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Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-
crossings when drawn in the plane. For c = 1 there are only two such graphs without degree-2
vertices, K5 and K3,3, but for any fixed c > 1 there exist infinitely many c-crossing-critical
graphs. It has been previously shown that c-crossing-critical graphs have bounded path-width
and contain only a bounded number of internally disjoint paths between any two vertices. We
expand on these results, providing a more detailed description of the structure of crossing-critical
graphs. On the way towards this description, we prove a new structural characterisation of plane
graphs of bounded path-width. Then we show that every c-crossing-critical graph can be obtained
from a c-crossing-critical graph of bounded size by replicating bounded-size parts that already
appear in narrow “bands” or “fans” in the graph. This also gives an algorithm to generate all the
c-crossing-critical graphs of at most given order n in polynomial time per each generated graph.
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33:2 Structure and Generation of Crossing-Critical Graphs

Figure 1 A schematic illustration of two basic methods of constructing crossing-critical graphs.

1 Introduction

Minimizing the number of edge-crossings in a graph drawing in the plane (the crossing
number of the graph, cf. Definition 2.1) is considered one of the most important attributes of
a “nice drawing” of a graph, and this question has found numerous other applications (for
example, in VLSI design [12] and in discrete geometry [18]). Consequently, a great deal of
research work has been invested into understanding what forces the graph crossing number to
be high. There exist strong quantitative lower bounds, such as the famous Crossing Lemma
[1, 12]. However, the quantitative bounds show their strength typically in dense graphs, and
hence they do not shed much light on the structural properties of graphs of high crossing
number.

The reasons for sparse graphs to have many crossings in any drawing are structural –
there is a lot of “nonplanarity” in them. These reasons can be understood via corresponding
minimal obstructions, the so called c-crossing-critical graphs (cf. Section 2 and Definition 2.2),
which are the subgraph-minimal graphs that require at least c crossings. There are only
two 1-crossing-critical graphs without degree-2 vertices, the Kuratowski graphs K5 and K3,3,
but it has been known already since Širáň’s [19] and Kochol’s [11] constructions that the
structure of c -crossing-critical graphs is quite rich and non-trivial for any c ≥ 2. Already the
first nontrivial case of c = 2 shows a dramatic increase in complexity of the problem. Yet,
Bokal, Oporowski, Richter, and Salazar recently succeeded in obtaining a full description [3]
of all the 2-crossing-critical graphs up to finitely many “small” exceptions.

To our current knowledge, there is no hope of extending the explicit description from [3]
to any value c > 2. We, instead, give for any fixed positive integer c an asymptotic structural
description of all sufficiently large c -crossing-critical graphs.

Contribution outline. We refer to subsequent sections for the necessary formal concepts.
On a high level of abstraction, our contribution can be summarized as follows:
1. There exist three kinds of local arrangements – a crossed band of uniform width, a

twisted band, or a twisted fan – such that any optimal drawing of a sufficiently large
c -crossing-critical graph contains at least one of them.

2. There are well-defined local operations (replacements) performed on such bands or fans
that can reduce any sufficiently large c -crossing-critical graph to one of finitely many
base c -crossing-critical graphs.

3. A converse – a well-defined bounded-size expansion operation – can be used to iteratively
construct each c -crossing-critical graph from a c -crossing-critical graph of bounded size.
This yields a way to enumerate all the c -crossing-critical graphs of at most given order n
in polynomial time per each generated graph. More precisely, the total runtime is O(n)
times the output size.
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To give a closer (but still informal) explanation of these points, we should review some
of the key prior results. First, the infinite 2-crossing-critical family of Kochol [11] explicitly
showed one basic method of constructing crossing-critical graphs – take a sequence of suitable
small planar graphs (called tiles, cf. Section 3), concatenate them naturally into a plane strip
and join the ends of this strip with the Möbius twist. See Figure 1. Further constructions of
this kind can be found, e.g., in [2, 14, 16]. In fact, [3] essentially claims that such a Möbius
twist construction is the only possibility for c = 2; there, the authors give an explicit list of 42
tiles which build in this way all the 2-crossing-critical graphs up to finitely many exceptions.

The second basic method of building crossing-critical graphs was invented later by
Hliněný [9]; it can be roughly described as constructing a suitable planar strip whose ends
are now joined without a twist (i.e., making a cylinder), and adding to it a few edges which
then have to cross the strip. See again Figure 1 for an illustration. Furthermore, diverse
crossing-critical constructions can easily be combined together using so called zip product
operation of Bokal [2] which preserves criticality. To complete the whole picture, there exists
a third, somehow mysterious method of building c -crossing-critical graphs (for sufficiently
high values of c), discovered by Dvořák and Mohar in [5]. The latter can be seen as a
degenerate case of the Möbius twist construction, such that the whole strip shares a central
high-degree vertex, and we skip more details till the technical parts of this paper.

