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Abstract
The main result of this paper is a proof that a nearly flat, acutely triangulated convex cap C
in R3 has an edge-unfolding to a non-overlapping polygon in the plane. A convex cap is the
intersection of the surface of a convex polyhedron and a halfspace. “Nearly flat” means that
every outer face normal forms a sufficiently small angle φ < Φ with the ẑ-axis orthogonal to
the halfspace bounding plane. The size of Φ depends on the acuteness gap α: if every triangle
angle is at most π/2−α, then Φ ≈ 0.36

√
α suffices; e.g., for α = 3◦, Φ ≈ 5◦. The proof employs

the recent concepts of angle-monotone and radially monotone curves. The proof is constructive,
leading to a polynomial-time algorithm for finding the edge-cuts, at worst O(n2); a version has
been implemented.
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1 Introduction

Let P be a convex polyhedron in R3, and let φ(f) be the angle the outer normal to face
f makes with the ẑ-axis. Let H be a halfspace whose bounding plane is orthogonal to the
ẑ-axis, and includes points vertically above that plane. Define a convex cap C of angle Φ to
be C = P ∩H for some P and H, such that φ(f) ≤ Φ for all f in C. We will only consider
Φ < 90◦, which implies that the projection C of C onto the xy-plane is one-to-one. Note that
C is not a closed polyhedron; it has no “bottom,” but rather a boundary ∂C.

Say that a convex cap C is acutely triangulated if every angle of every face is strictly
acute, i.e., less than 90◦. It may be best to imagine first constructing P ∩ H and then
acutely triangulating the surface. That every polyhedron may be acutely triangulated was
first established by Burago and Zalgaller [4]. Recently Bishop proved that every PSLG
(planar straight-line graph) of n vertices has a conforming acute triangulation, using O(n2.5)
triangles [2].1 Applying Bishop’s algorithm will create edges with flat (π) dihedral angles,

1 His main Theorem 1.1 is stated for non-obtuse triangulations, but he says later that “the theorem also
holds with an acute triangulation, at the cost of a larger constant in the O(n2.5).”
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64:2 Edge-Unfolding Nearly Flat Convex Caps

(a) (b)

Figure 1 (a) A convex cap of 98 vertices, Φ ≈ 33◦, with spanning forest F marked. C is
non-obtusely triangulated (rather than acutely triangulated). (b) Edge-unfolding by cutting F . The
quadrant lines are explained in Section 5.2.

resulting from partitioning an obtuse triangle into several acute triangles. One might view
the acuteness assumption as adding extra possible cut edges.

An edge-unfolding of a convex cap C is a cutting of edges of C that permits C to be
developed to the plane as a simple (non-self-intersecting) polygon, a “net.” The cut edges
must form a boundary-rooted spanning forest F : a forest of trees, each rooted on the
boundary rim ∂C, and spanning the internal vertices of C. Our main result is:

I Theorem 1. Every acutely triangulated convex cap C with face normals bounded by a
sufficiently small angle Φ from the vertical, has an edge-unfolding to a non-overlapping
polygon in the plane. The angle Φ is a function of the acuteness gap α (Eq. 6). The cut
forest can be found in quadratic time.

An example is shown in Fig. 1. Even if C is closed to a polyhedron by adding the convex
polygonal base under C, this polyhedron can be edge-unfolded without overlap [12].

1.1 Background
It is a long standing open problem whether or not every convex polyhedron has a non-
overlapping edge-unfolding, often called Dürer’s problem [6] [10]. Theorem 1 can be viewed
as an advance on a narrow version of this problem. This theorem – without the acuteness
assumption – has been a folk-conjecture for many years. A specific line of attack was
conjectured in [9], and it is that sketch I follow for the proof here.

There have been two recent advances on Dürer’s problem. The first is Ghomi’s positive
result that sufficiently thin polyhedra have edge-unfoldings [7]. This can be viewed as a
counterpart to Theorem 1, which when supplemented by [12] shows that sufficiently flat
polyhedra have edge-unfoldings. The second is a negative result that shows that when
restricting cutting to geodesic “pseudo-edges” rather than edges of the polyhedral skeleton,
there are examples that cannot avoid overlap [1].

