 0, d-dimensional Euclidean TSP on n points with fractal
dimension at most δ cannot be solved in time 2O(n1−1/(δ−ε)). The best-known upper bound
is 2O(n1−1/δ logn).
For any δ ∈ (1, d) and any ε > 0, the problem of finding k-pairwise non-intersecting d-
dimensional unit balls/axis parallel unit cubes with centers having fractal dimension at most
δ cannot be solved in time f(k)nO(k1−1/(δ−ε)) for any computable function f . The best-known
upper bound is nO(k1−1/δ logn).

The above results nearly match previously known upper bounds from [Sidiropoulos & Sridhar,
SoCG 2017], and generalize analogous lower bounds for the case of ambient dimension due to
[Marx & Sidiropoulos, SoCG 2014].
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1 Introduction

The curse of dimensionality is a general phenomenon in computational geometry, asserting
that the complexity of many problems increases rapidly with the dimension of the input. Sets
of fractional dimension can be used to model various processes and phenomena in science
and engineering [25]. Recently, the complexity of various geometric optimization problems
was studied as a function of the fractal dimension of the input [23]. It was shown that, for
several problems, improved algorithms can be obtained when the fractal dimension is smaller
than the ambient dimension.

Interestingly, the algorithms obtained in [23] nearly match the best-possible algorithms
for integral dimension. In this paper, we give nearly-matching lower bounds, assuming the
Exponential Time Hypothesis (ETH). We remark that there are several different definitions of
fractal dimension that can be considered. Our results indicate that, for the case of Euclidean
pointsets, the definition of fractal dimension we consider is the “correct” one for certain
computational problems. That is, it precisely generalizes the dependence of the running time
on the ambient dimension.

1.1 Our contribution

We obtain nearly-optimal lower bounds for various prototypical geometric problems. Our
results are obtained via a general method that could be applicable to other problems.

Spanners

We begin with a lower bound on the treewidth of spanners. It is known that any set of
n points in Rd admits a (1 + ε)-spanner of size n(1/ε)O(d) [22, 27]. This result has been
generalized for the case of fractal dimension. Specifically, it was shown in [23] that any n-point
set in O(1)-dimensional Euclidean space, of fractal dimension δ > 1, admits a (1 + ε)-spanner
of size n(1/ε)O(d), and of pathwidth O(n1−1/δ logn). We show the following lower bound,
which establishes that the upper bound from [23] is essentially best-possible.

I Theorem 1. Let d ≥ 2 be an integer. Then for all δ ∈ (1, d), for all ε > 0 and for all
n0 ∈ N, there exists a set of n ≥ n0 points P ⊂ Rd, of fractal dimension at most δ′, where∣∣δ − δ′∣∣ ≤ ε, such that for any c ≥ 1, any c-spanner G of P has tw(G) = Ω

(
n1−1/δ′

cd−1

)
.

Independent Set of Unit Balls

We consider the k-Independent Set of Unit Balls in Rd, which is a prototypical geometric
optimization problem, parameterized by the optimum. In this problem given a set of n unit
balls in Rd, we seek to find a set of k pairwise non-intersecting balls. It is known that this
problem can be solved in time nO(k1−1/d), for any d ≥ 2 [1, 19], and that there is no algorithm
with running time f(k)no(k1−1/d), for any computable function f , assuming ETH [19] (see
also [17]). The upper bound has been generalized for fractal dimension as follows: It has
been shown that when the set of centers of the balls has fractal dimension δ, the problem
can be solved in time nO(k1−1/δ logn) [23]. We show the following lower bound on the running
time, which nearly matches this upper bound, up to a logarithmic term.
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I Theorem 2. Let d ≥ 2 be an integer, and let 1 < δ′ < δ < d. If for all k, and for some
computable function f , there exists an f(k)no(k1−1/δ′ ) time algorithm for finding k pairwise
non-intersecting open balls in a collection of n unit balls with the centers having fractal
dimension at most δ, then ETH fails.

