# Structure and Generation of Crossing-Critical Graphs 

Zdeněk Dvořák ${ }^{1}$<br>Charles University, Prague, Czech Republic<br>rakdver@iuuk.mff.cuni.cz<br>(D) https://orcid.org/0000-0002-8308-9746<br>Petr Hliněný ${ }^{2}$<br>Faculty of Informatics, Masaryk University, Brno, Czech Republic<br>hlineny@fi.muni.cz<br>(D) https://orcid.org/0000-0003-2125-1514<br>\section*{Bojan Mohar ${ }^{3}$}<br>Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada mohar@sfu.ca

(D) https://orcid.org/0000-0002-7408-6148


#### Abstract

We study $c$-crossing-critical graphs, which are the minimal graphs that require at least $c$ edgecrossings when drawn in the plane. For $c=1$ there are only two such graphs without degree- 2 vertices, $K_{5}$ and $K_{3,3}$, but for any fixed $c>1$ there exist infinitely many $c$-crossing-critical graphs. It has been previously shown that $c$-crossing-critical graphs have bounded path-width and contain only a bounded number of internally disjoint paths between any two vertices. We expand on these results, providing a more detailed description of the structure of crossing-critical graphs. On the way towards this description, we prove a new structural characterisation of plane graphs of bounded path-width. Then we show that every $c$-crossing-critical graph can be obtained from a $c$-crossing-critical graph of bounded size by replicating bounded-size parts that already appear in narrow "bands" or "fans" in the graph. This also gives an algorithm to generate all the $c$-crossing-critical graphs of at most given order $n$ in polynomial time per each generated graph.


2012 ACM Subject Classification Theory of computation $\rightarrow$ Computational geometry, Mathematics of computing $\rightarrow$ Graphs and surfaces

Keywords and phrases crossing number, crossing-critical, path-width, exhaustive generation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.33

Related Version A full version of this paper is available at arXiv:1803.01931.

Acknowledgements We would like to thank the anonymous referees for helpful comments on this submission.

[^0]
© Zdeněk Dvořák, Petr Hliněný, and Bojan Mohar;
licensed under Creative Commons License CC-BY
34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 33; pp. 33:1-33:14
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany


Figure 1 A schematic illustration of two basic methods of constructing crossing-critical graphs.

## 1 Introduction

Minimizing the number of edge-crossings in a graph drawing in the plane (the crossing number of the graph, cf. Definition 2.1) is considered one of the most important attributes of a "nice drawing" of a graph, and this question has found numerous other applications (for example, in VLSI design [12] and in discrete geometry [18]). Consequently, a great deal of research work has been invested into understanding what forces the graph crossing number to be high. There exist strong quantitative lower bounds, such as the famous Crossing Lemma $[1,12]$. However, the quantitative bounds show their strength typically in dense graphs, and hence they do not shed much light on the structural properties of graphs of high crossing number.

The reasons for sparse graphs to have many crossings in any drawing are structural there is a lot of "nonplanarity" in them. These reasons can be understood via corresponding minimal obstructions, the so called c-crossing-critical graphs (cf. Section 2 and Definition 2.2), which are the subgraph-minimal graphs that require at least $c$ crossings. There are only two 1-crossing-critical graphs without degree-2 vertices, the Kuratowski graphs $K_{5}$ and $K_{3,3}$, but it has been known already since Širán's [19] and Kochol's [11] constructions that the structure of $c$-crossing-critical graphs is quite rich and non-trivial for any $c \geq 2$. Already the first nontrivial case of $c=2$ shows a dramatic increase in complexity of the problem. Yet, Bokal, Oporowski, Richter, and Salazar recently succeeded in obtaining a full description [3] of all the 2-crossing-critical graphs up to finitely many "small" exceptions.

To our current knowledge, there is no hope of extending the explicit description from [3] to any value $c>2$. We, instead, give for any fixed positive integer $c$ an asymptotic structural description of all sufficiently large $c$-crossing-critical graphs.

Contribution outline. We refer to subsequent sections for the necessary formal concepts. On a high level of abstraction, our contribution can be summarized as follows:

1. There exist three kinds of local arrangements - a crossed band of uniform width, a twisted band, or a twisted fan - such that any optimal drawing of a sufficiently large $c$-crossing-critical graph contains at least one of them.
2. There are well-defined local operations (replacements) performed on such bands or fans that can reduce any sufficiently large $c$-crossing-critical graph to one of finitely many base $c$-crossing-critical graphs.
3. A converse - a well-defined bounded-size expansion operation - can be used to iteratively construct each $c$-crossing-critical graph from a $c$-crossing-critical graph of bounded size. This yields a way to enumerate all the $c$-crossing-critical graphs of at most given order $n$ in polynomial time per each generated graph. More precisely, the total runtime is $O(n)$ times the output size.

To give a closer (but still informal) explanation of these points, we should review some of the key prior results. First, the infinite 2-crossing-critical family of Kochol [11] explicitly showed one basic method of constructing crossing-critical graphs - take a sequence of suitable small planar graphs (called tiles, cf. Section 3), concatenate them naturally into a plane strip and join the ends of this strip with the Möbius twist. See Figure 1. Further constructions of this kind can be found, e.g., in [2, 14, 16]. In fact, [3] essentially claims that such a Möbius twist construction is the only possibility for $c=2$; there, the authors give an explicit list of 42 tiles which build in this way all the 2-crossing-critical graphs up to finitely many exceptions.

The second basic method of building crossing-critical graphs was invented later by Hliněný [9]; it can be roughly described as constructing a suitable planar strip whose ends are now joined without a twist (i.e., making a cylinder), and adding to it a few edges which then have to cross the strip. See again Figure 1 for an illustration. Furthermore, diverse crossing-critical constructions can easily be combined together using so called zip product operation of Bokal [2] which preserves criticality. To complete the whole picture, there exists a third, somehow mysterious method of building $c$-crossing-critical graphs (for sufficiently high values of $c$ ), discovered by Dvořák and Mohar in [5]. The latter can be seen as a degenerate case of the Möbius twist construction, such that the whole strip shares a central high-degree vertex, and we skip more details till the technical parts of this paper.

As we will see, the three above sketched construction methods roughly represent the three kinds of local arrangements mentioned in point (1). In a sense, we can thus claim that no other method (than the previous three) of constructing infinite families of $c$-crossing-critical graphs is possible, for any fixed $c$. Moving on to point (2), we note that all three mentioned construction methods involve long (and also "thin") planar strips, or bands as subgraphs (which degenerate into fans in the third kind of local arrangements; cf. Definition 3.1). We will prove, see Corollary 3.6, that such a long and "thin" planar band or fan must exist in any sufficiently large $c$-crossing-critical graph, and we analyse its structure to identify elementary connected tiles of bounded size forming the band. We then argue that we can reduce repeated sections of the band while preserving $c$-crossing-criticality. Regarding point (3), the converse procedure giving a generic bounded-size expansion operation on $c$-crossing-critical graphs is described in Theorem 4.9 (for a quick illustration, the easiest case of such an expansion operation is edge subdivision, that is replacing an edge with a path, which clearly preserves $c$-crossing-criticality).

