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Abstract
We consider practical methods for the problem of finding a minimum-weight triangulation (MWT)
of a planar point set, a classic problem of computational geometry with many applications. While
Mulzer and Rote proved in 2006 that computing an MWT is NP-hard, Beirouti and Snoeyink
showed in 1998 that computing provably optimal solutions for MWT instances of up to 80,000
uniformly distributed points is possible, making use of clever heuristics that are based on geometric
insights. We show that these techniques can be refined and extended to instances of much bigger
size and different type, based on an array of modifications and parallelizations in combination with
more efficient geometric encodings and data structures. As a result, we are able to solve MWT
instances with up to 30,000,000 uniformly distributed points in less than 4 minutes to provable
optimality. Moreover, we can compute optimal solutions for a vast array of other benchmark
instances that are not uniformly distributed, including normally distributed instances (up to
30,000,000 points), all point sets in the TSPLIB (up to 85,900 points), and VLSI instances with
up to 744,710 points. This demonstrates that from a practical point of view, MWT instances
can be handled quite well, despite their theoretical difficulty.
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1 Introduction

Triangulating a set of points in the plane is a classic problem in computational geometry: given
a planar point set S, find a maximal set of non-crossing line segments connecting the points
in S. Triangulations have many real-world applications, for example in terrain modeling,
finite element mesh generation and visualization. In general, a point set has exponentially
many possible triangulations and a natural question is to ask for a triangulation that is
optimal with respect to some optimality criterion. Well known and commonly used is the
Delaunay triangulation, which optimizes several criteria at the same time: it maximizes the
minimum angle and minimizes both the maximum circumcircle and the maximum smallest
enclosing circle of all triangles. Another natural optimality criterion, and the one we are
considering in this paper is minimizing the total weight of the resulting triangulation, i.e.,
minimizing the sum of the edge lengths.
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The minimum-weight triangulation (MWT) is listed as one of the open problems in the
famous book from 1979 by Garey and Johnson on NP-completeness [10]. The complexity
status remained open for 27 years until Mulzer and Rote [19] finally resolved the question
and showed NP-hardness of the MWT problem.

Independently, Gilbert [11] and Klincsek [17] showed that, when restricting it to simple
polygons, the MWT problem can be solved in O(n3)-time with dynamic programming. The
dynamic programming approach can be generalized to polygons with k inner points. Hoffmann
and Okamoto [16] showed how to obtain the MWT of such a point set in O(6kn5 logn)-time.
Their algorithm is based on a polygon decomposition through x-monotone paths. Grantson
et al. [12] improved the algorithm to O(n44kk) and showed another decomposition strategy
based on cutting out triangles [13] which runs in O(n3k!k)-time.

A promising approach are polynomial-time heuristics that either include or exclude
edges with certain properties from any minimum weight triangulation. Das and Joseph [6]
showed that every edge in a minimum weight triangulation has the diamond property. An
edge e cannot be in MWT(S) if both of the two isosceles triangles with base e and base
angle π/8 contain other points of S. Drysdale et al. [9] improved the angle to π/4.6. This
property can exclude large portions of the edge set and works exceedingly well on uniformly
distributed point sets, for which only an expected number of O(n) edges remain. Dickerson
et al. [8, 7] proposed the LMT-skeleton heuristic, which is based on a simple local-minimality
criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm often yields a
connected graph, such that the remaining polygonal faces can be triangulated with dynamic
programming to obtain the minimum weight triangulation.

Especially the combination of the diamond property and the LMT-skeleton made it
possible to compute the MWT for large, well-behaved point sets. Beirouti and Snoeyink
[3, 2] showed an efficient implementation of these two heuristics and they reported that their
implementation could compute the exact MWT of 40,000 uniformly distributed points in
less than 5 minutes and even up to 80,000 points with the improved diamond property.

Our contributions:

We revisit the diamond test and LMT-skeleton based on Beirouti’s and Snoeyink’s [3, 2]
ideas and describe several improvements. Our bucketing scheme for the diamond test does
not rely on a uniform point distribution and filters more edges. For the LMT-skeleton
heuristic we provide a number of algorithm engineering modifications. They contain a
data partitioning scheme for a parallelized implementation and several other changes
for efficiency. We also incorporated an improvement to the LMT-skeleton suggested by
Aichholzer et al. [1].

