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Abstract
It is a long standing open problem whether Yao-Yao graphs YYk are all spanners [Li et al. 2002].
Bauer and Damian [Bauer and Damian, 2012] showed that all YY6k for k ≥ 6 are spanners. Li
and Zhan [Li and Zhan, 2016] generalized their result and proved that all even Yao-Yao graphs
YY2k are spanners (for k ≥ 42). However, their technique cannot be extended to odd Yao-Yao
graphs, and whether they are spanners are still elusive. In this paper, we show that, surprisingly,
for any integer k ≥ 1, there exist odd Yao-Yao graph YY2k+1 instances, which are not spanners.
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1 Introduction

Let P be a set of points in the Euclidean plane R2. The complete Euclidean graph defined on
set P is the edge-weighted graph with vertex set P and edges connecting all pairs of points
in P, where the weight of each edge is the Euclidean distance between its two end points.
Storing the complete graph requires quadratic space, which is very expensive. Hence, it is
desirable to use a sparse subgraph to approximate the complete graph. This is a classical
and well-studied topic in computational geometry (see e.g., [1, 19,26,32,34]). In this paper,
we study the so called geometric t-spanner, formally defined as follows (see e.g., [29]).

I Definition 1 (Geometric t-Spanner). A graph G is a geometric t-spanner of the complete
Euclidean graph, if (1) G is a subgraph of the complete Euclidean graph; and (2) for any
pair of points p and q in P , the shortest path between p and q in G is no longer than t times
the Euclidean distance between p and q.
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49:2 Odd Yao-Yao Graphs are Not Spanners

The factor t is called the stretch factor or dilation factor of the spanner in the literature.
If the maximum degree of G is bounded by a constant k, we say that G is a bounded-degree
spanner. The concept of geometric spanners was first proposed by L.P. Chew [10]. See
the comprehensive survey by Eppstein [16] for related topics about geometric spanners.
Geometric spanners have found numerous applications in wireless ad hoc and sensor networks.
We refer the readers to the books by Li [24] and Narasimhan and Smid [27] for more details.

Yao graphs are one of the first approximations of complete Euclidean graphs, introduced
independently by Flinchbaugh and Jones [18] and Yao [34].

I Definition 2 (Yao Graph Yk). Let k be a fixed integer. Given a set of points P in the
Euclidean plane R2, the Yao graph Yk(P) is defined as follows. Let Cu(γ1, γ2] be the cone
with apex u, which consists of the rays with polar angles in the half-open interval (γ1, γ2].
For each u ∈ P, Yk(P) contains an edge connecting u to a nearest neighbor v in each cone
Cu(jθ, (j + 1)θ], for θ = 2π/k and j ∈ [0, k − 1]. We generally consider Yao graphs as
undirected graphs. For a directed Yao graph, we add directed edge −→uv to the graph instead.

Molla [15] showed that Y2 and Y3 may not be spanners. On the other hand, it has been
proven that all Yk for k ≥ 4 are spanners. Bose et al. [6] proved that Y4 is a 663-spanner.
Damian and Nelavalli [13] improved this to 54.6 recently. Barba et al. [2] showed that Y5
is a 3.74-spanner. Damian and Raudonis [14] proved that the Y6 graph is a 17.64 spanner.
Li et al. [25, 26] first proved that all Yk, k > 6 are spanners with stretch factor at most
1/(1 − 2 sin(π/k)). Later Bose et al. [6, 7] also obtained the same result independently.
Recently, Barba et al. [2] reduced the stretch factor of Y6 from 17.6 to 5.8 and improved the
stretch factors to 1/(1− 2 sin(3π/4k)) for odd k ≥ 7.

However, a Yao graph may not have bounded degree. This can be a serious limitation in
certain wireless network applications since each node has very limited energy and communic-
ation capacity, and can only communicate with a small number of neighbors. To address the
issue, Li et al. [26] introduced Yao-Yao graphs (or Sparse-Yao graphs in the literature). A
Yao-Yao graph YYk(P) is obtained by removing some edges from Yk(P) as follows:

I Definition 3 (Yao-Yao Graph YYk). (1) Construct the directed Yao graph, as in Definition 2.
(2) For each node u and each cone rooted at u containing two or more incoming edges, retain
a shortest incoming edge and discard the other incoming edges in the cone. We can see that
the maximum degree in YYk(P) is upper-bounded by 2k.

