
Point Location in Dynamic Planar Subdivisions
Eunjin Oh
Max Planck Institute for Informatics
Saarbrücken, Germany
eoh@mpi-inf.mpg.de

https://orcid.org/0000-0003-0798-2580

Hee-Kap Ahn
POSTECH
Pohang, Korea
heekap@postech.ac.kr

https://orcid.org/0000-0001-7177-1679

Abstract
We study the point location problem on dynamic planar subdivisions that allows insertions and
deletions of edges. In our problem, the underlying graph of a subdivision is not necessarily
connected. We present a data structure of linear size for such a dynamic planar subdivision
that supports sublinear-time update and polylogarithmic-time query. Precisely, the amortized
update time is O(

√
n logn(log logn)3/2) and the query time is O(logn(log logn)2), where n is the

number of edges in the subdivision. This answers a question posed by Snoeyink in the Handbook
of Computational Geometry. When only deletions of edges are allowed, the update time and
query time are just O(α(n)) and O(logn), respectively.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases dynamic point location, general subdivision

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.63

Related Version A full version of this paper is available at https://arxiv.org/abs/1803.
04325.

Funding This research was supported by NRF grant 2011-0030044 (SRC-GAIA) funded by the
government of Korea, and the MSIT (Ministry of Science and ICT), Korea, under the SW Star-
lab support program (IITP-2017-0-00905) supervised by the IITP (Institute for Information &
communications Technology Promotion).

1 Introduction

Given a planar subdivision, a point location query asks with a query point specified by its
coordinates to find the face of the subdivision containing the query point. In many situations
such point location queries are made frequently, and therefore it is desirable to preprocess
the subdivision and to store it in a data structure that supports point location queries fast.

The planar subdivisions for point location queries are usually induced by planar embed-
dings of graphs. A planar subdivision is connected if the underlying graph is connected.
The vertices and edges of the subdivision are the embeddings of the nodes and arcs of the
underlying graph, respectively. An edge of the subdivision is considered to be open, that is,
it does not include its endpoints (vertices). A face of the subdivision is a maximal connected
subset of the plane that does not contain any point on an edge or a vertex.

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eoh@mpi-inf.mpg.de
https://orcid.org/0000-0003-0798-2580
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.63
https://arxiv.org/abs/1803.04325
https://arxiv.org/abs/1803.04325
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


63:2 Point Location in Dynamic Planar Subdivisions

We say a planar subdivision dynamic if the subdivision allows two types of operations,
the insertion of an edge to the subdivision and the deletion of an edge from the subdivision.
The subdivision changes over insertions and deletions of edges accordingly. For an insertion
of an edge e, we require e to intersect no edge or vertex in the subdivision and the endpoints
of e to lie on no edge in the subdivision. We insert the endpoints of e in the subdivision as
vertices if they were not vertices of the subdivision. In fact, the insertion with this restriction
is general enough. The insertion of an edge e with an endpoint u lying on an edge e′ of the
subdivision can be done by a sequence of four operations: deletion of e′, insertion of e, and
insertions of two subedges of e′ partitioned by u.

The dynamic point location problem is closely related to the dynamic vertical ray shooting
problem [6]. For this problem, we are asked to find the edge of a dynamic planar subdivision
that lies immediately above (or below) a query point. In the case that the subdivision is
connected at any time, we can answer a point location query without increasing the space
and time complexities using a data structure for the dynamic vertical ray shooting problem
by maintaining the list of the edges incident to each face in a concatenable queue [6].

However, it is not the case in a general (possibly disconnected) planar subdivision.
Although the dynamic vertical ray shooting algorithms presented in [2, 3, 5, 6] work for
general (possibly disconnected) subdivisions, it is unclear how one can use them to support
point location queries efficiently. As pointed out in some previous works [5, 6], a main issue
concerns how to test whether the two edges lying immediately above two query points belong
to the boundary of the same face in a dynamic planar subdivision. Notice that the boundary
of a face may consist of more than one connected component.

In this paper, we consider a point location query on dynamic planar subdivisions. The
subdivisions we consider are not necessarily connected, that is, the underlying graphs may
consist of one or more connected components. We also require that every edge is a straight
line segment. We present a data structure for a dynamic planar subdivision which answers
point location queries efficiently.

Previous work. The dynamic vertical ray shooting problem has been studied extensively [2,
3, 5, 6]. These data structures do not require that the subdivision is connected, but they
require that the subdivision is planar. None of the known algorithms for this problem is
superior to the others. Moreover, optimal update and query times (or their optimal trade-offs)
are not known. The update time or the query time (or both) is worse than O(log2 n), except
the data structures by Arge et al. [2] and by Chan and Nekrich [5]. The data structure
by Arge at al. [2] supports expected O(logn) query time and expected O(log2 n/ log logn)
update time under Las Vegas randomization in the RAM model. The data structure by Chan
and Nekrich [5] supports O(logn(log logn)2) query time and O(logn log logn) update time
in the pointer machine model. Their algorithm can also be modified to reduce the query time
at the expense of increasing the update time. As pointed out by Cheng and Janardan [6],
all these data structures [2, 3, 5, 6] can be used for answering point location queries if the
underlying graph of the subdivision is connected without increasing any resource.