As we will see, the three above sketched construction methods roughly represent the three
kinds of local arrangements mentioned in point (1). In a sense, we can thus claim that no
other method (than the previous three) of constructing infinite families of c -crossing-critical
graphs is possible, for any fixed c. Moving on to point (2), we note that all three mentioned
construction methods involve long (and also “thin”) planar strips, or bands as subgraphs
(which degenerate into fans in the third kind of local arrangements; cf. Definition 3.1). We
will prove, see Corollary 3.6, that such a long and “thin” planar band or fan must exist in any
sufficiently large c -crossing-critical graph, and we analyse its structure to identify elementary
connected tiles of bounded size forming the band. We then argue that we can reduce repeated
sections of the band while preserving c -crossing-criticality. Regarding point (3), the converse
procedure giving a generic bounded-size expansion operation on c -crossing-critical graphs
is described in Theorem 4.9 (for a quick illustration, the easiest case of such an expansion
operation is edge subdivision, that is replacing an edge with a path, which clearly preserves
c -crossing-criticality).

Paper organization. After giving the definitions and preliminary results about crossing-
critical graphs in Section 2, we show a new structural characterisation of plane graphs
of bounded path-width which forms the cornerstone of our paper in Section 3. Then, in
Section 4, we deal with the structure and reductions / expansions of crossing-critical graphs,
presenting our main results. In Section 5 we outline the technical steps leading to our
cornerstone characterisation from Section 3. Some final remarks are presented in Section 6.

Due to restrictions on the length of the paper, some technical details and proofs of our
statements are left for the full paper. Statements whose proofs are in the full paper are
marked with (*).

2 Graph drawing and the crossing number

In this paper, we consider multigraphs by default, even though we could always subdivide
parallel edges (with a slight adjustment of definitions) in order to make our graphs simple.
We follow basic terminology of topological graph theory, see e.g. [13].

SoCG 2018
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A drawing of a graph G in the plane is such that the vertices of G are distinct points
and the edges are simple curves joining their end vertices. It is required that no edge passes
through a vertex, and no three edges cross in a common point. A crossing is then an
intersection point of two edges other than their common end. A drawing without crossings
in the plane is called a plane drawing of a graph, or shortly a plane graph. A graph having a
plane drawing is planar.

The following are the core definitions of our research.

I Definition 2.1 (crossing number). The crossing number cr(G) of a graph G is the minimum
number of crossings of edges in a drawing of G in the plane.

I Definition 2.2 (crossing-critical). Let c be a positive integer. A graph G is c-crossing-critical
if cr(G) ≥ c, but every proper subgraph G′ of G has cr(G′) < c.

Furthermore, suppose G is a graph drawn in the plane with crossings. Let G′ be the plane
graph obtained from this drawing by replacing the crossings with new vertices of degree 4.
We say that G′ is the plane graph associated with the drawing, shortly the planarization
of G, and the new vertices are the crossing vertices of G′.

Preliminaries. Structural properties of crossing-critical graphs have been studied for more
than two decades, and we now briefly review some of the previous important results which
we shall use. First, we remark that a c -crossing-critical graph may have no drawing with
only c crossings (examples exist already for c = 2). Richter and Thomassen [15] proved the
following upper bound:

I Theorem 2.3 ([15]). Every c-crossing-critical graph has a drawing with at most d5c/2+16e
crossings.

Interestingly, although the bound of Theorem 2.3 sounds rather weak and we do not
know any concrete examples requiring more than c+O(

√
c) crossings, the upper bound has

not been improved for more than two decades. We not only use this important upper bound,
but also hope to be able to improve it in the future using our results.

Our approach to dealing with “long and thin” subgraphs in crossing-critical graphs relies
on the folklore structural notion of path-width of a graph, which we recall in Definition 3.4.
Hliněný [7] proved that c -crossing-critical graphs have path-width bounded in terms of c,
and he and Salazar [8] showed that c -crossing-critical graphs can contain only a bounded
number of internally disjoint paths between any two vertices.

I Theorem 2.4 ([7]). Every c-crossing-critical graph has path-width (cf. Definition 3.4) at
most d26(72 log2 c+248)c3+1e.

Another useful concept for this work is that of nests in a drawing of a graph (cf. Defin-
ition 3.3), implicitly considered already in previous works [7, 8], and explicitly defined by
Hernandez-Velez et al. [6] who concluded that no optimal drawing of a c -crossing-critical
graph can contain a 0-, 1-, or 2-nest of large depth compared to c.

Lastly, we remark that by trivial additivity of the crossing number over blocks, we may
(and will) restrict our attention only to 2-connected crossing-critical graphs. We formally
argue as follows. For c, δ > 0, let us say a graph is (c, δ)-crossing-critical if it has crossing
number exactly c and all proper subgraphs have crossing number at most c− δ.

I Proposition 2.5 (folklore). A graph H is c-crossing-critical if and only if there exist positive
integers c1, . . . , cb and δ such that c ≤ c1 + · · ·+ cb ≤ c+ δ − 1, H has exactly b 2-connected
blocks H1, . . . , Hb, and the block Hi is (ci, δ)-crossing-critical for i = 1, . . . , b.
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Figure 2 An example of paths P1, . . . , P6 (bold lines) forming an (F1, F2)-band of length 6,
cf. Definition 3.1. The five tiles of this band, as in Definition 3.2, are shaded in grey and the dashed
arcs represent αi and α′i from that definition.

