
A Nearly Optimal Algorithm for the Geodesic
Voronoi Diagram of Points in a Simple Polygon
Chih-Hung Liu
Department of Computer Science, ETH Zürich, Zürich, Switzerland
chih-hung.liu@inf.ethz.ch

https://orcid.org/0000-0001-9683-5982

Abstract
The geodesic Voronoi diagram ofm point sites inside a simple polygon of n vertices is a subdivision
of the polygon into m cells, one to each site, such that all points in a cell share the same nearest
site under the geodesic distance. The best known lower bound for the construction time is
Ω(n+m logm), and a matching upper bound is a long-standing open question. The state-of-the-
art construction algorithms achieve O

(
(n+m) log(n+m)

)
and O(n+m logm log2 n) time, which

are optimal for m = Ω(n) and m = O(n
log3 n

), respectively. In this paper, we give a construction
algorithm with O

(
n + m(logm + log2 n)

)
time, and it is nearly optimal in the sense that if a

single Voronoi vertex can be computed in O(logn) time, then the construction time will become
the optimal O(n+m logm). In other words, we reduce the problem of constructing the diagram
in the optimal time to the problem of computing a single Voronoi vertex in O(logn) time.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and dis-
crete structures

Keywords and phrases Simple polygons, Voronoi diagrams, Geodesic distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.58

Related Version A full version of this paper is available at http://arxiv.org/abs/1803.03526.

1 Introduction

The geodesic Voronoi diagram of m point sites inside a simple polygon of n vertices is a
subdivision of the polygon into m cells, one to each site, such that all points in a cell share
the same nearest site where the distance between two points is the length of the shortest path
between them inside the polygon. The common boundary between two cells is a Voronoi
edge, and the endpoints of a Voronoi edge are Voronoi vertices. A cell can be augmented
into subcells such that all points in a subcell share the same anchor, where the anchor of a
point in the cell is the vertex of the shortest path from the associated site to the point that
immediately precedes the point. An anchor is either a point site or a reflex polygon vertex.
Figure 1(a) illustrates an augmented diagram.

The size of the (augmented) diagram is Θ(n+m) [1]. The best known construction time
is O

(
(n+m) log(n+m)

)
[10] and O(n+m logm log2 n) [9]. They are optimal for m = Ω(n)

and for m = O(n
log3 n

), respectively, since the best known lower bound is Ω(n + m logm).
The existence of a matching upper bound is a long-standing open question by Mitchell [8].

Aronov [1] first proved fundamental properties: a bisector between two sites is a simple
curve consisting of Θ(n) straight and hyperbolic arcs and ending on the polygon boundary;
the diagram has Θ(n+m) vertices, Θ(m) of which are Voronoi vertices. Then, he developed a
divide-and-conquer algorithm that recursively partitions the polygon into two roughly equal-
size sub-polygons. Since each recursion level takes O

(
(n+m) log(n+m)

)
time to extend the

diagrams between every pair of sub-polygons, the total time is O
(
(n+m) log(n+m) logn

)
.

© Chih-Hung Liu;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:chih-hung.liu@inf.ethz.ch
https://orcid.org/0000-0001-9683-5982
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.58
http://arxiv.org/abs/1803.03526
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

Papadopoulou and Lee [10] combined the divide-and-conquer and plane-sweep paradigms
to improve the construction time to O

(
(n+m) log(n+m)

)
. First, the polygon is triangulated

and one resultant triangle is selected as the root such that the dual graph is a rooted binary
tree and each pair of adjacent triangles have a parent-child relation; see Figure 1(b). For each
triangle, its diagonal shared with its parent partitions the polygon into two sub-polygons: the
“lower” one contains it, and the “upper” one contains its parent. Then, the triangles are swept
by the post-order and pre-order traversals of the rooted tree to respectively build, inside
each triangle, the two diagrams with respect to sites in its lower and upper sub-polygons.
Finally, the two diagrams inside each triangle are merged into the final diagram.

Very recently, Oh and Ahn [9] generalized the notion of plane sweep to a simple polygon.
To supplant the scan line, one point is fixed on the polygon boundary, and another point
is moved from the fixed point along the polygon boundary counterclockwise, so that the
shortest path between the two points will sweep the whole polygon. Moreover, Guibas and
Hershberger’s data structure for shortest path queries [4, 6] is extended to compute a Voronoi
vertex among three sites or between two sites in O(log2 n) time. This technique enables
handling an event in O(logm log2 n) time, leading to a total time of O(n+m logm log2 n).

Papadopoulou and Lee’s method [10] has two issues inducing the n log(n+m) time-factor.
First, while sweeping the polygon, an intermediate diagram is represented by a “wavefront”
in which a “wavelet” is associated with a “subcell.” Although this representation enables
computing the common vertex among three subcells in O(1) time, since it takes Ω

(
log(n+m)

)
time to update such a wavefront, the Ω(n) vertices lead to the n log(n+m) factor. Second,
when a wavefront enters a triangle from one diagonal and leaves from the other two diagonals,
it will split into two. Since there are Ω(n) triangles, there are Ω(n) split events, and since a
split event takes Ω

(
log(n+m)

)
time, the n log(n+m) factor arises again.

1.1 Our contribution
We devise a construction algorithm with O

(
n+m(logm+ log2 n)

)
time, which is slightly

faster than Oh and Ahn’s method [9] and is optimal for m = O(n
log2 n

). More importantly,
our algorithm is, to some extent, nearly optimal since the log2 n factor solely comes from
computing a single Voronoi vertex. If the computation time can be improved to O(logn),
the total construction time will become O

(
n+m(logm+ logn)

)
, which equals the optimal

O(n+m logm) since m logn = O(n) for m = O(n
logn) and logn = O(logm) for m = Ω(n

logn).
In other words, we reduce the problem of constructing the diagram in the optimal time by
Mitchell [8] to the problem of computing a single Voronoi vertex in O(logn) time.

At a high level, our algorithm is a new implementation of Papadopoulou and Lee’s con-
cept [10] using a different data structure of a wavefront, symbolic maintenance of incomplete
Voronoi edges, tailor-made wavefront operations, and appropriate amortized time analysis.