Paper organization. After giving the definitions and preliminary results about crossingcritical graphs in Section 2, we show a new structural characterisation of plane graphs of bounded path-width which forms the cornerstone of our paper in Section 3. Then, in Section 4, we deal with the structure and reductions / expansions of crossing-critical graphs, presenting our main results. In Section 5 we outline the technical steps leading to our cornerstone characterisation from Section 3. Some final remarks are presented in Section 6.

Due to restrictions on the length of the paper, some technical details and proofs of our statements are left for the full paper. Statements whose proofs are in the full paper are marked with (*).

## 2 Graph drawing and the crossing number

In this paper, we consider multigraphs by default, even though we could always subdivide parallel edges (with a slight adjustment of definitions) in order to make our graphs simple. We follow basic terminology of topological graph theory, see e.g. [13].

A drawing of a graph $G$ in the plane is such that the vertices of $G$ are distinct points and the edges are simple curves joining their end vertices. It is required that no edge passes through a vertex, and no three edges cross in a common point. A crossing is then an intersection point of two edges other than their common end. A drawing without crossings in the plane is called a plane drawing of a graph, or shortly a plane graph. A graph having a plane drawing is planar.

The following are the core definitions of our research.

- Definition 2.1 (crossing number). The crossing number $\operatorname{cr}(G)$ of a graph $G$ is the minimum number of crossings of edges in a drawing of $G$ in the plane.
- Definition 2.2 (crossing-critical). Let $c$ be a positive integer. A graph $G$ is $c$-crossing-critical if $\operatorname{cr}(G) \geq c$, but every proper subgraph $G^{\prime}$ of $G$ has $\operatorname{cr}\left(G^{\prime}\right)<c$.

Furthermore, suppose $G$ is a graph drawn in the plane with crossings. Let $G^{\prime}$ be the plane graph obtained from this drawing by replacing the crossings with new vertices of degree 4 . We say that $G^{\prime}$ is the plane graph associated with the drawing, shortly the planarization of $G$, and the new vertices are the crossing vertices of $G^{\prime}$.

Preliminaries. Structural properties of crossing-critical graphs have been studied for more than two decades, and we now briefly review some of the previous important results which we shall use. First, we remark that a $c$-crossing-critical graph may have no drawing with only $c$ crossings (examples exist already for $c=2$ ). Richter and Thomassen [15] proved the following upper bound:

- Theorem 2.3 ([15]). Every c-crossing-critical graph has a drawing with at most $\lceil 5 c / 2+16\rceil$ crossings.

Interestingly, although the bound of Theorem 2.3 sounds rather weak and we do not know any concrete examples requiring more than $c+\mathcal{O}(\sqrt{c})$ crossings, the upper bound has not been improved for more than two decades. We not only use this important upper bound, but also hope to be able to improve it in the future using our results.

Our approach to dealing with "long and thin" subgraphs in crossing-critical graphs relies on the folklore structural notion of path-width of a graph, which we recall in Definition 3.4. Hliněný [7] proved that $c$-crossing-critical graphs have path-width bounded in terms of $c$, and he and Salazar [8] showed that $c$-crossing-critical graphs can contain only a bounded number of internally disjoint paths between any two vertices.

- Theorem 2.4 ([7]). Every c-crossing-critical graph has path-width (cf. Definition 3.4) at most $\left\lceil 2^{6\left(72 \log _{2} c+248\right) c^{3}+1}\right\rceil$.

Another useful concept for this work is that of nests in a drawing of a graph (cf. Definition 3.3 ), implicitly considered already in previous works [7, 8], and explicitly defined by Hernandez-Velez et al. [6] who concluded that no optimal drawing of a $c$-crossing-critical graph can contain a $0-, 1$-, or 2 -nest of large depth compared to $c$.

Lastly, we remark that by trivial additivity of the crossing number over blocks, we may (and will) restrict our attention only to 2 -connected crossing-critical graphs. We formally argue as follows. For $c, \delta>0$, let us say a graph is $(c, \delta)$-crossing-critical if it has crossing number exactly $c$ and all proper subgraphs have crossing number at most $c-\delta$.

- Proposition 2.5 (folklore). A graph $H$ is c-crossing-critical if and only if there exist positive integers $c_{1}, \ldots, c_{b}$ and $\delta$ such that $c \leq c_{1}+\cdots+c_{b} \leq c+\delta-1, H$ has exactly $b 2$-connected blocks $H_{1}, \ldots, H_{b}$, and the block $H_{i}$ is $\left(c_{i}, \delta\right)$-crossing-critical for $i=1, \ldots, b$.


Figure 2 An example of paths $P_{1}, \ldots, P_{6}$ (bold lines) forming an $\left(F_{1}, F_{2}\right)$-band of length 6 , cf. Definition 3.1. The five tiles of this band, as in Definition 3.2, are shaded in grey and the dashed arcs represent $\alpha_{i}$ and $\alpha_{i}^{\prime}$ from that definition.

Hence, strictly respecting Proposition 2.5 , we should actually study 2-connected ( $c, \delta$ )-cros-sing-critical graphs. To keep the presentation simpler, we stick with $c$-crossing-critical graphs, but we remark that our results also hold in the more refined setting.

## 3 Structure of plane tiles

The proof of our structural characterisation of crossing-critical graphs can be roughly divided into two main parts. The first one, presented in this section (leaving technical prerequisites for later Section 5), establishes the existence of specific plane bands (resp. fans) and their tiles in crossing-critical graphs. The second part will then, in Section 4, closely analyse these bands and tiles. Unlike a more traditional "bottom-up" approach to tiles in crossing number research (e.g., [3]), we define tiles and deal with them "top-down", i.e., describing first plane bands or fans and then identifying tiles as their small elementary parts. Our key results are summarized below in Theorem 3.5 and Corollary 3.6.

- Definition 3.1 (band and fan). Let $G$ be a 2-connected plane graph. Let $F_{1}$ and $F_{2}$ be distinct faces of $G$ and let $v_{1}, v_{2}, \ldots, v_{m}$, and $u_{1}, u_{2}, \ldots, u_{m}$ be some of the vertices incident with $F_{1}$ and $F_{2}$, respectively, listed in the cyclic order along the faces. If $P_{1}, \ldots, P_{m}$ are pairwise vertex-disjoint paths in $G$ such that $P_{i}$ joins $v_{i}$ with $u_{m+1-i}$, for $1 \leq i \leq m$, then we say that $\left(P_{1}, \ldots, P_{m}\right)$ forms an $\left(F_{1}, F_{2}\right)$-band of length $m$. Note that $P_{i}$ may consist of only one vertex $v_{i}=u_{m+1-i}$.