As opposed to Yao graphs, the spanning property of Yao-Yao graphs is not well understood
yet. Li et al. [26] provided some empirical evidence, suggesting that YYk graphs are t-spanners
for some sufficiently large constant k. However, there is no theoretical proof yet, and it is
still an open problem [4, 23, 24, 26]. It is also listed as Problem 70 in the Open Problems
Project.1

I Conjecture 4 (see [4]). There exists a constant k0 such that for any integer k > k0, any
Yao-Yao graph YYk is a geometric spanner.

Now, we briefly review the previous results about Yao-Yao graphs. It is known that
YY2 and YY3 may not be spanners since Y2 and Y3 may not be spanners [15]. Damian and
Molla [12,15] proved that YY4,YY6 may not be spanners. Bauer et al. [2] proved that YY5
may not be spanners. On the positive side, Bauer and Damian [4] showed that for any integer

1 http://cs.smith.edu/~orourke/TOPP/P70.html
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k ≥ 6, any Yao-Yao graph YY6k is a spanner with the stretch factor at most 11.67 and the
factor becomes 4.75 for k ≥ 8. Recently, Li and Zhan [23] proved that for any integer k ≥ 42,
any even Yao-Yao graph YY2k is a spanner with the stretch factor 6.03 +O(k−1).

From these positive results, it is quite tempting to believe Conjecture 4. However, we
show in this paper that, surprisingly, Conjecture 4 is false for odd Yao-Yao graphs.

I Theorem 5. For any k ≥ 1, there exists a class of point set instances {Pm}m∈Z+ such
that the stretch factor of YY2k+1(Pm) cannot be bounded by any constant, as m approaches
infinity.2

Related work. It has been proven that in some special cases, Yao-Yao graphs are span-
ners [11,21,22,33]. Specifically, it was shown that YYk graphs are spanners in civilized graphs,
where the ratio of the maximum edge length to the minimum edge length is bounded by a
constant [21,22].

Besides the Yao and Yao-Yao graph, the Θ-graph is another common geometric t-spanner.
The difference between Θ-graphs and Yao graphs is that in a Θ-graph, the nearest neighbor
to u in a cone C is a point v 6= u lying in C and minimizing the Euclidean distance between
u and the orthogonal projection of v onto the bisector of C. It is known that except for Θ2
and Θ3 [15], for k = 4 [3], 5 [8], 6 [5], ≥ 7 [9, 28], Θk-graphs are all geometric spanners. We
note that, unfortunately, the degrees of Θ-graphs may not be bounded.

Recently, some variants of geometric t-spanners such as weak t-spanners and power
t-spanners have been studied. In weak t-spanners, the path between two points may be
arbitrarily long, but must remain within a disk of radius t-times the Euclidean distance
between the points. It is known that all Yao-Yao graphs YYk for k > 6 are weak t-
spanners [20,30,31]. In power t-spanners, the Euclidean distance | · | is replaced by | · |κ with
a constant κ ≥ 2. Schindelhauer et al. [30,31] proved that for k > 6, all Yao-Yao graphs YYk
are power t-spanners for some constant t. Moreover, it is known that any t-spanner is also a
weak t1-spanner and a power t2-spanner for some t1, t2 depending only on t. However, the
converse is not true [31].

Our counterexample is inspired by the concept of fractals. Fractals have been used
to construct examples for β-skeleton graphs with unbounded stretch factors [17]. Here a
β-skeleton graph is defined to contain exactly those edges ab such that no point c forms an
angle ∠acb greater than sin−1 1/β if β > 1 or π − sin−1 β if β < 1. Schindelhauer et al. [31]
used the same example to prove that there exist graphs which are weak spanners but not
t-spanners. However, their examples cannot serve as counterexamples to the conjecture that
odd Yao-Yao graphs are spanners.

2 Overview of our counterexample construction

We first note that both the counterexamples for YY3 and YY5 are not weak t-spanners [2,15].
However, Yao-Yao graphs YYk for k ≥ 7 are all weak t-spanners [20, 30, 31]. Hence, to
construct the counterexamples for YYk for k ≥ 7, the previous ideas for YY3 and YY5 cannot
be used. We will construct a class of instances {Pm}m∈Z+ such that all points in Pm are
placed in a bounded area. Meanwhile, there exist shortest paths in YY2k+1(Pm) whose
lengths approach infinity as m approaches infinity.

2 Here, m is a parameter in our recursive construction. We will explain it in detail in Section 3. Roughly
speaking, m is the level of recursion, and the number of points in Pm increases with m.