First, in our wavefront, each wavelet is directly associated with a cell rather than a subcell.
This representation makes use of Oh and Ahn’s [9] O(log2 n)-time technique of computing a
Voronoi vertex. Each wavelet also stores the anchors of incomplete subcells in its associated
cell in order to enable locating a point in a subcell along the wavefront.

Second, if each change of a wavefront needs to be updated immediately, a priority queue for
events would be necessary, and since the diagram has Θ(m+n) vertices, an (m+n) log(m+n)
time-factor would be inevitable. To overcome this issue, we maintain incomplete Voronoi
edges symbolically, and update them only when necessary. For example, during a binary
search along a wavefront, each incomplete Voronoi edge of a tested wavelet will be updated.

Third, to avoid Ω(n) split operations, we design two tailor-made operations. If a wavefront
will separate into two but one part will not be involved in the follow-up “sweep”, then, instead
of using a binary search, we “divide” the wavefront in a seemingly brute-force way in which

C.-H. Liu 58:3

we traverse the wavefront from the uninvolved part until the “division” point, remove all
visited subcells, and build another wavefront from those subcells. If a wavefront propagates
into a sub-polygon that contains no point site, then we adopt a two-phase process to build
the diagram inside the sub-polygon instead of splitting a wavefront many times.

Finally, when deleting or inserting a subcell (anchor), its position in a wavelet is known.
Since re-balancing a red-black tree (RB-tree) after an insertion or a deletion takes amortized
O(1) time [7, 11, 12], by augmenting each tree node with pointers to its predecessor and
successor, an insertion or a deletion with a known position takes amortized O(1) time.

This paper is organized as follows. Section 2 formulates the geodesic Voronoi diagram,
defines a rooted partition tree, and introduces Papadopoulou and Lee’s two subdivisions [10];
Section 3 summarizes our algorithm; Section 4 designs the data structure of a wavefront;
Section 5 presents wavefront operations; Section 6 implements the algorithm with those
operations. Due to the page limit, we omit some technical details and proofs; for more details,
please see the full version.

2 Preliminary

2.1 Geodesic Voronoi diagrams
Let P be a simple polygon of n vertices, let ∂P denote the boundary of P , and let S be a
set of m point sites inside P . For any two points p, q in P , the geodesic distance between
them, denoted by d(p, q), is the length of the shortest path between them that fully lies in P ,
the anchor of q with respect to p is the last vertex on the shortest path from p to q before q,
and the shortest path map (SPM) from p in P is a subdivision of P such that all points in
a region share the same anchor with respect to p. Each edge in the SPM from p is a line
segment from a reflex polygon vertex v of P to ∂P along the direction from the anchor of v
(with respect to p) to v, and this line segment is called the SPM edge of v (from p).

The geodesic Voronoi diagram of S in P , denoted by VorP (S), partitions P into m

cells, one to each site, such that all points in a cell share the same nearest site in S under
the geodesic distance. The cell of a site s can be augmented by partitioning the cell with
the SPM from s into subcells such that all points in a subcell share the same anchor with
respect to s. The augmented version of VorP (S) is denoted by Vor∗P (S). With a slight abuse
of terminology, a cell in Vor∗P (S) indicates a cell in VorP (S) together with its subcells in
Vor∗P (S). Then, each cell is associated with a site, and each subcell is associated with an
anchor. As shown in Figure 1(a), v is the anchor of the shaded subcell (in s1’s cell), and the
last vertex on the shortest path from s1 to any point x in the shaded subcell before x is v.

A Voronoi edge is the common boundary between two adjacent cells, and the endpoints of
a Voronoi edge are called Voronoi vertices. A Voronoi edge is a part of the geodesic bisector
between the two associated sites, and consists of straight and hyperbolic arcs. Endpoints
of these arcs except Voronoi vertices are called breakpoints, and a breakpoint is incident to
an SPM edge in the SPM from one of the two associated sites, indicating a change of the
corresponding anchor. There are Θ(m) Voronoi vertices and Θ(n) breakpoints [1].

In our algorithm, each anchor u refers to either a reflex polygon vertex of P or a point
site in S; we store its associated site s, its geodesic distance from s, and its anchor with
respect to s. The weighted distance from u to a point x is d(s, u) + |ux|.

Throughout the paper, we make a general position assumption that no polygon vertex is
equidistant from two sites in S and no point inside P is equidistant from four sites in S. The
former avoids nontrivial overlapping among cells [1], and the latter ensures that the degree
of each Voronoi vertex with respect to Voronoi edges is either 1 (on ∂P) or 3 (among three
cells).

SoCG 2018

58:4 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

s1

v

root N

d
4′(d)

4(d)

(a) (b)

Figure 1 (a) Augmented geodesic Voronoi diagram Vor∗P (S). (b) Rooted partition tree T .

The boundary of a cell except Voronoi edges are polygonal chains on ∂P . For convenience,
these polygonal chains are referred to as polygonal edges of the cell, the incidence of an SPM
edge onto a polygonal edge is also a breakpoint, and the polygonal edges including their
polygon vertices and breakpoints also count for the size of the cell.

I Lemma 1. ([9, Lemma 5 and 14]) It takes O(log2 n) time to compute the degree-1 or
degree-3 Voronoi vertex between two sites or among three sites after O(n)-time preprocessing.

2.2 A rooted partition tree
Following Papadopoulou and Lee [10], a rooted partition tree T for P and S is built as
follows: First, P is triangulated using Chazelle’s algorithm [2] in O(n) time, and all sites in
S are located in the resulting triangles by Edelsbrunner et al’s approach [3] in O(n+m logn)
time. The dual graph of the triangulation is a tree in which each node corresponds to a
triangle and an edge connects two nodes if and only if their corresponding triangles share a
diagonal. Then, an arbitrary triangle N whose two diagonals are polygon sides, i.e., a node
with degree 1, is selected as the root, so that there is a parent-child relation between each
pair of adjacent triangles. Figure 1(b) illustrates a rooted partition tree T .