Euclidean TSP

It is known that TSP on a set of n points in d-dimensional Euclidean space can be solved in
time 21−1/dnO(1) [24], and that there is no algorithm with running time 2O(n1−1/d−ε), for any
ε > 0, assuming ETH. The upper bound has been generalized to the case of fractal dimension
as follows. It has been shown that for a set of fractal dimension δ > 1, in O(1)-dimensional
Euclidean space, TSP can be solved in time 2O(n1−1/δ logn). Here, we obtain the following
nearly-tight lower bound.

I Theorem 3. Let d ≥ 2 be an integer. Then, for all δ ∈ (2, d), for all δ′ < δ and for all
n0 ∈ N, if there exists n ≥ n0 such that Euclidean TSP in Rd on all pointsets of size n and
fractal dimension at most δ can be solved in time 2O(n1−1/δ′ ), then ETH fails.

1.2 Overview of techniques

We now briefly highlight the main technical tools used in the paper.

High-level idea

We derive our lower bounds by adapting a method from the case of graph problems. It is
known that, for many problems on graphs, large treewidth implies large running time lower
bounds (see, e.g. [18]). This is typically done by exploiting the duality between treewidth
and grid minors. Specifically, it is known that, for any r, graphs of treewidth at least f(r),
for some function f , have the (r × r)-grid as a minor [21]. In fact, the function f is known
to be linear for planar graphs [20], and polynomial in general [5]. One can often obtain a
lower bound on the running time by using the grid minor to embed a large hard instance
in the input. We apply the above approach to the geometric setting by relating fractal
dimension to treewidth. Specifically, we construct a pointset in Euclidean space, such that
any O(1)-spanner must have large treewidth.

From fractal dimension to treewidth

A main technical ingredient for obtaining nearly-optimal lower bounds is constructing
pointsets such that the treewidth of any O(1)-spanner is as large as possible. For the case
of exposition, we will describe the construction in the continuous case. We construct some
X ⊂ Rd, and we discretize X by taking some O(1)-approximate1 ε-net Nε of X. Let us refer
to the fractal dimension of the resulting infinite family of nets Nε, as the fractal dimension
of X (see Section 1.4 for precise definitions). Our goal is to construct some X, with some
fixed fractal dimension δ ∈ (1, d], such that the treewidth of any O(1)-spanner of Nε is as
large as possible as a function of 1/ε.

1 Recall that a O(1)-approximate r-net in some metric space (X, ρ) is some N ⊆ X, such that for all
x 6= y ∈ N , ρ(x, y) > r, and for all z /∈ N , ρ(z,N) = infy∈N d(z, y) = O(r).

SoCG 2018
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Figure 1 The first few iterations of the Sierpiński carpet.

Figure 2 The first few iterations of the Cantor ternary set.

A first failed attempt: the Sierpiński carpet

Let us now briefly describe the construction and point out the main technical challenges.
A natural first attempt in R2 is to let X be the Sierpiński carpet. This is a set obtained
from the unit square by removing the central square of side length 1/3, and by recursing
on the remaining 8 sub-squares (see Figure 1). Unfortunately, this construction does not
lead to a tight treewidth lower bound. Specifically, the resulting set has fractal dimension
δ = log 8/ log 3, while there exist O(1)-spanners of treewidth O(n1−1/γ), where γ is a constant
arbitrarily close to log 6/ log 3.

Intuitively, this happens for the following reason. Let Sε be any O(1)-spanner for Nε.
Then, the largest possible grid minor in Sε does not use most of the vertices in Sε. Thus,
roughly speaking, we can obtain a larger grid minor by constructing a set X so that as few
vertices of Sε as possible are being “wasted”.

Constructing a treewidth-extremal fractal: the Cantor crossbar

Using the above observation, we define the set X as follows. We first recall that the Cantor
set C is obtained from the unit interval by removing the central interval of length 1/3, and
recursing on the other two (see Figure 2). We define C′ to be the Cartesian product of C
with [0, 1], and we set X to be the union of two copies of C′, where one is rotated by π/2.
We refer to the resulting set as the Cantor crossbar (see Figure 3). We can show that the
resulting set achieves a nearly-optimal treewidth lower bound.

