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Abstract
The flip graph of triangulations has as vertices all triangulations of a convex n-gon, and an edge
between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph
is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of
a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the
existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the
aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane spanning
trees on an arbitrary set of n points, and the flip graph of non-crossing perfect matchings on a
set of n points in convex position. In addition, we consider two flip graphs on classes of non-
geometric objects: the flip graph of permutations of {1, 2, . . . , n} and the flip graph of k-element
subsets of {1, 2, . . . , n}. In each of the five settings, we prove the existence and non-existence of
rainbow cycles for different values of r, n and k.
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1 Introduction

Flip graphs are fundamental structures associated with families of geometric objects such
as triangulations, plane spanning trees, non-crossing matchings, partitions or dissections.
A classical example is the flip graph of triangulations. The vertices of this graph GT

n are the
triangulations of a convex n-gon, and two triangulations are adjacent whenever they differ
by exactly one edge. In other words, moving along an edge of GT

n corresponds to flipping the
diagonal of a convex quadrilateral formed by two triangles. Figure 1 shows the graph GT

6.
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38:2 Rainbow Cycles in Flip Graphs
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Figure 1 The flip graph of triangulations GT
6 with a highlighted rainbow cycle.

A question that has received considerable attention is to determine the diameter of GT
n,

i.e., the number of flips that is necessary and sufficient to transform any triangulation into
any other, see the survey [7]. In a landmark paper [33], Sleator, Tarjan and Thurston proved
that the diameter of GT

n is 2n − 10 for sufficiently large n. Recently, Pournin [28] gave a
combinatorial proof that the diameter is 2n− 10 for all n > 12. A challenging algorithmic
problem in this direction is to efficiently compute a minimal sequence of flips that transforms
two given triangulations into each other, see [24, 29]. These questions involving the diameter
of the flip graph become even harder when the n points are not in convex, but in general
position, see e.g. [11, 15, 19]. Moreover, apart from the diameter, many other properties of
the flip graph GT

n have been investigated, e.g., its realizability as a convex polytope [9], its
automorphism group [23], the vertex-connectivity [18], and the chromatic number [12].

Another property of major interest is the existence of a Hamilton cycle in GT
n. This

was first established by Lucas [25] and a very nice and concise proof was given by Hurtado
and Noy [18]. The reason for the interest in Hamilton cycles is that a Hamilton cycle
in GT

n corresponds to a so-called Gray code, i.e., an algorithm that allows to generate each
triangulation exactly once, by performing only a single flip operation when moving to the
next triangulation. In general, the task of a Gray code algorithm is to generate all objects
in a particular combinatorial class, each object exactly once, by applying only a small
transformation in each step, such as a flip in a triangulation. Combinatorial classes of interest
include geometric configurations such as triangulations, plane spanning trees or non-crossing
perfect matchings, but also classes without geometric information such as permutations,
combinations, bitstrings etc. This fundamental topic is covered in depth in the most recent
volume of Knuth’s seminal series The Art of Computer Programming [21], and in the classical
books by Nijenhuis and Wilf [27, 36]. Here are some important Gray code results in the
geometric realm: Hernando, Hurtado and Noy [16] proved the existence of a Hamilton cycle
in the flip graph of non-crossing perfect matchings on a set of 2m points in convex position
for every even m ≥ 4. Aichholzer et al. [1] described Hamilton cycles in the flip graphs of
plane graphs on a general point set, for plane and connected graphs and for plane spanning
trees on a general point set. Huemer et al. [17] constructed Hamilton cycles in the flip graphs
of non-crossing partitions of a point set in convex position, and for the dissections of a convex
polygon by a fixed number of non-crossing diagonals.