We implemented, streamlined and evaluated our implementation on various point sets.
For the uniform case, we computed the MWT of 30,000,000 points in less than 4 minutes
on commodity hardware; the limiting factor arose from the memory of a standard machine,
not from the runtime. We achieved the same performance for normally distributed point
sets. The third class of point sets were benchmark instances from the TSPLIB [20] (based
on a wide range of real-world and clustered instances) and the VLSI library. These
reached a size up to 744,710 points. This shows that from a practical point of view,
wide range of huge MWT instances can be solved to provable optimality with the right
combination of theoretical insight and algorithm engineering.
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2 Preliminaries

Let S be a set of points in the euclidean plane. A triangulation T of S is a maximal planar
straight-line graph with vertex set S. The weight w(e) of an edge e is its euclidean length. A
minimum-weight triangulation MWT(S) minimizes the total edge weight, i.e.,

∑
e∈E(T ) w(e).

An edge e is locally minimal with respect to some triangulation T (S) if either
(i) e is an edge on the convex hull of S, or
(ii) the two triangles bordering e in T (S) form a quadrilateral q such that q is either not

convex or e is the shorter diagonal of the two diagonals e and e′ in q, i.e., w(e) ≤ w(e′).

A triangulation T is said to be a locally minimal triangulation if every edge of T is locally
minimal, i.e., the weight of T cannot be improved by edge flipping. A pair of triangles
witnessing local minimality for some edge e in some triangulation is called a certificate for e.
An empty triangle is a triangle that contains no other points of S except for its three vertices.

3 Previous tools

3.1 Diamond property

Figure 1 Points l and r induce a region DS such that all edges e = st with t ∈ DS fail the
diamond test. DS is called a dead sector (dotted area).

The diamond property can be used as a first step to exclude a large part of the edge
set from any further consideration. A brute-force solution to test the diamond property for
each edge takes Θ(n3) time and is inefficient. To accelerate the test, Beirouti and Snoeyink
[3] use a bucketing scheme based on a uniform grid with the grid size chosen such that on
expectation a constant number of points lie in each cell. In order to quickly discard whole
cells, they make use of dead sectors, which are illustrated in Figure 1. Suppose we want to
test all edges with source s. If points l, r are already processed and known then all edges st
with t ∈ DS will fail the diamond test, because l and r lie in the left, resp. right isosceles
triangle. The boundary of a single dead sector depends on the angle and length of sl and sr;
for multiple sectors it can be quite complicated. For each point s, all edges st that pass the
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44:4 Solving Large-Scale Minimum-Weight Triangulation Instances

test are computed by first considering all other points in the cell containing s. Intersections
of dead sectors with neighboring cells are computed and based on the result further cells are
considered until all cells can be excluded by dead sectors.

3.2 LMT-skeleton
The LMT-skeleton was proposed by Dickerson et al. [8, 7], it is a subset of the minimum
weight triangulation. The key observation is that MWT(S) is a locally minimal triangulation,
i.e., no edge in MWT(S) can be flipped to reduce the total weight.

The LMT-skeleton algorithm eliminates all edges that have no certificate, i.e., for each
edge e all pairs of empty triangles bordering e are examined until a certificate is found or
no pairs are left. Eliminating e can invalidate previously found certificates. The remaining
edges that are not intersected by any other remaining edge form the LMT-skeleton; they
must be in all locally minimal triangulations.

(a) Half-edge e. (b) i and j point to the current certificate edges.

Figure 2 Representation of half-edge e.

In order to avoid the O(n3) space required to store all empty triangles Beirouti and
Snoeyink [3] propose a data structure based on half-edges. Half-edges store several pointers:
a pointer to the target vertex and the twin half-edge; a pointer to the next edge in counter-
clockwise order around the source; and three additional pointers to scan for empty triangles
(i, j, j_start); see Figure 2 for an illustration. A status flag indicates whether an edge is
possible, impossible or certain. Furthermore, three additional pointers (rightPoly, leftPoly,
polyWeight) are stored and used for the subsequent polygon triangulation step.