Little has been known for the dynamic point location in general planar subdivisions. In
fact, no nontrivial data structure is known for this problem.1 Cheng and Janardan asked
whether such a data structure can be maintained for a general planar subdivision [6], but

1 The paper [2] claims that their data structure supports a point location query for a general subdivision.
They present a vertical ray shooting data structure and claim that this structure supports a point
location query for a general subdivision using the paper [9]. However, the paper [9] mentions that it
works only for a subdivision such that every face in the subdivision has a constant complexity. Therefore,
the point location problem for a general subdivision is still open.



E. Oh and H.-K. Ahn 63:3

this question has not been resolved until now. Very recently, it was asked again by Chan
and Nekrich [5] and by Snoeyink [12]. Specifically, Snoeyink asked whether it is possible to
construct a dynamic data structure for a general (possibly disconnected) planar subdivision
supporting sublinear query time of determining if two query points lie in the same face of
the subdivision.

Our result. In this paper, we present a data structure and its update and query algorithms
for the dynamic point location in general planar subdivisions under the pointer machine
model. This is the first result supporting sublinear update and query times, and answers the
question posed in [5, 6, 12]. Precisely, the amortized update time is O(

√
n logn(log logn)3/2)

and the query time is O(logn(log logn)2), where n is the number of edges in the current
subdivision. When only deletions of edges are allowed, the update and query times are just
O(α(n)) and O(logn), respectively. Here, we assume that a deletion operation is given with
the pointer to an edge to be deleted in the current edge set.

Our approach itself does not require that every edge in the subdivision is a line segment,
and can handle arbitrary curves of constant description. However, the data structures for
dynamic vertical ray shooting queries require that every edge is a straight line segment, which
we use as a black box. Once we have a data structure for answering vertical ray shooting
queries for general curves, we can also extend our results to general curves. For instance, the
result by Chan and Nekrich [5] is directly extended to x-monotone curves, and so is ours.

One may wonder if the problem is decomposable in the sense that a query over D1 ∪D2
can be answered in constant time from the answers from D1 and D2 for any pair of disjoint
data sets D1 and D2 [8]. If a problem is decomposable, we can obtain a dynamic data
structure from a static data structure of this problem using the framework of Bentley and
Saxe [4], or Overmars and Leeuwen [10]. However, the dynamic point location problem in
a general planar subdivision is not decomposable. To see this, consider a subdivision D

consisting of a square face and one unbounded face. Let D1 be the subdivision consisting of
three edges of the square face and D2 be the subdivision consisting of the remaining edge of
the square face. There is only one face in D1 (and D2). Any two points in the plane are
contained in the same face in D1 (and D2). But it is not the case for D. Therefore, the
answers from D1 and D2 do not help to answer point location queries on D.

Outline. Consider any two query points in the plane. Our goal is to check whether they
are in the same face of the current subdivision. To do this, we use the data structures
for answering dynamic vertical ray shooting queries [2, 3, 5, 6], and find the edges lying
immediately above the two query points. Then we are to check whether the two edges are
on the boundary of the same face. In general subdivisions, the boundary of each face may
consist of more than one connected components. This makes Θ(n) changes to the boundaries
of the faces in the worst case, where n is the number of edges in the current subdivision.
Therefore, we cannot maintain the explicit description of the subdivision.

To resolve this problem, we consider two different subdivisions, Mo and Mn, such that
the current subdivision consists of the edges of Mo and Mn, and construct data structures on
the subdivisions, Do and Dn, respectively. Recall that the dynamic point location problem is
not decomposable. Thus the two subdivisions must be defined carefully. We set each edge
in the current subdivision to be one of the three states: old, communal, and new. Then let
Mo be the subdivision induced by all old and communal edges, and Mn be the subdivision
induced by all new and communal edges. Note that every communal edge belongs to both
subdivisions.

SoCG 2018



63:4 Point Location in Dynamic Planar Subdivisions

The state of each edge is defined as follows. The data structures are reconstructed
periodically. In specific, they are rebuilt after processing f(n) updates since the latest
reconstruction, where n is the number of edges in the current subdivision. Here, f(n) is
called a reconstruction period, which is set to

√
n roughly. When an edge e is inserted, we

find the face F in Mo intersecting e and set the old edges on the outer boundary of F to
communal. If one endpoint of e lies on the outer boundary of F and the other lies on an
inner boundary of F , we set the old edges on this inner boundary to communal. Also, we set
e to new. When an edge e is deleted, we find the faces in Mo incident to e and set the old
edges of the outer boundaries of the faces to communal.

We show that the current subdivision has the following property: no face in the current
subdivision contains both new and old edges on its outer boundary. In other words, for every
face in the current subdivision, either every edge is classified as new or communal, or every
edge is classified as old or communal. Due to this property, for any two query points, they
are in the same face in the current subdivision if and only if they are in the same face in
both Mo and Mn. Therefore, we can represent the name of a face in the current subdivision
as a pair of faces, one in Mo and one in Mn. To answer a point location query on the current
subdivision, it suffices to find the faces containing the query point in Mo and in Mn.