SoCG 2018



49:4 Odd Yao-Yao Graphs are Not Spanners

Our example contains two types of points, called normal points and auxiliary points.
Denote them by Pn

m and Pa
m respectively and Pm = Pn

m ∪ Pa
m. The normal points form

the basic skeleton, and the auxiliary points are used to break the edges connecting any two
normal points that are far apart.

We are inspired by the concept of fractals to construct the normal points. A fractal can
be contained in a bounded area, but its length may diverge. In our counterexample, the
shortest path between two specific normal points is a fractal-like polygonal path. Here a
polygonal path refers to a curve specified by a sequence of points and consists of the line
segments connecting the consecutive points. Suppose the two specific points are A and B,
AB is horizontal, and |AB| = 1. When m = 0, the polygonal path is just the line segment
AB. When m increases by one, we replace each line segment in the current polygonal path by
a sawteeth-like path (see Figure 1a). If the angle between each segment of the sawteeth-like
path and the base segment (i.e., the one which is replaced) is γ, the total length of the
path increases by a factor of cos−1 γ. An important observation here is that the factor is
independent of the number of sawteeth (see Figure 1b). If we continue this process directly,
the length of the resulting path would increase to infinity as m approaches infinity since
cos−1 γ > 1 (see Figure 1c). However, we need to make sure that such a path is indeed in
a Yao-Yao graph and it is indeed the shortest path from A to B. There are two technical
difficulties we need to overcome.
1. As m increases, the polygonal path may intersect itself. See Figure 1d. The polygonal

path intersects itself around the point O. This is relatively easy to handle: we do not
recurse for those segments that may cause self-intersection. See Figure 1e. We do not
replace the bold segment further. We need to make sure that the total length of such
segments is proportionally small (so that the total length can keep increasing as m
increases).

2. In the Yao-Yao graph defined over the normal points constructed in the recursion, there
may be some edges connecting points that are far apart. Actually, how to break such
edges is the main difficulty of the problem. We outline the main techniques below.

First, we do not replace all current segments using the same sawteeth, like in the usual
fractal construction. Actually, for each segment, we will choose a polygonal path such that
the paths have different numbers of sawteeth and the sizes of the sawteeth in the path may
not be the same. See Figure 1f. Finally, we construct them in a specific sequential order.
Actually, we organize the normal points in an m-level recursion tree T and generate them in
a DFS preorder traversal of the tree. We describe the details in Section 3.

Second, we group the normal points into a collection of sets such that each normal
point belongs to exactly one set. We call such a set a hinge set. Refer to Figure 6 for an
overview. Then, we specify a total order of the hinge sets. Call the edges in the Yao-Yao
graph YY2k+1(Pn

m) connecting any two normal points in the same hinge set or two adjacent
hinge sets (w.r.t. the total order) hinge connections and call the other edges long range
connections. We describe the details in Section 4.

As we will see, all possible long range connections have a relatively simple form. Then,
we show that we can break all long range connections by adding a set Pa

m of auxiliary points.
Each auxiliary point has a unique center which is the normal point closest to it. Let the
minimum distance between any two normal points in Pn

m be ∆. The distance between an
auxiliary point and its center is much less than ∆. Naturally, we can extend the concepts
of hinge set and long range connection to include the auxiliary points. An extended hinge
set consists of the normal points in a hinge set and the auxiliary points centered on these
normal points. We will see that the auxiliary points break all long range connections and
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(a) Replace a horizontal segment by a
sawteeth-like path.

(b) The lengths of the sawteeth-like paths are
independent of the number of sawteeth.

OA B

(c) Replace the segments by sawteeth-like path recursively.

O

(d) An enlarged view of Figure 1c around point O.
OA B

(e) Do not replace the bold segments further.
OA B

(f) The paths have different numbers of sawteeth and the
sizes of sawteeth may not be the same.

Figure 1 The overview of the counterexample construction. Figure 1a-1f illustrate the fractal
and its variants.

introduce no new long range connection. We describe the details in Section 5.
Finally, according to the process above, we can see that the shortest path between the

normal points A and B in YY2k+1(Pm) for m ∈ Z+ should pass through all extended hinge
sets in order. Thereby, the length of the shortest path between A and B diverges as m
approaches infinity. See Section 5 for the details.

3 The positions of normal points

3.1 Some basic concepts
Let k ≥ 3 be a fixed positive integer.3 We consider YY2k+1 and let θ = 2π/(2k + 1).

I Definition 6 (Cone Boundary). Consider any two points u and v. If the polar angle of −→uv
is jθ = j · 2π/(2k + 1) for some integer j ∈ [0, 2k], we call the ray −→uv a cone boundary for
point u.