Let $F_{1}$ and $v_{1}, v_{2}, \ldots, v_{m}$ be as above. If $u$ is a vertex of $G$ and $P_{1}, \ldots, P_{m}$ are paths in $G$ such that $P_{i}$ joins $v_{i}$ with $u$, for $1 \leq i \leq m$, and the paths are pairwise vertex-disjoint except for their common end $u$, then we say that $\left(P_{1}, \ldots, P_{m}\right)$ forms an $\left(F_{1}, u\right)$-fan of length $m$. The $\left(F_{1}, u\right)$-fan is proper if $u$ is not incident with $F_{1}$.

- Definition 3.2 (tiles and support). Let $\left(P_{1}, \ldots, P_{m}\right)$ be either an $\left(F_{1}, F_{2}\right)$-band or an $\left(F_{1}, u\right)$-fan of length $m \geq 3$. For $1 \leq i \leq m-1$, let $\alpha_{i}$ be an arc between $v_{i}$ and $v_{i+1}$ drawn inside $F_{1}$, and let $\alpha_{i}^{\prime}$ be an arc drawn between $u_{i}$ and $u_{i+1}$ in $F_{2}$ in the case of the band; $\alpha_{i}^{\prime}$ are null when we are considering a fan. Furthermore, choose the arcs to be internally disjoint. Let $\theta_{i}$ be the closed curve consisting of $P_{i}, \alpha_{i}, P_{i+1}$, and $\alpha_{m-i}^{\prime}$. Let $\lambda_{i}$ be the connected part of the plane minus $\theta_{i}$ that contains none of the paths $P_{j}(1 \leq j \leq m)$ in its interior. The subgraphs of $G$ drawn in the closures of $\lambda_{1}, \ldots, \lambda_{m-1}$ are called tiles of the band or fan (and the tile of $\lambda_{i}$ includes $P_{i} \cup P_{i+1}$ by this definition). The union of these tiles is the support of the band or fan.


Figure 3 An illustration of Definition 3.3: a 1-nest, a 2-nest, and an $F$-nest, each of depth 6.

- Definition 3.3 (nests). Let $G$ be a 2 -connected plane graph. For an integer $k \geq 0$, a $k$-nest in $G$ of depth $m$ is a sequence $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ of pairwise edge-disjoint cycles such that for some set $K$ of $k$ vertices and for every $i<j$, the cycle $C_{i}$ is drawn in the closed disk bounded by $C_{j}$ and $V\left(C_{i}\right) \cap V\left(C_{j}\right)=K$.

Let $F$ be a face of $G$ and let $v_{1}, v_{2}, \ldots, v_{2 m}$ be some of the vertices incident with $F$ listed in the cyclic order along the face. Let $P_{1}, \ldots, P_{m}$ be pairwise vertex-disjoint paths in $G$ such that $P_{i}$ joins $v_{i}$ with $v_{2 m+1-i}$, for $1 \leq i \leq m$. Then, we say that $\left(P_{1}, \ldots, P_{m}\right)$ forms an $F$-nest of depth $m$. Similarly, let $v_{1}, v_{2}, \ldots, v_{m}, u$ be some of the vertices incident with $F$, let $P_{1}, \ldots, P_{m}$ be paths in $G$ such that $P_{i}$ joins $v_{i}$ with $u$, for $1 \leq i \leq m$, and the paths intersect only in $u$. Then, we say that $\left(P_{1}, \ldots, P_{m}\right)$ form a degenerate $F$-nest of depth $m$.

See Figure 3. Note that degenerate $F$-nests are the same as non-proper $(F, u)$-fans.
Our cornerstone claim, interesting on its own, is a structure theorem for plane graphs of bounded path-width. Before stating it, we recall the definition of path-width.

- Definition 3.4. A path decomposition of a graph $G$ is a pair $(P, \beta)$, where $P$ is a path and $\beta$ is a function that assigns subsets of $V(G)$, called bags, to nodes of $P$ such that
- for each edge $u v \in E(G)$, there exists $x \in V(P)$ such that $\{u, v\} \subseteq \beta(x)$, and
- for every $v \in V(G)$, the set $\{x \in V(P): v \in \beta(x)\}$ induces a non-empty connected subpath of $P$.
The width of the decomposition is the maximum of $|\beta(x)|-1$ over all vertices $x$ of $P$, and the path-width of $G$ is the minimum width over all path decompositions of $G$.
- Theorem 3.5 (*) $^{*}$. Let $w, m$, and $k_{0}$ be non-negative integers, and $g: \mathbf{N} \rightarrow \mathbf{N}$ be an arbitrary non-decreasing function. There exist integers $w_{0}$ and $n_{0}$ such that the following holds. Let $G$ be a 2-connected plane graph and let $Y$ be a set of at most $k_{0}$ vertices of $G$ of degree at most 4. If $G$ has path-width at most $w$ and $|V(G)| \geq n_{0}$, then one of the following holds:
- $G$ contains a 0-nest, a 1-nest, a 2-nest, an $F$-nest, or a degenerate $F$-nest for some face $F$ of $G$, of depth $m$, and with all its cycles or paths disjoint from $Y$, or
- for some $w^{\prime} \leq w_{0}, G$ contains an $\left(F_{1}, F_{2}\right)$-band or a proper $\left(F_{1}, u\right)$-fan (where $F_{1}$ and $F_{2}$ are distinct faces and $u$ is a vertex) of length at least $g\left(w^{\prime}\right)$ and with support disjoint from $Y$, such that each of its tiles has size at most $w^{\prime}$.

We pay close attention to explaining Theorem 3.5, because of its great importance in this paper. Comparing it to Definition 3.4, one may think that there is not much difference - the bags $\beta(x)$ of a path decomposition of $G$ of width at most $w^{\prime}$ might perhaps play the role of tiles of the band or fan in the second conclusion. Unfortunately, this simple idea is quite far from the truth. The subgraphs induced by the bags may not be "drawn locally", that is, its edges may be geometrically far apart in the plane graph $G$. As an example, consider the width 2 path decomposition of a cycle where one of the vertices of the cycle appears in all the bags.

The main message of Theorem 3.5 thus is that in a plane graph of bounded path-width we can find a long band which is "drawn locally" and decomposes into well-defined small and connected tiles (cf. Definition 3.2). Otherwise, such a graph must contain some kind of a deep nest or fan. However, as we will see soon in Corollary 3.6, the latter structures are impossible in the planarizations of optimal drawings of crossing-critical graphs.

The proof of Theorem 3.5 requires some preparatory work, and it uses tools of structural graph theory and of semigroup theory in algebra. Since these tools are quite far from the main topic of this paper, we defer their presentation and an outline of their application towards Theorem 3.5 till Section 5. Instead, we now continue with an application of the theorem in the study of crossing-critical graph structure, as a strengthening of Theorem 2.4.