To answer point location queries on Mo, we observe that no edge is inserted to Mo unless
it is rebuilt. Therefore, it suffices to construct a semi-dynamic point location data structure
on Mo supporting only deletion operations. If only deletion operations are allowed, two faces
are merged into one face, but no new face appears. Using this property, we provide a data
structure supporting O(α(n)) update time and O(logn) query time.

To answer point location queries on Mn, we make use of the following property: the
boundary of each face of Mn consists of O(f(n)) connected components while the number
of edges of Mn is Θ(n) in the worst case, where n is the number of all edges in the current
subdivision. Due to this property, the amount of the change on the subdivision Mn is O(f(n))
at any time. Therefore, we can maintain the explicit description of Mn. In specific, we
maintain a data structure on Mn supporting point location queries, which is indeed a doubly
connected linked list of Mn.

Due to lack of space, some proofs and details are omitted. The missing proofs and missing
details can be found in the full version of the paper.

2 Preliminaries

Consider a planar subdivision M that consists of n straight line segment edges. Since the
subdivision is planar, there are O(n) vertices and faces. One of the faces of M is unbounded
and all other faces are bounded. Notice that the boundary of a face is not necessarily
connected. For the definitions of the faces and their boundaries, refer to [7, Chapter 2].

We consider each edge of the subdivision as two directed half-edges. The two half-edges
are oriented in opposite directions so that the face incident to a half-edge lies to the left of
it. In this way, each half-edge is incident to exactly one face, and the orientation of each
connected component of the boundary of F is defined consistently. We call a boundary
component of F the outer boundary of F if it is traversed along its half-edges incident to
F in counterclockwise order around F . Except for the unbounded face, every face has a
unique outer boundary. We call each connected component other than the outer boundary
an inner boundary of F . Consider the outer boundary γ of a face. Since γ is a noncrossing
closed curve, it subdivides the plane into regions exactly one of which contains F . We say
a face F encloses a set C in the plane if C is contained in the (open) region containing F



E. Oh and H.-K. Ahn 63:5

of the planar subdivision induced by the outer boundary of F . Note that if F encloses F ′,
the outer boundary of F does not intersect the boundary of F ′. For more details on planar
subdivisions, refer to the computational geometry book [7].

Our results are under the pointer machine model, which is more restrictive than the
random access model. Under the pointer machine model, a memory cell can be accessed only
through a series of pointers while any memory cell can be accessed in constant time under
the random access model. Most of the results in [2, 3, 5, 6] are under the pointer machine
model, and the others are under the random access model.

Updates: insertion and deletion of edges. We allow two types of update operations:
InsertEdge(e) and DeleteEdge(e). In the course of updates, we maintain a current edge
set E, which is initially empty. InsertEdge(e) is given with an edge e such that no endpoints
of e lies on an edge of the current subdivision. This operation adds e to E, and thus update
the current subdivision accordingly. Recall that an edge of the subdivision is a line segment
excluding its endpoints. If an endpoint of e does not lie on a vertex of the current subdivision,
we also add the endpoint of e to the current subdivision as a vertex. DeleteEdge(e) is
given with an edge e in the current subdivision. Specifically, it is given with a pointer to e in
the set E. This operation removes e from E, and updates the subdivision accordingly. If an
endpoint of e is not incident to any other edge of the subdivision, we also remove the vertex
which is the endpoint of e from the subdivision.

Queries. Our goal is to process update operations on the data structure so that given a
query point q the face of the current subdivision containing q can be computed from the data
structure efficiently. Specifically, each face is assigned a distinct name in the subdivision, and
given a query point the name of the face containing the point is to be reported. A query of
this type is called a location query, denoted by locate(x) for a query point x in the plane.

2.1 Data structures
In this paper, we show how to process updates and queries efficiently by maintaining a
few data structures for dynamic planar subdivisions. In specific, we use disjoint-set data
structures and concatenable queues. Before we continue with algorithms for updates and
queries, we provide brief descriptions on these structures in the following. Throughout this
paper, we use S(n), U(n) and Q(n) to denote the size, the update and query time of the
data structures we use for the dynamic vertical ray shooting in a general subdivision. Notice
that U(n) = Ω(logn), U(n) = o(n), and Q(n) = Ω(logn) for any nontirivial data structure
for the dynamic vertical ray shooting problem under the pointer machine model. Also, U(n)
is increasing. Thus in the following, we assume that U(n) and Q(n) satisfy these properties.

A disjoint-set data structure keeps track of a set of elements partitioned into a number
of disjoint subsets [13]. Each subset is represented by a rooted tree in this data structure.
The data structure has size linear in the total number of elements, and can be used to check
whether two elements are in the same partition and to merge two partitions into one. Both
operations can be done in O(α(N)) time, where N is the number of elements at the moment
and α(·) is the inverse Ackermann function.

A concatenable queue represents a sequence of elements, and allows four operations: insert
an element, delete an element, split the sequence into two subsequences, and concatenate
two concatenable queues into one. By implementing them with 2-3 trees [1], we can support
each operation in O(logN) time, where N is the number of elements at the moment. We
can search any element in the queue in O(logN) time.