For a diagonal d, let 4(d) and 4′(d) be the two triangles adjacent to d such that 4′(d)
is the parent of 4(d), and call d the root diagonal of 4(d); also see Figure 1(b). d partitions
P into two sub-polygons: P (d) contains 4(d) and P ′(d) contains 4′(d). P (d) and P ′(d) are
said to be “below” and “above” d, respectively. Assume that d ⊆ P (d); let S(d) = S ∩ P (d)
and S′(d) = S \ S(d), which indicate the two respective subsets of sites below and above d.

In this paper, we adopt the following convention: for each triangle 4, let d = v1v2 be its
root diagonal, let 4′ be its parent triangle, let d1, d2 be the other two diagonals of 4, and
let d3, d4 be the other two diagonals of 4′. Assume that d4 is the diagonal between 4′ and
its parent, and that d1, d, and d4 are incident to v1, and d2, d, and d3 are incident to v2.
Let v1,2 be the vertex shared by d1 and d2, and let v3,4 be the vertex shared by d3 and d4.
Denote the set of sites in 4 as S4 = S(d)−S(d1)−S(d2). Figure 2(a) shows an illustration.

2.3 Subdivisions
Papadopoulou and Lee [10] introduced two subdivisions, SD and SD′, of P , which can be
merged into Vor∗P (S). For each triangle 4 with a root diagonal d, SD and SD′ respectively
contain Vor∗P

(
S(d)

)
∩4 and Vor∗P

(
S′(d)

)
∩4; SD also contains Vor∗P (S) ∩ N. Since S(d)

C.-H. Liu 58:5

4
4′

dd1

d2

d3

d4v1

v2
v1,2

v3,4

(a) (b) (c)

root

Figure 2 (a) 4 and 4′. (b) SD ∩ 4. (c) SD′ ∩ 4. (Borders on d are indicated by arrows.)

and S(d4) (resp. S′(d) and S′(d4)) may differ, a border forms along d in SD (resp. SD′) to
“remedy” the conflicting proximity information. Figure 2(b)–(c) illustrate SD and SD′.

The incidence of a Voronoi edge or an SPM edge in Vor∗P (S) onto a border in SD or SD′

is called a border vertex, and the border vertices partition a border into border edges. Both
SD and SD′ have O(n + m) border vertices [10], O(m) of which are induced by Voronoi
edges. Hereafter, a diagram vertex means a Voronoi vertex, a breakpoint, a border vertex, or
a polygon vertex.

3 Overview of the algorithm

We compute Vor∗P (S) in the following three steps:
1. Build the rooted partition tree T for P and S in O(n+m logn) time. (Section 2.2)
2. Construct SD and SD′ in O

(
n+m(logm+ log2 n)

)
time by sweeping the polygon using

the post-order and pre-order traversals of T , respectively. (Section 6.1 and Section 6.2)
3. Merge SD and SD′ into Vor∗P (S) in O(n + m) time using Papadopoulou and Lee’s

method [10, Section 7].

By the above-mentioned running times, we conclude the total running time as follows.

I Theorem 2. Vor∗P (S) can be constructed in O
(
n+m(logm+ log2 n)

)
time.

4 Wavefront structure

A wavefront represents the “incomplete” boundary of “incomplete” Voronoi cells during the
execution of our algorithm, and wavefronts will “sweep” the simple polygon P triangle by
triangle to construct SD and SD′. To avoid excessive updates, each “incomplete” Voronoi
edge, which is a part of a Voronoi edge and will be completed during the sweep, is maintained
symbolically, preventing an extra logn time-factor. During the sweep, candidates for Voronoi
vertices in SD and SD′ called potential vertices will be generated in the unswept part of P .

4.1 Formal definition and data structure
Let η be a diagonal or a pair of diagonals sharing a common polygon vertex, and let S′ be
a subset of S lying on the same side of η. A wavefront Wη(S′) represents the sequence of
Voronoi cells in Vor∗P (S′) appearing along η, and each appearance of a cell induces a wavelet
in Wη(S′). The unswept area of Wη(S′) is the part of P on the opposite side of η from S′.
Since Vor∗P (S′) in the unswept area has not yet been constructed, Voronoi and polygonal

SoCG 2018

58:6 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

edges incident to η are called incomplete. Each wavelet is bounded by two incomplete Voronoi
or polygonal edges along η, and its incomplete boundary comprises its two incomplete edges
and the portion of η between them. When the context is clear, a wavelet may indicate its
associated cell.

Wη(S′) is stored in an RB-tree in which each node refers to one wavelet and the ordering
of nodes follows their appearances along η. The RB-tree is augmented such that each node
has pointers to its predecessor and successor, and the root has pointers to the first and last
nodes, enabling efficiently traversing wavelets along η and accessing the two ending wavelets.

The subcells of a wavelet are the subcells in its associated cell incident to its incomplete
boundary. The list of their anchors is also maintained by an augmented RB-tree in which
their ordering follows their appearances along the incomplete boundary. Due to the visibility
of a subcell, each subcell appears exactly once along the incomplete boundary. Since the
rebalancing after an insertion or a deletion takes amortized O(1) time [11, 12, 7], inserting or
deleting an anchor at a known position in an RB-tree, i.e., without searching, takes amortized
O(1) time.

4.2 Incomplete Voronoi and polygonal edges

When a wavefront moves into its unswept area, incomplete Voronoi edges will extend,
generating new breakpoints. If each breakpoint needs to be created immediately, all candidates
for breakpoints should be maintained in a priority queue, leading to an Ω(n logn) running
time due to Ω(n) breakpoints. To avoid these excessive updates, we maintain each incomplete
Voronoi edge symbolically, and update it only when necessary. For example, when searching
along the wavefront or merging two wavefronts, the incomplete Voronoi edges of each involved
wavelet (cell) will be updated until the diagonal or the pair of diagonals.

Since a breakpoint indicates the change of a corresponding anchor, for a Voronoi edge, if
the anchors of its incident subcells on “each side” are stored in a sequence, the Voronoi edge
can be computed in time proportional to the number of breakpoints by scanning the two
sequences [9, Section 4]. Following this concept, for each incomplete Voronoi edge, we store
its fixed Voronoi vertex (in the swept area), its last created breakpoint, and its last used
anchors on its two sides, so that we can update an incomplete Voronoi edge by scanning the
two lists of anchors from the last used anchors. When creating a breakpoint, we also build a
corresponding SPM edge, and then remove the corresponding anchor from the anchor list.