As mentioned before, a Hamilton cycle in a flip graph corresponds to a cyclic listing of
all objects in some combinatorial class, such that each object is encountered exactly once,
by performing a single flip in each step. In this work we consider the dual problem: we are
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(d) Flip graph of subsets GC
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Figure 2 Examples of flip graphs with 1-rainbow cycles. In (d), two edge-disjoint rainbow
Hamilton cycles in GC

5,2 are highlighted, one with bold edges and one with dashed edges.

interested in a cyclic enumeration of some of the combinatorial objects, such that each flip
operation is encountered exactly once. For instance, in the flip graph of triangulations GT

n,
we ask for the existence of a cycle with the property that each inner edge of the triangulation
appears (and disappears) exactly once. An example of such a cycle is shown in Figure 1.
This idea can be formalized as follows. Consider two triangulations T and T ′ that differ in
flipping the diagonal of a convex quadrilateral, i.e., T ′ is obtained from T by removing the
diagonal e and inserting the other diagonal f . We view the edge between T and T ′ in the
flip graph GT

n as two arcs in opposite directions, where the arc from T to T ′ receives the
label f , and the arc from T ′ to T receives the label e, so the label corresponds to the edge of
the triangulation that enters in this flip; see the right hand side of Figure 1. Interpreting the
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38:4 Rainbow Cycles in Flip Graphs

labels as colors, we are thus interested in a directed cycle in the flip graph in which each color
appears exactly once, and we refer to such a cycle as a rainbow cycle. More generally, for
any integer r ≥ 1, an r-rainbow cycle in GT

n is a cycle in which each edge of the triangulation
appears (and disappears) exactly r times. Note that a rainbow cycle does not need to visit
all vertices of the flip graph. Clearly, this notion of rainbow cycles extends in a natural way
to all the other flip graphs discussed before, see Figure 2.

1.1 Our results
In this work we initiate the investigation of rainbow cycles in flip graphs for five popular
classes of combinatorial objects. We consider three geometric classes: triangulations of a
convex polygon, plane spanning trees on point sets in general position, and non-crossing
perfect matchings on point sets in convex position. In addition, we consider two classes
without geometric information: permutations of the set [n] := {1, 2, . . . , n}, and k-element
subsets of [n]. We proceed to present our results in these five settings in the order they were
just mentioned. For the reader’s convenience, all results are summarized in Table 1.

Our first result is that the flip graph of triangulations GT
n defined in the introduction has

a 1-rainbow cycle for n ≥ 4 and a 2-rainbow cycle for n ≥ 7 (Theorem 1 in Section 2).
Next, we consider the flip graph GS

X of plane spanning trees on a point set X in general
position; see Figure 2 (a). We prove that GS

X has an r-rainbow cycle for any point set X
with at least three points for any r = 1, 2, . . . , |X| − 2 (Theorem 2 in Section 3).

We then consider the flip graph GM
m of non-crossing perfect matchings on 2m points in

convex position; see Figure 2 (b). We exhibit 1-rainbow cycles for m = 2 and m = 4 matching
edges, and 2-rainbow cycles for m = 6 and m = 8. We argue that there is no 1-rainbow cycle

Table 1 Overview of results.

ge
om

et
ri

c

Flip graph Existence of r-rainbow cycle
Vertices Arcs/edges r Yes No

GT
n triangulations of

convex n-gon
edge flip 1 n ≥ 4 Thm. 1

2 n ≥ 7

GS
X plane spanning

trees on point set
X in general
position

edge flip 1, 2, . . . ,
|X| − 2

|X| ≥ 3 Thm. 2

GM
m non-crossing perfect

matchings on 2m
points in convex
position

two edge flip 1 m ∈ {2, 4} Thm. 3odd m,
m ∈ {6, 8, 10}

2 m ∈ {6, 8}

ab
st

ra
ct

GP
n permutations of [n] transposition 1 bn/2c even bn/2c odd Thm. 5

GC
n,k k-subsets of [n],

2 ≤ k ≤ bn/2c
element
exchange

1 even n Thm. 6odd n and
k < n/3

2-subsets of [n]
for odd n

1 two edge-disj.
1-rainbow
Ham. cycles
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for m ∈ {6, 8, 10}, and none for odd m. In fact, we believe that there are no 1-rainbow cycles
in GM

m for any m ≥ 5. Our results for this setting are summarized in Theorem 3 in Section 4.
Next, we consider the flip graph GP

n of permutations of [n], where an edge connects
any two permutations that differ in a transposition, i.e., in exchanging two elements at
positions i and j; see Figure 2 (c). The edges of this graph are colored with the corresponding
pairs {i, j}, and in a 1-rainbow cycle each of the