The above construction can be generalized to the case where the ambient dimension is
d ≥ 2 as follows. Recall that, for any d′ ≥ 1, the Cantor dust in Rd′ , denoted by Dd′ , is the
Cartesian product of d′ copies of the Cantor set (see Figure 4). Let e1, . . . , ed be the standard
orthonormal basis in Rd. For each i ∈ {1, . . . , d}, we define Ti to be the Cartesian product
of Dd−1 with [0, 1], rotated so that [0, 1] is parallel to ei. Finally, we set X = T1 ∪ . . . ∪ Td
(see Figure 5).

Figure 3 The first few iterations of the Cantor crossbar in R2.
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Figure 4 The first few iterations of the Cantor dust in R2.

Figure 5 The first few iterations of the Cantor crossbar in R3.

The above construction gives a set with some fixed fractal dimension δ, for each fixed
d ≥ 2. We can generalize the construction so that δ attains any desired value in the range
(1, d]. The only difference is that, when defining the Cantor dust, we start with a Cantor set
of smaller dimension. This can be done by removing the central interval of length α ∈ (0, 1),
instead of 1/3, and recursing on the remaining two intervals of length (1− α)/2.

From spanner lower bounds to running time lower bounds

The above construction of the Cantor crossbar leads to a nearly-optimal lower bound for
the treewidth of O(1)-spanners. We next use this construction to obtain running time lower
bounds. Informally, a typical NP-hardness reduction for some geometric problem in the plane
works as follows: One encodes some known computationally hard problem by constructing
“gadgets” that are arranged in a grid-like fashion in R2 (see, e.g. [19]). More generally,
for problems in Rd, the gadgets are arranged along some d-dimensional grid. We follow a
similar approach, with the main difference being that we arrange the gadgets along a Cantor
crossbar.

1.3 Other related work

There has been a large body of work on determining the effect of doubling dimension on the
complexity of various geometric problems [10, 2, 6, 14, 8, 16, 4, 3, 9, 26]. Other notions of
dimension that have been considered include low-dimensional negatively curved spaces [15],
growth-restricted metrics [12], as well as generalizations of doubling dimension to metrics
of so-called bounded global growth [11]. In all of the above lines of research the goal is to
extend tools and ideas from the Euclidean setting to more general geometries. In contrast,
we study restricted classes of Euclidean instances, with the goal of obtaining better bounds
than what is possible in the general case.

1.4 Preliminaries

We give some definitions that are used throughout the paper.

SoCG 2018
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I Definition 4 (ε-covering). Let X be a set and A ⊆ X. Then, A is an ε-covering of X if
for every x ∈ X, there exists a ∈ A such that dist(x, a) ≤ ε.

I Definition 5 (ε-packing). A set A is called an ε-packing if for all x, y ∈ A, dist(x, y) ≥ ε.

I Definition 6 (ε-net). A set A ⊆ X is called an ε-net of X if A is an ε-packing as well as
an ε-covering of X.

I Definition 7 (Fractal dimension). [23] Given x ∈ Rd and r > 0, let B(x, r) denote the ball
of radius r centered at x. The fractal dimension of some P ⊆ Rd, denoted by dimf(P ), is
defined as the infimum δ, such that for any ε > 0 and r ≥ 2ε, for any ε-net N of P , and for
any x ∈ Rd, we have |N ∩B(x, r)| = O((r/ε)δ).

We have the following lemmas showing invariance of fractal dimension under certain
operations.

I Lemma 8. Let d ≥ 1 be an integer, let 0 < δ ≤ d and let c > 0 be some constant. Let
P ⊂ Rd be a pointset such that dimf(P ) = δ. Let P ′ be the pointset obtained by uniformly
scaling the points of P about the origin by a factor of c. Then dimf(P ′) = δ.

I Lemma 9. Let d ≥ 1 be some integer, let 0 < δ ≤ d and let c > 0, k > 0 be some constants.
Let P ⊂ Rd be a pointset such that dimf(P ) = δ and for all u, v ∈ P , d(u, v) > 4c. For all
p ∈ P let Sp ⊂ Rd be a set of points such that |Sp| ≤ k and for all x ∈ Sp, d(x, p) ≤ c. Let
P ′ =

⋃
p∈P

Sp. Then dimf(P ′) = δ.