Each polygonal edge is also maintained symbolically in a similar way; in particular, it
will also be updated when a polygon vertex is inserted as an anchor. Meanwhile, the SPM
edges incident to a polygonal edge will also be created using its corresponding anchor list.

4.3 Potential vertices

We process incomplete Voronoi edges to generate candidates for Voronoi vertices called
potential vertices. For each incomplete Voronoi edge, since its two associated sites lie in the
swept area, one endpoint of the corresponding bisector lies in the unswept area and is a
degree-1 potential vertex. For each two adjacent Voronoi edges along the wavefront, their
respective bisectors may intersect in the unswept area, and the intersection is a degree-3
potential vertex. By Lemma 1, a potential vertex can be computed in O(log2 n) time.

Potential vertices are stored in their located triangles; each diagonal of a triangle is
equipped with a priority queue to store the potential vertices associated with sites in the
triangles on the opposite side of the diagonal, where the key is the distance to the diagonal.

C.-H. Liu 58:7

5 Wavefront operations

We summarize the eight wavefront operations, where Kinv, Avis and Inew are the numbers
of involved (i.e., processed and newly created) potential vertices, visited anchors, and created
diagram vertices, respectively:
Initiate: Compute Vor4(S4) and initialize W(d,d2)(S4) in O

(
|S4|(logm+ log2 n)

)
time.

Extend: Extend one wavefront into a triangle from one diagonal to the opposite pair of
diagonals to build the diagram inside the triangle in O

(
Kinv(logm + log2 n) + Inew

)
plus amortized O(1) time.

Merge: Merge two wavefronts sharing the same diagonal or the same pair of diagonals
together with merging the two corresponding diagrams in O

(
|S4|(logm+ logn)+

Kinv(logm+log2 n)+Inew
)
plus amortized O(1) time where 4 is the underlying triangle.

Join: Join two wavefronts sharing the same diagonal with building the border on the diagonal
but without merging the two corresponding diagrams inside the underlying triangle 4′
in O

(
|S4′ |(logm+ logn) +Kinv(logm+ log2 n) + Inew

)
plus amortized O(1) time.

Split: Split a wavefront using a binary search in O(logm+ logn) time.
Divide: Divide a wavefront by traversing one diagonal in amortized O(Avis + 1) time.
Insert: Insert S4 into Wd1

(
S(d2)

)
to be Wd1

(
S(d2) ∪ S4

)
in O

(
|S4|(logm+ log2 n)

)
time.

Propagate: Propagate Wd

(
S′(d)

)
into P (d), provided that P (d) ∩ S = S(d) = ∅, to build

SD′ ∩ P (d) = Vor∗P (S) ∩ P (d) in O
(
Kinv(logm+ log2 n) + |SD′ ∩ P (d)|

)
time.

Merge and Join operations differ in that the former also merges the two corresponding
Voronoi diagrams inside the underlying triangle, and the latter does not.

Readers could directly read the algorithm in Section 6 without knowing the detailed
implementation for wavefront operations. For the operation times, we have three remarks.
I Remark. During Extend and Propagate operations and at the end of the other operations,
potential vertices will be generated according to new incomplete Voronoi edges. It will be
clear in Section 6 that the total number of potential vertices in the construction of SD and
SD′ is O(m), so a priority queue takes O(logm) time for an insertion or an extraction.
I Remark. As stated in Section 4.2, we maintain incomplete Voronoi/polygonal edges
symbolically. For the sake of simplicity, we charge the time to update an incomplete edge to
the created breakpoints, and assign the corresponding costs to their located triangles.
I Remark. Since a wavelet (resp. anchor) to remove from a wavefront (resp. wavelet) must
be inserted beforehand, we charge its removal cost at its insertion time. For a wavelet, the
cost is O(logm), and for an anchor, since the position is always known, the cost is amortized
O(1). Similarly, we charge the cost to delete a diagram vertex at its creation time.

Due to the page limit, we omit Initiate, Split, Insert, and Join operations. The first three
are quite straightforward, and the last one is similar to a Merge operation; for more details,
please see the full version.

5.1 Extend operation
An Extend operation extends a wavefront Wd̃(Q) from one diagonal d̃ of a triangle 4̃ to
the opposite pair of diagonals (d̃1, d̃2) to construct W(d̃1,d̃2)(Q) and Vor∗P (Q) ∩ 4̃, where
d̃ = ṽ1ṽ2, d̃1 = ṽ1ṽ1,2, and d̃2 = ṽ2ṽ1,2, and Q lies on the opposite side of d̃ from 4̃.

This operation is equivalent to sweeping the triangle with a scan line parallel to d̃ and
processing each hit potential vertex. The next hit potential vertex is provided from the
priority queue associated with d̃ (defined in Section 4.3), and will be processed in three
phases: First, its validity is verified: for a degree-1 potential vertex, its incomplete Voronoi

SoCG 2018

58:8 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

edge should be alive in the wavefront, and for a degree-3 one, its two incomplete Voronoi
edges should be still adjacent in the wavefront. Second, the one or two incomplete Voronoi
edges are updated up to the potential vertex. Since a degree-1 potential vertex is incident to
a polygonal edge, the polygonal edge is also updated.

Finally, when a potential vertex becomes a Voronoi vertex, a wavelet will be removed
from the wavefront. For a degree-1 potential vertex, since the wavelet lies at one end of the
wavefront, a polygonal edge is added to its adjacent wavelet; for a degree-3 potential vertex,
since the removal makes two wavelets adjacent, a new incomplete Voronoi edge is created,
and one degree-1 and two degree-3 potential vertices are computed accordingly.