At the heart of the LMT-skeleton heuristic lies the Advance function, see Algorithm 1.
Advance basically rotates edge i and j in counterclockwise order such that they form an

Algorithm 1: Advance. Adapted from [2] (Changed notation and corrected an
error).

Function Advance(e)
repeat

while e.i.target is not left of e.j do
e.i← e.i.next ;

while e.i.target is left of e.j do
e.j ← e.j.next ;

until e.i.target = e.j.target;
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empty triangle if they point to the same vertex, i.e., i.target = j.target. Pointers i and j
are initialized to e.next resp. e.j_start. The algorithm to find certificates is built on top of
Advance. All pairs of triangles can be traversed by repeatedly calling Advance on half-edge
e and e’s twin in fashion similar to a nested loop. The “loop” is stopped when a certificate is
found and can be resumed when the certificate becomes invalid. [2, 3]

After initializing the half-edge data structure, their implementation pushes all edges on
a stack (sorted with longest edge on top) and then processes edges in that order. If for an
edge e no certificate is found, an intersection test determines if e lies on the convex hull or if
e is impossible. If e is detected to be impossible, a local scan restacks all edges with e in
their certificate. After the stack is empty, all edges that remain possible and that have no
crossing edges are marked as certain.

4 Our improvements and optimizations

4.1 Diamond property
For a uniformly distributed point set S with |S| = n points, the expected number of edges to
pass the diamond test is only O(n). More precisely, Beirouti and Snoeyink [3] state that the
number is less than 3πn/ sin(α), where α is the base angle for the diamond property. We
were able to tighten this value.

I Theorem 1. Let S be a uniformly distributed point set in the plane with |S| = n and let
α ≤ π/3 be the base angle for the diamond property. Then the expected number of edges that
pass the diamond test is less than 3πn/ tan(α).

Proof. Fix an arbitrary point s ∈ S and consider the remaining points ti , 0 ≤ i ≤ n − 2
in order of increasing distance to s. Edge ei := sti fulfills the diamond property if at least
one of the two corresponding isosceles triangles is empty, i.e., it contains non of the i points
t0, . . . , ti−1.

For any given distance r, each triangle has area A = 1/4 tan(α)r2. The points are
uniformly distributed in the circle centered at s with radius r, thus the probability p that a
fixed point lies in a fixed triangle is p = A/πr2 = tan(α)/4π. Each triangle is empty with
probability (1− p)i. The whole diamond is empty with probability (1− 2p)i. It follows that
at least one of the triangles is empty with probability 2(1− p)i − (1− 2p)i.

Let Xi be the indicator variable of the event that edge ei fulfills the diamond property.
Then X =

∑n−2
0 Xi is the number of outgoing edges that pass the diamond test. By linearity

of expectation and the geometric series, the expected value of X is bounded by

E[X] =
n−2∑
i=0

E[Xi] <
∞∑

i=0
2(1− p)i − (1− 2p)i = 2

p
− 1

2p = 3
2p = 6π

tan(α)

If we apply the same argument to each point in S, we are counting each edge twice. Hence
the number of edges that pass the diamond test with base angle a is less than 3πn/ tan(α). J

For α = π/4.6 we get a value less than 11.5847, which is very close to the values observed
and achieved by our implementation; see Table 1 in Section 5. In contrast, the value achieved
by the implementation of Beirouti and Snoeyink is ≈ 14.3 [3].

4.2 Dead sectors and bucketing
Our bucketing scheme is based on the same idea of dead sectors as described by Snoeyink
and Beirouti [3]. Our implementation differs in two points. Despite being simpler, it has
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44:6 Solving Large-Scale Minimum-Weight Triangulation Instances

Figure 3 Simplified dead sector DS is bounded by two rays and circle C. C is induced by the
longer of the two edges sl resp. sr and angle α.

higher accuracy and it can easily be integrated into common spatial data structures; such as
quadtrees, kd-trees and R-trees. Therefore, it is not limited to uniformly distributed point
sets.

In order to avoid storing complicated sector boundaries, we simplify the shape. Instead
of bounding a sector DS by two circles as illustrated in Figure 1, we only use a single big
circle C with center s at the expense of losing a small part of DS. This allows a compact
representation of dead sectors as a triple of three numbers: an interval consisting of two
polar angles and a squared radius; see Figure 3.