I Definition 10 (c-spanner). For any pointset P ⊂ Rd, and for any c ≥ 1, a c-spanner for
P is a graph G with V (G) = P , such that for all x, y ∈ P , we have

||x− y||2 ≤ dG(x, y) ≤ c · ||x− y||2,

where dG denotes the shortest path distance in G.

I Definition 11 (Treewidth). [7] Let G be a graph, T a tree and V = {Vt}t∈T be a family
of vertex sets Vt ⊆ V (G) indexed by the vertices t of T . The pair (T,V) is called a
tree-decomposition of G if it satisfies the following three conditions:
1. V (G) = ∪t∈TVt.
2. For every edge e ∈ G, there exists a t ∈ T such that both ends of e lie in Vt.
3. Vt1 ∩ Vt3 ⊆ Vt2 , whenever t2 lies in the unique path joining t1 and t3 in T .
The width of (T,V) is the number max{|Vt| : t ∈ T} and the treewidth of G is the least
width of any tree-decomposition of G.

Exponential Time Hypothesis. The Exponential Time Hypothesis states that there is no
2o(n) algorithm to solve the n-variable 3SAT.

1.5 Organization
This paper is organized as follows. In section 2, we present lower bounds on the treewidth
of spanners for arbitrary pointsets with integral dimension, and with fractal dimension. In
section 3, we present running time lower bound on the Independent Set of Balls problem on
pointsets with arbitrary fractal dimension in Rd. The proof of Theorem 3 can be found in the
full version of the paper. This theorem proves running time lower bound on the Euclidean
TSP problem on pointsets with arbitrary fractal dimension in Rd.
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2 Lower bounds on the treewidth of spanners

In this section, we obtain lower bounds on the treewidth of spanners for arbitrary pointsets.
In subsection 2.1, we consider pointsets with integral fractal dimension. In subsection 2.2,
we consider a discretized version of the Sierpiński carpet whose fractal dimension is less than
two but greater than 1. In subsection 2.3, we use a carefully chosen inductive construction
to obtain a specific fractal pointset of fractal dimension log 6

log 3 . This pointset gives us a nearly
tight lower bound on the treewidth of a spanner. We finally generalize this construction in
subsection 2.4 and present the proof of Theorem 1.

2.1 Treewidth and integral dimension
We obtain lower bounds on the treewidth of spanners for pointsets with integral fractal
dimension. We will make use of the following theorem due to Kozawa et al.[13] for the proofs
in this section.

I Theorem 12 ([13]). The treewidth of the d-dimensional grid on n vertices is Θ(n1−1/d).

I Theorem 13. For any integer d ≥ 1, there exists a set of n points P ⊆ Rd such that for
any c ≥ 1, and for any c-spanner G of P , tw(G) = Ω

(
n1−1/d

cd−1

)
.

Proof. Fix an integer d ≥ 1. Let n ∈ N be such that n 1
d is an integer. Let P =

{1, 2, · · · , n 1
d }d and let G be any c-spanner of P . Let p = (p1, . . . , pd) be a point in P .

We define P ′ and X ′ as follows:

P ′ = {p ∈ P | ∃ 1 ≤ i ≤ d such that ∀ j 6= i, (pj mod (c+ 1)) = 1}.

X = {p ∈ P ′ | ∀ 1 ≤ i ≤ d, (pi mod (c+ 1)) = 1}.
Consider the points in P ′. We call a row of points in P ′ that is parallel to one of the d axes
a full row if this row consists of exactly n 1

d points with adjacent points unit distance apart.
Consider for any 1 ≤ i ≤ d, the points of any pair of full rows R and T that are both parallel
to the ith axis. We have that for any pair of consecutive points x1, x2 in R and for any pair
of consecutive points y1, y2 in T , no shortest path in G joining x1 and x2 can intersect any
shortest path in G joining y1 and y2. Suppose not, then let z be a point of intersection
between two such shortest paths. Since G is a c-spanner and consecutive points in any row are
distance 1 apart, we have dG(x1, z) + dG(x2, z) ≤ c and similarly, dG(y1, z) + dG(y2, z) ≤ c.
But this implies that at least one of dG(x1, y1), dG(x1, y2), dG(x2, y1) and dG(x2, y2) is at
most c due to triangle inequality. This is a contradiction because G is non-contracting and
the distance between R and T is at least c+ 1 by our choice of R and T .