3 Note that the cases k = 1, 2 have been proved in [15]

SoCG 2018



49:6 Odd Yao-Yao Graphs are Not Spanners

Figure 2 An example of one gadget. φ = (w1, w2) is the parent-pair in the gadget. Aφ = {α1, α2,

α3, . . . , α7} is the partition set and Bφ = {β1, β2, β5, β6, β7} is the apex set. There are eight pieces,
in which w1α1, α1α2, α4α5, α5α6, α6α7 are non-empty pieces and α2α3, α3α4, α7w2 are empty pieces.

I Property 7. Consider two points u and v in P. If −→uv consists of a cone boundary in
YY2k+1(P), its reverse −→vu is not a cone boundary.

In retrospect, this property is a key difference between odd and even Yao-Yao graphs,
and our counterexample for odd Yao-Yao graphs will make crucial use of the property.

I Definition 8 (Boundary Pair). A boundary pair consists of two ordered points, denoted by
(w1, w2), such that −−−→w1w2 is a cone boundary of point w1.

For convenience, we refer to the word pair in the paper as the boundary pair defined in
Definition 8. According to Property 7, if (w1, w2) is a pair, its reverse (w2, w1) is not a pair.
Moreover, if a pair φ is (u, ·) or (·, u), we say that the point u belongs to φ (i.e., u ∈ φ).

Gadget One gadget Gφ consists of three groups of points. We explain them one by one.
See Figure 2 for an example.
1. The first group is the pair φ = (w1, w2). We call φ the parent-pair of the gadget Gφ.
2. The second group is a set Aφ of points on the segment of (w1, w2). We call the set Aφ a

partition set and call the points of Aφ the partition points of φ. The set Aφ divides the
segment into |Aφ|+ 1 parts, each we call a piece of the segment. There are two types of
pieces. One is called an empty piece and the other a non-empty piece. Whether a piece is
empty or not is determined in the process of the construction, which we will explain in
Section 3.2.

3. For each non-empty piece, αi−1αi, we add a point βi such that ∠αi−1βiαi = π − θ and
|αi−1βi| = |βiαi|. All βis are on the same side of w1w2. We call such a point βi an apex
point of (w1, w2). Let Bφ be the set of apex points generated by φ, which is called the
apex set of pair φ. Bφ is the third group of points. For any empty piece, we do not add
the corresponding apex point.

Consider a gadget Gφ[Aφ,Bφ], where φ = (w1, w2). For any non-empty piece αi−1αi and
the corresponding apex point βi, the rays

−−−−→
βiαi−1 and

−−→
αiβi (note the order of the points) are

cone boundaries according to their polar angles. Thus, each point βi ∈ Bφ induces two pairs
(βi, αi−1) and (αi, βi). We call all pairs (βi, αi−1) and (αi, βi) induced by points in Bφ the
child-pairs of (w1, w2), and we say that they are siblings of each other. Note that there are
some partition point which are not incident on any pair (e.g., α3 in Figure 2). We call it an
isolated point.

I Definition 9 (The Order of the Child-pairs). Consider a gadget G(w1,w2). Suppose Φ is the
set of the child-pairs of (w1, w2). Consider two pairs φ, ϕ in Φ. Define the order φ ≺ ϕ, if φ
is closer to w1 than ϕ. Here, the distance from a pair φ to a point w is the shortest distance
from w to any point of φ.
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Figure 3 The process of generating a tree according to the DFS preorder. In each subfigure,
represents a node we are visiting. The nodes generated in the step are denoted by . represents a
node which has already been visited. represents a node which has been created but not visited yet.
The nodes covered by light brown triangles are related to the projection process.

3.2 The construction
In this subsection, we construct an m-level tree. When the recursion level increases by 1,
we need to replace each current pair by a gadget generated by the pair. See Figure 3 for
an example. The recursion can be naturally represented as a tree T . The tree is generated
according to the DFS preorder, starting from the root. W.l.o.g, we assume that the root
of T is (µ1, µ2) and µ1µ2 is horizontal. We call a pair a leaf-pair if it is a leaf node in the
tree and an internal-pair otherwise. Each time when we visit an internal-pair, we generate
its gadget by two steps which are called projection and refinement and explained in detail
soon. Generating its gadget is equivalent to generating its child-pairs in T (we, however,
do not visit those children during the generation. They will be visited later according to
the DFS preorder). Whether a child-pair is a leaf or not is determined when the gadget is
created. Hence, note that not all leaf-pairs are at level-m. We call the points generated by
the process normal points and denote the set of these points by Pn

m where m is the level of
the tree and n represents the word “normal”.