After the extension, if ṽ1,2 is a reflex polygon vertex, the wavefront is further processed by
three cases. If neither d̃1 nor d̃2 is a polygon side, ṽ1,2 will later be inserted as an anchor while
dividing or splitting W(d̃1,d̃2)(Q) at ṽ1,2. If both d̃1 and d̃2 are polygon sides, all the subcells
will be completed along (d̃1, d̃2) and the wavefront will disappear. If only d̃1 (resp. d̃2) is a
polygon side, all the subcells along d̃1 (resp. d̃2) excluding the one containing ṽ1,2 will be
completed, and ṽ1,2 will be inserted into the corresponding wavelet as the last or first anchor.

The operation time is O
(
Kinv(logm+ log2 n) + Inew

)
plus amortized O(1), where Kinv

is the number of involved (i.e., processed and newly created) potential vertices and Inew
is the number of created diagram vertices. First, extracting a potential vertex from the
priority queue takes O(logm) time, and verifying its validity takes O(1) time. Second,
updating incomplete Voronoi and polygonal edges takes time linear in the number of created
breakpoints (Section 4.2), i.e., O(Inew) time in total. Third, since computing a potential
vertex takes O(log2 n) time, locating it takes O(logn) time, and inserting it into a priority
queue takes O(logm) time, creating a new potential vertex takes O(log2 n + logm) time.
Finally, completing subcells takes O(Inew) time, and inserting ṽ1,2 takes amortized O(1)
time since its position in the anchor list is known.

5.2 Merge operation
A Merge operation merges Wη(Q) and Wη(Q′) into Wη(Q ∪Q′) together with Vor∗P (Q) ∩4
and Vor∗P (Q′)∩4 into Vor∗P (Q∪Q′)∩4 where4 is the underlying triangle. In our algorithm,
either Q = S4, Q′ = S(d1), and η = (d, d2) or Q = S4 ∪ S(d1), Q′ = S(d2), and η = d; in
both cases, S4 ⊆ Q. The border will form on ∂4\ η, i.e., d1 for the former case and (d1, d2)
for the latter case. Although a wavefront only stores incomplete Voronoi cells, its associated
diagram can still be accessed through the Voronoi edges of the stored cells. After the merge,
new incomplete Voronoi edges will form, and their potential vertices will be created.

The Merge operation consists of two phases: (1) merge Vor∗P (Q) ∩4 and Vor∗P (Q′) ∩4
into Vor∗P (Q ∪Q′) ∩4 and (2) merge Wη(Q) and Wη(Q′) into Wη(Q ∪Q′).

The first phase is to construct so-called merge curves. A merge curve is a connected
component consisting of border edges along ∂4 \ η and Voronoi edges in Vor∗P (Q ∪Q′) ∩4
associated with one site in Q and one site in Q′; the ordering of merge curves is the
ordering of their appearances along η. This phase is almost identical to the merge process
by Papadopoulou and Lee [10, Section 5], but since our data structure for a wavefront is
different from theirs, a binary search along a wavefront to find a starting endpoint for a
merge curve requires a different implementation. Due to the page limit, we only state this
difference here; for the details of tracing a merge curve, please see the full version.

Assume η to be oriented from v1 to v1,2 for η = (d, d2) and from v1 to v2 for η = d. By
[10, Lemma 4–6], a merge curve called initial starts from v1,2 for the latter case (η = d), but
all other merge curves have both endpoints on η, and those endpoints are associated with one
site in S4. Let Q4 be the set of sites in S4 that have a wavelet in Wη(Q). If η = (d, d2), a

C.-H. Liu 58:9

site in Q4 can have two wavelets in Wη(Q), and with an abuse of terminology, such a site is
imagined to have two copies, each to one wavelet. Since Q4 ⊆ Q, finding a starting endpoint
for each merge curve except the initial one is to test sites in Q4 following the ordering of
their wavelets in Wη(Q) along η. After finding a starting endpoint, the corresponding merge
curve will be traced; when the tracing reaches η again, a stopping endpoint forms, and the
first site in Q4 lying after the site inducing the stopping endpoint will be tested.

Let x be the next starting endpoint, which is unknown, and let s be the next site in Q4
to test. A two-level binary search on Wη(Q′) determines if s induces x, and if so, further
determines the site t ∈ Q′ that induces x with s as well as the corresponding anchor.

The first-level binary search executes on the RB-tree for the wavelets in Wη(Q′), and
each step determines for a site q ∈ Q′ if its cell lies before or after t’s cell along η or if q = t.
Let y1 and y2 denote the two intersection points between η and the two incomplete edges of
s (in Wη(Q)), where y1 lies before y2 along η, and let z1 and z2 be the two points defined
similarly for q (in Wη(Q′)). Since s lies in 4, the distance between s and any point in η can
be computed in O(1) time. The two incomplete edges of q will be updated until z1 and z2, so
that the distance from q to z1 (resp. to z2) can be computed from the corresponding anchor.
For example, if u is the anchor of the subcell that contains z1, d(z1, q) = |z1u|+ d(u, q).

The determination considers four cases. (Assume s and t induce the “starting” endpoint.)
z2 lies before y1 (resp. z1 lies after y2): t’s cell lies after (resp. before) q’s cell.
z1 lies before y1 and z2 lies between y1 and y2 (resp. z2 lies after y2 and z1 lies between
y1 and y2): if z2 is closer to q than to s (resp. z1 is closer to q than to s), then t’s cell
lies after (resp. before) q’s cell; otherwise, t is q.
Both y1 and y2 lie between z1 and z2: t is q.
Both z1 and z2 lie between y1 and y2: let xs be the projection point of s onto η.

If xs lies before z1, then t’s cell lies before q’s cell.
If xs lies after z2: if z2 is closer to q than to s, t’s cell lies after q’s cell; if both z1 and
z2 are closer to s than to q, t’s cell lies before q’s cell; otherwise, t = q.
If xs lies between z1 and z2: if z1 is closer to s than to q, t’s cell lies before q’s cell;
otherwise, t = q.