The main ingredient for our bucketing scheme is a spatial search tree with support for
incremental nearest neighbor searches, such as quadtrees, kd-trees or R-trees. A spatial search
tree hierarchically subdivides the point set into progressively finer bounding boxes/rectangles
until a predefined threshold is met. Incremental nearest neighbor search queries allow to
traverse all nearest neighbors of a point in order of increasing distance. Such queries can
easily be implemented by utilizing a priority queue that stores all tree nodes encountered
during tree traversal together with the distances to their resp. bounding box (see Hjaltason
and Samet [15]).

Pruning tree nodes whose bounding box lie in dead sectors is rather simple as follows:
consider a nearest neighbor query for point s: when we are about to push a new node n
into the priority queue, we compute the smallest polar angle interval I that encloses the
bounding box of n and discard n if I is contained in the dead sectors computed so far. The
interval of a bounding box is induced by the two extreme corners as seen from s, i.e., the
leftmost and the rightmost corner.

Because nearest neighbors and tree nodes are processed in order of increasing distance,
we can store sectors in two stages. On creation, they are inserted into a FIFO-queue; later
only the interval component is inserted in a search filter used by the tree. The queue can be
seen as a set of pending dead sectors with an attached activation distance δ. As soon as we
process a point t with d(s, t) > δ we can insert the corresponding interval into our filter.

This reduces the data structure used for the filter to a simple set of sorted non-overlapping
intervals consisting of polar angles. Overlapping intervals are merged on insertion, which
reduces the maximal number of intervals that need to be tracked at the same time to a very
small constant1.

1 The exact value is 15 in our case, but it depends on an additional parameter and implementation details.
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This leaves the issue of deciding which points are used to construct dead sectors. We store
all points encountered during an incremental search query in an ordered set N sorted by their
polar angle with respect to s. Every time we find a new point t, it is inserted into N and
dead sectors are computed with the predecessor and the successor of t in N . There is no need
to construct sectors with more than the direct predecessor and successor, because sectors
between all adjacent pairs of points in N were already constructed on earlier insertions.
Computing the activation distance for new sectors only requires a single multiplication of
the current squared distance to t with a precomputed constant. Additionally, the diamond
property of edge st is tested against a subset of N .

If we apply the above procedure to every single point, we generate each edge twice,
once on each of the two endpoints. Therefore, we output only those edges e = st such
that s < t, i.e., s is lexicographically smaller than t. As a consequence, we can exclude
a part of the left half-space right from the beginning by inserting an initial dead sector
DS0 = (1/2π + α, 3/2π − α) at distance 0. Points in the two wedges (1/2π, 1/2π + α] and
[3/2π − α, 3/2π] are specially treated because they are still useful to generate dead sectors
for the right half-space.

In order to increase cache efficiency we store the point set in a spatially sorted array. The
points are ordered along a Hilbert curve, but the choice of a particular space-filling curve
is rather arbitrary. Our spatial tree implementation is a quadtree that is built on top of
that array during the sorting step. Profiling suggests the memory layout of the tree nodes is
not important. We apply the diamond test to every single point and we can freely choose
the order in which we process them. The points are spatially sorted and processed in this
order, which leads to similar consecutive search paths in the tree and therefore most nodes
are already in the CPU cache.

In order to avoid the expensive transcendental atan2 function for polar angle computations,
we can use any function that is monotonic in the polar angle for comparisons between
different angles. One such function, termed pseudo-angle, was described by Moret and
Shapiro [18]. The basic idea is to measure arc lengths on the L1 unit circle, instead of
the L2 unit circle. With some additional transformations, the function can be rewritten to
sign(y)(1− x/(|x|+ |y|)), where we define sign(0) =: 1. This function has the same general
structure as atan2: a monotonic increase in the intervals [0, π], (π, 2π) and a discontinuity
at π, with a jump from positive to negative values. Additionally, it gives rise to a one-line
implementation (see the full version), which gets compiled to branch-free code.