Hence, strictly respecting Proposition 2.5, we should actually study 2-connected (c, δ)-cros-
sing-critical graphs. To keep the presentation simpler, we stick with c-crossing-critical graphs,
but we remark that our results also hold in the more refined setting.

3 Structure of plane tiles

The proof of our structural characterisation of crossing-critical graphs can be roughly divided
into two main parts. The first one, presented in this section (leaving technical prerequisites
for later Section 5), establishes the existence of specific plane bands (resp. fans) and their
tiles in crossing-critical graphs. The second part will then, in Section 4, closely analyse these
bands and tiles. Unlike a more traditional “bottom-up” approach to tiles in crossing number
research (e.g., [3]), we define tiles and deal with them “top-down”, i.e., describing first plane
bands or fans and then identifying tiles as their small elementary parts. Our key results are
summarized below in Theorem 3.5 and Corollary 3.6.

I Definition 3.1 (band and fan). Let G be a 2-connected plane graph. Let F1 and F2 be
distinct faces of G and let v1, v2, . . . , vm, and u1, u2, . . . , um be some of the vertices incident
with F1 and F2, respectively, listed in the cyclic order along the faces. If P1, . . . , Pm are
pairwise vertex-disjoint paths in G such that Pi joins vi with um+1−i, for 1 ≤ i ≤ m, then
we say that (P1, . . . , Pm) forms an (F1, F2)-band of length m. Note that Pi may consist of
only one vertex vi = um+1−i.

Let F1 and v1, v2, . . . , vm be as above. If u is a vertex of G and P1, . . . , Pm are paths in G
such that Pi joins vi with u, for 1 ≤ i ≤ m, and the paths are pairwise vertex-disjoint except
for their common end u, then we say that (P1, . . . , Pm) forms an (F1, u)-fan of length m.
The (F1, u)-fan is proper if u is not incident with F1.

I Definition 3.2 (tiles and support). Let (P1, . . . , Pm) be either an (F1, F2)-band or an
(F1, u)-fan of length m ≥ 3. For 1 ≤ i ≤ m− 1, let αi be an arc between vi and vi+1 drawn
inside F1, and let α′i be an arc drawn between ui and ui+1 in F2 in the case of the band; α′i
are null when we are considering a fan. Furthermore, choose the arcs to be internally disjoint.
Let θi be the closed curve consisting of Pi, αi, Pi+1, and α′m−i. Let λi be the connected
part of the plane minus θi that contains none of the paths Pj (1 ≤ j ≤ m) in its interior.
The subgraphs of G drawn in the closures of λ1, . . . , λm−1 are called tiles of the band or
fan (and the tile of λi includes Pi ∪ Pi+1 by this definition). The union of these tiles is the
support of the band or fan.

SoCG 2018
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K

F

Figure 3 An illustration of Definition 3.3: a 1-nest, a 2-nest, and an F -nest, each of depth 6.

I Definition 3.3 (nests). Let G be a 2-connected plane graph. For an integer k ≥ 0, a k-nest
in G of depth m is a sequence (C1, C2, . . . , Cm) of pairwise edge-disjoint cycles such that
for some set K of k vertices and for every i < j, the cycle Ci is drawn in the closed disk
bounded by Cj and V (Ci) ∩ V (Cj) = K.

Let F be a face of G and let v1, v2, . . . , v2m be some of the vertices incident with F

listed in the cyclic order along the face. Let P1, . . . , Pm be pairwise vertex-disjoint paths in
G such that Pi joins vi with v2m+1−i, for 1 ≤ i ≤ m. Then, we say that (P1, . . . , Pm) forms
an F -nest of depth m. Similarly, let v1, v2, . . . , vm, u be some of the vertices incident with
F , let P1, . . . , Pm be paths in G such that Pi joins vi with u, for 1 ≤ i ≤ m, and the paths
intersect only in u. Then, we say that (P1, . . . , Pm) form a degenerate F -nest of depth m.

See Figure 3. Note that degenerate F -nests are the same as non-proper (F, u)-fans.

Our cornerstone claim, interesting on its own, is a structure theorem for plane graphs of
bounded path-width. Before stating it, we recall the definition of path-width.

I Definition 3.4. A path decomposition of a graph G is a pair (P, β), where P is a path and
β is a function that assigns subsets of V (G), called bags, to nodes of P such that

for each edge uv ∈ E(G), there exists x ∈ V (P ) such that {u, v} ⊆ β(x), and
for every v ∈ V (G), the set {x ∈ V (P ) : v ∈ β(x)} induces a non-empty connected
subpath of P .

The width of the decomposition is the maximum of |β(x)| − 1 over all vertices x of P , and
the path-width of G is the minimum width over all path decompositions of G.