If the first-level search does not find t, then s does not induce the next starting endpoint x.
The second-level binary search executes on the RB-tree for t’s anchor list to either

determine the next starting endpoint x and t’s corresponding anchor or report that s does
not induce x. Let u be the current anchor of t to test, and let xs be the projection point of s
onto η. u’s “interval” on η can be decided by checking u’s two neighboring anchors. If u’s
interval lies after xs, x lies before u’s interval; otherwise, if both endpoints of u’s interval are
closer to (resp. farther from) t than to (resp. from) s, x lies after (resp. before) u’s interval,
and if one endpoint is closer to t than to s but the other is not, then x lies in u’s interval
and can be computed in O(1) time since d(x, s) = |xu|+ d(u, t). If the second-level binary
search does not find such an interval, s does not induce the next starting endpoint x.

The second phase (i.e., merging Wη(Q) and Wη(Q′) into Wη(Q ∪Q′)) splits Wη(Q) and
Wη(Q′) at the endpoints of merge curves, and concatenates active parts at these endpoints
where a part is called active if it contributes to Wη(Q∪Q′). In fact, the active parts along η
alternately come from Wη(Q) and Wη(Q′). At each merging endpoint, the two cells become
adjacent, generating a new incomplete Voronoi edge. Potential vertices of these incomplete
Voronoi edges will be computed and inserted into the corresponding priority queues. For
each ending polygon vertex of η, if it is reflex but has not yet been an anchor of Wη(Q∪Q′),
it will be inserted into its located wavelet as the first or the last anchor.

SoCG 2018

58:10 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

The total operation time is O
(
|S4|(logn+ logm) +Knew(logm+ log2 n) + Inew

)
plus

amortized O(1), where Knew is the number of created potential vertices and Inew is the
number of created diagram vertices while merging the two diagrams. First, since each two-level
binary search takes O(logm+logn) time, finding starting points takes O

(
|S4|(logm+logn)

)
time. Second, by [10, Section 5], tracing a merge curve takes time linear in the number
of deleted and created vertices, but the time to delete vertices has been charged at their
creation, implying that tracing all the merge curves takes O(Inew) time.

Third, an incomplete Voronoi edge generates at least one potential vertex, so the number
of new incomplete Voronoi edges is O(Knew). Since an endpoint of a merge curve corresponds
to a new incomplete Voronoi edge, there are O(Knew) split and O(Knew) concatenation
operations, and since each operation takes O(logm+ logn) time, it takes O

(
Knew(logm+

logn)
)
time to merge the two wavefronts. By the same analysis in Section 5.1, creating

Knew potential vertices takes O
(
Knew(logm+ log2 n)

)
time. Finally, inserting an ending

polygon vertex of η as an anchor takes amortized O(1) time.

5.3 Divide operation
A Divide operation divides a wavefront associated with a pair of diagonals at the common
polygon vertex by traversing one diagonal instead of using a binary search. Although a Divide
operation seems a brute-force way compared to a Split operation, since a Split operation
takes Ω(logn+ logm) time and there are Ω(n) events to separate a wavefront, if only Split
operations are adopted, the total construction time would be Ω

(
n(logn+ logm)

)
.

First, the wavefront is traversed from the end of the selected diagonal subcell by subcell,
i.e., anchor by anchor, until reaching the common vertex. Then, the wavefront is separated
at the common polygon vertex by removing all the visited anchors except the last one,
duplicating the last one, and building a new wavefront for these “removed” anchors and the
duplicate anchor from scratch. Finally, if the common polygon vertex is reflex, it is inserted
into its located wavelets in both resultant wavefronts as an anchor without a binary search
(since it is the first or last anchor of its located wavelets).

The total operation time is amortized O(Avis + 1), where Avis is the number of visited
anchors. Since each wavelet (resp. anchor) records its two neighboring wavelets (resp. anchors)
in the augmented RB-tree, the time to locate the common polygon vertex is O(Avis). Recall
that a cell must have one subcell, and the time to remove a wavelet or an anchor has
been charged when it was inserted. Finally, building the new wavefront from scratch takes
amortized O(Avis) time, and inserting the common vertex takes amortized O(1) time.

5.4 Propagate operation
A Propagate operation propagates a wavefront Wd

(
S′(d)

)
into P (d), i.e., from the upside to

the downside of d, to build SD′ ∩ P (d) provided that S ∩ P (d) = S(d) = ∅. Since S(d) = ∅,
then SD′ ∩ P (d) is exactly Vor∗P (S) ∩ P (d). To some extent, a Propagate operation is a
generalized version of an Extend operation underlying a sub-polygon instead of a triangle.

The operation consists of two phases. The first phase constructs VorP (S) ∩ P (d), and
the second phase refines each cell into subcells to obtain Vor∗P (S) ∩ P (d).

The first phase “sweeps” the triangles in P (d) by a preorder traversal of the subtree of
T rooted at 4(d). Similar to the Extend operation, this sweep processes potential vertices
inside each triangle to construct Voronoi edges and to update the wavefront accordingly.
However, this sweep will not process the polygon vertices of P (d), so that the anchor lists
will not be updated, preventing constructing a Voronoi edge using the two corresponding

C.-H. Liu 58:11

anchor lists. Fortunately, Oh and Ahn [9] gave another technique that obtains in O(logn)
time the two anchor lists of a Voronoi edge provided that the two Voronoi vertices are given,
so a Voronoi edge can still be built in time proportional to logn plus the number of its
breakpoints.

Therefore, the first phase takes O
(
Kd(logm+ log2 n) + |VorP (S)∩P (d)|

)
time, where Kd

is the number of involved potential vertices. Note that for the Voronoi edges that intersect d,
their breakpoints outside P (d) will be counted in the respective triangles in P ′(d).

The second phase triangulates each cell in VorP (S) ∩ P (d) and constructs the SPM from
the associated site in each triangulated cell. Since Chazelle’s algorithm [2] takes linear time
to triangulate a simple polygon and Guibas et al’s algorithm [5] takes linear time to build
the SPM in a triangulated polygon, the second phase takes O(|SD′ ∩ P (d)|) time.

I Remark. Although all the sites lie outside P (d), the information stored inWd

(
S′(d)

)
allows

us not to conduct Guibas et al’s algorithm from scratch. For example, for each anchor u, its
anchor a(u) is also stored, and the SPM edge of u is the line segment from u to the polygon
boundary along the direction from a(u) to u.