Now if we consider a shortest path between every pair of consecutive points in the row R

and concatenate these paths, remove all loops, then we can obtain a path from one end of
this row to the other end. Doing the same for all full rows in P ′, we end up with a set of
paths traversing the points in the full rows. Moreover from the earlier argument, it follows
that any two such paths obtained from parallel full rows are vertex disjoint. Thus for all
1 ≤ i ≤ d, we can obtain a set of vertex disjoint paths Qi in G that traverse the points in
the full rows of P ′ parallel to the ith axis.

Finally we define a subgraphH ofG as follows: H consists of the points inX. Furthermore,
for any pair of points p, q ∈ X such that p and q differ only along one coordinate, say the
ith coordinate, and differ by exactly c+ 1, H also consists of the sub-path between p and
q of the corresponding path in Qi connecting p and q. Now contracting these paths in H
between adjacent points in X results in a d-dimensional grid with n

d(c+1)ed points. Thus, we
conclude that tw(G) = Ω

(
n1−1/d

(c+1)d−1

)
= Ω

(
n1−1/d

cd−1

)
. J

SoCG 2018
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2.2 A first attempt: The Sierpiński carpet
Consider a set of points X obtained by the following method: start with a 3k × 3k integer
grid for some k ∈ N and partition it into 9 subgrids of equal size. We delete all the points
in the central subgrid and recurse on the remaining 8 subgrids. The recursion stops when
we arrive at a subgrid containing a single point. This is a natural discrete variant of the
Sierpiński carpet.

I Theorem 14. Let δ be the fractal dimension of the set of points X obtained above. Then
we have δ ≥ log3 8.

Proof. We start by recalling the definition of fractal dimension of a set of points P . It is the
infimum δ > 0 such that for any ε > 0, for any ball B of radius r ≥ 2ε and for any ε-net N ,
we have |B ∩N | = O((r/ε)δ).

As seen in the construction, the width of the grid reduces by 1
3 at every step of recursion.

Thus we may assume that the width is 1
3i when we stop. Let ε = 1

2 ·
1
3i . Let N = X. We have

n = |X| = 8i since every step of recursion is done on the remaining 8 subgrids. Let r =
√

2.
Let x be the point on the top left corner of the grid. Then |B(x, r)∩N | = n = 8i ≤ m ·

(
r
ε

)δ
for some constant m > 0. This gives 8i ≤ m · (

√
2 · 2 · 3i)δ. Taking log on both sides, we get

log 8 ≤ δ log 3. Thus, δ ≥ log3 8. J

I Theorem 15. There exists a set of n points P with fractal dimension δ ∈ (1, 2), and some
c-spanner G of P , where c < 1 +

√
2, such that tw(G) = Θ(n1− 1

δ−ε), for some ε > 0.

2.3 One treewidth-extremal fractal: A discretized Cantor crossbar
In this section we describe the construction of a pointset in R2 with a specific fractal dimension
of log 6

log 3 . This pointset is a discretized version of the Cantor crossbar. We generalize this
construction in the next section to construct pointsets with arbitrary fractal dimension.

I Theorem 16. Let δ = log(6)
log(3) . Then for all n0 ∈ N, there exists a set P ⊂ R2 of n ≥ n0

points of fractal dimension at most δ, such that for any c ≥ 1, any c-spanner G of P has

tw(G) = Ω
(
n

1− 1
δ

c

)
.