(
n
2
)
possible pairs appears exactly once. We

prove that GP
n has a 1-rainbow cycle if bn/2c is even, and no 1-rainbow cycle if bn/2c is odd

(Theorem 5 in Section 5).
Finally, we consider the flip graph GC

n,k of k-element subsets of [n], also known as (n, k)-
combinations, where an edge connects any two subsets that differ in exchanging one element i
for another element j; see Figure 2 (d). The edges of this graph are colored with the
corresponding pairs {i, j}, and in a 1-rainbow cycle each of the

(
n
2
)
possible pairs appears

exactly once. Since GC
n,k is isomorphic to GC

n,n−k including the edge-coloring, we assume
without loss of generality that 2 ≤ k ≤ bn/2c. We prove that GC

n has a 1-rainbow cycle
for every odd n and k < n/3, and we prove that it has no 1-rainbow cycle for any even n.
The case k = 2 is of particular interest since a 1-rainbow cycle in the flip graph GC

n,2 is
also a Hamilton cycle. Moreover, we show that GC

n,2 has in fact two edge-disjoint 1-rainbow
Hamilton cycles. Our results in this setting are summarized in Theorem 6 in Section 6.

We conclude in Section 7 with some open problems.

1.2 Related work

The binary reflected Gray code is a classical algorithm to generate all 2n bitstrings of length n
by flipping a single bit in each step; see [21, 36]. Since its invention, binary Gray codes
satisfying various additional constraints have been constructed; see [32]. Specifically, a Gray
code with the property that the bit-flip counts in each of the n coordinates are balanced, i.e.,
they differ by at most 2, was first described by Tootill [34]; see also [6]. When n is a power
of two, every bit appears and disappears exactly 1/2 · 2n/n =: r many times. This balanced
Gray code therefore corresponds to an r-rainbow cycle in the corresponding flip graph. In
this light, our results are a first step towards balanced Gray codes for other combinatorial
classes. For 2-element subsets, we indeed construct perfectly balanced Gray codes.

The Steinhaus-Johnson-Trotter algorithm [20, 35], also known as ‘plain changes’, is a
method to generate all permutations of [n] by adjacent transpositions i ↔ i + 1. More
generally, it was shown in [22] that all permutations of [n] can be generated by any set of
transpositions that form a spanning tree on the set of positions [n]; see also [31].

The generation of (n, k)-combinations subject to certain restrictions on admissible ex-
changes i↔ j has been studied widely. Specifically, it was shown that all (n, k)-combinations
can be generated with only allowing exchanges of the form i↔ i+ 1 [8, 10, 30], provided
that n is even and k is odd, or k ∈ {0, 1, n− 1, n}. The infamous middle levels conjecture
asserts that all (2k, k)-combinations can be generated with only exchanges of the form 1↔ i,
and this conjecture has recently been proved in [14, 26].

Rainbow cycles and paths have also been studied in graphs other than flip graphs. A well-
known conjecture in this context due to Andersen [4] asserts that every properly edge-colored
complete graph on n vertices has a rainbow path of length n− 2, i.e., a path that has distinct
colors along each of its edges. Progress towards resolving this conjecture was recently made
by Alon, Pokrovskiy and Sudakov [2], and Balogh and Molla [5].
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38:6 Rainbow Cycles in Flip Graphs

1.3 Outline of this paper
In the remainder of this paper, we present our results discussed before and summarized in
Table 1 in the same order. Due to space limitations, we only present particularly illuminating
proofs and also provide proof sketches. Full proofs can be found in the preprint version of
this paper [13].

2 Triangulations

In this section we consider a convex n-gon on points labeled clockwise by 1, 2, . . . , n, and we
denote by Tn the set of all triangulations on these points. The graph GT

n has Tn as its vertex
set, and an arc (T, T ′) between two triangulations T and T ′ that differ in exchanging the
diagonal e ∈ T of a convex quadrilateral formed by two triangles for the other diagonal f ∈ T ′;
see Figure 1. We refer to this operation as a flip, and we denote it by (e, f). Furthermore,
we label the arc (T, T ′) with the edge f , i.e., the edge that enters the triangulation in this
flip. The set of arc labels of GT

n is clearly En := {{i, j} | j − i > 1} \ {1, n}. Recall that we
think of these labels as colors. An r-rainbow cycle in GT

n is a directed cycle along which
every label from En appears exactly r times. Clearly, the length of an r-rainbow cycle equals
r|En| = r(

(
n
2
)
−n). Given an r-rainbow cycle, the cycle obtained by reversing the orientation

of all arcs is also an r-rainbow cycle since every edge that appears r times also disappears r
times. The following theorem summarizes the results of this setting.