To sum up, a Propagate operation takes O
(
Kd(logm+ log2 n) + |SD′ ∩ P (d)|

)
time.

6 Subdivision construction

6.1 Construction of SD

To construct SD, we process each triangle4 by the postorder traversal of the rooted partition
tree T and build SD ∩4. We first assume that no diagonal of 4 is a polygon side, and we
will discuss the other cases later. Let d be the root diagonal of 4 and adopt the convention
in Section 2.2 and Section 2.3. When processing 4, since its two children, 4(d1) and 4(d2),
have been processed, Wd1

(
S(d1)

)
and Wd2

(
S(d2)

)
are available.

The processing of each triangle 4 consists of 8 steps:
1. Initiate Vor4(S4) and W(d,d2)(S4).
2. Extend Wd1

(
S(d1)

)
into 4 to generate W(d,d2)

(
S(d1)

)
and construct Vor∗P

(
S(d1)

)
∩4.

3. Merge W(d,d2)(S4) and W(d,d2)
(
S(d1)

)
into W(d,d2)

(
S(d1)∪S4

)
by which Vor4(S4) and

Vor∗P
(
S(d1)

)
∩4 are merged into Vor∗P

(
S(d1) ∪ S4

)
∩4.

4. Divide W(d,d2)
(
S(d1) ∪ S4

)
into Wd

(
S(d1) ∪ S4

)
and Wd2

(
S(d1) ∪ S4

)
along d2.

5. Extend Wd2

(
S(d2)

)
into 4 to generate W(d1,d)

(
S(d2)

)
and construct Vor∗P

(
S(d2)

)
∩4.

6. Divide W(d1,d)
(
S(d2)

)
into Wd1

(
S(d2)

)
and Wd

(
S(d2)

)
along d1.

7. Insert S4 into Wd1

(
S(d2)

)
to obtain Wd1

(
S(d2) ∪ S4

)
.

8. Merge Wd

(
S(d1) ∪ S4

)
and Wd

(
S(d2)

)
into Wd

(
S(d)

)
by which Vor∗P

(
S(d1) ∪ S4

)
∩4

and Vor∗P
(
S(d2)

)
∩4 are merged into Vor∗P

(
S(d)

)
∩4 = SD ∩4.

We remark that Wd1

(
S(d2) ∪ S4

)
and Wd2

(
S(d1) ∪ S4

)
will be used to construct SD′.

If exactly one diagonal d of 4 is not a polygon side, it is either the root triangle N
or a leaf triangle. For the former, compute VorN(SN), extend Wd(S(d)) into N to build
Vor∗P (S(d)) ∩ N, and merge VorN(SN) and Vor∗P (S(d)) ∩ N into Vor∗P (S) ∩ N = SD ∩ N; for
the latter, compute Vor4(S4) and initiate Wd(S4). If exactly two diagonals, d and d′, of
4 are not polygon sides, where d is the root diagonal, then compute Vor4(S4) to initiate
Wd(S4) and Wd′(S4), extend Wd′

(
S(d′)

)
into 4 to obtain Wd

(
S(d′)

)
and Vor∗P

(
S(d′)

)
∩4,

and merge Wd(S4) and Wd

(
S(d′)

)
to obtain Wd

(
S(d)

)
and Vor∗P

(
S(d)

)
∩4 = SD ∩4.

By the operation times in Section 5, the time to process 4 is summarized as follows.

SoCG 2018

58:12 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

I Lemma 3. It takes O
(
(|S4|+K4)(logm+ log2 n) + I4

)
plus amortized O(A4 + 1) time

to process 4, where K4 is the number of involved potential vertices, I4 is the number of
created diagram vertices, and A4 is the number of visited anchors in Steps 4 and 6.

To apply Lemma 3, we bound
∑
4K4,

∑
4 I4 and

∑
4A4 by the following two lemmas.

I Lemma 4. In the construction of SD,
∑
4K4 = O(m) and

∑
4 I4 = O(n+m).

Proof. There are 6 intermediate diagrams: Vor4(S4) (step 1), Vor∗P
(
S(d1)

)
∩4 (step 2),

Vor∗P
(
S(d1)∪S4

)
∩4 (step 3), Vor∗P

(
S(d2)

)
∩4 (step 5), Vor∗P

(
S(d2)∪S4

)
∩4 (step 7), and

Vor∗P
(
S(d)

)
∩4 = SD∩4 (step 8). First, a potential vertex arises due to the formation of an

incomplete Voronoi edge, and an incomplete Voronoi edge generates O(1) potential vertices.
For the first diagram, the total number of Voronoi edges is O(

∑
4 |S4|) = O(|S|) = O(m).

For each of the other 5 diagrams, we can define borders in a similar way to SD and thus
obtain a subdivision of P . Since each site has at most one cell in each resultant subdivision,
Euler’s formula implies that each subdivision contains O(m) Voronoi edges among cells,
leading to the conclusion that

∑
4K4 = O(m). Second, a created diagram vertex must

be a vertex of the first diagram or the other 5 subdivisions. Since there are m sites, the
first diagram results in O(m) vertices for all the triangles, and by the same reasoning of [10,
Lemma 3], each subdivision has O(n+m) vertice, leading to that

∑
4 I4 = O(n+m). J

I Lemma 5. In the construction of SD,
∑
4A4 = O(n+m).

Proof. We consider Step 4 (divide W(d,d2)
(
S(d1)∪ S4

)
along d2), which is similar to Step 6.

Since there are O(n+m) anchors, it is sufficient to bound the number of anchors that are
visited by Step 4 but still involved in the future construction of SD, namely SD ∩ P ′(d).
Since the subcell of each visited anchor intersects d2, if the subcell does not intersect d,
its anchor will not be involved in constructing SD ∩ P ′(d). A subcell of a visited anchor
intersects d in two cases. In the first case, the subcell contains v2 and thus intersects both d
and d2. Since there are O(n) triangles, the total number for the first case is O(n). In the
second case, the subcell intersects both d and d2 but does not contain v2. By the definition
of W(d,d2)

(
S(d1) ∪ S4

)
, its associated “site” belongs to either S4 or S(d1). For the former,

since its anchor must be the site itself, the total number is
∑
4 S4 = m. For the latter,

since all the sites in S(d1) lie outside 4, only one site in S(d1) can own a cell intersecting
both d and d2. Moreover, due to the visibility of a subcell, only one subcell in such a cell
can intersect both d and d2. Since there are O(n) triangles, the total number is O(n). J

By Lemma 3, 4, and 5, we conclude the construction time of SD as follows.