It is natural to hope that Theorem 1 might lead to an edge-unfolding result for all acutely
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triangulated convex polyhedra, but I have been so far unsuccessful in realizing this hope.
Possible extensions are discussed in Section 11.

2 Overview of algorithm

We now sketch the simple algorithm in four steps; the proof of correctness will occupy the
remainder of the paper. First, C is projected orthogonally to C in the xy-plane, with Φ small
enough so that the acuteness gap of α > 0 decreases to α′ ≤ α but still α′ > 0. So C is
acutely triangulated. Second, a boundary-rooted angle-monotone spanning forest F for C is
found using the algorithm in [9]. Both the definition of angle-monotone and the algorithm
will be described in Section 5 below, but for now we just note that each leaf-to-root path in
F is both x- and y-monotone in a suitably rotated coordinate system. Third, F is lifted to a
spanning forest F of C, and the edges of F are cut. Finally, the cut C is developed flat in the
plane. In summary: project, lift, develop.

I have not pushed on algorithmic time complexity, but certainly O(n2) suffices, as detailed
in the full version [13].

3 Overview of proof

The proof relies on two results from earlier work: the angle-monotone spanning forest result
in [9], and a radially monotone unfolding result in [11]. Those results are revised and
explained as needed to allow this paper to stand alone. It is the use of angle-monotone and
radially monotone curves and their properties that constitute the main novelties. The proof
outline has these seven high-level steps, expanding upon the algorithm steps:
1. Project C to the plane containing its boundary rim, resulting in a triangulated convex

region C. For sufficiently small Φ, C is again acutely triangulated.
2. Generalizing the result in [9], there is a θ-angle-monotone, boundary-rooted spanning

forest F of C, for θ < 90◦. F lifts to a spanning forest F of the convex cap C.
3. For sufficiently small Φ, both sides L and R of each cut-path Q of F are θ-angle-monotone

when developed in the plane, for some θ < 90◦.
4. Any planar angle-monotone path for an angle ≤ 90◦, is radially monotone, a concept

from [11].
5. Radial monotonicity of L and R, and sufficiently small Φ, imply that L and R do not

cross in their planar development. This is a simplified version of a result from [11], and
here extended to trees.

6. Extending the cap C to an unbounded polyhedron C∞ ensures that the non-crossing of
each L and R extends arbitrarily far in the planar development.

7. The development of C can be partitioned into θ-monotone “strips,” whose side-to-side
development layout guarantees non-overlap in the plane.

Through sometimes laborious arguments, I have tried to quantify steps even if they are
in some sense obvious. Various quantities go to zero as Φ→ 0. Those laborious arguments
and other details are can be found in the full version [13].

3.1 Notation
I attempt to distinguish between objects in R3, and planar projected versions of those objects,
either by using calligraphy (C in R3 vs. C in R2), or primes (γ in R3 vs. γ′ in R2), and
occasionally both (Q vs. Q′). Sometimes this seems infeasible, in which case we use different
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64:4 Edge-Unfolding Nearly Flat Convex Caps

symbols (ui in R3 vs. vi in R2). Sometimes we use ⊥ as a subscript to indicate projections
or developments of lifted quantities.

4 Projection angle distortion

1. Project C to the plane containing its boundary rim, resulting in a triangulated
convex region C. For sufficiently small Φ, C is again acutely triangulated.

This first claim is obvious: Since every triangle angle is strictly less than 90◦, and
the distortion due to projection to a plane goes to zero as C becomes more flat, for some
sufficiently small Φ, the acute triangles remain acute under projection.

In order to obtain a definite dependence on Φ, the following exact bound is derived in
the full version [13].

I Lemma 2. The maximum absolute value of the distortion ∆⊥ of any angle in R3 projected
to the xy-plane, with respect to the tilt φ of the plane of that angle with respect to z, is given
by:

∆⊥(φ) = cos−1
(

sin2 φ

sin2 φ− 2

)
− π/2 ≈ φ2/2− φ4/12 +O(φ5) , (1)

where the approximation holds for small φ.