I Theorem 3.5 (*). Let w, m, and k0 be non-negative integers, and g : N → N be an
arbitrary non-decreasing function. There exist integers w0 and n0 such that the following holds.
Let G be a 2-connected plane graph and let Y be a set of at most k0 vertices of G of degree
at most 4. If G has path-width at most w and |V (G)| ≥ n0, then one of the following holds:

G contains a 0-nest, a 1-nest, a 2-nest, an F -nest, or a degenerate F -nest for some face
F of G, of depth m, and with all its cycles or paths disjoint from Y , or
for some w′ ≤ w0, G contains an (F1, F2)-band or a proper (F1, u)-fan (where F1 and
F2 are distinct faces and u is a vertex) of length at least g(w′) and with support disjoint
from Y , such that each of its tiles has size at most w′.

We pay close attention to explaining Theorem 3.5, because of its great importance in this
paper. Comparing it to Definition 3.4, one may think that there is not much difference – the
bags β(x) of a path decomposition of G of width at most w′ might perhaps play the role of
tiles of the band or fan in the second conclusion. Unfortunately, this simple idea is quite far
from the truth. The subgraphs induced by the bags may not be “drawn locally”, that is, its
edges may be geometrically far apart in the plane graph G. As an example, consider the
width 2 path decomposition of a cycle where one of the vertices of the cycle appears in all
the bags.
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The main message of Theorem 3.5 thus is that in a plane graph of bounded path-width
we can find a long band which is “drawn locally” and decomposes into well-defined small
and connected tiles (cf. Definition 3.2). Otherwise, such a graph must contain some kind of
a deep nest or fan. However, as we will see soon in Corollary 3.6, the latter structures are
impossible in the planarizations of optimal drawings of crossing-critical graphs.

The proof of Theorem 3.5 requires some preparatory work, and it uses tools of structural
graph theory and of semigroup theory in algebra. Since these tools are quite far from the
main topic of this paper, we defer their presentation and an outline of their application
towards Theorem 3.5 till Section 5. Instead, we now continue with an application of the
theorem in the study of crossing-critical graph structure, as a strengthening of Theorem 2.4.

I Corollary 3.6. Let c be a positive integer, and let g : N→ N be an arbitrary non-decreasing
function. There exist integers w0 and n0 such that the following holds. Let G be a 2-connected
c-crossing-critical graph, and let G′ be the plane graph associated with a drawing of G with the
minimum number of crossings. Let Y denote the set of crossing vertices of G′. If |V (G)| ≥ n0,
then for some w′ ≤ w0, G′ contains an (F1, F2)-band or a proper (F1, u)-fan (where F1 and
F2 are distinct faces and u is a vertex) of length at least g(w′) and with support disjoint from
Y , such that each of its tiles has size at most w′.

Proof. Let k0 = d5c/2 + 16e, w = d26(72 log2 c+248)c3+1e+ k0 and m = 15c2 + 105c+ 16. Let
w0 and n0 be the corresponding integers from Theorem 3.5.

By Theorem 2.3, each c -crossing-critical graph has a drawing with at most k0 crossings,
and thus |Y | ≤ k0. By Theorem 2.4, G has path-width at most w − k0, and thus G′ has
path-width at most w. Hliněný and Salazar [8] and Hernandez-Velez et al. [6] proved that
the graph G′ obtained from a c -crossing-critical graph G as described does not contain a 0-,
1- and 2-nests of depth m with cycles disjoint from Y . Furthermore, arguments analogous
to (some of) those used in [7] can prove that no face F of G′ has an F -nest or a degenerate
F -nest of depth m with paths disjoint from Y . Further details are left for the full paper. J

4 Removing and inserting tiles

In the second part of the paper, we study an arrangement of bounded tiles in a long enough
plane band or fan (as described by Corollary 3.6), focusing on finding repeated subsequences
which then could be shortened. Importantly, this shortening preserves c -crossing-criticality.
In the opposite direction we then manage to define the converse operation of “expansion” of
a plane band which also preserves c -crossing-criticality. These findings will imply the final
outcome – a construction of all c -crossing-critical graphs from an implicit list of base graphs
of bounded size. The formal statement can be found in Theorem 4.9.

Again, we start with a few relevant technical terms. Recall Definition 3.1.

I Definition 4.1 (subband, necklace and shelled band). Let P = (P1, . . . , Pm) be an (F1, F2)-
band or an (F1, u)-fan in a 2-connected plane graph. A subband or subfan consists of a
contiguous subinterval (Pi, Pi+1, . . . , Pj) of the band or fan (and its support is a subset of
the support of the original band or fan).

We say that the band P is a necklace if each of its paths consists of exactly one vertex.
A tile (cf. Definition 3.2) of the band or fan P is shelled if it is bounded by a cycle,
consisting of two consecutive paths Pi and Pi+1 of P and parts of the boundary of F1 and
F2 (respectively, u), and the two paths Pi, Pi+1 delimiting the tile have at least two vertices
each. The band or fan P is shelled if each of its tiles is shelled. See Figure 4.