I Theorem 1. The flip graph of triangulations GT
n has the following properties:

(i) If n ≥ 4, then GT
n has a 1-rainbow cycle.

(ii) If n ≥ 7, then GT
n has a 2-rainbow cycle.

Proof. Let Si be the star triangulation with respect to the point i, i.e., the triangulation
where the point i has degree n− 1. To transform S1 into S2 we can use the flip sequence

Fn,1 :=
(
({1, 3}, {2, 4}), ({1, 4}, {2, 5}), ({1, 5}, {2, 6}), . . . , ({1, n− 1}, {2, n})

)
. (1)

For any i = 1, 2, . . . , n, let Fn,i denote the flip sequence obtained from Fn,1 by adding i− 1
to all points on the right-hand side of (1). Here and throughout this proof addition is to
be understood modulo n with {1, 2, . . . , n} as representatives for the residue classes. Note
that Fn,i transforms Si into Si+1 for any i ∈ [n], and all the edges from En that are incident
with the point i+ 1 appear exactly once during that flip sequence. Note also that Fn,i has
length n− 3.

We begin by proving (ii). The concatenation (Fn,1, Fn,2, . . . , Fn,n) is a flip sequence which
applied to S1 leads back to S1. Along the corresponding cycle C in GT

n, every edge from En

appears exactly twice. Specifically, every edge {i, j} ∈ En appears in the flip sequences Fn,i−1
and Fn,j−1. It remains to show that C is indeed a cycle, i.e., every triangulation appears at
most once. For this observe that when applying Fn,i to Si, then for every j = 1, 2, . . . , n− 4,
in the j-th triangulation we encounter after Si, the point i is incident with exactly n− 3− j
diagonals, the point i + 1 is incident with exactly j diagonals, while all other points are
incident with at most two diagonals. Consequently, if min1≤j≤n−4{n− 3− j, j} ≥ 3, then
we can reconstruct uniquely, for any given triangulation encountered along C, which flip
sequence Fn,i it belongs to. This condition is satisfied if n ≥ 8. For n = 7 it can be verified
directly that C is a 2-rainbow cycle.

It remains to prove (i). We claim that for any n ≥ 4, applying the flip sequence
Xn := (F4,3, F5,4, F6,5, . . . , Fn−1,n−2, Fn,n−1, Fn,n) to S1 yields a 1-rainbow cycle in GT

n.
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(b) Illustration of the proof of Theorem 2 (i).
In the induction step, the rainbow cycle from
Figure 2 (a) on the point set [4] is extended to
a rainbow cycle on the point set X = [5].

Figure 3

Note that Xn differs from Xn−1 by removing the terminal subsequence Fn−1,n−1, and
by appending Fn,n−1 and Fn,n to the shortened sequence, yielding a sequence of length((

n−1
2
)
− (n − 1)

)
− (n − 4) + 2(n − 3) =

(
n
2
)
− n; see Figure 3 (a). The fact that Xn

produces a rainbow cycle follows by induction, by observing that applying Xn−1 to S1 in
GT

n yields a cycle along which every edge from En−1 appears exactly once. Moreover, along
this cycle the point n is not incident with any diagonals. The modifications described before
to construct Xn from Xn−1 shorten this cycle in GT

n and extend it by a detour through
triangulations where the point n is incident with at least one diagonal. The set of edges that
appear along this cycle is given by (En−1 \ E(Fn−1,n−1)) ∪ E(Fn,n−1) ∪ E(Fn,n−1) = En,
where E(F ) denotes the set of edges appearing in a flip sequence F . This shows that applying
Xn to S1 yields a 1-rainbow cycle in GT

n. J

3 Spanning trees

In this section we consider plane spanning trees on a set X of n points in general position,
i.e., no three points are collinear. The graph GS