In particular, ∆⊥(Φ)→ 0 as Φ→ 0. For example, ∆⊥(10◦) ≈ 0.9◦.

5 Angle-monotone spanning forest

2. Generalizing the result in [9], there is a θ-angle-monotone, boundary rooted spanning
forest F of C, for θ < 90◦. F lifts to a spanning forest F of the convex cap C.

First we define angle-monotone paths, which originated in [5] and were further explored
in [3], and then turn to the spanning forests we need here.

5.1 Angle-monotone paths
Let C be a planar, triangulated convex domain, with ∂C its boundary, a convex polygon.
Let G be the (geometric) graph of all the triangulation edges in C and on ∂C.

Define the θ-wedge W (θ, v) to be the region of the plane bounded by rays separated by
angular width θ emanating from v in fixed directions. W is closed along (i.e., includes) both
rays. A polygonal path Q = (v0, . . . , vk) following edges of G is called θ-angle-monotone (or
θ-monotone for short) if the vector of every edge (vi, vi+1) lies in W (θ, v0) (and therefore
Q ⊆ W (θ, v0)) in a fixed coordinate system.2 If θ ≤ 90◦, then a θ-monotone path is both
x- and y-monotone in a suitable coordinate system, i.e., it meets every vertical, and every
horizontal line in a point or a segment, or not at all.

2 My notation here is slightly different from the notation in [9] and earlier papers, as I want to emphasize
the reliance on θ.
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Figure 2 (a) q placed so that C ⊂ Q0. (b) near-quadrants Qi have width θ = 87◦, so the gap g
has angle 4α′ = 12◦.

5.2 Angle-monotone spanning forest
It was proved in [9] that every non-obtuse triangulation G of a convex region C has a
boundary-rooted spanning forest F of C, with all paths in F 90◦-monotone. We describe the
proof and simple construction algorithm before detailing the changes necessary for strictly
acute triangulations.

Some internal vertex q of G is selected, and the plane partitioned into four 90◦-quadrants
Q0, Q1, Q2, Q3 by orthogonal lines through q. Each quadrant is closed along one axis and
open on its counterclockwise axis; q is considered in Q0 and not in the others, so the quadrants
partition the plane. Then paths are grown within each quadrant independently, as follows.
A path is grown from any vertex v ∈ Qi not yet included in the forest Fi, stopping when
it reaches either a vertex already in Fi, or ∂C. These paths never leave Qi, and result in a
forest Fi spanning the vertices in Qi . No cycle can occur because a path is grown from v only
when v is not already in Fi; so v becomes a leaf of a tree in Fi. Then F = F1 ∪ F2 ∪ F3 ∪ F4.

Because our acute triangulation is a non-obtuse triangulation, following the algorithm
from [9] leads to angle-monotone paths for θ = 90◦−α′ < 90◦. Although it is natural to place
the quadrants origin q near the center of C, in fact choosing a q exterior to C so that all
paths fall in the near-quadrant Q0 suffices to determine F ; see Fig. 2(a). The only reason
to prefer a q ∈ C is that this allows the conclusion mentioned earlier that closing C with a
convex polygon base still permits an edge-unfolding of the closed polyhedron [12]. We leave
the argument that shows q can be chosen at an interior vertex of C (see Fig. 2(b)) to the full
version [13], and continue to illustrate q ∈ C.

We conclude this section with a lemma:

I Lemma 3. If G is an acute triangulation of a convex region C, with acuteness gap α′, then
there exists a boundary-rooted spanning forest F of C, with all paths in F θ-angle-monotone,
for θ = 90◦−α′ < 90◦.

6 Curve distortion

3. For sufficiently small Φ, both sides L and R of each cut-path Q of F are θ-angle-
monotone when developed in the plane, for some θ < 90◦.

SoCG 2018
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This step says, essentially, that each θ-monotone path Q′ in the planar projection is not
distorted much when lifted to Q on C. This is obviously true as Φ→ 0, but it requires proof.
We need to establish that the left and right incident angles of the cut Q develop to the plane
as still θ-monotone paths for some (larger) θ ≤ 90◦.