SoCG 2018



63:6 Point Location in Dynamic Planar Subdivisions

3 Deletion-only point location

In this section, we present a semi-dynamic data structure for point location queries that allows
only DeleteEdge operations. Initially, we are given a planar subdivision consisting of n
edges. Then we are given update operations DeleteEdge(e) for edges e in the subdivision
one by one, and process them accordingly. In the course of updates, we answer point location
queries. We maintain static data structures on the initial subdivision and a disjoint-set data
structure that changes dynamically as we process DeleteEdge operations.

Static data structures. We construct the static point location data structure on the initial
subdivision of size O(n) in O(n logn) time [11]. Due to this data structure, we can find the
face in the initial subdivision containing a query point in O(logn) time. We assign a name
to each face, for instance, the integers from 1 to m for m faces. Also, we compute the doubly
connected edge list of the initial subdivision, and make each edge in the current edge set to
point to its counterparts in the doubly connected edge list. These data structures are static,
so they do not change in the course of updates.

History structure of faces over updates. Consider an edge e to be deleted from the
subdivision. If e is incident to two distinct faces in the current subdivision, the faces are
merged into one and the subdivision changes accordingly. To apply such a change and keep
track of the face information of the subdivision, we use a disjoint-set data structure S on the
names of the faces in the initial subdivision. Initially, each face forms a singleton subset in S.
In the course of updates, subsets in S are merged. Two elements in S are in the same subset
of S if and only if the two faces corresponding to the two elements are merged into one face.

Deletion. We are given DeleteEdge(e) for an edge e of the subdivision. Since only history
structure changes dynamically, it suffices to update the history structure only. We first
compute the two faces in the initial subdivision that are incident to e in O(1) time by using
the doubly connected edge list. Then we check if the faces belong to the same subset or not
in S. If they belong to two different subsets, we merge the subsets into one in O(α(n)) time.
The label of the root node in the merged subset becomes the name of the merged face. If the
faces belong to the same subset, e is incident to the same face F in the current subdivision,
and therefore there is no change to the faces in the subdivision, except the removal of e from
the boundary of F . Since we do not maintain the boundary information of faces, there is
nothing to do with the removal and we do not do anything on S. Thus, there is a bijection
between faces in the current subdivision and subsets in the disjoint-set data structure S. We
say that the face corresponding to the root of a subset represents the subset.

Location queries. To answer locate(x) for a query point x in the plane, we find the face
F in the initial subdivision in O(logn) time. Then we return the subset in the disjoint-set
data structure S that contains F in O(α(n)) time. Precisely, we return the root of the subset
containing F whose label is the name of the face containing x in the current subdivision.
The argument in this section implies the correctness of the query algorithm.

I Theorem 1. Given a planar subdivision consisting of n edges, we can construct data
structures of size O(n) in O(n logn) time so that locate(x) can be answered in O(logn)
time for any point x in the plane and the data structures can be updated in O(α(n)) time for
a deletion of an edge from the subdivision.



E. Oh and H.-K. Ahn 63:7

4 Data structures for fully dynamic point location

In Section 4 and Section 5, we present a data structure and its corresponding update and
query algorithms for the dynamic point location in fully dynamic planar subdivisions. Initially,
the subdivision is the whole plane. While we process a mixed sequence of insertions and
deletions of edges, we maintain two data structures, one containing old and communal edges
and one containing new and communal edges. We consider each edge of the subdivision to
have one of three states, “new”, “communal”, and “old”. The first data structure, denoted
by Do, is the point location data structure on old and communal edges that supports only
DeleteEdge operations described in Section 3. The second data structure, denoted by Dn,
is a fully dynamic point location data structure on new and communal edges.

Three states: old, communal and new. We rebuild both data structures periodically.
When they are rebuilt, every edge in the current subdivision is set to old. As we process
updates, some of them are set to communal as follows. For InsertEdge(e), there is exactly
one face F of Mo whose interior is intersected by e as e does not intersect any edges or
vertices. We set all edges on the outer boundary of F to communal. If e connects the
outer boundary of F with one inner boundary of F , we set all edges on the inner boundary
to communal. As a result, the outer boundary edges in the faces incident to e in Mo are
communal or new after e is inserted. For DeleteEdge(e), there are at most two faces of
Mo whose boundaries contain e. We set all edges on the outer boundary of these faces to
communal. Here, we do not maintain the explicit description (the doubly connected edge
list) of Mo, but maintain the semi-dynamic data structure on Mo described in Section 3.

Also, the edges inserted after the latest reconstruction are set to new. The subdivision
Mn of the new and communal edges has complexity of Θ(n) in the worst case. We maintain
a fully dynamic point location data structure on Mn, which is indeed the explicit description
(the doubly connected edge list) of Mn.

4.1 Reconstruction
Let f : N→ N be an increasing function satisfying that f(n)/2 ≤ f(n/2) ≤ n/4 for every n
larger than a constant, which will be specified later. We call the function a reconstruction
period. We reconstruct Do and Dn if we have processed f(n) updates since the latest
reconstruction time, where n is the number of the edges in the current subdivision.

The following lemma is a key to achieve an efficient update time. Each face of Mn has
O(f(n)) boundary components while the number of edge in Mn is Θ(n) in the worst case.