Root gadget. Let d0 be a large positive constant integer (see Lemma 16 for detail). Consider
a pair φ = (µ1, µ2). Let Aφ be its partition set which contains points

αi = µ1 ·
d0 − i
d0

+ µ2 ·
i

d0
, i ∈ [1, d0 − 1].

For convenience, let α0 = µ1, αd0 = µ2. The points in Aφ partition the segment µ1µ2 into d0
pieces with equal length |µ1µ2|/d0. All pieces in the root gadget are non-empty. For each
piece αi−1αi, we add an apex point βi below µ1µ2. Let Bφ = {βi}i∈[1,d0] be the apex set.

Projection and refinement. The projection and refinement generate the partition points
of pair φ. The purpose of the projection is to restrict all possible long range connections to a
relatively simple form. See Section 4 for the details. The purpose of the refinement is to
make the sibling pairs have relatively the same length, hence, make it possible to repeat the
projection process recursively. Formally speaking, the refinement maintains the following
property over the construction.

I Property 10. We call the segment connecting the two points of the pair the segment of
the pair and call the length of that segment the length of the pair. Consider an internal-pair
φ. Suppose ϕ is a sibling of φ. The length of pair ϕ is at least half of the length of pair φ.

SoCG 2018



49:8 Odd Yao-Yao Graphs are Not Spanners

Figure 4 An example of the projection for the
first internal-pair φ = (η, ξ).

(a) (u1, u2) = (β, α1).

(b) (u1, u2) = (α2, β).

Figure 5 The two cases for refinement.

– Projection. Consider a pair (β, α) with the set Φ being its child-pairs. We decide whether
a pair in Φ is a leaf-pair or an internal-pair after introducing the process projection and
refinement. There is a clear order between the leaf-pairs and the internal-pairs. We provide
that the property of the order here and prove it in the full version.

I Property 11. Consider a pair (β, α) with the set Φ of its child-pairs. For φ1, φ2, φ3 ∈ Φ,
if φ1 ≺ φ2 ≺ φ3 and φ1 and φ3 are two internal-pairs, then φ2 is an internal-pair.

Next, we apply the projection to an internal-pair φ ∈ Φ since only internal-pairs have
children. We explain the projection formally below. We define the first internal-pair in
direction

−→
βα as the first internal-pair of Φ. Let Tφ be the set of points in the subtree rooted

at φ. Depending on whether φ is the first internal-pair of Φ, there are two cases.

Pair φ is the first internal-pair of Φ: In Figure 4, suppose pair φ = (η, ξ) is the first
internal child-pair of (β, α) and the length of φ is δ. Point ξ is the partition point in
φ. First, we add a point λ on the segment of φ such that |ξλ| = δ/d0. Second, for each
leaf-pair ϕ ≺ φ, project the apex point in ϕ to the segment of φ along the direction−→
βα, 4 e.g., project p to q in Figure 4. Note that the length of leaf-pair ϕ is at least δ/2
according to Property 10. Thus, there is no point between λ and ξ as long as d0 > 2.
Formally, we denote the operation by

Âφ ← Proj
[⋃

ϕ≺φ,ϕ∈Φ
Tϕ

]
∪ λ. (1)

Pair φ is not the first internal-pair: According to the DFS preorder, we have already
constructed the subtrees rooted at ϕ ≺ φ. We project all points p ∈

⋃
ϕ≺φ,ϕ∈Φ Tϕ to

the segment of φ along the direction
−→
βα. Let the partition set Âφ of φ be the set of the

projected points falling inside the segment of φ. If several points overlap, we keep only
one of them. Formally, we denote the operation by

Âφ ← Proj
[⋃

ϕ≺φ,ϕ∈Φ
Tϕ

]
. (2)

– Refinement. The partition points of φ divide the segment of φ into pieces. In order to
maintain Property 10, we need to ensure that all non-empty pieces of φ have approximately

4 If the projected point falls outside the segment of φ, we do not need to add a normal point.
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the same length. We call this process the refinement operation. After the projection, we
obtain a candidate partition set Âφ of φ (defined in (1) and (2)). However, note that the
length between the pieces may differ a lot.

W.l.o.g., suppose pair φ has unit length, |Âφ| = n and n > d0.5 Suppose φ = (u1, u2).
We distinguish two cases based on whether the first point u1 is a partition point or an apex
point.