4.3 LMT-skeleton
For “nicely” distributed point sets, a limiting factor of the heuristic is the space required
to store the half-edge data structure in memory. In order to save some space we removed
three variables from the original description (rightPoly, leftPoly, polyWeight). They serve
no purpose until after the heuristic, when they are used for the polygon triangulation
step (therefore, reducing cache-efficiency and wasting space). For edges marked impossible
(typically the majority), they are never used at all; for the remaining edges they can be
stored separately as soon as needed. We further reduce storage overhead by storing all edges
in a single array sorted by source vertex (also known as a compressed sparse row graph). As
a consequence, spatial ordering of the vertices carries over to the edge array. All outgoing
edges of a single vertex are still radially sorted. In addition to the statuses possible, certain,
impossible, we store whether an edge lies on the convex hull.

As mentioned in Section 3, certificates are found by utilizing Advance in fashion of a
nested loop. It is crucial to define one half-edge of each pair as the primary one to distinguish

SoCG 2018



44:8 Solving Large-Scale Minimum-Weight Triangulation Instances

Figure 4 Edge f does not have the diamond property and in turn the Advance function fails: it
stops with a non-empty triangle.

Figure 5 Advance can return non-empty triangle ∆ which is part of two adjacent polygonal faces.

which half-edge corresponds to the outer resp. inner “loop”. The choice is arbitrary as long
as it is consistent throughout the execution of the algorithm.

Another problem that went unnoticed emerges when the diamond test and LMT-skeleton
are combined. In this case Advance does not guarantee to find empty triangles; it may stop
with non-empty triangles due to missing incident edges. An example is shown in Figure 4,
where all edges with the exception of f pass the diamond test; calling Advance on e yields a
non-empty triangle.

Fortunately, the side effect of wrong certificates is rather harmless. In the worst-case
an otherwise impossible edge stays possible, which in turn may prevent other edges from
being marked certain, however, no edge will incorrectly be marked certain. Even though
wrong certificates occur frequently, we observed them to be of transient nature because
some certificate edge itself becomes impossible later in the heuristic. Therefore, we still use
Advance in our implementation to find certificates. However, it is important to keep in mind
that the function can fail. Beirouti [2] states that they also use Advance to scan for empty
triangles in simple polygons during the dynamic programming step after the LMT-skeleton.
Even then Advance can fail by returning triangles that are part of two adjacent simple
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Algorithm 2: Refactored LMT-skeleton algorithm.

begin
Init data structures ;
ST ← EmptyEdges(S)\ CH (S) ; /* Stack ST */
LMT-Loop (ST ) ;
foreach Possible primary half-edge e do

if ¬HasIntersections (e) then
Mark e as certain;

Function LMT-Loop(ST)
while ST is not empty do

e← Pop (ST ) ;
if e has no certificate then

RestackEdges (e) ; /* Push edges with e in their certificate.
*/
Mark e as impossible;

polygonal faces; see Figure 5 for an example. In contrast to wrong certificates, this will lead
to catastrophic results and cannot be ignored.

Pseudocode for our implementation is given in Algorithm 2. In essence it is still the same
as given by Beirouti and Snoeyink [3], however, with some optimizations applied. First, the
convex hull edges are implicitly given during initialization of the j_start-pointers and can be
marked as such without any additional cost. Determining the convex hull edges beforehand
allows to remove the case distinction inside the LMT-Loop, i.e., it removes all intersection
tests that are applied to impossible edges. Secondly, sorting the stack by edge length destroys
spatial ordering and the loss of locality of reference outweighs all gains on modern hardware.
Without sorting, it is actually not necessary to push all edges onto the stack upfront. Lastly,
with proper partitioning of the edges, the LMT-Loop can be executed in parallel – described
in more detail in Section 4.4.

Additionally, we incorporated an improvement to the LMT-skeleton suggested by Aich-
holzer et al. [1]. Consider a certificate for an edge e, i.e., a quadrilateral qe such that e is
locally minimal w.r.t. qe. It is only required that the four certificate edges fi ∈ qe are not
impossible, that is, edge fi is either on the convex hull or in turn has some certificate qi.
Notice that qi and qe may not share a common triangle. However, if for edge fi there is
no such certificate qi that shares a triangle with qe, then edge e cannot be in any locally
minimal triangulation and e can be marked impossible.