Construction of the discrete Cantor crossbar. To prove the above theorem, we consider
the set of points obtained as follows. First we define f(0) and h(0) and g(0) to be a single
point. Then we inductively define h(i),g(i) and f(i) as follows. To get h(i) we start with a
3i × 3i integer grid and subdivide it into nine 3i−1 × 3i−1 integer grids. Then we remove all
3 sub-grids in the middle row and replace each of the 6 remaining sub-grids with copies of
h(i − 1). To get g(i) we again start with a 3i × 3i integer grid and subdivide it into nine
3i−1 × 3i−1 integer grids. Then we remove all 3 sub-grids in the middle column and replace
each of the 6 remaining sub-grids with copies of g(i− 1). Finally to get f(i) we start with a
3i × 3i integer grid and subdivide it into nine 3i−1 × 3i−1 integer grids. Then we remove
the central sub-grid. We then replace the four corner sub-grids with copies of f(i− 1). We
replace the middle sub-grid in the first and last rows with copies of h(i− 1) and we replace
the middle sub-grids of the first and last columns with copies of g(i− 1) as depicted in Figure
6. The pointset we require is given by f(k) where k is any positive integer. We have the
following two lemmas regarding the pointset f(k).

I Lemma 17. |f(k)| ≤ 2 · 6k.
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Figure 6 The construction of the discrete Cantor crossbar.

I Lemma 18. Let P = f(k). Then, dimf(P ) ≤ log(6)
log(3) .

I Lemma 19. Let G be a c-spanner of P , where c ≥ 1. Then, tw(G) = Ω
(

2k
c

)
.

Proof of Theorem 16. Using Lemma 18 and Lemma 19, we get that

tw(G) = Ω
(

(3kδ)1− 1
δ

c

)
= Ω

(
n1− 1

δ

c

)
J

.

2.4 A family of treewidth-extremal fractals for all dimensions
We can now generalize the ideas from the previous section to obtain a family of pointsets
that allow us to a get a lower bound on the treewidth of spanners for any given choice of
fractal dimension.

Construction of treewidth-extremal fractal pointsets. Consider the family of pointsets
defined as follows: For all integers d > 0, we name the dimensions from {1, 2, . . . , d}
in an arbitrary manner. For all odd integers l and v such that l > v, we define each of
f l,v,d(0), hl,v,d1 (0), . . . , hl,v,dd (0) to be a single point. We inductively define f l,v,d(i), hl,v,d1 (i), . . .
. . . , hl,v,dd (i) as follows: For hl,v,d1 (i), we start with a d-dimensional li integer grid and subdivide
it to get ld identical li−1 d-dimensional integer subgrids. Now, along every dimension
j ∈ {2, . . . , d}, we remove all ld−1v subgrids in the middle v rows of the subgrids. We then
replace each of the remaining l(l − v)d−1 subgrids with copies of hl,v,d1 (i− 1). The pointset
obtained is hl,v,d1 (i). In general for any m ∈ [d], we construct hl,v,dm (i) as follows: we start
with a d-dimensional li integer grid and subdivide it to get ld identical li−1 d-dimensional
integer subgrids. Then, along every dimension j 6= m, we remove all ld−1v subgrids in
the middle v rows of the subgrids. We replace each of the remaining l(l − v)d−1 subgrids

SoCG 2018
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with copies of hl,v,dm (i − 1). The pointset thus obtained is hl,v,dm (i). In order to construct
f l,v,d(i), we start with a d-dimensional li integer grid and subdivide it into ld identical li−1

d-dimensional integer subgrids. Let S denote the set of the central vd subgrids. Note that S
is a d-dimensional grid with side length v(li−1). Now along every dimension m ∈ [d], there
are (l−v)vd−1

2 subgrids on each side of S. We remove S as well as all such (l−v)vd−1

2 subgrids
lying on either side of S along every dimension. We replace each of the

(
l−v

2
)d sub-grids

in the 2d corners with copies of f l,v,d(i − 1). Then along every dimension m, we replace
each of the remaining

(
l−v

2
)d−1

v2d−1 subgrids with copies of hl,v,dm (i− 1). The pointset thus
obtained is f(i). To generate the pointset P mentioned in the statement of Theorem 1 we
pick l and v such that

∣∣∣δ − log(l(l−v)d−1)
log l

∣∣∣ ≤ ε. Such a pair of odd numbers always exists. Let

δ′ = (log l(l−v)d−1)
log l . Then, we set P to be f l,v,d(k), where k is any positive integer. We have

the following lemmas regarding pointset P.

I Lemma 20. For all odd integers l and v such that l > v, and for all positive integers
k > 0, we have that dimf(f l,v,d(k)) ≤ (log l(l−v)d−1)

log l .

I Lemma 21. dimf (P ) ≤ δ′.