If u1 is an apex point, we mark the piece incident on u2. See Figure 5a for an illustration,
in which (u1, u2) = (β, α1) and piece α1η1 is the marked piece.
If u1 is a partition point, we mark the pieces incident on u1 and u2. See Figure 5b for an
illustration, in which (u1, u2) = (α2, β) and piece α2η2 and ξ2β are the marked pieces.

We do not add any point in the marked pieces under refinement. Consider two sibling
pairs (β, α1) and (α2, β) where β is an apex point. Suppose α1η1, α2η2, ξ2β are the marked
pieces of the two pairs and ξ1 is the point on the segment βα1 which is projected to ξ2.6
Then |βξ1| = |βξ2| and |α1η1| = |α2η2| after the refinement. See Figure 5 for an example.

Denote the length of the ith piece (defined by Âφ) by δi. Let δo = 1/n2. Except for the
marked pieces, for each piece which is at least twice longer than δo, we place bδi/δoc − 1
equidistant points on the piece, which divide the piece into bδi/δoc equal-length parts.

We call this process the refinement and denote the resulting point set by

Aφ ← Refine[Âφ]. (3)

Note that The number of points added in the refinement process is at most O(n2) since
the segment of pair φ has unit length and δo ≥ 1/n2. We call each piece whose length is less
than δo a short piece. The short pieces remain unchanged before and after the refinement.
Moreover, the refinement does not introduce any new short piece for the pair. In the full
version, we prove that the sum of lengths of the short pieces is less than 1/d0.

Deciding Emptiness, Leaf-Pairs and Internal-Pairs We defer the details to the full version
and just give the definitions here. In the full version, we will prove Property 10 and provide
more properties of the construction.

Consider a pair φ whose apex point is β and partition point is α.7 We let the piece incident
on the apex point β and the short pieces be empty and the other pieces be non-empty.

For each non-empty piece, we generate one apex point. As we have discussed before, the
apex set Bφ induces the set Φ of child-pairs of φ. Let the three pairs closest to α and two
pairs closest to β be leaf-pairs. We do not further expand the tree from the leaf-pairs. Let
the other pairs be the internal-pairs.

Overall, after the projection and refinement process, we can generate the gadget for any
pair in the tree. We denote this process by

Gφ ← Proj-Refn(φ). (4)

In the full version, we prove that the Property 10 and 11 hold under the construction
and provide some other properties about the construction.

5 If n ≤ d0, we repeatedly split the inner pieces (i.e., all pieces except for the two pieces incident on the
points of φ) into two equal-length pieces until the number of the points in Âφ is larger than d0.

6 Point ξ1 must exist since ξ2 is a projected point and there is no point in the marked piece ξ2β.
7 Note that the first point of a pair can be either apex point or partition point. Here, φ = (α, β) or
φ = (β, α) depending on whether first point of φ is apex point or not.
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Figure 6 The overview of the hinge set decomposition. Roughly speaking, each set of points
covered by a green rectangle is a hinge set. Recursively, we can further decompose the points
covered by shadowed rectangle into hinge sets.

.

(a) The hinge set centered on
an apex point.

(b) The hinge set centered on
a partition point.

(c) The hinge set consisting of
the leaf-pairs at level-m.

Figure 7 The hinge sets centered on a point in an internal-pair.

4 Hinge set decomposition of the normal points

We decompose Pn
m into a collection of sets of points such that each normal point belongs

to exactly one set. We call these sets hinge sets. Briefly speaking, each hinge set is a set
of points which are close geometrically. See Figure 6 for an overview. Consider a pair φ̂ at
level-l, l < m− 1 with partition point set Aφ̂ and apex point set Bφ̂. Let Φ̂ be the set of the
child-pairs of φ̂. Formally, the hinge sets are defined as follows.

The hinge set centered on a point β ∈ Bφ̂ which belongs to one or two internal-pairs in
Φ̂: We denote the two pairs by ϕ and φ. The hinge set centered at β includes: β itself,
the child-pair of ϕ closest to β (denoted by (ξ1, ξ2) in Figure 7a) and the child-pair of φ
closest to β (denoted by (η1, η2) in Figure 7a).8
The hinge set centered on a point α ∈ Aφ̂ which belongs to one or two internal-pairs in
Φ̂: We denote the two pairs by ϕ and φ. The hinge set centered on α includes: α itself,
the two child-pairs closest to α of ϕ and φ respectively (denoted by (ξ2, ξ1) and (η1, η2)
in Figure 7b).9

W.l.o.g., we process the points µ1 and µ2 in the root pair in the same way as the partition
points in A(µ1,µ2). So far, some points at level-m still do not belong to any hinge set.