SoCG 2018
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P1
P2 P3 P4 P5 P6

F1

F2

Figure 4 An example of an (F1, F2)-band of length 6; this band is shelled (cf. Definition 4.1) and
the bounding cycles of the tiles are emphasized in bold lines.

One can easily show that, regarding the outcome of Corollary 3.6, there are only the
following two refined subcases that have to be considered in further analysis:

I Lemma 4.2 (*). Let w be a positive integer and f : N→ N be an arbitrary non-decreasing
function. There exist integers n0 and w′ such that the following holds. Let G be a 2-connected
plane graph, and let P = (P1, . . . , Pm) be an (F1, F2)-band or a proper (F1, u)-fan in G of
length m ≥ n0, with all tiles of size at most w. Then either G contains a shelled subband
or subfan of P of length f(w), or G contains a necklace of length f(w′) with tiles of size at
most w′ whose support is contained in the support of P.

Reducing a necklace. Among the two subcases left by Lemma 4.2, the easier one is that
of a necklace which can be reduced simply to a bunch of parallel edges; see also Figure 5.

I Lemma 4.3. Let c be a non-negative integer. Let G be a 2-connected c-crossing-critical
graph, and let G′ be the planarization of a drawing of G with the smallest number of crossings.
Let Y denote the set of crossing vertices of G′. Suppose that P = (v1, . . . , vm), where m ≥ 2,
is a necklace in G′ whose support is disjoint from Y . Then for some p ≤ c, the support of P
consists of p pairwise edge-disjoint paths from v1 to vm. Furthermore, the graph G0 obtained
from G by removing the support of P except for v1 and vm and by adding p parallel edges
between v1 and vm is c-crossing-critical.

Proof. Let G1 denote the subgraph of G obtained by removing the support of P except for
v1 and vm. Let p be the maximum number of pairwise edge-disjoint paths from v1 to vm in
the support S of P . Suppose for a contradiction that either p ≥ c+ 1 or some edge e of S is
not contained in an edge-cut of size p separating v1 from vm. In the former case, let e be an
arbitrary edge of S. Let q = c if p ≥ c+ 1 and q = p otherwise.

By criticality of G, the graph G−e can be drawn in the plane with at most c−1 crossings.
Consider the drawing of G1 induced by this drawing, and let a be the minimum number of
edges that have to be crossed by any curve in the plane from v1 to vm and otherwise disjoint
from V (G1). Note that a ≥ 1, since otherwise we could draw S without crossings between
v1 and vm, obtaining a drawing of G with fewer than c crossings. Since G − e contains q
pairwise edge-disjoint paths from v1 to vm which are not contained in G1, we conclude that
cr(G− e) ≥ cr(G1) + aq ≥ q. Since cr(G− e) < c, we have q < c. It follows that q = p and
cr(G1) < c − ap. However, S contains an edge-cut C of order p separating v1 from vm by
Menger’s theorem, and we can add S to the drawing G1 so that exactly the edges of C are
crossed, and each of them exactly a times (by drawing the part of S between v1 and C close
to v1, and the part of S between vm and C close to vm). This way, we obtain a drawing of
G with cr(G1) + ap < c crossings. This is a contradiction, which shows that p ≤ c and that
S is the union of p edge-disjoint paths from v1 to vm.
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F1
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Figure 5 Inserting or removing a necklace (cf. Lemma 4.3 with p = m = 4).

Any drawing of G0 can be transformed into a drawing of G with at most as many crossings
in the same way as described in the previous paragraph. Thus cr(G0) ≥ c. Consider now any
edge e0 of G0. If e0 is one of the parallel edges between v1 and vm, then let e′ be any edge of
S and p′ = p− 1, otherwise let e′ = e0 and p′ = p. By the c -crossing-criticality of G, there
exists a drawing of G− e′ with less than c crossings. Consider the induced drawing of G1− e′,
and let a′ denote the minimum number of edges in this drawing that have to be crossed
by any curve in the plane from v1 to vm and otherwise disjoint from V (G1). Since S − e′
contains p′ edge-disjoint paths from v1 to vm, we conclude that cr(G−e′) ≥ cr(G1−e′)+a′p′.
We can add p′ edges between v1 and vm to the drawing of G1 − e′ to form a drawing of
G0 − e0 with at most cr(G1 − e′) + a′p′ ≤ cr(G − e′) < c crossings. Consequently, G0 is
c -crossing-critical. J

Observe that replacing a parallel edge of multiplicity p between vertices u and v in a
c -crossing-critical graph with any set of p edge-disjoint plane paths from u to v gives another
c -crossing-critical graph. So, the reduction of Lemma 4.3 works in the other direction as
well. This two-way process is exhibited by an example with p = m = 4 in Figure 5.