First we bound the total curvature of C to address the phrase, “For sufficiently small
Φ, ...” The near flatness of the convex cap C is controlled by Φ, the maximum tilt of the
normals from ẑ. Let ωi be the curvature at internal vertex ui ∈ C (i.e., 2π minus the sum of
the incident angles to ui), and Ω =

∑
i ωi the total curvature. We bound Ω as a function

of Φ in the following lemma. (The reverse is not possible: even a small Ω could be realized
with large Φ.)

I Lemma 4. The total curvature Ω =
∑

i ωi of C satisfies

Ω ≤ 2π(1− cos Φ) ≈ πΦ2 − πΦ4/12 +O(Φ5) . (2)

This is proved in the full version [13] as the area of a spherical cap on the Gaussian sphere
for C.

Our proof of limited curve lifting distortion uses the Gauss-Bonnet theorem,3 in the form
τ + ω = 2π: the turn of a closed curve plus the curvature enclosed is 2π.

To bound the curve distortion of Q′, we need to bound the distortion of pieces of a closed
curve that includes Q′ as a subpath. Our argument here is not straightforward, but the
conclusion is that, as Φ→ 0, the distortion also → 0:

I Lemma 5. The difference in the total turn of any prefix of Q on the surface C from its
planar projection Q′ is bounded by 3∆⊥+ 2Ω (Eq. 4), which, for small Φ, is a constant times
Φ2 (Eq. 5). Therefore, this turn goes to zero as Φ→ 0.

The reason the proof is not straightforward is that Q′ could have an arbitrarily large
number n of vertices, so bounding the angle distortion at each by ∆⊥ would lead to arbitrarily
large distortion n∆⊥. The same holds for the rim. So global arguments that do not cumulate
errors seem necessary.

First we need a simple lemma, which is essentially the triangle inequality on the 2-sphere.
Let R′ = ∂C and R = ∂C be the rims of the planar C and of the convex cap C, respectively.

I Lemma 6. The planar angle ψ′ at a vertex v of the rim R′ lifts to 3D angles of the
triangles of the cap C incident to v, whose sum ψ satisfies ψ ≥ ψ′.

Now we use Lemma 6 to bound the total turn of the rim R of C and R′ of C ′. Although
the rims are geometrically identical, their turns are not. The turn at vertex a′ of the planar
rim R′ is π − ψ′, while the turn at vertex a of the 3D rim R is π − ψ. By Lemma 6, ψ ≥ ψ′,
so the turn at each vertex of the 3D rim R is at most the turn at each vertex of the 2D rim
R′. Therefore the total turn of the 3D rim τR is smaller than or equal to the total turn of
the 2D rim τR′ . And Gauss-Bonnet allows us to quantify this:

τR′ = 2π , τR + Ω = 2π , τR′ − τR = Ω .

For any subportion of the rims r′ ⊂ R′, r ⊂ R, Ω serves as an upper bound, because we
know the sign of the difference is the same at every vertex of r′, r: τr′ − τr ≤ Ω.

3 See, for example, Lee’s description [8, Thm.9.3, p.164]. My τ is Lee’s κN .
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Figure 3 (a) C, the projection of the cap C. (b) Q is the lift of Q′ to C.

6.1 Turn distortion of Q′

We need to bound ∆Q = |τ ′Q − τQ|, the turn difference between Q′ in the plane and Q on
the surface of C, for Q′ any prefix of an angle-monotone path in C that lifts to Q on C. The
reason for the prefix here is that we want to bound the turn of any segment of Q′, not just
the last segment, whose turn is

∑
i τi. And note that there can be cancellations among the

τi along Q′, as we have no guarantee that they are all the same sign.
First we sketch the situation if Q cut all the way across C, as illustrated in Fig. 3(a). We

apply the Gauss-Bonnet theorem: τ + ω = 2π, where ω ≤ Ω is the total curvature inside the
path Q ∪ r, and then the planar projection (Fig. 3(b)), we have:

τ + ω = τQ + (τa + τb) + τr + ω = 2π (3)
τ + ω = τQ′ + (τa′ + τb′) + τr′ + 0 = 2π

Subtracting these equations will lead to a bound on ∆Q.
But, as indicated, Q does not cut all the way across C, and we need to bound ∆Q for

any prefix of Q (which we will still call Q). Let Q cut from a ∈ C to b ∈ ∂C. We truncate C
by intersecting with a halfspace whose bounding plane H includes a, as in Fig. 4(a). It is
easy to arrange H so that H ∩Q = {a}, i.e., so that H does not otherwise cut Q, as follows.
First, in projection, Q′ falls inside W (θ, a′), the backward wedge passing through a′. Then
start with H vertical and tangent to this wedge at a, and rotate it out to reaching ∂C as
illustrated. The result is a truncated cap CT . We connect a to a point c on the new ∂CT ,
depicted abstractly in Fig. 4(b). Now we perform the analogous calculation for the curve
Q ∪ r1 ∪ ca on C, and Q′ ∪ r′1 ∪ ca′:

a

∂C
b

b

H

(b)(a)
r1

r2

r'2
a'

c

a

c

C

Q
Q

Q'

Figure 4 (a) Truncating C with H so that H ∩Q = {a}. (b) r2 = ac and r′2 = a′c.
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τQ′ + (τa′ + τb′ + τc′) + (τr′
1

+ τr′
2
) + 0 = 2π

τQ + (τa + τb + τc) + (τr1 + τr2) + ω = 2π

Subtracting leads to

τQ′ − τQ = ((τa−τa′) + (τb−τb′) + (τc−τc′)) + (τr1−τr′
1
) + (τr2−τr′

2
) + ω

∆Q ≤ 3∆⊥ + 2Ω (4)

The logic of the bound is: (1) Each of the turn distortions at a, b, c is at most ∆⊥. (2) The
r1 turn difference is bounded by ω ≤ Ω. And (3) τr2 = τr′

2
= 0. Using the small-Φ bounds

derived earlier in Eqs. 1 and 2:

|∆Q| ≤ 3∆⊥ + 2Ω ≈ (2π + 3
2 )Φ2 . (5)

Thus we have ∆Q→ 0 as Φ→ 0, as claimed.
We finally return to the claim at the start of this section: For sufficiently small Φ, both

sides L and R of each path Q of F are θ-angle-monotone when developed in the plane, for
some θ < 90◦.

The turn at any vertex of Q is determined by the incident face angles to the left following
the orientation shown in Fig. 3, or to the right reversing that orientation (clearly the curvature
enclosed by either curve is ≤ Ω). These incident angles determine the left and right planar
developments, L and R, of Q. Because we know that Q′ is θ-angle-monotone for θ < 90◦,
there is some finite “slack” α = 90◦−θ. Because Lemma 5 established a bound for any prefix
of Q, it bounds the turn distortion of each edge of Q, which we can arrange to fit inside that
slack. So the bound provided by Lemma 5 suffices to guarantee that:

I Lemma 7. For sufficiently small Φ, both L and R remain θ-angle-monotone for some
(larger) θ, but still θ ≤ 90◦.

To ensure θ ≤ 90◦, we need that the maximum distortion fits into the acuteness gap:
|∆Q| ≤ α. Using Eq. 5 leads to:

Φ ≤
√

2
4π + 3

√
α ≈ 0.36

√
α . (6)

For example, if all triangles are acute by α = 4◦, then Φ ≈ 5.4◦ suffices.
That F lifts to a spanning forest F of the convex cap C is immediate. What is not

straightforward is establishing the requisite properties of F .

7 Radially monotone paths

4. Any planar angle-monotone path for an angle ≤ 90◦, is radially monotone, a concept
from [11].

Let Q = (v0, v1, . . . , vk) be a simple (non-self-intersecting) directed path of edges of C
connecting an interior vertex v0 to a boundary vertex vk ∈ ∂C. We say that Q is radially
monotone with respect to (w.r.t.) v0 if the distances from v0 to all points of Q are (non-
strictly) monotonically increasing. We define path Q to be radially monotone (without
qualification) if it is radially monotone w.r.t. each of its vertices: v0, v1, . . . , vk−1. It is an
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easy consequence of these definitions that, if Q is radially monotone, it is radially monotone
w.r.t. any point p on Q, not only w.r.t. its vertices.