I Lemma 2. Each face of Mn has O(f(n)) inner boundaries.

Proof. Consider a face F of Mn. There are two types of the inner boundaries of F : either
all edges on an inner boundary are communal or at least one edge on an inner boundary
is new. For an inner boundary of the second type, all edges other than the new edges are
communal. By the construction, the number of new edges in Mn is at most f(n). Recall that
when we rebuild the data structures, Mo and Mn, all edges are set to old.

We pick an arbitrary edge on each inner boundary of F of the first type, and call it
the representative of the inner boundary. Each representative is inserted before the latest
reconstruction, and is set to communal later. It becomes communal due to a pair (F ′, e′),
where F ′ is a face of Mo and e′ is an edge inserted or deleted after the latest reconstruction,
such that the insertion or deletion of e′ makes the edges on a boundary component of F ′

communal, and e was on this boundary component of F ′ at that moment. See Figure 1. If

SoCG 2018



63:8 Point Location in Dynamic Planar Subdivisions

(a)

F ′

(b)

Fe e′ e

Figure 1 (a) Subdivision Mo. All edges are old. (b) Subdivision Mn. The two dashed edges are
deleted after the reconstruction, which makes all outer boundary edges become communal. Then
the edges on the leftmost triangle (hole) are inserted.

the representatives of all first-type inner boundaries of F are induced by distinct pairs, it is
clear that the number of the first-type inner boundaries of F is O(f(n)). But it is possible
that the representative of some inner boundaries of F are induced by the same pair (F ′, e′).

Consider the representatives of some inner boundaries of F that are induced by the
same pair (F ′, e′). The insertion of deletion of e′ makes the outer boundary of F ′ become
communal. In the case that e′ connects the outer boundary of F ′ and an inner boundary
of F ′, let γ be the cycle consisting of the outer boundary of F ′, the inner boundary of
F ′ and e′. Let γ be the outer boundary of F ′, otherwise. All representatives induced by
(F ′, e′) are on γ, and therefore they are connected after e′ is inserted or before e′ is deleted.
Notice that any two of such representatives are disconnected later. This means that γ
becomes at least t connected components due to the removal of t edges on it, where t is
the number of the representatives induced by (F ′, e′). The total number of edges that are
removed after the latest reconstruction is O(f(n)), and each edge that are removed after the
latest reconstruction can be a representative of at most two first-type inner boundaries of F .
Therefore, the total number of the representatives of the first-type inner boundaries of F is
also O(f(n)).

Consider an inner boundary of the second type. Since each edge is incident to at most
one inner boundary of F , the number of the second-type inner boundaries is at most the
number of new edges. Therefore, there are O(f(n)) second-type inner boundaries of Mn. J

4.2 Two data structures
We maintain two data structures: Do, a semi-dynamic point location for old and communal
edges, and Dn, a fully dynamic point location for new and communal edges. In this subsection,
we describe the data structures Do and Dn. The update procedures are described in Section 5.

Semi-dynamic point location for old and communal edges. After each reconstruction, we
construct the point location data structure Do supporting only DeleteEdge described in
Section 3 for all edges in the current subdivision, which takes O(n logn) time. Recall that
all edges in the current subdivision are old at this moment. In Section 5, we will see that
the amortized time for reconstructing Do is O(n logn/f(n)) at any moment, where n is the
number of all edges in the subdivision at the moment. As update operations are processed,
some old or communal edges are deleted, and thus we remove them from Do. Notice that no
edge is inserted to Do by the definition of old and communal edges.

In addition to this, we store the old edges on each boundary component of the faces of
Mo in a concatenable queue. Notice that such edges are not necessarily contiguous on the
boundary component. In spite of this fact, we can traverse the old edges along a boundary
component of each face of Mo in time linear in the number of the old edges due to the
concatenable queu for the old edges.



E. Oh and H.-K. Ahn 63:9

Fully dynamic point location for new and communal edges. Let En be the set of all new
and communal edges and Mn be the subdivision induced by En. Also, let Eo denote the set
of all old and communal edges and Mo be the subdivision induced by Eo.

We maintain a dynamic data structure that supports vertical ray-shooting queries for En.
The update time U(n) is O(logn log logn) and the query time Q(n) is O(logn(log logn)2) if
we use the data structure by Chan and Nekrich [5]. Or, there are alternative data structures
with different update and query times [2, 3, 6].

We also maintain the boundary of each face F of Mn. We store each connected component
of the boundary of F in a concatenable queue. More specifically, a concatenable queue
represents a cyclic sequence of the edges in a connected component of the boundary of F .
Since e is incident to at most two faces of Mn, there are at most two such elements in the
queues. We implement the concatenable queues using the 2-3 trees. We choose an element
in each queue and call it the root of the queue. For a concatenable queue implemented by a
2-3 tree, we choose the root of the 2-3 tree as the root of the queue. Given any element of a
queue, we can access the root of the queue in O(logn) time. For an inner boundary of a face
F of Mn, we let the root of the queue for this inner boundary point to the root of the queue
for the outer boundary of F . We also make the root of the queue for the outer boundary of
F point to the root of the queue for all inner boundaries of F . Also, we let each edge of En
point to its corresponding elements in the queues.