Reducing a shelled band or fan. If we could follow the same proof scheme as with necklaces
also in the remaining cases of shelled bands and fans, then we would already reach the final
goal. Unfortunately, the latter cases are more involved, and require some preparatory work.
Compared to the easier case of a necklace, the important difference in the case of a shelled
band comes from the fact that the band may be drawn not only in the “straight way” but
also in the “twisted way” (recall Figure 1). An indication that this is troublesome comes from
the result of Hliněný and Derňár [10], who showed that determining the crossing number of
a twisted planar tile is NP-complete (and thus it is not determined by a simple parameter
such as the number of edge-disjoint paths between its sides). Consequently, the analysis of
shelled bands is significantly more complicated than the relatively straightforward proof of
Lemma 4.3. The same remark applies to the shelled fans.

That is why we leave the full details and proofs of the remaining cases for the full paper.
Before we dive into technical details needed to at least formulate the final result, Theorem 4.9,
we present an informal outline of our approach:
1. Having a very long shelled band P in our graph G, it is easy to see that the isomorphism

types of bounded-size tiles in P must repeat. Moreover, even bounded-length subbands
must have isomorphic repetitions. The first idea is to shorten the band between such
repeated isomorphic subbands P1 and P2 – by identifying the repeated pieces and
discarding what was between (cf. Definition 4.5). If the repeated subband is long enough,
we can use some rather easy connectivity properties of P to show that this yields a smaller
graph G1 of crossing number at least c.
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. . .
P1 P2P ′

. . . . . . . . .

vi vi+2 vj−2 vj

P1
P2

 
. . .

P1 = P2
. . .

vi = vj−2 vi+2 = vj

P1 = P2

Figure 6 A scheme of a reducible subband P ′ (in grey) with repetition (P1,P2) of order 3 (darker
grey), as in Definition 4.5, and the result of the reduction on P ′ (on the right).

2. Though, it is not clear that the reduced graph G1 is c-crossing-critical. Analogously to
Lemma 4.3, for any edge e ∈ E(G1), we would like to transform a drawing of G− e with
less than c crossings to a drawing of G1 − e with less than c crossings. However, if the
drawing of G− e uses some unique properties of the part P12 of the band between P1
and P2, we have no way how to mimic this in the drawing of G1 − e (this is especially
troublesome if this part of G−e is drawn in a twisted way, since there is no easy description
of what these “unique properties” might be by the NP-completeness result [10]).
We overcome this difficulty by performing the described reduction only inside longer
pieces which repeat elsewhere in the band (cf. Definition 4.6). Hence, in G1 − e we have
many copies of P12, and by appropriate surgery, we can use one of them to mimic the
drawing of P12 in G− e.

3. A further advantage of reducing within parts that repeat elsewhere is that we can more
explicitly describe the converse expansion operation, as duplicating subbands which
already exist elsewhere in the (reduced) band.

Let us remark that considering a shelled (F, u)-fan instead of a band is not different, all the
arguments simply carry over. The following additional definitions are needed to formalize
the outlined claims.

Let P = (P1, . . . , Pm) be an (F1, F2)-band or an (F1, u)-fan in a 2-connected plane graph
G, and let Ti be the tile of P delimited by Pi and Pi+1. We say that the band P is k-edge-
linked if k ∈ N and there exist k pairwise edge-disjoint paths from V (P1) to V (Pm) contained
in the support of P, and for each i = 1, . . . ,m− 1, the tile Ti contains an edge-cut of size k
separating V (Pi) from V (Pi+1).

Similarly, the fan P is k-edge-linked if there exist k pairwise edge-disjoint paths from
V (P1)\{u} to V (Pm)\{u} contained in the support of P minus u, and for each i = 1, . . . ,m−1,
the sub-tile Ti − u contains an edge-cut of size k separating V (Pi) \ {u} from V (Pi+1) \ {u}.
For a closer explanation, one may say that, modulo a trivial adjustment, the fan P is
k-edge-linked iff the corresponding band in G− u is k-edge-linked.

I Definition 4.4 (isomorphic tiles). Two (F1, F2)-bands or (F1, u)-fans P1 = (P1, . . . , Pm)
and P2 = (P ′1, . . . , P ′m) are isomorphic if there exists a homeomorphism mapping the support
of P1 to the support of P2 and mapping the path Pi to P ′i for i = 1, . . . ,m, where the paths
are taken as directed away from F1 (i.e., the homeomorphism must map the vertex of Pi

incident with F1 to the vertex of P ′i incident with F1).

I Definition 4.5 (band or fan reduction). Let G be a graph drawn in the plane with crossings.
Let G′ be the planarization of G and let Y denote the set of crossing vertices of G′. Let
P be an (F1, F2)-band or an (F1, u)-fan in G′ whose support is disjoint from Y . Suppose
P1 and P2 are isomorphic subbands or subfans of P, with disjoint supports, except for the
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vertex u when P is a fan, and not containing the first and the last path of P. Let P ′ be
the minimal subband or subfan of P containing both P1 and P2. We then say that P ′ is
a reducible subband or subfan with repetition (P1,P2). See Figure 6. The order of this
repetition (P1,P2) equals the length of P1 (which is the same as the length of P2).