Proof. This follows from Lemma 20 when applied to our choice of l,v and P . J

I Lemma 22. Let G be a c-spanner of P , where c ≥ 1. Then, tw(G) = Ω
(

(l−v)k(d−1)

cd−1

)
.

Proof of Theorem 1. Using Lemma 22 and Lemma 21, we get that

tw(G) = Ω
(

(l − v)k(d−1)

cd−1

)
= Ω

(
lkδ
′(1− 1

δ′ )
cd−1

)
= Ω

(
n1− 1

δ′

cd−1

)
.

This combined with the result of Lemma 21 proves the statement of the theorem. J

3 Running time lower bound for Independent Set of Unit Balls

In this section, we present the proof of Theorem 2. Our argument uses a reduction from
a type of Constraint Satisfaction Problem called the Geometric Constraint Satisfaction
Problem. The definitions in this section are taken from [19].

I Definition 23 (The Constraint Satisfaction Problem). [19] The input instance I of a
constraint satisfaction problem is a triple (V,D,C), where V is a set of variables that can
take values in the domain D, and C is a set of constraints, with each constraint being a pair
〈si, Ri〉 such that:

si is a tuple of variables of size mi.
Ri is an mi-ary relation over D.

A valid solution to the problem is an assignment of values from D to each of the variables in
V such that for all constraints 〈si, Ri〉, the assignment for each tuple si is in Ri.

For our purposes, we only need to consider the case where the constraints are binary, or
in other words, for all i, we have that mi = 2. We may assume that the input size |I| of a
binary CSP instance is a polynomial in |V | and |D|.

For an instance I of the Constraint Satisfaction Problem, the primal graph is a graph
G with vertex set V and an edge between u,w ∈ V if and only if there exists a constraint
〈si, Ri〉 ∈ C, such that si = (u,w).

Let R[n, d] denote the d-dimensional grid with vertex set [n]d and let Rd denote the set
of graphs R[n, d] for all n ≥ 1.
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Figure 7 The case d = 2, l = 3, v = 1 and m = 2. Boxes contain centers of balls in B. The blue
boxes are obtained from variables in I and the red boxes are obtained from variables in I ′ \ I.

I Definition 24 (The ≤-CSP). [19] A d-dimensional geometric ≤-CSP is a constraint
satisfaction problem of the following form: The set of variables V is a subset of vertices of
R[n, d] for some n and the primal graph is an induced subgraph of R[n, d]. The domain is
[∆]d for some integer ∆ ≥ 1. The instance can contain arbitrary unary constraints but the
binary constraints are of a special form. A geometric constraint is a constraint 〈(a,a′) , R〉
with a′ = a + ei such that

R = {((x1, . . . , xd), (y1, . . . , yd)) | xi ≤ yi}

This means that, if variables a and a′ are adjacent with a′ being larger by one in the i-th
coordinate, then the i-th coordinate of the value of a is at most as large as the i-th coordinate
of the value of a′.

We will use the following theorem from [19] in the proof of Theorem 2. We remark that
the condition |V | = Θ(nd) is implicit in [19].

I Theorem 25 ([19, Theorem 2.20]). If for some fixed d ≥ 1, there is an f(|V |)no(|V |1−1/d)

time algorithm for d-dimensional geometric ≤-CSP for some function f , where |V | = Θ(nd),
then ETH fails.

Construction of ≤-CSP I′. Given δ ∈ (1, d) and ε′ > 0, we can find odd integers l and
v such that

∣∣∣δ − log l(l−v)d−1

log l

∣∣∣ ≤ ε′. Let δ′ = log l(l−v)d−1

log l . Let I be a d-dimensional ≤-CSP
instance with variables V and domain [∆]d, where ∆ is any positive integer. Let the primal
graph of I be R[n, d]. We now define a new d-dimensional ≤-CSP I ′, with variables V ′ and
domain [∆]d, such that |V ′| = O

(
|V |

d−1
d ·

δ′
δ′−1

)
, and the primal graph of I ′ is R[nnew, d],

where nnew = nO(1). Let m > 0 be the smallest integer such that l
(m−1)(δ′−1)

d−1 < n ≤ l
m(δ′−1)
d−1 .