- Corollary 3.6. Let c be a positive integer, and let $g: \mathbf{N} \rightarrow \mathbf{N}$ be an arbitrary non-decreasing function. There exist integers $w_{0}$ and $n_{0}$ such that the following holds. Let $G$ be a 2-connected c-crossing-critical graph, and let $G^{\prime}$ be the plane graph associated with a drawing of $G$ with the minimum number of crossings. Let $Y$ denote the set of crossing vertices of $G^{\prime}$. If $|V(G)| \geq n_{0}$, then for some $w^{\prime} \leq w_{0}, G^{\prime}$ contains an $\left(F_{1}, F_{2}\right)$-band or a proper $\left(F_{1}, u\right)$-fan (where $F_{1}$ and $F_{2}$ are distinct faces and $u$ is a vertex) of length at least $g\left(w^{\prime}\right)$ and with support disjoint from $Y$, such that each of its tiles has size at most $w^{\prime}$.

Proof. Let $k_{0}=\lceil 5 c / 2+16\rceil$, $w=\left\lceil 2^{6\left(72 \log _{2} c+248\right) c^{3}+1}\right\rceil+k_{0}$ and $m=15 c^{2}+105 c+16$. Let $w_{0}$ and $n_{0}$ be the corresponding integers from Theorem 3.5.

By Theorem 2.3, each $c$-crossing-critical graph has a drawing with at most $k_{0}$ crossings, and thus $|Y| \leq k_{0}$. By Theorem 2.4, $G$ has path-width at most $w-k_{0}$, and thus $G^{\prime}$ has path-width at most $w$. Hliněný and Salazar [8] and Hernandez-Velez et al. [6] proved that the graph $G^{\prime}$ obtained from a $c$-crossing-critical graph $G$ as described does not contain a 0 -, 1- and 2-nests of depth $m$ with cycles disjoint from $Y$. Furthermore, arguments analogous to (some of) those used in [7] can prove that no face $F$ of $G^{\prime}$ has an $F$-nest or a degenerate $F$-nest of depth $m$ with paths disjoint from $Y$. Further details are left for the full paper.

## 4 Removing and inserting tiles

In the second part of the paper, we study an arrangement of bounded tiles in a long enough plane band or fan (as described by Corollary 3.6), focusing on finding repeated subsequences which then could be shortened. Importantly, this shortening preserves $c$-crossing-criticality. In the opposite direction we then manage to define the converse operation of "expansion" of a plane band which also preserves $c$-crossing-criticality. These findings will imply the final outcome - a construction of all $c$-crossing-critical graphs from an implicit list of base graphs of bounded size. The formal statement can be found in Theorem 4.9.

Again, we start with a few relevant technical terms. Recall Definition 3.1.

- Definition 4.1 (subband, necklace and shelled band). Let $\mathcal{P}=\left(P_{1}, \ldots, P_{m}\right)$ be an $\left(F_{1}, F_{2}\right)$ band or an $\left(F_{1}, u\right)$-fan in a 2-connected plane graph. A subband or subfan consists of a contiguous subinterval $\left(P_{i}, P_{i+1}, \ldots, P_{j}\right)$ of the band or fan (and its support is a subset of the support of the original band or fan).

We say that the band $\mathcal{P}$ is a necklace if each of its paths consists of exactly one vertex. A tile (cf. Definition 3.2) of the band or fan $\mathcal{P}$ is shelled if it is bounded by a cycle, consisting of two consecutive paths $P_{i}$ and $P_{i+1}$ of $\mathcal{P}$ and parts of the boundary of $F_{1}$ and $F_{2}$ (respectively, $u$ ), and the two paths $P_{i}, P_{i+1}$ delimiting the tile have at least two vertices each. The band or fan $\mathcal{P}$ is shelled if each of its tiles is shelled. See Figure 4.


Figure 4 An example of an $\left(F_{1}, F_{2}\right)$-band of length 6 ; this band is shelled (cf. Definition 4.1) and the bounding cycles of the tiles are emphasized in bold lines.

One can easily show that, regarding the outcome of Corollary 3.6, there are only the following two refined subcases that have to be considered in further analysis:

- Lemma 4.2 (*). Let $w$ be a positive integer and $f: \mathbf{N} \rightarrow \mathbf{N}$ be an arbitrary non-decreasing $^{*}$ function. There exist integers $n_{0}$ and $w^{\prime}$ such that the following holds. Let $G$ be a 2-connected plane graph, and let $\mathcal{P}=\left(P_{1}, \ldots, P_{m}\right)$ be an $\left(F_{1}, F_{2}\right)$-band or a proper $\left(F_{1}, u\right)$-fan in $G$ of length $m \geq n_{0}$, with all tiles of size at most $w$. Then either $G$ contains a shelled subband or subfan of $\mathcal{P}$ of length $f(w)$, or $G$ contains a necklace of length $f\left(w^{\prime}\right)$ with tiles of size at most $w^{\prime}$ whose support is contained in the support of $\mathcal{P}$.

Reducing a necklace. Among the two subcases left by Lemma 4.2, the easier one is that of a necklace which can be reduced simply to a bunch of parallel edges; see also Figure 5.

- Lemma 4.3. Let $c$ be a non-negative integer. Let $G$ be a 2-connected c-crossing-critical graph, and let $G^{\prime}$ be the planarization of a drawing of $G$ with the smallest number of crossings. Let $Y$ denote the set of crossing vertices of $G^{\prime}$. Suppose that $\mathcal{P}=\left(v_{1}, \ldots, v_{m}\right)$, where $m \geq 2$, is a necklace in $G^{\prime}$ whose support is disjoint from $Y$. Then for some $p \leq c$, the support of $\mathcal{P}$ consists of $p$ pairwise edge-disjoint paths from $v_{1}$ to $v_{m}$. Furthermore, the graph $G_{0}$ obtained from $G$ by removing the support of $\mathcal{P}$ except for $v_{1}$ and $v_{m}$ and by adding $p$ parallel edges between $v_{1}$ and $v_{m}$ is c-crossing-critical.

Proof. Let $G_{1}$ denote the subgraph of $G$ obtained by removing the support of $\mathcal{P}$ except for $v_{1}$ and $v_{m}$. Let $p$ be the maximum number of pairwise edge-disjoint paths from $v_{1}$ to $v_{m}$ in the support $S$ of $\mathcal{P}$. Suppose for a contradiction that either $p \geq c+1$ or some edge $e$ of $S$ is not contained in an edge-cut of size $p$ separating $v_{1}$ from $v_{m}$. In the former case, let $e$ be an arbitrary edge of $S$. Let $q=c$ if $p \geq c+1$ and $q=p$ otherwise.