Before proceeding, we discuss its intuitive motivation. If a path Q is radially monotone,
then “opening” the path with sufficiently small curvatures ωi at each vi will avoid overlap
between the two halves of the cut path. Whereas if a path is not radially monotone, then
there is some opening curvature assignments ωi to the vi that would cause overlap: assign a
small positive curvature ωj > 0 to the first vertex vj at which radial monotonicity is violated,
and assign the other vertices zero or negligible curvatures. Thus radially monotone cut paths
are locally (infinitesimally) opening “safe,” and non- radially monotone paths are potentially
overlapping.4

The condition for Q to be radially monotone w.r.t. v0 can be interpreted as requiring
Q to cross every circle centered on v0 at most once; see Fig. 5. The concentric circles
viewpoint makes it evident that infinitesimal rigid rotation of Q about v0 to Q′ ensures that
Q ∩Q′ = {v0}, for each point of Q simply moves along its circle. Of course the concentric
circles must be repeated, centered on every vertex vi.

7.1 Angle-monotone chains are radially monotone
Fig. 5(c) illustrates why a θ-monotone chain Q, for any θ ≤ 90◦, is radially monotone: the
vector of each edge of the chain points external to the quarter-circle passing through each vi.
And so the chain intersects the v0-centered circles at most once. Thus Q is radially monotone
w.r.t. v0. But then the argument can be repeated for each vi, for the wedge W (vi) is just a
translation of W (θ, v0).

It should be clear that these angle-monotone chains are special cases of radially monotone
chains. But we rely on the spanning-forest theorem in [9] to yield angle-monotone chains,
and we rely on the unfolding properties of radially monotone chains from [11] to establish
non-overlap. We summarize in a lemma:

4 The phrase “radial monotonicity” has also appeared in the literature meaning radially monotone w.r.t.
just v0, most recently in [7]. The version here is more stringent to guarantee non-overlap.

(a)

(b)

(c)

W(v0)

v0

vk

v0

v4

v2

v0

v1

v3

v5

v5

W(v5)
v7

Figure 5 (a) A radially monotone chain, with its monotonicity w.r.t. v0 illustrated. (b) A
90◦-monotone chain, with x-monotonicity indicated. (c) Such a chain is also radially monotone.
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I Lemma 8. A θ-monotone chain Q, for any θ ≤ 90◦, is radially monotone.

8 Noncrossing L & R developments

5. Radial monotonicity of L and R, and sufficiently small Φ, imply that L and R do
not cross in their planar development. This is a simplified version of a result from [11],
and here extended to trees.

We will use Q = (u0, u1, . . . , uk) as a path of edges on C, with each ui ∈ R3 a vertex and
each uiui+1 an edge of C. Let Q = (v0, v1, . . . , vk) be a chain in the plane. Define the turn
angle τi at vi to be the counterclockwise angle from vi− vi−1 to vi+1− vi. Thus τi = 0 means
that vi−1, vi, vi+1 are collinear. τi ∈ (−π, π); simplicity excludes τi = ±π.

Each turn of the chain Q sweeps out a sector of angles. We call the union of all these
sectors Λ(Q); this forms a cone such that, when apexed at v0, Q ⊆ Λ(Q). The rays bounding
Λ(Q) are determined by the segments of Q at extreme angles; call these angles σmax and
σmin. See ahead to Fig. 6(a) for an example. Let |Λ(Q)| be the measure of the apex angle of
the cone, σmax − σmin. We will assume that |Λ(Q)| < π for our chains Q, although it is quite
possible for radially monotone chains to have |Λ(Q)| > π. In our case, in fact |Λ(Q)| < π/2,
but that tighter inequality is not needed for Theorem 9 below. The assumption |Λ(Q)| < π

guarantees that Q fits in a halfplane HQ whose bounding line passes through v0.
Because σmin is turned to σmax, we have that the total absolute turn

∑
i |τi| ≥ |Λ(Q)|.