Let P1 and P2 be the last paths of P1 and P2, respectively. Denote by S the support of
the subband or subfan between P1 and P2, excluding these two paths. Let G′1 be obtained
from G′ by removing S and by identifying P1 with P2 (stretching the drawing of the support
of P1 within the area originally occupied by S). Let G1 be obtained from G′1 by turning the
vertices of Y back into crossings. For clarity, note that the support of P ′ is disjoint from
Y , and so P ′ is also a band or fan in a plane subgraph of G. We then say that G1 is the
reduction of G on P ′.

I Definition 4.6 (t-typical subband or subfan). We say that, in an (F1, F2)-band or an
(F1, u)-fan P , a subband Q is t-typical if the following holds: there exist subbands or subfans
P1, . . . , P2t+1 of P appearing in this order, such that they are pairwise isomorphic, with
pairwise disjoint supports except for the vertex u when P is a fan, and Q = Pt+1.

I Lemma 4.7 (*). Let G be a 2-connected c-crossing-critical graph drawn in the plane with
the minimum number of crossings. Let G′ be the planarization of G and let Y denote the
set of crossing vertices of G′. Let c0 = d5c/2 + 16e and k ∈ N. Let P be a k-edge-linked
shelled (F1, F2)-band or proper (F1, u)-fan in G′ whose support is disjoint from Y . Let Q be
a subband or subfan of P which is reducible with repetition of order at least 12c0 + 2k. If Q
is c-typical in P, then the reduction G1 of G on Q is a c-crossing-critical graph again.

Expanding a band, fan or a necklace. Finally, it is time to formally define what is a
generic converse operation of the instances of reduction considered by Lemmas 4.7 and 4.2:

I Definition 4.8 (n-bounded expansion). Let G be a 2-connected c -crossing-critical graph
drawn in the plane with the minimum number of crossings. Let G′ be the planarization of
G and let Y denote the set of crossing vertices of G′. Let c0 = d5c/2 + 16e. Assume P is
a k-edge-linked shelled (F1, F2)-band or proper (F1, u)-fan in G′ whose support is disjoint
from Y . Let Q be a c -typical subband or subfan of P which is reducible with repetition
of order at least 12c0 + 2k. Let the number of vertices of the support of Q be at most n,
and let G1 denote the reduction of G on Q. In these circumstances, we say that G is an
n-bounded expansion of G1.

Assume P ′ is a necklace in G′ whose support is disjoint from Y , and let Q′ = (v1, v2) be a
1-typical subband of P ′ of length 2. Let G2 be obtained from G by replacing the support S of
Q′ by a parallel edge of multiplicity equal to the maximum number of pairwise edge-disjoint
paths between v1 and v2 in S. Let the number of vertices of the support of Q′ be at most n.
In these circumstances, we also say that G is an n-bounded expansion of G1.

I Theorem 4.9 (*). For every integer c ≥ 1, there exists a positive integer n0 such that the
following holds. If G is a 2-connected c-crossing-critical graph, then there exists a sequence
G0, G1, . . . , Gm of 2-connected c-crossing-critical graphs such that |V (G0)| ≤ n0, Gm = G,
and for i = 1, . . . ,m, Gi is an n0-bounded expansion of Gi−1.

Moreover, the generating sequences claimed by Theorem 4.9 can be turned into an efficient
enumeration procedure to generate all 2-connected c -crossing-critical graphs of at most given
order n, for each fixed c. The output-sensitive complexity of this procedure has polynomial
delay in n. We leave further details for the full paper.
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5 Deconstructing plane graphs of bounded path-width

We now return to the topic of Section 3, supplementing the technical prerequisites of
Theorem 3.5. We need to add a few terms related to Definition 3.4.

Let (P, β) be a path decomposition of a graph G. Let s denote the first node and t

the last node of P . For x ∈ V (P ) \ {s}, let l(x) be the node of P preceding x, and let
L(x) = β(l(x)) ∩ β(x). For x ∈ V (P ) \ {t}, let r(x) be the node of P following x, and let
R(x) = β(r(x)) ∩ β(x). The path decomposition is proper if β(x) 6⊆ β(y) for all distinct
x, y ∈ V (P ). The interior width of the decomposition is the maximum over |β(x)| − 1 over
all nodes x of P distinct from s and t. The path decomposition is p-linked if |L(x)| = p for
all x ∈ V (P ) \ {s} and G contains p vertex-disjoint paths from R(s) to L(t). The order of
the decomposition is |V (P )|.

A crucial technical step in the proof of Theorem 3.5 is to analyse a topological structure
of the bags of a path decomposition (P, β) of a plane graph G, and to find many consecutive
subpaths of P on which the decomposition repeats the same “topological behavior”. For
this we are going to model the bags of the decomposition (P, β) as letters of a string over a
suitable finite semigroup (these letters present an abstraction of the bags), and to apply the
following algebraic tool, Lemma 5.1.