By criticality of $G$, the graph $G-e$ can be drawn in the plane with at most $c-1$ crossings. Consider the drawing of $G_{1}$ induced by this drawing, and let $a$ be the minimum number of edges that have to be crossed by any curve in the plane from $v_{1}$ to $v_{m}$ and otherwise disjoint from $V\left(G_{1}\right)$. Note that $a \geq 1$, since otherwise we could draw $S$ without crossings between $v_{1}$ and $v_{m}$, obtaining a drawing of $G$ with fewer than $c$ crossings. Since $G-e$ contains $q$ pairwise edge-disjoint paths from $v_{1}$ to $v_{m}$ which are not contained in $G_{1}$, we conclude that $\operatorname{cr}(G-e) \geq \operatorname{cr}\left(G_{1}\right)+a q \geq q$. Since $\operatorname{cr}(G-e)<c$, we have $q<c$. It follows that $q=p$ and $\operatorname{cr}\left(G_{1}\right)<c-a p$. However, $S$ contains an edge-cut $C$ of order $p$ separating $v_{1}$ from $v_{m}$ by Menger's theorem, and we can add $S$ to the drawing $G_{1}$ so that exactly the edges of $C$ are crossed, and each of them exactly $a$ times (by drawing the part of $S$ between $v_{1}$ and $C$ close to $v_{1}$, and the part of $S$ between $v_{m}$ and $C$ close to $v_{m}$ ). This way, we obtain a drawing of $G$ with $\operatorname{cr}\left(G_{1}\right)+a p<c$ crossings. This is a contradiction, which shows that $p \leq c$ and that $S$ is the union of $p$ edge-disjoint paths from $v_{1}$ to $v_{m}$.


Figure 5 Inserting or removing a necklace (cf. Lemma 4.3 with $p=m=4$ ).

Any drawing of $G_{0}$ can be transformed into a drawing of $G$ with at most as many crossings in the same way as described in the previous paragraph. Thus $\operatorname{cr}\left(G_{0}\right) \geq c$. Consider now any edge $e_{0}$ of $G_{0}$. If $e_{0}$ is one of the parallel edges between $v_{1}$ and $v_{m}$, then let $e^{\prime}$ be any edge of $S$ and $p^{\prime}=p-1$, otherwise let $e^{\prime}=e_{0}$ and $p^{\prime}=p$. By the $c$-crossing-criticality of $G$, there exists a drawing of $G-e^{\prime}$ with less than $c$ crossings. Consider the induced drawing of $G_{1}-e^{\prime}$, and let $a^{\prime}$ denote the minimum number of edges in this drawing that have to be crossed by any curve in the plane from $v_{1}$ to $v_{m}$ and otherwise disjoint from $V\left(G_{1}\right)$. Since $S-e^{\prime}$ contains $p^{\prime}$ edge-disjoint paths from $v_{1}$ to $v_{m}$, we conclude that $\operatorname{cr}\left(G-e^{\prime}\right) \geq \operatorname{cr}\left(G_{1}-e^{\prime}\right)+a^{\prime} p^{\prime}$. We can add $p^{\prime}$ edges between $v_{1}$ and $v_{m}$ to the drawing of $G_{1}-e^{\prime}$ to form a drawing of $G_{0}-e_{0}$ with at most $\operatorname{cr}\left(G_{1}-e^{\prime}\right)+a^{\prime} p^{\prime} \leq \operatorname{cr}\left(G-e^{\prime}\right)<c$ crossings. Consequently, $G_{0}$ is $c$-crossing-critical.

Observe that replacing a parallel edge of multiplicity $p$ between vertices $u$ and $v$ in a $c$-crossing-critical graph with any set of $p$ edge-disjoint plane paths from $u$ to $v$ gives another $c$-crossing-critical graph. So, the reduction of Lemma 4.3 works in the other direction as well. This two-way process is exhibited by an example with $p=m=4$ in Figure 5 .

Reducing a shelled band or fan. If we could follow the same proof scheme as with necklaces also in the remaining cases of shelled bands and fans, then we would already reach the final goal. Unfortunately, the latter cases are more involved, and require some preparatory work. Compared to the easier case of a necklace, the important difference in the case of a shelled band comes from the fact that the band may be drawn not only in the "straight way" but also in the "twisted way" (recall Figure 1). An indication that this is troublesome comes from the result of Hliněný and Derňár [10], who showed that determining the crossing number of a twisted planar tile is NP-complete (and thus it is not determined by a simple parameter such as the number of edge-disjoint paths between its sides). Consequently, the analysis of shelled bands is significantly more complicated than the relatively straightforward proof of Lemma 4.3. The same remark applies to the shelled fans.

That is why we leave the full details and proofs of the remaining cases for the full paper. Before we dive into technical details needed to at least formulate the final result, Theorem 4.9, we present an informal outline of our approach:

1. Having a very long shelled band $\mathcal{P}$ in our graph $G$, it is easy to see that the isomorphism types of bounded-size tiles in $\mathcal{P}$ must repeat. Moreover, even bounded-length subbands must have isomorphic repetitions. The first idea is to shorten the band between such repeated isomorphic subbands $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$ - by identifying the repeated pieces and discarding what was between (cf. Definition 4.5). If the repeated subband is long enough, we can use some rather easy connectivity properties of $\mathcal{P}$ to show that this yields a smaller graph $G_{1}$ of crossing number at least $c$.


Figure 6 A scheme of a reducible subband $\mathcal{P}^{\prime}$ (in grey) with repetition $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ of order 3 (darker grey), as in Definition 4.5, and the result of the reduction on $\mathcal{P}^{\prime}$ (on the right).
2. Though, it is not clear that the reduced graph $G_{1}$ is $c$-crossing-critical. Analogously to Lemma 4.3, for any edge $e \in E\left(G_{1}\right)$, we would like to transform a drawing of $G-e$ with less than $c$ crossings to a drawing of $G_{1}-e$ with less than $c$ crossings. However, if the drawing of $G-e$ uses some unique properties of the part $\mathcal{P}_{12}$ of the band between $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$, we have no way how to mimic this in the drawing of $G_{1}-e$ (this is especially troublesome if this part of $G-e$ is drawn in a twisted way, since there is no easy description of what these "unique properties" might be by the NP-completeness result [10]).
We overcome this difficulty by performing the described reduction only inside longer pieces which repeat elsewhere in the band (cf. Definition 4.6). Hence, in $G_{1}-e$ we have many copies of $\mathcal{P}_{12}$, and by appropriate surgery, we can use one of them to mimic the drawing of $\mathcal{P}_{12}$ in $G-e$.
3. A further advantage of reducing within parts that repeat elsewhere is that we can more explicitly describe the converse expansion operation, as duplicating subbands which already exist elsewhere in the (reduced) band.
Let us remark that considering a shelled $(F, u)$-fan instead of a band is not different, all the arguments simply carry over. The following additional definitions are needed to formalize the outlined claims.