X has the vertex set SX consisting of all
plane spanning trees on X, and an arc (T, T ′) between two spanning trees T and T ′ that
differ in replacing an edge e ∈ T by another edge f ∈ T ′; see Figure 2 (a). We denote this
flip by (e, f) and label the arc (T, T ′) with the edge f , i.e., the edge that enters the tree in
this flip. Note that the entering edge f alone does not determine the flip uniquely (unlike
for triangulations). Clearly, none of the two edges e and f can cross any of the edges in
T ∩ T ′, but they may cross each other. The set of arc labels of GS

X is clearly EX :=
(

X
2
)
. An

r-rainbow cycle in GS
X is a directed cycle along which every label from EX appears exactly

r times, so it has length r
(

n
2
)
. In the following theorem we summarize the results of this

setting.

SoCG 2018



38:8 Rainbow Cycles in Flip Graphs

I Theorem 2. The flip graph of plane spanning trees GS
X has the following properties:

(i) For a point set X with |X| ≥ 3 in general position, GS
X has a 1-rainbow cycle.

(ii) For a point set X with |X| ≥ 4 in general position and any r = 2, 3, . . . ,m, where
m := |X| − 1 if |X| is odd and m := |X| − 2 if |X| is even, GS

X has an r-rainbow cycle.

Proof sketch. We first label an arbitrary point on the convex hull of X as point 1, and then
label the points from 2 to n in counter-clockwise order around 1. Moreover, we denote by Si

the spanning tree that forms a star with center point i. We then define specific flip sequences
that transform any star Si into any other star Sj , yielding paths Pi,j in the graph GS

X .
For proving (i), we use a similar inductive construction as for the proof of Theorem 1 (i),

based on a strengthened induction hypothesis involving the path Pn,1; see Figure 3 (b).
To prove (ii) for even r, we use a decomposition of Kn, the complete graph on n vertices,

into r/2 Hamilton cycles. Such a decomposition exists by Walecki’s theorem [3]. Orienting
each of the r/2 Hamilton cycles cyclically, we obtain a directed graph where each vertex has
in- and out-degree r/2. We fix an Eulerian cycle E in this graph, and for each arc (i, j) ∈ E
we add the path Pi,j from Si to Sj to obtain a directed closed tour C ′ in GS

X . In this tour
every edge {i, j} ∈ EX appears exactly r times, r/2 times in every path towards Si and
r/2 times in every path towards Sj . However, the tour C ′ is not a cycle since every star Si

occurs r/2 times. We therefore bypass most of the stars by taking suitable detours. Each
detour tree is obtained by exchanging the flip to the star with the flip from the star. This
operation transforms C ′ into an r-rainbow cycle C.

For odd r, we perform the previous construction with (r + 1)/2 Hamilton cycles, and
replace one by the 1-rainbow cycle constructed in part (i). J

4 Matchings

In this section we consider a set of n = 2m points in convex position labeled clockwise by
1, 2, . . . , n. Without loss of generality we assume that the points are distributed equidistantly
on a circle centered at the origin. Mm denotes the set of all non-crossing perfect matchings
with m edges on these points. The graph GM

m hasMm as its vertex set, and an arc (M,M ′)
between two matchings M and M ′ that differ in exchanging two edges e = {a, b} ∈ M

and f = {c, d} ∈ M for the edges e′ = {a, c} and f ′ = {b, d} ∈ M ′; see Figure 2 (b).
We refer to this operation as a flip, and label the arc (M,M ′) of GM

n with the edges e′
and f ′, i.e., the edges that enter the matching in this flip. The set of arc labels of GM

m is
Em := {{i, j} | i, j ∈ [n] and j − i is odd}, and every arc of GM

m carries two such labels. In
this definition, the difference j− i must be odd so that an even number of points lies on either
side of the edge {i, j}. An r-rainbow cycle in GM

m is a directed cycle along which every label
in Em appears exactly r times, two labels in each step, so it has length r|Em|/2 = rm2/2.
The number of vertices of GM

m is the Catalan number 1
m+1

(2m
m

)
. The following theorem

summarizes the results of this setting.