Let T be a rooted ordered tree (i.e., the order of children of each vertex is fixed). Let f
be a function that to each leaf of T assigns a string of length 1, such that for each non-leaf
vertex v of T , f(v) is the concatenation of the strings assigned by f to the children of v
in order. We say that (T, f) yields the string assigned to the root of T by f . If the letters
of the string are elements of a semigroup A, then for each v ∈ V (T ), let fA(v) denote the
product of the letters of f(v) in A. Recall that an element e of A is idempotent if e2 = e. A
tree (T, f) is an A-factorization tree if for every vertex v of T with more than two children,
there exists an idempotent element e ∈ A such that fA(x) = e for each child x of v (and
hence also fA(v) = e). Simon [17] showed existence of bounded-depth A-factorization trees
for every string; the improved bound in the following lemma was proved by Colcombet [4]:

I Lemma 5.1 ([4]). For every finite semigroup A and each string of elements of A, there
exists an A-factorization tree of depth at most 3|A| yielding this string.

We further need to formally define what we mean by a “topological behavior” of bags
and subpaths of a path decomposition of our G. This will be achieved by the following term
of a q-type.

In this context we consider multigraphs (i.e., with parallel edges and loops allowed – each
loop contributes 2 to degree of the incident vertex, and not necessarily connected) with some
of its vertices labelled by distinct unique labels. A plane multigraph G is irreducible if G has
no faces of size 1 or 2, and every unlabelled vertex of degree at most 2 is an isolated vertex
incident with one loop (this loop, hence, cannot bound a 1-face). Two plane multigraphs G1
and G2 with some of the vertices labelled are homeomorphic if there exists a homeomorphism
ϕ of the plane mapping G1 onto G2 so that for each vertex v ∈ V (G1), the vertex ϕ(v) is
labelled iff v is, and then v and ϕ(v) have the same label. For G with some of its vertices
labelled using the labels from a finite set L, the q-type of G is the set of all non-homeomorphic
irreducible plane multigraphs labelled from L and with at most q unlabelled vertices, and
whose subdivisions are homeomorphic to subgraphs of G.

Let G be a plane graph and let (P, β) be its p-linked path decomposition. Let s and t
be the endpoints of P . Fix pairwise vertex-disjoint paths Q1, . . . , Qp between R(s) and
L(t). Consider a subpath P ′ of P − {s, t}, and let GP ′ be the subgraph of G induced by⋃

x∈V (P ′) β(x). If s′ and t′ are the (left and right) endpoints of P ′, we define L(P ′) = L(s′)



Z. Dvořák, P. Hliněný, and B. Mohar 33:13

and R(P ′) = R(t′). Let us label the vertices of GP ′ using (some of) the labels {l1, . . . , lp,
r1, . . . , rp, c1, . . . , cp} as follows: For i = 1, . . . , p, let u and v be the vertices in which Qi

intersects L(P ′) and R(P ′), respectively. If u 6= v, we give u the label li and v the label ri.
Otherwise, we give u = v the label ci. For an integer q, the q-type of P ′ is the q-type of GP ′

with this labelling. If P ′ contains just one node x, then we speak of the q-type of x.
The q-types of subpaths of a linked path decomposition naturally form a semigroup with

concatenation of the subpaths, as detailed in the full paper. From Lemma 5.1, specialised
to our case, we derive the following structural description which is crucial in the proof of
Theorem 3.5. Further technical details are again left for the full paper.

I Theorem 5.2 (*). Let w and q be non-negative integers, and let f : N → N be an
arbitrary non-decreasing function. There exist integers w0 and n0 such that, for any plane
graph G that has a proper path decomposition of interior width at most w and order at least
n0, the following holds. For some w′ ≤ w0 and p ≤ w, G also has a p-linked proper path
decomposition (P, β) of interior width at most w′ and order at least f(w′), such that for each
node x of P distinct from its endpoints, the q-type of x is the same idempotent element.

In other words, we can find a decomposition in which all topological properties of the
drawing that hold in one bag repeat in all the bags. So, for example, if for some node x,
the vertices of L(x) are separated in the drawing from vertices of R(x) by a cycle contained
in the bag of x, then this holds in every bag, and we conclude that the drawing contains
a large 0-nest. Other outcomes of Theorem 3.5 naturally correspond to other possible local
properties of the drawings of the bags.

6 Conclusion

To summarize, we have shown a structural characterisation and an enumeration procedure
for all 2-connected c -crossing-critical graphs, using bounded-size replication steps over an
implicit finite set of base c -crossing-critical graphs. The characterisation can be reused to
describe all c -crossing-critical graphs (without the connectivity assumption) since all their
proper blocks must be ci-crossing-critical for some ci < c.

With this characterisation at hand, one can expect significant progress in the crossing
number research, both from mathematical and algorithmic perspectives. For example, one
can quite easily derive from Theorem 4.9 that, for no c there is an infinite family of 3-regular
c -crossing-critical graphs, a claim that has been so far proved only via the Graph minors
theorem of Robertson and Seymour. One can similarly expect a progress in some long-
time open questions in the area of crossing-critical graphs, such as to improve the bound of
Theorem 2.3 or to decide possible existence of an infinite family of 5-regular c -crossing-critical
graphs for some c.
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