We construct f l,v,d(m), as in the proof of Theorem 1. From Lemma 22, we know that
f l,v,d(m) contains a subset of points that form a d-dimensional grid of side length l

m(δ′−1)
d−1 .

Let M denote this grid contained in f l,v,d(m). Since the variables V lie on the grid R[n, d]
and nd ≤ l

md(δ′−1)
d−1 , we can place the variables V on grid M such that their position relative

to each other in M is the same as in R[n, d]. By abuse of notation, we refer to the subset of
M containing variables V as V . We refer to the pointset f l,v,d(m) \M as C. We observe

SoCG 2018
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that the points in C connect adjacent points of M . We now define a new set of variables
V ′ = V ∪C. If a ∈ V , then the set of unary constraints for a is Ra. If a ∈ C, then a belongs
to a chain of points that connects two points of M along some dimension i, where i ∈ [d].
For an a ∈ C connecting two points of M along dimension i, we define Ra as follows:

Ra = {(a1, . . . , ai−1, ai, ai+1 . . . , ad) | aj = 0 ∀ j 6= i and ai ∈ [∆]}.

Thus for every a ∈ C, we have |Ra| = ∆. We define Ra for all variables a ∈ C in a similar
manner. The binary constraints on variables V ′ are described as follows: a binary constraint
is a constraint 〈(a,a′), R〉, with a′ = a + ei in f l,v,d(m) such that

R = {((x1, . . . , xd), (y1, . . . , yd)) | xi ≤ yi}.

Let I ′ denote the new ≤-geometric CSP with variables V ′, and unary and binary constraints
as defined above. From the choice of m, we have that |V ′| ≤ lδ

′ · n(d−1)· δ′
δ′−1 . Thus

|V ′| = O
(
|V |

d−1
d ·

δ′
δ′−1

)
, where we use the fact that δ, δ′, and l are fixed constants. Similarly,

we get that nnew = nO(1).

I Lemma 26. I ′ is satisfiable if and only if I is satisfiable.

Proof of Theorem 2. This proof is similar to the proof of Theorem 3.1 in [19]. Let I be a
d-dimensional ≤-CSP with variables V and domain [∆]d, and with primal graph R[n, d]. As
explained before, we construct a new ≤-CSP I ′ with variables V ′ and domain [∆]d, such that
|V ′| = O

(
|V |

d−1
d ·

δ
δ−1

)
and, the primal graph of I ′ is R[nnew, d], where nnew = nO(1). We

construct a set B of nnew balls, of diameter 1 each, such that the centers of the balls have
fractal dimension at most δ′, and B contains a set of |V ′| pairwise non-intersecting balls if
and only if I ′ has a satisfying assignment.

If there is an f(|V ′|)no(|V ′|1−1/δ′ )
new time algorithm for finding |V ′| pairwise non-intersecting

balls in B, then we can solve I ′ in f(|V ′|)no(|V ′|1−1/δ′ )
new time. Since I ′ is satisfiable if and only if

I is satisfiable, we obtain a solution for I in time f(|V ′|)no(|V ′|1−1/δ′ )
new . Let h be a computable

function such that h(|V |) = f(|V ′|). Since f(|V ′|)no(|V ′|1−1/δ′ )
new = h(|V |)no(|V |1−1/d), we

obtain a solution for I in time h(|V |)no(|V |1−1/d). By Theorem 25, this contradicts ETH.
Please refer to the full version of the paper for a detailed proof. J

I Remark 27. We can similarly show that assuming the Exponential Time Hypothesis, for
any δ ∈ (1, d) and any ε > 0, the problem of finding k-pairwise non-intersecting d-dimensional
axis parallel unit cubes in a collection of n cubes with centers having fractal dimension at
most δ cannot be solved in time f(k)nO(k1−1/(δ−ε)), for any computable function f . Given a
≤-CSP instance I, we reduce I to another ≤-CSP instance I ′ as explained in the beginning
of this section. We then use the construction and analysis as in the proof of Theorem 3.2 of
[19], replacing I with I ′. Using Theorem 25 and the proof of Theorem 2, we get the desired
result.
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