I Theorem 3. The flip graph of non-crossing perfect matchings GM
m, m ≥ 2, has the following

properties:
(i) If m is odd, then GM

m has no 1-rainbow cycle.
(ii) If m ∈ {6, 8, 10}, then GM

m has no 1-rainbow cycle.
(iii) If m ∈ {2, 4}, GM

m has a 1-rainbow cycle, and if m ∈ {6, 8}, GM
m has a 2-rainbow cycle.

Proof of (i). A 1-rainbow cycle has length m2/2, which is not integral for odd m. J
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Figure 4 Illustration of the graph H6 ⊆ GM
6. Some components of this graph are isomorphic to

each other and differ only by rotation of the matchings by multiples of π/6. Only one representative
for each component is shown, together with its multiplicity. The total number of matchings is
the 6th Catalan number 132. The 2-rainbow cycle constructed in the proof of Theorem 3 (iii) is
highlighted in the component F .
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38:10 Rainbow Cycles in Flip Graphs

The length of any edge e ∈ Em, denoted by `(e), is the minimum number of points that
lie on either of its two sides, divided by two. Consequently, a matching edge on the convex
hull has length 0, whereas the maximum possible length is (m − 2)/2, so there are m/2
different edge lengths. A convex quadrilateral formed by four edges from Em is a centered
4-gon, if the sum of the edge lengths of the quadrilateral is m − 2. Note that this is the
maximum possible value. We refer to a flip involving a centered 4-gon as a centered flip. The
following observation is crucial for our proof of Theorem 4 (ii).

I Lemma 4. All flips along an r-rainbow cycle in GM
m must be centered flips.

Proof. Em contains exactly n = 2m edges of each length 0, 1, . . . , (m − 2)/2. Along an
r-rainbow cycle C, exactly rn edges of each length appear and disappear. Consequently, the
average length of all edges that appear or disappear along C is (m− 2)/4. By definition, in
a centered flip the average length of the four edges involved in the flip is exactly the same
number; whereas for a non-centered flip, it is strictly smaller. Therefore, C must not contain
any non-centered flips. J

Lemma 4 allows to restrict our search for rainbow cycles to the subgraph Hm of GM
m

obtained by considering arcs that represent centered flips; consider Figure 4 for an example.

Proof sketch of (ii). To prove the case m = 6, we analyze each of the connected components
of H6 separately. Only one of them contains cycles of length m2/2 = 18. This component
is denoted by F in Figure 4. Analyzing the flip types along the arcs of this component,
we show the non-existence of a 1-rainbow cycle in F . The proof for the cases m = 8 and
m = 10 is computer-based, and uses exhaustive search for a 1-rainbow cycle in each connected
component of Hm. J

Proof sketch of (iii). There are two non-crossing matchings with m = 2 edges, connected
by two arcs in GM

m that form 1-rainbow cycle. For m = 4 a 1-rainbow cycle is shown in
Figure 2 (b). A 2-rainbow cycle for m = 6 is shown in Figure 4. A 2-rainbow cycle for
m = 8 can be constructed using the path P of length 8 between matchings M and M ′

depicted in Figure 5. Note that M ′ differs from M by a counter-clockwise rotation by an
angle of α := 2π/8. Repeating this flip sequence eight times, rotating all flips by an angle
of α · i for i = 0, 1, . . . , 7, yields a 2-rainbow cycle in GM

m. J

M M ′

Figure 5 Definition of path P between matchings M and M ′ in GM
8.

5 Permutations

In this section, we consider the set of permutations Πn of [n]. The graph GP
n has vertex

set Πn, and an edge {π, ρ} between any two permutations π and ρ that differ in exactly
one transposition between the entries at positions i and j; see Figure 2 (c). We label
the edge {π, ρ} of GP

n with the transposition {i, j}. A 1-rainbow cycle in GP
n is a cycle of

length
(

n
2
)
along which every transposition appears exactly once. The following theorem

summarizes the results in this setting.
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I Theorem 5. The flip graph of permutations GP
n, n ≥ 2, has the following properties:

(i) If bn/2c is odd, then GP
n has no 1-rainbow cycle.