Let $\mathcal{P}=\left(P_{1}, \ldots, P_{m}\right)$ be an $\left(F_{1}, F_{2}\right)$-band or an $\left(F_{1}, u\right)$-fan in a 2 -connected plane graph $G$, and let $T_{i}$ be the tile of $\mathcal{P}$ delimited by $P_{i}$ and $P_{i+1}$. We say that the band $\mathcal{P}$ is $k$-edgelinked if $k \in \mathbf{N}$ and there exist $k$ pairwise edge-disjoint paths from $V\left(P_{1}\right)$ to $V\left(P_{m}\right)$ contained in the support of $\mathcal{P}$, and for each $i=1, \ldots, m-1$, the tile $T_{i}$ contains an edge-cut of size $k$ separating $V\left(P_{i}\right)$ from $V\left(P_{i+1}\right)$.

Similarly, the fan $\mathcal{P}$ is $k$-edge-linked if there exist $k$ pairwise edge-disjoint paths from $V\left(P_{1}\right) \backslash\{u\}$ to $V\left(P_{m}\right) \backslash\{u\}$ contained in the support of $\mathcal{P}$ minus $u$, and for each $i=1, \ldots, m-1$, the sub-tile $T_{i}-u$ contains an edge-cut of size $k$ separating $V\left(P_{i}\right) \backslash\{u\}$ from $V\left(P_{i+1}\right) \backslash\{u\}$. For a closer explanation, one may say that, modulo a trivial adjustment, the fan $\mathcal{P}$ is $k$-edge-linked iff the corresponding band in $G-u$ is $k$-edge-linked.

- Definition 4.4 (isomorphic tiles). Two $\left(F_{1}, F_{2}\right)$-bands or $\left(F_{1}, u\right)$-fans $\mathcal{P}_{1}=\left(P_{1}, \ldots, P_{m}\right)$ and $\mathcal{P}_{2}=\left(P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right)$ are isomorphic if there exists a homeomorphism mapping the support of $\mathcal{P}_{1}$ to the support of $\mathcal{P}_{2}$ and mapping the path $P_{i}$ to $P_{i}^{\prime}$ for $i=1, \ldots, m$, where the paths are taken as directed away from $F_{1}$ (i.e., the homeomorphism must map the vertex of $P_{i}$ incident with $F_{1}$ to the vertex of $P_{i}^{\prime}$ incident with $F_{1}$ ).
- Definition 4.5 (band or fan reduction). Let $G$ be a graph drawn in the plane with crossings. Let $G^{\prime}$ be the planarization of $G$ and let $Y$ denote the set of crossing vertices of $G^{\prime}$. Let $\mathcal{P}$ be an $\left(F_{1}, F_{2}\right)$-band or an $\left(F_{1}, u\right)$-fan in $G^{\prime}$ whose support is disjoint from $Y$. Suppose $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$ are isomorphic subbands or subfans of $\mathcal{P}$, with disjoint supports, except for the
vertex $u$ when $\mathcal{P}$ is a fan, and not containing the first and the last path of $\mathcal{P}$. Let $\mathcal{P}^{\prime}$ be the minimal subband or subfan of $\mathcal{P}$ containing both $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$. We then say that $\mathcal{P}^{\prime}$ is a reducible subband or subfan with repetition $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$. See Figure 6. The order of this repetition $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ equals the length of $\mathcal{P}_{1}$ (which is the same as the length of $\left.\mathcal{P}_{2}\right)$.

Let $P_{1}$ and $P_{2}$ be the last paths of $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$, respectively. Denote by $S$ the support of the subband or subfan between $P_{1}$ and $P_{2}$, excluding these two paths. Let $G_{1}^{\prime}$ be obtained from $G^{\prime}$ by removing $S$ and by identifying $P_{1}$ with $P_{2}$ (stretching the drawing of the support of $\mathcal{P}_{1}$ within the area originally occupied by $S$ ). Let $G_{1}$ be obtained from $G_{1}^{\prime}$ by turning the vertices of $Y$ back into crossings. For clarity, note that the support of $\mathcal{P}^{\prime}$ is disjoint from $Y$, and so $\mathcal{P}^{\prime}$ is also a band or fan in a plane subgraph of $G$. We then say that $G_{1}$ is the reduction of $G$ on $\mathcal{P}^{\prime}$.

- Definition 4.6 ( $t$-typical subband or subfan). We say that, in an ( $F_{1}, F_{2}$ )-band or an ( $F_{1}, u$ )-fan $\mathcal{P}$, a subband $\mathcal{Q}$ is $t$-typical if the following holds: there exist subbands or subfans $\mathcal{P}_{1}, \ldots, \mathcal{P}_{2 t+1}$ of $\mathcal{P}$ appearing in this order, such that they are pairwise isomorphic, with pairwise disjoint supports except for the vertex $u$ when $\mathcal{P}$ is a fan, and $\mathcal{Q}=\mathcal{P}_{t+1}$.
- Lemma $4.7\left(^{*}\right)$. Let $G$ be a 2 -connected c-crossing-critical graph drawn in the plane with the minimum number of crossings. Let $G^{\prime}$ be the planarization of $G$ and let $Y$ denote the set of crossing vertices of $G^{\prime}$. Let $c_{0}=\lceil 5 c / 2+16\rceil$ and $k \in \mathbf{N}$. Let $\mathcal{P}$ be a $k$-edge-linked shelled $\left(F_{1}, F_{2}\right)$-band or proper $\left(F_{1}, u\right)$-fan in $G^{\prime}$ whose support is disjoint from $Y$. Let $\mathcal{Q}$ be a subband or subfan of $\mathcal{P}$ which is reducible with repetition of order at least $12 c_{0}+2 k$. If $\mathcal{Q}$ is c-typical in $\mathcal{P}$, then the reduction $G_{1}$ of $G$ on $\mathcal{Q}$ is a c-crossing-critical graph again.

Expanding a band, fan or a necklace. Finally, it is time to formally define what is a generic converse operation of the instances of reduction considered by Lemmas 4.7 and 4.2:

- Definition 4.8 ( $n$-bounded expansion). Let $G$ be a 2 -connected $c$-crossing-critical graph drawn in the plane with the minimum number of crossings. Let $G^{\prime}$ be the planarization of $G$ and let $Y$ denote the set of crossing vertices of $G^{\prime}$. Let $c_{0}=\lceil 5 c / 2+16\rceil$. Assume $\mathcal{P}$ is a $k$-edge-linked shelled $\left(F_{1}, F_{2}\right)$-band or proper $\left(F_{1}, u\right)$-fan in $G^{\prime}$ whose support is disjoint from $Y$. Let $\mathcal{Q}$ be a $c$-typical subband or subfan of $\mathcal{P}$ which is reducible with repetition of order at least $12 c_{0}+2 k$. Let the number of vertices of the support of $\mathcal{Q}$ be at most $n$, and let $G_{1}$ denote the reduction of $G$ on $\mathcal{Q}$. In these circumstances, we say that $G$ is an $n$-bounded expansion of $G_{1}$.