The hinge set consisting of the leaf-pairs at level-m: Consider any pair φ = (w1, w2) at
level-(m− 1). Define the set difference of Aφ ∪Bφ and the hinge sets centered on w1 and
w2 as a hinge set.10 See Figure 7c.

Overall, we decompose the points Pn
m into a collection of hinge sets.

I Lemma 12. Each point p in Pn
m belongs to exactly one hinge set.

8 Note that ξ1, ξ2, η1, η2 only belong to leaf-pairs.
9 There is a degenerated case in which α is an isolated point which does not belong to any internal-pair
in Φ̂. We process the case in the full version.

10Although these points form the leaf-pairs at level-m, these leaf-pairs are the “candidate internal-pairs”
to generate the points at level-(m+ 1).
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Order of the hinge sets. We define the total order of all hinge sets. We denote the order
by “≺h”, which is different from the previous order “≺”. The ≺h is in fact consistent with
the order of traversing the fractal path from µ1 to µ2. Rigorously, we define ≺h in the full
version.

I Definition 13 (Long range connection). We call an edge connecting two points in two
non-adjacent hinge sets a long range connection.

If there is no long range connection, the total order of the hinge sets corresponds to the
ordering of the shortest path from µ1 to µ2 in the final construction. It means that each
hinge set has at least one point on the shortest path between µ1 and µ2 and the order of
these points is consistent with ≺h. However, there indeed exist long range connections among
normal points. Fortunately, the long range connections in YY2k+1(Pn

m) have relatively simple
form. After introducing some auxiliary points (in Section 5), we can cut the long range
connections without introducing any new long range connections.

Now, we examine long range connections in YY2k+1(Pn
m). We give the sketch below and

defer the details to the full version. Intuitively, these properties result from Property 7 which
does not hold for even Yao-Yao graphs.

First, we claim that if we can cut all long range connections between the points in Tφ
and Tϕ for any two sibling pairs φ and ϕ, then there is no long range connection.
Then, we consider the long range connections between two subtrees of any two sibling
pairs. Consider two sibling pairs φ and ϕ with subtrees Tφ and Tϕ respectively. Suppose
p belongs to Tφ and q belongs to Tϕ. We prove that if directed edge −→pq is in YY2k+1(Pn

m),
then φ ≺ ϕ.
Finally, we consider the possible long range connection from Tφ to Tϕ for φ ≺ ϕ. Suppose
p belongs to Tφ. Note that the points of Tϕ are located in at most two cones of p based
on Property 10. We prove that for each point p, only one of the two cones may contain
a long range connection. Moreover, there exists a cone boundary pu such that (1) the
long range connection is on the cone boundary if pu is in the cone, (2) or there is a point
q ∈ Gϕ on pu and |pq| < |pv| for any point v in the cone if pu is not in the cone.11

5 The positions of auxiliary points

We discuss how to use the auxiliary points to cut the long range connections in the Yao-Yao
graph YY2k+1(Pn

m). Denote the set of auxiliary points by Pa
m. Let Pm = Pn

m ∪Pa
m. First, we

consider a simple example to see how auxiliary points work. Consider three points u, v and
w. Line uv is horizontal, and ∠wvu = ∠wuv = θ/2. The point ξ1 and ξ2 are two points on
segment uw and vw respectively. ξ1ξ2 is horizontal. See Figure 8. Note that the polar angles
of a cone in the Yao-Yao graph belong to a left side half-open interval in the counterclockwise
direction. Thus, uv is in the YY2k+1 graph, which is the shortest path between u and v.
However, we can add an auxiliary point r close to v and ∠rvu < θ/2. Then, the shortest
path between uv becomes uξ1ξ2rv.

The positions of the auxiliary points Let ∆ be the minimum distance between any two
normal points and n be the number of the normal points. Recall that we partition the root
pair µ1, µ2 into d0 equidistant pieces. Let γ be a very small angle, such as γ = θd−1

0 . Let

11Since a cone is a half-open interval in the counterclockwise direction, each cone has one boundary
outside the cone.
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Figure 8 A simple example to explain how an auxiliary point cuts a long range connection.

σ = max{sin(θ/2 − γ)/ sin γ, sin−1(θ/2 − γ)} + ε for some small ε > 0. Let χ = d0σ
n∆−1.

Roughly speaking, χ� d0 > σ > 1.
Now, we explain the positions of the auxiliary points formally. Inspired by the example

in Figure 8, we call the normal point closest to an auxiliary point the center of the auxiliary
point. Then, we find the candidate centers to add auxiliary points.