(ii) If bn/2c is even, then GP
n has a 1-rainbow cycle.

Proof sketch. The graph GP
n is bipartite, where the partition classes are given by the parity

of the number of inversions. If follows that a cycle of length
(

n
2
)
cannot exist when this

number is odd, which happens exactly when bn/2c is odd. This proves (i).
To prove (ii), observe that the graph GP

n is vertex-transitive, so it suffices to specify a
sequence of

(
n
2
)
transpositions that yields a rainbow cycle. We refer to such a sequence as

a rainbow sequence for Πn. For the induction base n = 4, we use the rainbow sequence
R4 :=

(
{1, 2}, {3, 4}, {2, 3}, {1, 4}, {2, 4}, {1, 3}

)
. Applying R4 to the permutation 1234 yields

the rainbow cycle depicted in Figure 2 (c).
For the induction step, we assume that n = 4` for some integer ` ≥ 1. From a rainbow

sequence Rn for Πn, we construct two new rainbow sequences, one for Πn+1 and another
one for Πn+4. This covers all values for which bn/2c is even. The inductive construction
is based on the following trick: replacing a transposition {i, j} in Rn by the sequence of
three transpositions ({i, n + 1}, {i, j}, {j, n + 1}) has the same effect on the entries of the
permutation, namely, swapping only the entries i and j and leaving the entry n+ 1 at the
same position. However, in the modified sequence the transpositions {i, n+ 1} and {j, n+ 1}
are used additionally. J

6 Subsets

In this section we consider the set of all k-element subsets of [n], denoted by Cn,k :=
([n]

k

)
,

also called (n, k)-combinations. The graph GC
n,k has vertex set Cn,k, and an edge {A,B}

between two sets A and B that differ in exchanging an element x for another element y, i.e.,
A \ B = {x} and B \ A = {y}; see Figure 2 (d). We label the edge {A,B} of GC

n,k with
the transposition A4B = {x, y} ∈ Cn,2. A 1-rainbow cycle in GC

n,k is a cycle of length
(

n
2
)

where every transposition appears exactly once. We only consider 1-rainbow cycles in this
setting, and we simply refer to them as rainbow cycles. Note that the number of vertices
of GC

n,k is
(

n
k

)
. Consequently, a rainbow cycle for k = 2 is in fact a Hamilton cycle, i.e., a

Gray code in the classical sense. Since GC
n,k and GC

n,n−k are isomorphic, including the edge
labels, we may assume without loss of generality that k ≤ n/2. Moreover, observe that for
k = 1 and n > 3, the length of the rainbow cycle exceeds the number of vertices of GC

n,k, so
we also assume that k ≥ 2. The following theorem summarizes the results in this setting.

I Theorem 6. Let n ≥ 4 and 2 ≤ k ≤ bn/2c. The flip graph of subsets GC
n,k has the following

properties:
(i) If n is even, there is no rainbow cycle in GC

n,k.
(ii) If n is odd and k = 2, then GC

n,2 has a rainbow Hamilton cycle.
(iii) If n is odd and k = 2, then GC

n,2 has two edge-disjoint rainbow Hamilton cycles.
(iv) If n is odd and 3 ≤ k < n/3, then GC

n,k has a rainbow cycle.

Proof of Theorem 6 (i). A fixed element x ∈ [n] is involved in n− 1 transpositions. If such
a transposition is applied to a set containing x, then the resulting set does not contain x,
and vice versa. In a rainbow cycle we return to the starting set and use each of these
transpositions exactly once, so n− 1 must be even, or equivalently, n must be odd. J

To prove parts (ii)–(iv) of Theorem 6, we construct rainbow cycles using a rainbow block.
To introduce this notion, we need some definitions. For a set A ⊆ [n], σ(A) denotes the set
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dist(Bi4Bi+1)
Bi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 dist(Bi) = |di|
B1 × × 1