We maintain a balanced binary search tree on the vertices of Mn sorted in a lexicographical
order so that we can check whether a point in the plane is a vertex of Mn in O(logn) time.
Also, for each vertex of Mn, we maintain a balanced binary search tree on the edges incident
to it in Mn in clockwise order around it. The update procedure of this data structure is
straightforward, and the update time is subsumed by the time for maintaining the boundaries
of the faces of Mn. Thus, in the following, we do not mention the update of this structure.

I Lemma 3. The data structures Do and Dn have size O(n).

5 Update procedures for fully dynamic point location

We have two update operations: InsertEdge(e) and DeleteEdge(e). Recall that we
rebuild the data structures periodically. More precisely, we reconstruct the data structures if
we have processed f(n) updates since the latest reconstruction time, where n is the number
of the edges we have at the moment. After the reconstruction, the data structure Dn becomes
empty. This is simply because the reconstruction resets all edges to old. For the data
structure Do, we will show that the amortized time for reconstruction is O(n logn/f(n)).
Also, this data structure is updated as some old or communal edges are deleted.

In this section, we present a procedure for updates of the two data structures. Recall
that we use Mo to denote the subdivision induced by the old and communal edges, and Mn
to denote the subdivision induced by the new and communal edges. We use the subdivisions,
Mo and Mn, only for description purpose, and we do not maintain them.

5.1 Common procedure for edge insertions and edge deletions
We are given operation InsertEdge(e) or DeleteEdge(e) for an edge e. Recall that we
construct Do and Dn periodically. The reconstruction period f : N → N is an increasing
function satisfying that f(n)/2 ≤ f(n/2) ≤ n/4 for every n larger than a constant.

I Lemma 4. The amortized reconstruction time of Do is O(n logn/f(n)), where n is the
number of all edges at the moment.

SoCG 2018



63:10 Point Location in Dynamic Planar Subdivisions

The insertion or deletion sets some old edges to communal. By applying a point location
query for an endpoint of e in Mo, we find the faces F of Mo such that the boundary of F
contains an endpoint of e or the interior of F is intersected by e. All edges lying on the outer
boundary and at most one inner boundary of F become communal. We insert them and e to
the data structure Dn for vertical ray shooting queries. This takes O(N · U(n)) time, where
N denotes the number of all edges inserted to the data structure. It is possible that some
edges of the faces are already communal. In this case, we avoid removing (also accessing)
such edges by using the concatenable queue representing the cyclic sequence of the old edges
on each boundary component of F .

I Lemma 5. The average number of old edges which are set to communal is O(n/f(n)) at
any moment, where n is all edges at the moment.

I Corollary 6. The amortized time for inserting new and communal edges to the vertical ray
shooting data structure in Dn is O(n · U(n)/f(n)).

5.2 Edge insertions
We are given operation InsertEdge(e) for an edge e. For the data structure Do, we do
nothing since the set of the old and communal edges remains the same. For the data structure
Dn, we are required to insert one new edge e and several communal edges. In other words,
we are required to update the ray shooting data structure, the concatenable queues and the
pointers associated to each edge of En. We first process the update due to the communal
edges, and then process the update due to the new edge e. The process for the new edge e
is the same as the process for the communal edges, except that there is only one new edge
e, but there are O(n/f(n)) communal edges (amortized). In the following, we describe the
process for the communal edges only.

Let En be the union of the closures of all edges of En, where En is the set of the new
and communal edges before InsertEdge(e) is processed. Recall that it is not necessarily
connected. Recall that the old edges on the outer boundary of the face intersected by e
become communal. If the outer boundary is connected to an inner boundary, we also set
the edges of the inner boundary to communal. In this case, let γ be the cycle consisting of
these two boundary components and e. Otherwise, let γ be the outer boundary of the face
in Mo intersecting e. If γ consists of only communal edges, we do nothing. Thus we assume
that it contains at least one old edge. We insert the old edges of γ to Dn in O(n ·U(n)/f(n))
amortized time by Corollary 6. Recall that the average number of such edges is O(n/f(n))
by Corollary 6.

Now we update the concatenable queues and the pointers made by the communal edges
on γ in O(f(n)Q(n) + n logn/f(n)). Let F be the face of Mn intersected by γ.

I Lemma 7. The curve γ intersects no connected component of En enclosed by γ assuming
that γ contains at least one old edge.

By Lemma 7, there is a unique face Fγ in the subdivision Mn after the communal edges
are inserted such that the outer boundary of Fγ is γ. See Figure 2. The boundaries of
F change due to the communal edges, but the boundaries of the other faces remain the
same. More precisely, F is subdivided into subfaces, one of which is Fγ . We compute the
concatenable queues for each boundary component of the subfaces. We show how to do
this for Fγ . While computing the boundary of Fγ , we can compute all boundaries of every
subface in the same time. Details can be found in the full version of the paper.



E. Oh and H.-K. Ahn 63:11

(a) (b) (c)

F
Fγ

Fγ

Figure 2 (a) Subdivision Mn before the communal edges are inserted. (b) The dashed edges are
communal edges made by InsertEdge. They subdivide F into three faces one of which is Fγ . The
boundary of Fγ is γ. (c) All edges of γ are communal edges set by InsertEdge.