The improved LMT-skeleton is computationally much more expensive. Consider the case
in which edge e = (s, t) becomes impossible. In order to find invalid certificates, it is no
longer sufficient to scan only those edges incident to either s or t. In addition to edges of the
form (s, u), resp. (t, u), we also have to check all edges incident to any adjacent vertex u for
invalid certificates. Because edges do not store the certificates for their certificate it gets
even worse: we cannot know if an edge has to be restacked and we must restack and recheck
all of them. Another consequence is that we cannot resume the traversal of triangles for any
edge fi, because we do not know where we stopped the last time.

We are left with a classic space-time trade-off and we chose not to store any additional
data. Instead we apply the improved LMT-heuristic only to edges surviving an initial round
of the normal LMT-heuristic.
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4.4 Parallelization
Because the LMT-heuristic performs only local changes, most of the edges can be processed
in parallel without synchronization. Problems occur only if adjacent edges are processed
concurrently (for the improved LMT-skeleton this is unfortunately not true, because marking
an edge impossible affects a larger neighborhood of edges). In order to parallelize the normal
LMT-heuristic, we implemented a solution based on data partitioning without any explicit
locking.

We cut the vertices V into two disjoint sets V = V1∪V2 and process only those edges with
both endpoints in V1 (resp. V2) in parallel. DefineX as the cut set {{s, t} ∈ E | s ∈ V1, t ∈ V2},
i.e., all edges with one endpoint in V1 and the other in V2. While edges in E(V1) resp. E(V2)
are processed in parallel by two threads, edges in X are accessed read-only by both threads
and are handled after both threads join. This way we never process two edges with a common
endpoint in parallel.

This leaves the question of how to partition the vertices into two disjoint sets. Recall
that all vertices are stored in contiguous memory and are sorted in Hilbert order. A split in
the middle of the array partitions the points into two sets that are separated by a rather
simple curve. Therefore, the cut set is likely to be small. Our half-edge array is sorted
by source vertex, i.e., getting all edges with a specific source vertex in either half of the
partition is trivial. Deciding if an edge e = (s, t) is in the cut set consists of two comparisons
of pointer t against the lower and upper bound of the vertex subset. Furthermore, with the
fair assumption that the average degree of vertices is the same in both partitions, we obtain
perfectly balanced partitions w.r.t. the number of edges.

In order to avoid a serial scan at the top, we push the actual work of computing X down
to the leaves in the recursion tree. Scanning of the half-edge array starts at the leave nodes:
processing of half-edges that belong to some cut set is postponed, instead they are passed
back to the parent node. The parent in turn scans the edges it got from its two children,
processes all edges it can and passes up the remaining ones. In other words, the final cut set
X bubbles up in the tree, while all intermediate cuts are never explicitly computed. The
edges passed up from a node typically contain half-edges of several higher-level cuts. This
way, partitioning on each level of the recursion tree only takes constant time, while the actual
work is fully parallelized at the leaf level.

Experiments and observations indicate that on large, uniformly distributed point sets
approximately 0.15% of all edges make it back to the root node, i.e., the amount of serial
processing is low and the approach scales well. On degenerate instances it can perform
poorly; e.g. if all points lie on a circle, then half of the edges will be returned to the root.
For such cases, the code could be extended to repartition the remaining edges with another
set of cuts.

After the LMT-heuristic completes, we are left with many polygonal faces that still need
to be triangulated. Our implementation traverses the graph formed by the edges with one
producer thread in order to collect all faces and multiple consumer threads to triangulate
them with dynamic programming.

5 Computational results

Computations were performed on a machine with an Intel i7-6700K quad-core and 64GB
memory. The code was written in C++ and compiled with gcc 5.4.0.

We utilized CGAL [5] for its exact orientation predicates, however, parts of the code
are still prone to numerical errors. For example, triangulating the remaining polygonal
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Table 1 Diamond test implementation on uniformly distributed point sets. The table shows
the mean and the standard deviation of 25 different instances. The extreme values are assumed by
points at the point set boundary.