But note that the sum of the turn angles
∑

i τi could be smaller than |Λ(Q)| because of
cancellations.

8.1 The left and right planar chains L & R

Let ωi be the curvature at vertex ui of Q. We view u0 as a leaf of a cut forest, which will
then serve as the end of a cut path, and the “source” of opening that path.

Let λi be the surface angle at ui left of Q, and ρi the surface angle right of Q there. So
λi +ωi +ρi = 2π, and ωi ≥ 0. Define L to be the planar path from the origin with left angles
λi, R the path with right angles ρi. These paths are the left and right planar developments
of Q. We label the vertices of the developed paths `i, ri.

Define ω(Q) =
∑

i ωi, the total curvature along the path Q. We will assume ω(Q) < π, a
very loose constraint in our nearly flat circumstances. For example, with Φ = 30◦, Ω for C is
< πΦ2 ≈ 49◦, and ω(Q) can be at most Ω.

8.2 Left-of definition

Let A = (a0, . . . , ak) and B = (b0, . . . , bk) be two (planar) radially monotone chains sharing
x = a0 = b0. (Below, A and B will be the L and R chains.) Let D(r) be the circle of radius
r centered on x. D(r) intersects any radially monotone chain in at most one point. Let a
and b be two points on D(r). Say that a is left of b, a � b, if the counterclockwise arc from
b to a is less than π. If a = b, then a � b. Now we extend this relation to entire chains. Say
that chain A is left of B, A � B, if, for all r > 0, if D(r) meets both A and B, in points
a and b respectively, then a � b. If D(r) meets neither chain, or only one, no constraint is
specified. Note that, if A � B, A and B can touch but not properly cross.
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8.3 Noncrossing theorem

I Theorem 9. Let Q be an edge cut-path on C, and L and R the developed planar chains
derived from Q, as described above. Under the assumptions:
1. Both L and R are radially monotone,
2. The total curvature along Q satisfies ω(Q) < π.
3. Both cone measures are less than π: |Λ(L)| < π and |Λ(R)| < π,
then L � R: L and R may touch and share an initial chain from `0 = r0, but L and R do
not properly cross, in either direction.

That the angle conditions (2) and (3) are necessary is shown in the full version [13].

Proof. We first argue that L cannot wrap around and cross R from its right side to its
left side. (Illustrations supporting this proof are in the full version [13].) Let ρmax be the
counterclockwise bounding ray of Λ(R). In order for L to enter the halfplane HR containing
Λ(R), and intersect R from its right side, ρmax must turn to be oriented to enter HR, a
turn of ≥ π. We can think of the effect of ωi as augmenting R’s turn angles τi to L’s turn
angles τ ′i = τi + ωi. Because ωi ≥ 0 and ω(Q) =

∑
i ωi < π, the additional turn of the chain

segments of R is < π, which is insufficient to rotate ρmax to aim into HR. (Later (Section 9)
we will see that we can assume L and R are arbitrarily long, so there is no possibility of L
wrapping around the end of R and crossing R right-to-left.)

Next we show that L cannot cross R from left to right. We imagine Q right-developed in
the plane, so that Q = R. We then view L as constructed from a fixed R by successively
opening/turning the links of R by ωi counterclockwise about ri, with i running backwards from
rn−1 to r0, the source vertex of R. Fig. 6(b) illustrates this process. Let Li = (`i, `i+1, . . . , `k)
be the resulting subchain of L after rotations ωn−1, . . . , ωi, and Ri the corresponding subchain
of R = (ri, ri+1, . . . , rk), with `i = ri the common source vertex. We prove Li � Ri by
induction.