I Theorem 6. SD can be constructed in O
(
n+m(logm+ log2 n)

)
time.

Proof. By Lemma 3, we need to bound
∑
4
(
(|S4|+K4) · (logm+ log2 n) + I4 +A4 + 1

)
.

It is trivial that
∑
4 |S4| = |S| = m and

∑
4 1 = O(n). By Lemma 4 and Lemma 5,∑

4K4 = O(m),
∑
4 I4 = O(n+m), and

∑
4A4 = O(n+m), leading to the statement. J

6.2 Construction of SD′

To construct SD′, we processes each triangle by the preorder traversal of the partition
tree T . For the root triangle N, let d̃ be its diagonal that is not a polygon side, build
Wd̃(SN) = Wd̃

(
S′
(
d̃)), and if SN = S, further propagate Wd̃(SN) into P (d̃). For other

triangles 4, we assume that neither 4 nor its parent 4′ has a polygon side; the other cases
can be processed in a similar way. Since 4′ has been processed, Wd

(
S′(d)

)
is available, and

by the construction of SD, Wd2

(
S(d1) ∪ S4

)
and Wd1

(
S(d2) ∪ S4

)
have been generated.

C.-H. Liu 58:13

If S(d) 6= ∅, 4 is processed by the following 4 steps:
1. Extend Wd

(
S′(d)

)
into 4 to obtain W(d1,d2)(S′(d)) and Vor∗P

(
S′(d)

)
∩4 = SD′ ∩4.

2. If neither S(d1) nor S(d2) is empty, split W(d1,d2)(S′(d)) into Wd1(S′(d)) and Wd2(S′(d));
otherwise, if S(d1) (resp. S(d2)) is empty, divide W(d1,d2)(S′(d)) into Wd1(S′(d)) and
Wd2(S′(d)) along d1 (resp. d2).

3. Join Wd1

(
S(d2) ∪ S4

)
and Wd1(S′(d)) into Wd1(S′(d1)), and join Wd2

(
S(d1) ∪ S4

)
and

Wd2(S′(d)) into Wd2(S′(d2)).
4. If S(d1) (resp. S(d2)) is empty, propagate Wd1(S′(d1)) (resp. Wd2(S′(d2))) into P (d1)

(resp. P (d2)) to build SD′ ∩ P (d1) (resp. SD′ ∩ P (d2)).

We first analyze Split and Propagate operations.

I Lemma 7. The total number of Split operations is O(m).

Proof. A Split operation occurs only if neither S(d1) nor S(d2) is empty. We recursively
remove leaf nodes (triangles) containing no site from T , so that each leaf node in the resulting
tree T ′ contains a site. Then a Split operation occurs in an internal node of T ′ with two
children. Since there are m sites, T ′ has O(m) leaf nodes, and since T ′ is a binary tree, the
number of internal nodes with two children is O(m), leading to O(m) Split operations. J

I Lemma 8. The total time for all the Propagate operations is O
(
n+m(logm+ log2 n)

)
.

Proof. For a sub-polygon to propagate, since each edge of the resultant subdivision has a
vertex in the sub-polygon, the number of created edges is bounded by the number of created
vertices. Therefore, by Section 5.4, the total time is O

(
K(logm+ log2 n) + I

)
, where K is

the number of involved potential vertices and I is the number of created diagram vertices.
Moreover, by the same reasoning of Lemma 4, K = O(m), and since all the sub-polygons to
propagate are disjoint, I = O(|SD′|) = O(m+ n), leading to the statement. J

By Lemma 7, Lemma 8 and the reasoning of Theorem 6, we conclude the construction
time of SD′ as follows.

I Theorem 9. SD′ can be constructed in O
(
n+m(logm+ log2 n)

)
time.

References
1 Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algo-

rithmica, 4(1-4):109–140, 1989.
2 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational

Geometry, 6:485–524, 1991.
3 Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location in a

monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
4 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple

polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.
5 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.

Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4):209–233, 1987.

6 John Hershberger. A new data structure for shortest path queries in a simple polygon.
Information Processing Letters, 38(5):231–235, 1991.

7 Kurt Mehlhorn and Peter Sanders. Sorted sequences. In Algorithms and Data Structures:
The Basic Toolbox. Springer-Verlag Berlin Heidelberg, 2008.

8 Joseph S. B. Mitchell. Geometric shortest paths and network optimization. In Handbook
of Computational Geometry, pages 633–701. Elsevier, 2000.

SoCG 2018

58:14 A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

9 Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams for a moderate-sized point-set in a simple
polygon. In 33rd International Symposium on Computational Geometry, SoCG 2017, July
4-7, 2017, Brisbane, Australia, pages 52:1–52:15, 2017.

10 Evanthia Papadopoulou and D. T. Lee. A new approach for the geodesic Voronoi diagram of
points in a simple polygon and other restricted polygonal domains. Algorithmica, 20(4):319–
352, 1998.

11 Robert Endre Tarjan. Updating a balanced search tree in O(1) rotations. Information
Processing Letters, 16(5):253–257, 1983.

12 Robert Endre Tarjan. Efficient Top-Down Updating of Red-Black Trees. Technical report,
Technical Report TR-006-85. Dapartment of Computer Science, Princeton University, 1985.

	Introduction
	Our contribution

	Preliminary
	Geodesic Voronoi diagrams
	A rooted partition tree
	Subdivisions

	Overview of the algorithm
	Wavefront structure
	Formal definition and data structure
	Incomplete Voronoi and polygonal edges
	Potential vertices

	Wavefront operations
	Extend operation
	Merge operation
	Divide operation
	Propagate operation

	Subdivision construction
	Construction of SD
	Construction of SD'