Number of visited neighbors per point
n Edges Mean SD Min Max DS = 2π

101 36.16 ±2.63 9 ±0 0 ±0 9 ±0 9 ±0 0 ±0
102 882.8 ±27.69 55.6 ±3.1 16.6 ±2.04 23.72 ±4.82 98.56 ±1.27 30.4 ±4.61
103 10,731.7 ±159.9 72.52 ±1.56 23.16 ±1.3 22.68 ±4.55 173 ±14.61 737.84 ±10.91
104 1.1316 · 105 ±471.24 77.64 ±0.69 26.64 ±0.73 19.08 ±2.3 363.72 ±20 9,126.08 ±18.74
105 1.15 · 106 ±1,538.64 72.84 ±0.29 23.76 ±0.47 15.96 ±1.61 846.24 ±24.4 97,200.9 ±40.29
106 1.1562 · 107 ±4,737.67 74 ±0.51 25.76 ±0.39 13.28 ±1.31 2,884.96 ±38.53 9.9117 · 105 ±61.86
107 1.1579 · 108 ±19,254 77 ±0.6 27.24 ±0.79 11.88 ±0.99 9,567.52 ±78.84 9.9721 · 106 ±100.61
108 1.1585 · 109 ±56,063.1 72 ±0.94 24.08 ±0.69 10.6 ±0.49 25,017.8 ±107.4 9.9911 · 107 ±239.64

Table 2 LMT-skeleton statistics on uniformly distributed point sets.

Possible edges after Certain edges after
n Diamond LMT LMT+ LMT LMT+ Simple Polygons

1 · 101 36.76 ±2.78 3.8 ±3.84 3.72 ±3.62 19.32 ±2.22 19.32 ±2.22 0.68 ±0.61
1 · 102 871.92 ±46.37 84.04 ±20.14 74.56 ±18.1 251.48 ±7.12 252.28 ±7.12 10.52 ±2.55
1 · 103 10,687.4 ±146.68 1,150.32 ±98.05 1,031.96 ±86.46 2,540 ±32.33 2,548.04 ±31.41 128 ±9.2
1 · 104 1.1322 · 105 ±661.16 12,637 ±281.25 11,271.76 ±251.6 25,193.44 ±73.29 25,287.56 ±76.43 1,367.08 ±24.65
1 · 105 1.1503 · 106 ±1,696.31 1.2941 · 105 ±1,198.41 1.1523 · 105 ±973.14 2.5129 · 105 ±322.29 2.5227 · 105 ±306.72 13,819.44 ±67.93
1 · 106 1.1563 · 107 ±5,459.02 1.3044 · 106 ±2,708.78 1.1617 · 106 ±2,486.36 2.5098 · 106 ±847.61 2.5194 · 106 ±860.53 1.3904 · 105 ±232.43
1 · 107 1.1579 · 108 ±17,587.01 1.3074 · 107 ±11,021.75 1.1645 · 107 ±8,825.57 2.5088 · 107 ±2,774.11 2.5184 · 107 ±2,727.23 1.3931 · 106 ±607.95
3 · 107 3.4747 · 108 ±28,678.6 3.9239 · 107 ±18,919.14 3.4949 · 107 ±15,068.66 7.5258 · 107 ±4,637.8 7.5547 · 107 ±4,563.03 4.1797 · 106 ±969.6

faces requires to compute and compare the sum of radicals, which we implemented with
double-precision arithmetic. For small instances, it was possible to compare the results of our
implementation against an independent implementation based on an integer programming
formulation of the MWT problem. However, straightforward integer programming becomes
infeasible quite fast and comparisons for point sets with thousands of points were not possible.

5.1 Uniformly and normally distributed point sets
Table 1 shows results of our diamond test implementation on uniformly distributed point
sets with sizes ranging from 10 to 108 points. The table shows the mean values and the
standard deviation of 25 different instances. Each instance was generated by choosing n
points uniformly from a square centered at the origin. Point coordinates were double-precision
values. The diamond test performs one incremental nearest neighbor query for each point in
order to generate the edges that pass the test. On average only a small number of neighbors
need to be processed for each point. The last column shows the number of queries where all
nodes in the spatial tree were discarded because dead sectors covered the whole search space.
The numbers show that this is the regular case; the exceptional cases occur at points near
the point set “boundary”.