Assume $\mathcal{P}^{\prime}$ is a necklace in $G^{\prime}$ whose support is disjoint from $Y$, and let $\mathcal{Q}^{\prime}=\left(v_{1}, v_{2}\right)$ be a 1-typical subband of $\mathcal{P}^{\prime}$ of length 2 . Let $G_{2}$ be obtained from $G$ by replacing the support $S$ of $\mathcal{Q}^{\prime}$ by a parallel edge of multiplicity equal to the maximum number of pairwise edge-disjoint paths between $v_{1}$ and $v_{2}$ in $S$. Let the number of vertices of the support of $\mathcal{Q}^{\prime}$ be at most $n$. In these circumstances, we also say that $G$ is an $n$-bounded expansion of $G_{1}$.

- Theorem $4.9\left(^{*}\right)$. For every integer $c \geq 1$, there exists a positive integer $n_{0}$ such that the following holds. If $G$ is a 2 -connected c-crossing-critical graph, then there exists a sequence $G_{0}, G_{1}, \ldots, G_{m}$ of 2 -connected $c$-crossing-critical graphs such that $\left|V\left(G_{0}\right)\right| \leq n_{0}, G_{m}=G$, and for $i=1, \ldots, m, G_{i}$ is an $n_{0}$-bounded expansion of $G_{i-1}$.

Moreover, the generating sequences claimed by Theorem 4.9 can be turned into an efficient enumeration procedure to generate all 2-connected $c$-crossing-critical graphs of at most given order $n$, for each fixed $c$. The output-sensitive complexity of this procedure has polynomial delay in $n$. We leave further details for the full paper.

## 5 Deconstructing plane graphs of bounded path-width

We now return to the topic of Section 3, supplementing the technical prerequisites of Theorem 3.5. We need to add a few terms related to Definition 3.4.

Let $(P, \beta)$ be a path decomposition of a graph $G$. Let $s$ denote the first node and $t$ the last node of $P$. For $x \in V(P) \backslash\{s\}$, let $l(x)$ be the node of $P$ preceding $x$, and let $L(x)=\beta(l(x)) \cap \beta(x)$. For $x \in V(P) \backslash\{t\}$, let $r(x)$ be the node of $P$ following $x$, and let $R(x)=\beta(r(x)) \cap \beta(x)$. The path decomposition is proper if $\beta(x) \nsubseteq \beta(y)$ for all distinct $x, y \in V(P)$. The interior width of the decomposition is the maximum over $|\beta(x)|-1$ over all nodes $x$ of $P$ distinct from $s$ and $t$. The path decomposition is $p$-linked if $|L(x)|=p$ for all $x \in V(P) \backslash\{s\}$ and $G$ contains $p$ vertex-disjoint paths from $R(s)$ to $L(t)$. The order of the decomposition is $|V(P)|$.

A crucial technical step in the proof of Theorem 3.5 is to analyse a topological structure of the bags of a path decomposition $(P, \beta)$ of a plane graph $G$, and to find many consecutive subpaths of $P$ on which the decomposition repeats the same "topological behavior". For this we are going to model the bags of the decomposition $(P, \beta)$ as letters of a string over a suitable finite semigroup (these letters present an abstraction of the bags), and to apply the following algebraic tool, Lemma 5.1.

Let $T$ be a rooted ordered tree (i.e., the order of children of each vertex is fixed). Let $f$ be a function that to each leaf of $T$ assigns a string of length 1 , such that for each non-leaf vertex $v$ of $T, f(v)$ is the concatenation of the strings assigned by $f$ to the children of $v$ in order. We say that $(T, f)$ yields the string assigned to the root of $T$ by $f$. If the letters of the string are elements of a semigroup $A$, then for each $v \in V(T)$, let $f_{A}(v)$ denote the product of the letters of $f(v)$ in $A$. Recall that an element $e$ of $A$ is idempotent if $e^{2}=e$. A tree $(T, f)$ is an $A$-factorization tree if for every vertex $v$ of $T$ with more than two children, there exists an idempotent element $e \in A$ such that $f_{A}(x)=e$ for each child $x$ of $v$ (and hence also $f_{A}(v)=e$ ). Simon [17] showed existence of bounded-depth $A$-factorization trees for every string; the improved bound in the following lemma was proved by Colcombet [4]:

- Lemma 5.1 ([4]). For every finite semigroup $A$ and each string of elements of $A$, there exists an $A$-factorization tree of depth at most $3|A|$ yielding this string.

We further need to formally define what we mean by a "topological behavior" of bags and subpaths of a path decomposition of our $G$. This will be achieved by the following term of a $q$-type.

In this context we consider multigraphs (i.e., with parallel edges and loops allowed - each loop contributes 2 to degree of the incident vertex, and not necessarily connected) with some of its vertices labelled by distinct unique labels. A plane multigraph $G$ is irreducible if $G$ has no faces of size 1 or 2 , and every unlabelled vertex of degree at most 2 is an isolated vertex incident with one loop (this loop, hence, cannot bound a 1-face). Two plane multigraphs $G_{1}$ and $G_{2}$ with some of the vertices labelled are homeomorphic if there exists a homeomorphism $\varphi$ of the plane mapping $G_{1}$ onto $G_{2}$ so that for each vertex $v \in V\left(G_{1}\right)$, the vertex $\varphi(v)$ is labelled iff $v$ is, and then $v$ and $\varphi(v)$ have the same label. For $G$ with some of its vertices labelled using the labels from a finite set $\mathcal{L}$, the $q$-type of $G$ is the set of all non-homeomorphic irreducible plane multigraphs labelled from $\mathcal{L}$ and with at most $q$ unlabelled vertices, and whose subdivisions are homeomorphic to subgraphs of $G$.

Let $G$ be a plane graph and let $(P, \beta)$ be its $p$-linked path decomposition. Let $s$ and $t$ be the endpoints of $P$. Fix pairwise vertex-disjoint paths $Q_{1}, \ldots, Q_{p}$ between $R(s)$ and $L(t)$. Consider a subpath $P^{\prime}$ of $P-\{s, t\}$, and let $G_{P^{\prime}}$ be the subgraph of $G$ induced by $\bigcup_{x \in V\left(P^{\prime}\right)} \beta(x)$. If $s^{\prime}$ and $t^{\prime}$ are the (left and right) endpoints of $P^{\prime}$, we define $L\left(P^{\prime}\right)=L\left(s^{\prime}\right)$
and $R\left(P^{\prime}\right)=R\left(t^{\prime}\right)$. Let us label the vertices of $G_{P^{\prime}}$ using (some of) the labels $\left\{l_{1}, \ldots, l_{p}\right.$, $\left.r_{1}, \ldots, r_{p}, c_{1}, \ldots, c_{p}\right\}$ as follows: For $i=1, \ldots, p$, let $u$ and $v$ be the vertices in which $Q_{i}$ intersects $L\left(P^{\prime}\right)$ and $R\left(P^{\prime}\right)$, respectively. If $u \neq v$, we give $u$ the label $l_{i}$ and $v$ the label $r_{i}$. Otherwise, we give $u=v$ the label $c_{i}$. For an integer $q$, the $q$-type of $P^{\prime}$ is the $q$-type of $G_{P^{\prime}}$ with this labelling. If $P^{\prime}$ contains just one node $x$, then we speak of the $q$-type of $x$.