3B2 × × 2
5B3 × × 3
7 = `− 1B4 × × 4
1B5 × × 5
6 = `− 2B6 × × 6
4B7 × × 7
2B8 × × 8

dist(B`4σ(B1))
= 8 = `

σ(B1) × ×

b1 = 17

16

1

15

14

13

12

11

10

3

4

5

6

7

8

2

9

+3

+1

−8

−5

+7

+6

−4

+2

Figure 6 A rainbow block for ` = 8. A cross in row Bi and column j indicates that j ∈ Bi. On
the right, the sequence (b1, b2, . . . , b`, 2) for this block is depicted as a path drawn in black. The
path drawn in gray represents another rainbow block, yielding a rainbow Hamilton cycle that is
edge-disjoint from the first cycle.

obtained from A by adding 1 to all elements, modulo n with {1, 2, . . . , n} as residue class
representatives; for a pair {x, y} ∈ Cn,2, we define dist({x, y}) := min{y − x, x − y} ∈ [`]
where the differences are taken modulo n. We call a sequence B = (B1, B2, . . . , B`) with
Bi ∈ Cn,k a rainbow block if C(B) :=

(
B, σ1(B), σ2(B), . . . , σ2`(B)

)
is a rainbow cycle

in GC
n,k. By definition, a rainbow cycle built from a rainbow block is highly symmetric.

Proof sketch of Theorem 6 (ii). Let n = 2` + 1 for some integer ` ≥ 2. We define a
sequence B = (B1, B2, . . . , B`) of pairs Bi ∈ Cn,2 such that the following conditions hold:
(a) Bi = {1, bi} for i ∈ [`] with 3 ≤ bi ≤ n and b1 = n, (b) {dist(Bi) | i ∈ [`]} = [`], and
(c) {dist(Bi4Bi+1) | i ∈ [` − 1]} ∪ {dist(B`4σ(B1)} = [`]. We claim that a sequence B
satisfying these conditions yields a rainbow cycle C = C(B). Indeed, (a) ensures that any
two consecutive sets in C differ in exactly one transposition, and (b) and (c) guarantee that
every pair A ∈ Cn,2 and every transposition T ∈ Cn,2, respectively, appear exactly once
along C. An example of a rainbow block satisfying these conditions is shown in Figure 6.

It remains to construct a rainbow block with Bi = {1, bi} and b1 = n. We define

di :=


(−1)i+1 · (2i+ 1) if i ≤ b(`− 1)/2c
(−1)i if i = b(`+ 1)/2c
(−1)i+1 · 2(`− i) if i ≥ b(`+ 2)/2c

and bi+1 := bi+di mod n for i ∈ [`−1].

This definition satisfies conditions (a) and (b), and dist(Bi4Bi+1) = |di| for all i ∈ [`− 1].
By definition, the set {|di| | i ∈ [`− 1]} equals [`] \ {`} if ` is even and it equals [`] \ {`− 1} if
` is odd. These missing numbers are contributed by dist(B`4σ(B1)), so (c) is satisfied. J

The sequence (b1, b2, . . . , b`, 2) can be interpreted as a path on the vertex set [n]; see the
right part of Figure 6. The edge lengths of this path measured along the shorter of the two
arcs along the cycle (1, 2, . . . , n) correspond to the |di|’s. We use this path representation to
prove parts (iii) and (iv) of Theorem 6.

7 Open problems

For all the combinatorial classes considered in this paper, it would be very interesting
to exhibit r-rainbow cycles for larger values of r, in particular for the flip graphs of
permutations and subsets. Another natural next step is to investigate rainbow cycles in
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other flip graphs, e.g., for non-crossing partitions of a convex point set or for dissections
of a convex polygon (see [17]).
We believe that the flip graph of non-crossing perfect matchings GM

m has no 1-rainbow cycle
for any m ≥ 5. This is open for the even values of m ≥ 12. Moreover, the subgraph Hm

of GM
m restricted to centered flips (see Figure 4) is a very natural combinatorial object

with many interesting properties that deserve further investigation. What is the number
of connected components of Hm and what is their size? Which components are trees and
which components contain cycles?
We conjecture that the flip graph of subsets GC

n,k has a 1-rainbow cycle for all 2 ≤ k ≤ n−2.
This is open for n/3 ≤ k ≤ 2n/3. In view of Theorem 6 (iii) we ask: does GC

n,2 have a
factorization into n− 2 edge-disjoint rainbow Hamilton cycles?
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