Table 2 shows statistics for the LMT-heuristic on uniformly distributed point sets. The
instance sizes range from 10 points up to 30,000,000 points. For each size 25 different
instances were generated. For the largest instances, the array storing the half-edges consumes
nearly 39 GB of memory on its own. The serial initialization of the half-edge data structure,
which basically amounts to radially sorting edges, takes longer than the parallel LMT-Loop on
uniformly and normally distributed points. The improved LMT-skeleton by Aichholzer et al.
is denoted LMT+ in the tables. The resulting skeleton was almost always connected in the
computations and the number of remaining simple polygons that needed to be triangulated is
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Figure 6 LMT-skeleton runtime on uniformly distributed point sets.

shown in the last column. Only one instance of size 3 · 107 contained one non-simple polygon
in the experiments. While developing and optimizing the implementation, we computed
the LMT-skeleton of several hundred instances with a million points, without ever seeing a
disconnected component.

As we can see, the LMT-skeleton eliminates most of the possible edges with only ≈ 11%
remaining. Given that any triangulation has 3n− |CH| − 3 edges, the certain edges amount
to ≈ 83% of the complete triangulation. The improved LMT-skeleton reduces the amount of
possible edges by another 10%, but it provides hardly any additional certain edges.

The results on normally distributed point sets are basically identical. Point coordinates
were generated by two normally distributed random variables X,Y ∼ N (µ, σ2), with mean
µ = 0 and standard deviation σ ∈ {1, 100, 100000}. The tables are given in the full version.

5.2 TSPLIB + VLSI
In addition to uniformly and normally distributed instances, we ran our implementation on
instances found in the well-known TSPLIB [20], which contains a wide variety of instances
with different distributions. The instances are drawn from industrial applications and from
geographic problems. All 94 instances have a connected LMT-skeleton and can be fully
triangulated with dynamic programming to obtain the minimum weight triangulation. The
total time it took to solve all instances of the TSPLIB was approximately 8.5 seconds. A
complete breakdown for each instance is given in the full version.

Additional point sets can be downloaded at http://www.math.uwaterloo.ca/tsp/vlsi/.
This collection of 102 TSP instances was provided by Andre Rohe, based on VLSI data sets
studied at the Forschungsinstitut für Diskrete Mathematik, Universität Bonn. The LMT-
heuristic is sufficient to solve all instances, except lra498378, which contained two non-simple
polygonal faces. A complete breakdown is given in the full version. Our implementation of
the improved LMT-skeleton performs exceedingly bad on some of these instances; see Table 3.
These instances contain empty regions with many points on the “boundary”. Such regions are
the worst-case for the heuristics because most edges inside them have the diamond property,
which in turn leads to vertices with very high degree. Whenever an edge is found to be
impossible by the improved LMT-skeleton, almost all edges are restacked and rechecked.
Given the overall poor results of the improved LMT-skeleton, storing additional data to
increase performance and/or limiting it to non-simple polygons may be reasonable.
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Table 3 Statistics for VLSI instances with long runtime.

Time in ms
Instance Total DT LMT-Init LMT-Loop LMT+ Dyn. Prog.
ara238025 15,325 4,954 446 496 9,279 148
lra498378 382,932 44,267 1,238 7,532 329,292 599
lrb744710 484,430 7,952 1,377 2,661 471,564 872
sra104815 1,937 559 191 198 922 65

6 Conclusion

We have shown that despite of the theoretical hardness of the MWT problem, a wide range
of large-scale instances can be solved to optimality.

Difficulties for other instances arise from two sources. On one hand, we have instances
containing more or less regular k-gons with one or more points near the center. These
configurations can lead to a highly disconnected LMT-skeleton (an example is given by
Belleville et al. [4]) and require exponential time algorithms to complete the MWT. Prelimi-
nary experiments suggest that such configurations are best solved with integer programming.
The example point set given by Belleville et al. [4] can easily be solved with CPLEX in less
than a minute, while the dynamic programming implementation of Grantson et al. [14] was
not able to solve it within several hours. On the other hand, we have instances containing
empty regions with many points on their “boundary”, such as empty k-gons and circles. They
may be solvable in polynomial time, but trigger the worst-case behavior of the heuristics.
Deciding what is the best approach to handle these two types of difficulties and integrating
it into our implementation is left for future work.
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