Ln−1 � Rn−1 is immediate because ωn−1 ≤ ω(Q) < π. Assume now Li+1 � Ri+1, and
consider Li. Because both Li and Ri are radially monotone, circles centered on `i = ri

intersect the chains in at most one point each. Li is constructed by rotating Li+1 rigidly
by ωi counterclockwise about `i = ρi; see Fig. 6(b). This only increases the arc distance
between the intersections with those circles, because the circles must pass through the gap
representing Li+1 � Ri+1, shaded in Fig. 6(a). And because we already established that L
cannot enter the R halfplane HR, we know these arcs are < π: for an arc of ≥ π could turn
ρmax to aim into HR. So Li � Ri. Repeating this argument back to i = 0 yields L � R,
establishing the theorem. J

Our cut paths are (in general) leaf-to-root paths in some tree T ⊆ F of the forest, so we
need to extend Theorem 9 to trees.5 The proof of the following is in the full version [13].

I Corollary 10. The L � R conclusion of Theorem 9 holds for all the paths in a tree T :
L′ � R, for any such L′. (See Fig. 6(c,d).)

5 This extension was not described explicitly in [11].
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Figure 6 (a) Example 1: After opening Q to L and R. (b) Example 1: First steps in the induction
proof. (c) Example 2: Q′ joins Q at v′3 = v4. After opening Q to L and R. (d) Example 2: After
opening Q′.

9 Extending C to C∞

6. Extending the cap C to an unbounded polyhedron C∞ ensures that the non-crossing
of each L and R extends arbitrarily far in the planar development.

In order to establish non-overlap of the unfolding, it will help to extend the convex cap C
to an unbounded polyhedron C∞ by extending the faces incident to the boundary ∂C. The
details are in the full version [13]. The consequence is that each cut path Q can be viewed
as extending arbitrarily far from its source on C. This technical trick permits us to ignore
“end effects” as the cuts are developed in the next section.

10 Angle-monotone strips partition

7. The development of C can be partitioned into θ-monotone “strips,” whose side-to-
side development layout guarantees non-overlap in the plane.

The final step of the proof is to partition the planar C (and so the cap C by lifting) into
strips that can be developed side-by-side to avoid overlap. We return to the spanning forest
F of C (graph G), as discussed in Section 5.2. Define an angle-monotone strip (or more
specifically, a θ-monotone strip) S as a region of C bound by two angle-monotone paths LS

and RS which emanate from the quadrant origin vertex q ∈ LS ∩ RS , and whose interior
is vertex-free. The strips we use connect from q to each leaf ` ∈ F , and then follow to the
tree’s root on ∂C. A simple algorithm to find such strips is described in the full version [13].
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Figure 7 Waterfall strips partition. The S4 strip highlighted.

see Fig. 7. Extending the � relation (Section 8.2) from curves L � R to adjacent strips,
Si � Si−1, shows that side-by-side layout of these strips develops all of C without overlap.
This finally proves Theorem 1.

11 Discussion

It is natural to hope that Theorem 1 can be strengthened. That the rim of C lies in a plane is
unlikely to be necessary: I believe the proof holds as long as shortest paths from q reach every
point of ∂C. Although the proof requires “sufficiently small Φ,” limited empirical exploration
suggests Φ need not be that small. (The proof assumes the worst case, with all curvature
concentrated on a single path.) The assumption that C is acutely triangulated seems overly
cautious. It seems feasible to circumvent the somewhat unnatural projection/lift steps with
direct reasoning on the surface C.

It is natural to wonder6 if Theorem 1 leads to some type of “fewest nets” result for a
convex polyhedron P [6, OpenProb.22.2, p.309]. At this writing I have a proof outline that, if
successful, leads to the following (weak) result: If the maximum angular separation between
face normals incident to any vertex leads to φmax, and if the acuteness gap α accommodates
φmax according to Eq. 6, then P may be unfolded to . 1/φ2

max non-overlapping nets. For
example, n = 2000 random points on a sphere leads to φmax ≈ 7.1◦ and if α ≥ 6.9◦ – i.e.,
θ ≤ 83.1◦ – then 64 non-overlapping nets suffice to unfold P . The novelty here is that this is
independent of the number of vertices n. The previous best result is d 4

11F e = Ω(n) nets [14],
where F is the number of faces of P , which in this example leads to 1454 nets. However, the
assumption that the acuteness gap α accommodates φmax restricts the applicability of this
conjectured result.
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