Concatenable queue for the outer boundary γ of Fγ . We walk along the old edges of
γ which become communal one by one using the concatenable queue for the old edges of
γ. We make an empty concatenable queue for γ, and insert such edges one by one. If two
consecutive old edges g1 and g2 of γ share no endpoints, there is a polygonal chain between
g1 and g2 of γ consisting of communal edges only. Notice that this chain is a part of a
boundary component of F . We find the boundary component of F in constant time. We
split it with respect to g1 and g2, and combine one subchain with the concatenable queue for
γ. We keep the other subchain for updating the boundary of F . In this way, we can obtain
the concatenable queue for the outer boundary γ of Fγ . This takes O(N logn) time, where
N is the number of old edges of γ which become communal.

Concatenable queues for the inner boundaries of Fγ . A inner boundary β of F might
be enclosed by Fγ in the subdivision after the communal edges are inserted. For each
inner boundary β of F , we check if it is enclosed by Fγ . To do this, we compute the edge
e′ immediately lying above the topmost vertex of β using the vertical ray shooting data
structure on all new and communal edges, which include the edges of γ. Using the pointer for
each edge e′ pointing to the elements in the concatenable queues, we can find the boundary
component βe′ containing e′ in constant time. If βe′ is γ, we can determine if β is enclosed
by Fγ immediately. Otherwise, β is enclosed by Fγ if and only if βe′ is enclosed by Fγ .
Therefore, we can determine for each inner boundary β of F whether β is enclosed by Fγ in
O(f(n)Q(n)) time in total since there are O(f(n)) inner boundaries of F by Lemma 2.

Since each inner boundary of Fγ was an inner boundary of F before the communal edges
are inserted, there is a concatenable queue for each inner boundary of Fγ whose root node
points to the outer boundary of F . We make the root of the concatenable queue to point to
Fγ , which takes O(f(n)) time in total for all inner boundaries of γ.

Pointers for edges. Finally, we update the pointers associated to each edge of En and each
old edge of γ which become communal. Recall that each edge of En points to the element in
the concatenable queues corresponding to it. For the update of the concatenable queues, we
do not remove the elements of them. We just make their pointers to point to other elements
of the queues. Therefore, we do not need to do anything for En. The only thing we do is to
make each old edge of γ to point to the elements in the queues, one representing the outer
boundary of Fγ and one representing a boundary component of a subface of F . This takes
O(N logn) time, where N is the number of old edges of γ which become communal.

Therefore, the overall update time for inserting the communal edges is O(f(n)Q(n) +
N logn). Since the average value of N is O(n/f(n)) by Lemma 5, the amortized update
time is O(f(n)Q(n) + n logn/f(n)). Similarly, the update time for the insertion of e is
O(f(n)Q(n) + logn). The amortized reconstruction time is O(n logn/f(n)) by Lemma 4.

SoCG 2018



63:12 Point Location in Dynamic Planar Subdivisions

Also, the amortized time for inserting the communal edges to the vertical ray shooting
data structure is O(n · U(n)/f(n)) by Corollary 6. Therefore, the overall update time is
O(f(n)Q(n) + n logn/f(n) + n · U(n)/f(n)), which is O(f(n)Q(n) + n · U(n)/f(n)) since
U(n) = Ω(logn).

I Lemma 8. We can process InsertEdge(e) in O(f(n)Q(n) + n · U(n)/f(n)) amortized
time.

5.3 Edge deletions
We are given operation DeleteEdge(e) for an edge e. For the data structure Do, we update
the semi-dynamic point location data structure on the old and communal edges. We also
update the concatenable queues for old edges on the boundary components of a face of Mo.

For the data structure Dn, we are required to update the concatenable queues and the
pointers associated to each edge of En. Here, we insert O(n/f(n)) communal edges and delete
only one edge e from the data structure. The insertion of the communal edges is exactly
the same as the case for edge insertions in the previous subsection. The deletion of e is also
similar to the update procedure for edge insertions. The details can be found in the full
version of the paper.

I Lemma 9. We can process DeleteEdge(e) in O(f(n)Q(n) + n · U(n)/f(n)) amortized
time.

6 Query procedure

We call the subdivision induced by all old, communal, and new edges the complete subdivision
and denote it by Mc. Sometimes we mention a face without specifying the subdivision if the
face is in the complete subdivision.

Given Do and Dn, we are to answer locate(x), that is, to find the face containing the
query point x in Mc. Let Fo and Fn be the faces of Mo and Mn containing x, respectively. By
Theorem 1, we can find Fo in O(logn) time. For Fn, we find the edge e of Mn immediately
lying above x in Q(n) time using the vertical ray shooting data structure. Then we find the
faces containing e on their boundaries using the pointers e has. There are at most two such
faces. Since the connected components of the boundary of each face are oriented consistently,
we can decide which one contains x in constant time. Therefore, we can compute Fn in
O(Q(n)) time in total. To answer locate(x), we need the following lemmas.

I Lemma 10. No face of Mc contains both an old edge and new edge in its outer boundary.