I Definition 14 (Candidate center). Consider a pair (v1, v2) and a set Φ of its child-pairs.
φ, ϕ ∈ Φ and ϕ ≺ φ. p is a point in Tϕ and q is the projected point of p in Tφ. r ∈ Gφ is the
closest point to p on segment pq.12 We call r a candidate center of auxiliary points.

We traverse T in the DFS preorder. Each time we reach a pair φ, we find all candidate
centers in Gφ and add auxiliary points centered on them.13 Moreover, let the order of φ in
the DFS preorder w.r.t. T be κ. The distance between the auxiliary point and its center just
depends on κ. Let φ = (w2, w1) and (v1, v2) be the parent-pair of φ. There are two cases
according to ∠(v1v2, w1w2) = θ/2 or −θ/2.

∠(v1v2, w1w2) = θ/2 (see Figure 9a and 9b):
If q = w1, do not add auxiliary point.
If q = w2, we add the point η such that ∠(w2w1, w2η) = −γ and |w2η| = σκχ−1.
Otherwise, we add two points η1 and η2 centered on q such that ∠(w2w1, qη1) =
∠(w2w1, η2q) = −γ and |qη1| = |η2q| = σκχ−1.

∠(v1v2, w1w2) = −θ/2 (see Figure 9c and 9d):
If q = w1, do not add auxiliary point.
If q = w2, we add the point η such that ∠(w2w1, w2η) = γ and |w2η| = σκχ−1.
If p and q are in the same hinge set (i.e., p, q are the points ξ1, ξ2 in Figure 9c or 9d),
we add two points η1 and η2 centered on q such that ∠(w2w1, qη1) = ∠(w2w1, η2q) = γ

and |qη1| = |η2q| = σκχ−1 + ε0 where ε0 is much less than the distance between any
two points in Pm.14
Otherwise, we add two points η1 and η2 centered on q such that ∠(w2w1, qη1) =
∠(w2w1, η2q) = γ and |qη1| = |η2q| = σκχ−1.

Let extended hinge set consist of the normal points in the hinge set and the auxiliary
points centered on these normal points. The concept of long range connections can be
extended to the extended hinge sets. Then, there is no long range connection in YY2k+1(Pm).

I Lemma 15. There is no long range connection in YY2k+1(Pm).

12 r may not be q. See the full version for the proof of the existence of r.
13Note that the candidate centers belong to Gφ, may not belong to φ itself.
14 It is slightly different from the first case. We add two auxiliary points with distance slightly larger

than σκχ−1. The reason is that the cone is half-open half-close in the counterclockwise direction. It
will help a lot to unify the proof in the same framework.
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(a) Case 1a: w1 is the partition point and
φ is on the left side of v1v2.

(b) Case 1b: w1 is the apex point and φ is
on the right side of v1v2.

(c) Case 2a: w1 is the partition point and φ
is on the right side of v1v2.

(d) Case 2b: w1 is the apex point and φ is
on the left side of v1v2.

Figure 9 The auxiliary points for each point. Here φ = (w2, w1) and q ∈ Gφ. η1 and η2 are two
auxiliary points centered on q. Note that |η1q| and |η2q| are very small in fact.

We defer the detailed proof to the full version. First, we prove that if for any two sibling
pairs φ and ϕ in T at level-l for l ≤ m− 1, there is no long range connection between the
points in Tφ and Tϕ, then there is no long range connection (see Claim 17 in the full version).
Next, for any l ≤ m − 1, we examine any two points p and q which belong to Tφ and Tϕ
respectively, where φ and ϕ are two sibling pairs at level-l . We give a necessary condition
when there is a edge pq in YY2k+1(Pm) (see Lemma 25 in the full version). We also provide
some useful properties about the construction (see Property 24 in the full version). These
properties indicate that for any possible long range connection, we can always find a point r
(see point r in Figure 8 for an example) to break the connection (see Lemma 26 in the full
version).

Finally, we can prove that the shortest paths between µ1 and µ2 in the root pair should
pass through all extended hinge sets in order, hence, diverges as m approaches infinity.

I Lemma 16. The length of the shortest path between µ1 and µ2 in YY2k+1(Pm) for k ≥ 3 is
at least ρm, for some ρ = (1−O(d−1

0 ))·cos−1(θ/2). Thus, by setting d0 > d6(1−cos(θ/2))−1e,
the length diverges as m approaches infinity.
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