The $q$-types of subpaths of a linked path decomposition naturally form a semigroup with concatenation of the subpaths, as detailed in the full paper. From Lemma 5.1, specialised to our case, we derive the following structural description which is crucial in the proof of Theorem 3.5. Further technical details are again left for the full paper.

- Theorem $5.2\left(^{*}\right)$. Let $w$ and $q$ be non-negative integers, and let $f: \mathbf{N} \rightarrow \mathbf{N}$ be an arbitrary non-decreasing function. There exist integers $w_{0}$ and $n_{0}$ such that, for any plane graph $G$ that has a proper path decomposition of interior width at most $w$ and order at least $n_{0}$, the following holds. For some $w^{\prime} \leq w_{0}$ and $p \leq w, G$ also has a p-linked proper path decomposition $(P, \beta)$ of interior width at most $w^{\prime}$ and order at least $f\left(w^{\prime}\right)$, such that for each node $x$ of $P$ distinct from its endpoints, the $q$-type of $x$ is the same idempotent element.

In other words, we can find a decomposition in which all topological properties of the drawing that hold in one bag repeat in all the bags. So, for example, if for some node $x$, the vertices of $L(x)$ are separated in the drawing from vertices of $R(x)$ by a cycle contained in the bag of $x$, then this holds in every bag, and we conclude that the drawing contains a large 0-nest. Other outcomes of Theorem 3.5 naturally correspond to other possible local properties of the drawings of the bags.

## 6 Conclusion

To summarize, we have shown a structural characterisation and an enumeration procedure for all 2-connected $c$-crossing-critical graphs, using bounded-size replication steps over an implicit finite set of base $c$-crossing-critical graphs. The characterisation can be reused to describe all $c$-crossing-critical graphs (without the connectivity assumption) since all their proper blocks must be $c_{i}$-crossing-critical for some $c_{i}<c$.

With this characterisation at hand, one can expect significant progress in the crossing number research, both from mathematical and algorithmic perspectives. For example, one can quite easily derive from Theorem 4.9 that, for no $c$ there is an infinite family of 3-regular $c$-crossing-critical graphs, a claim that has been so far proved only via the Graph minors theorem of Robertson and Seymour. One can similarly expect a progress in some longtime open questions in the area of crossing-critical graphs, such as to improve the bound of Theorem 2.3 or to decide possible existence of an infinite family of 5 -regular $c$-crossing-critical graphs for some $c$.

## References

1 M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In Theory and Practice of Combinatorics, volume 60 of North-Holland Mathematics Studies, pages 9-12. North-Holland, 1982. doi:10.1016/S0304-0208(08)73484-4.
2 Drago Bokal. Infinite families of crossing-critical graphs with prescribed average degree and crossing number. Journal of Graph Theory, 65(2):139-162, 2010. doi:10.1002/jgt. 20470.
3 Drago Bokal, Bogdan Oporowski, R. Bruce Richter, and Gelasio Salazar. Characterizing 2-crossing-critical graphs. Advances in Applied Mathematics, 74:23-208, 2016. doi:10.1016/ j.aam.2015.10.003.

4 Thomas Colcombet. Factorization forests for infinite words and applications to countable scattered linear orderings. Theor. Comput. Sci., 411(4-5):751-764, 2010. doi:10.1016/j. tcs.2009.10.013.
5 Z. Dvořák and B. Mohar. Crossing-critical graphs with large maximum degree. J. Combin. Theory, Ser. B, 100:413-417, 2010. doi:10.1016/j.jctb.2009.11.003.
6 C. Hernandez-Velez, G. Salazar, and R. Thomas. Nested cycles in large triangulations and crossing-critical graphs. Journal of Combinatorial Theory, Series B, 102:86-92, 2012. doi:10.1016/j.jctb.2011.04.006.
7 P. Hliněný. Crossing-number critical graphs have bounded path-width. J. Combin. Theory, Ser. B, 88:347-367, 2003. doi:10.1016/S0095-8956(03)00037-6.
8 P. Hliněný and G. Salazar. Stars and bonds in crossing-critical graphs. J. Graph Theory, 65:198-215, 2010. doi:10.1002/jgt. 20473.
9 Petr Hliněný. Crossing-critical graphs and path-width. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th International Symposium, GD 2001, Revised Papers, volume LNCS 2265 of Lecture Notes in Computer Science, pages 102-114. Springer, 2002. doi:10.1007/3-540-45848-4_9.
10 Petr Hliněný and Marek Dernár. Crossing number is hard for kernelization. In 32nd International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs, pages 42:1-42:10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.42.
11 Martin Kochol. Construction of crossing-critical graphs. Discrete Mathematics, 66(3):311313, 1987. doi:10.1016/0012-365X (87)90108-7.
12 Tom Leighton. Complexity Issues in VLSI. Foundations of Computing Series. MIT Press, Cambridge, MA, 1983.
13 B. Mohar and C. Thomassen. Graphs on Surfaces. The Johns Hopkins University Press, Baltimore and London, 2001.
14 Benny Pinontoan and R. Bruce Richter. Crossing numbers of sequences of graphs II: Planar tiles. Journal of Graph Theory, 42(4):332-341, 2003. doi:10.1002/jgt. 10097.
15 R. Bruce Richter and Carsten Thomassen. Minimal graphs with crossing number at least k. J. Comb. Theory, Ser. B, 58(2):217-224, 1993. doi:10.1006/jctb.1993.1038.

16 Gelasio Salazar. Infinite families of crossing-critical graphs with given average degree. Discrete Mathematics, 271(1-3):343-350, 2003. doi:10.1016/S0012-365X(03)00136-5.
17 Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65-94, 1990. doi:10.1016/0304-3975(90) 90047-L.
18 László A. Székely. Crossing numbers and hard Erdös problems in discrete geometry. Combinatorics, Probability \& Computing, 6(3):353-358, 1997. URL: http://journals. cambridge.org/action/displayAbstract?aid=46513.
19 Jozef Širáň. Infinite families of crossing-critical graphs with a given crossing number. Discrete Mathematics, 48(1):129-132, 1984. doi:10.1016/0012-365X (84)90140-7.


[^0]:    ${ }^{1}$ Z.D. was supported by the Center of Excellence - Institute for Theoretical Computer Science, Prague, project P202/12/G061 of the Czech Science Foundation.
    ${ }^{2}$ P.H. was supported by the Center of Excellence - Institute for Theoretical Computer Science, Brno, project P202/12/G061 of the Czech Science Foundation.
    ${ }^{3}$ B.M. was supported in part by the NSERC Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia).