Proof. Assume to the contrary that both a new edge en and an old edge eo lie on the outer
boundary of a face F of Mc. Note that en is inserted after the latest reconstruction. When en
was inserted, all outer boundary edges of the face F ′ that was intersected by en in Mo at the
moment were set to communal. Since a communal edge is set to old only by a reconstruction,
the only possibility for eo to remain as old is that eo was not on the outer boundary of F ′

but on the outer boundary of another face in Mo, and after then it has become an outer
boundary edge of F by a series of splits and merges of the faces that are incident to eo. These
splits and merges occur only by insertions and deletions of edges, and eo is set to communal
by such a change to the face that is incident to eo, and remains communal afterwards. This
contradicts that eo is old, and this case never occurs. J

I Lemma 11. For any face F in Mc, there exists a face in Mo or in Mn whose outer boundary
coincides with the outer boundary of F .



E. Oh and H.-K. Ahn 63:13

Using the two lemmas above, we can obtain the following lemma.

I Lemma 12. For any two points in the plane, they are in the same face in Mc if and only
if they are in the same face in Mo and in the same face in Mn.

Proof. Assume that two points x and y are in the same face F in Mc. There is a face F ′ in
Mo or in Mn whose outer boundary coincides with the outer boundary of F by Lemma 11.
Consider a face F ′′ in Mo or Mn enclosed by F ′. Neither x nor y is enclosed by F ′′ because
the edge set of Mo (and Mn) is a subset of the edge set of Mc. Since the complete subdivision
Mc is planar, this implies that x and y are in the same face in both Mo and Mn.

Now assume that two points x and y are in different faces in Mc. Let Fx and Fy be the
faces containing x and y in Mc, respectively. This means that x is not enclosed by Fy or
y is not enclosed by Fx. The outer boundaries of Fx and Fy are distinct. By Lemma 11,
there are faces F ′

x and F ′
y in Mo or in Mn whose outer boundaries coincide with the outer

boundaries of Fx and Fy, respectively. Note that x is enclosed by F ′
x and y is enclosed by

F ′
y. However, either x is not enclosed by F ′

y or y is not enclosed by F ′
x. Therefore, x and y

are in different faces in Mo or Mn, which proves the lemma. J

Lemma 12 immediately gives an O(Q(n))-time query algorithm. We represent the name
of each face in Mc by the pair consisting of two faces, one from Mo and one from Mn,
corresponding to it. In this way, we have the following lemma.

I Lemma 13. We can answer any query locate(x) in O(Q(n)) time using Do and Dn.

By setting f(n) =
√
n · U(n)/Q(n), we have the following theorem.

I Theorem 14. We can construct a data structure of size O(S(n)) so that locate(x) can
be answered in O(Q(n)) time for any point x in the plane. Each update, InsertEdge(e) or
DeleteEdge(e), can be processed in O(

√
n · U(n) ·Q(n)) amortized time, where n is the

number of edges at the moment.

Using the data structure by Chan and Nekrich [5], we set S(n) = n,
Q(n) = logn(log logn)2 and U(n) = logn log logn.

I Corollary 15. We can construct a data structure of size O(n) so that locate(x) can be
answered in O(logn(log logn)2) time for any point x in the plane. Each update,
InsertEdge(e) or DeleteEdge(e), can be processed in O(

√
n logn(log logn)3/2) amortized

time, where n is the number of edges at the moment.

References
1 Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., 1974.
2 Lars Arge, Gerth Stølting Brodal, and Loukas Georgiadis. Improved dynamic planar point

location. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pages 305–314, 2006.

3 Hanna Baumgarten, Hermann Jung, and Kurt Mehlhorn. Dynamic point location in general
subdivisions. Journal of Algorithms, 17(3):342–380, 1994.

4 Jon Louis Bentley and James B Saxe. Decomposable searching problems 1: Static-to-
dynamic transformations. Journal of Algorithms, 1(4):301–358, 1980.

5 Timothy M. Chan and Yakov Nekrich. Towards an optimal method for dynamic planar
point location. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2015), pages 390–409, 2015.

SoCG 2018



63:14 Point Location in Dynamic Planar Subdivisions

6 Siu-Wing Cheng and Ravi Janardan. New results on dynamic planar point location. SIAM
Journal on Computing, 21(5):972–999, 1992.

7 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 2008.

8 Jiří Matousěk. Efficient partition trees. Discrete & Computational Geometry, 8(3), 1992.
9 Mark H. Overmars. Range searching in a set of line segments. Technical report, Rijksuni-

versiteit Utrecht, 1983.
10 Mark H. Overmars and Jan van Leeuwen. Worst-case optimal insertion and deletion meth-

ods for decomposable searching problem. Information Processing Letters, 12(4):168–173,
1981.

11 Neil Sarnak and Robert E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679, 1986.

12 Jack Snoeyink. Point location. In Handbook of Discrete and Computational Geometry,
Third Edition, pages 1005–1023. Chapman and Hall/CRC, 2017.

13 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.


	Introduction
	Preliminaries
	Data structures

	Deletion-only point location
	Data structures for fully dynamic point location
	Reconstruction
	Two data structures

	Update procedures for fully dynamic point location
	Common procedure for edge insertions and edge deletions
	Edge insertions
	Edge deletions

	Query procedure

