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Abstract
Many polynomial invariants of knots and links, including the Jones and HOMFLY-PT polynomi-
als, are widely used in practice but #P-hard to compute. It was shown by Makowsky in 2001 that
computing the Jones polynomial is fixed-parameter tractable in the treewidth of the link diagram,
but the parameterised complexity of the more powerful HOMFLY-PT polynomial remained an
open problem. Here we show that computing HOMFLY-PT is fixed-parameter tractable in the
treewidth, and we give the first sub-exponential time algorithm to compute it for arbitrary links.
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1 Introduction

In knot theory, polynomial invariants are widely used to distinguish between different
topological knots and links. Although they are powerful tools, these invariants are often
difficult to compute: in particular, the one-variable Jones polynomial [10] and the stronger
two-variable HOMFLY-PT polynomial [7, 20] are both #P-hard to compute in general [8, 22].

Despite this, we can use parameterised complexity to analyse classes of knots and links
for which these polynomials become tractable to compute. In the early 2000s, as a part
of a larger work on graph polynomials, Makowsky showed that the Jones polynomial can
be computed in polynomial time for links whose underlying 4-valent graphs have bounded
treewidth [15] – in other words, the Jones polynomial is fixed-parameter tractable with respect
to treewidth.1 A slew of other parameterised tractability results also appeared around this
period for the Jones and HOMFLY-PT polynomials: parameters included the pathwidth
of the underlying graph [16], the number of Seifert circles [16, 17], and the complexity of
tangles in an algebraic presentation [16].

However, there was an important gap: it remained open as to whether the HOMFLY-PT
polynomial is fixed-parameter tractable with respect to treewidth. This was dissatisfying
because the HOMFLY-PT polynomial is both powerful and widely used, and the treewidth
parameter lends itself extremely well to building fixed-parameter tractable algorithms, due
to its strong connections to logic [4, 5] and its natural fit with dynamic programming.

The first major contribution of this paper is to resolve this open problem: we prove that
computing the HOMFLY-PT polynomial of a link is fixed-parameter tractable with respect

1 For an explicit algorithm, see Traldi [21].
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18:2 The HOMFLY-PT Polynomial is Fixed-Parameter Tractable

to treewidth (Theorem 8). Our proof gives an explicit algorithm; this is feasible to implement,
and will soon be released as part of the topological software package Regina [1, 2].

Regarding practicality: fixed-parameter tractable algorithms are only useful if the para-
meter is often small, and in this sense treewidth is a useful parameter: the underlying graph
is planar, and so the treewidth of an n-crossing link diagram is at worst O(

√
n) [14]. This

is borne out in practice – for instance, a simple greedy computation using Regina shows
that, for Haken’s famous 141-crossing “Gordian unknot”, the treewidth is at most 12. Since
HOMFLY-PT is a topological invariant, one can also attempt to use local moves on a link
diagram to reduce the treewidth of the underlying graph, and Regina contains facilities for
this also. More generally, Makowsky and Mariño [16] describe various classes of knots and
links for which the treewidth is bounded.

There are few explicit algorithms in the literature for computing the HOMFLY-PT
polynomial in general: the most notable is Kauffman’s exponential-time skein-template
algorithm [11], which forms the basis for our algorithm in this paper. Other notable
algorithms are either designed for specialised inputs (e.g., Murakami et al.’s algorithm for
2-bridge links [18]), compute only portions of the HOMFLY-PT polynomial (e.g., Vertigan’s
polynomial-time algorithm for computing the first coefficients [19]), or are practical but do
not prove unqualified guarantees on their complexity [3, 9],

The second major result of this paper is to improve the worst-case running time for
computing the HOMFLY-PT polynomial in the general case, with no bound on the treewidth.
In particular, we prove the first sub-exponential running time for arbitrary links. This is
a simple corollary that follows immediately from analysing our fixed-parameter tractable
algorithm using the O(

√
n) bound on the treewidth of a planar graph.

Throughout this paper we assume that the input link diagram contains no zero-crossing
components (i.e., unknotted circles that are disjoint from the rest of the link diagram),
since otherwise the number of crossings is not enough to adequately measure the input
size. Such components are easy to handle – each zero-crossing component multiplies the
HOMFLY-PT polynomial by (α− α−1)z−1, and so we simply compute the HOMFLY-PT
polynomial without them and then adjust the result accordingly.

2 Background

A link is a disjoint union of piecewise linear closed curves embedded in R3; the image of each
curve is a component of the link. A knot is a link with precisely one component. In this
paper we orient our links by assigning a direction to each component.

A link diagram is a piecewise linear projection of a link onto the plane, where the only
multiple points are crossings at which one section of the link crosses another transversely.
The sections of the link diagram between crossings are called arcs. The number of crossings
is often used as a measure of input size; in particular, an n-crossing link diagram can be
encoded in O(n logn) bits without losing any topological information.

Figure 1 shows two examples: the first is a knot with 4 crossings and 8 arcs, and the
second is a 2-component link with 5 crossings and 10 arcs.

Figure eight knot Whitehead link

Figure 1 Examples of knots and links
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Positive Negative

Figure 2 Positive and negative crossings

Switch Splice

Figure 3 Switching and splicing a crossing

Each crossing has a sign which is either positive or negative, according to the direction in
which the upper strand passes over the lower; see Figure 2 for details. The writhe of a link
diagram is the number of positive crossings minus the number of negative crossings (so the
examples from Figure 1 have writhes 0 and −1 respectively).

In this paper we use two operations that change a link diagram at a single crossing. To
switch a crossing is to move the upper strand beneath the lower, and to splice a crossing is
to change the connections between the incoming and outgoing arcs; see Figure 3.

The HOMFLY-PT polynomial of a link L is a Laurent polynomial in the two variables
α and z (a Laurent polynomial is a polynomial that allows both positive and negative
exponents). There are two different but essentially equivalent definitions of the HOMFLY-PT
polynomial in the literature (the other is typically given as a polynomial in ` and m [13]);
we follow the same definition used by Kauffman [11].

A parameterised problem is a computational problem where the input includes some
numerical parameter k. Such a problem is said to be fixed-parameter tractable if there is an
algorithm with running time O(f(k) · poly(n)), where f is an arbitrary function and n is
the input size. A consequence of this is that, for any class of inputs whose parameter k is
universally bounded, the algorithm runs in polynomial time.

Treewidth is a common parameter for fixed-parameter tractable algorithms on graphs, and
we discuss it in detail now. Throughout this paper, all graphs are allowed to be multigraphs;
that is, they may contain parallel edges and/or loops.

I Definition 1 (Treewidth). Given a graph Γ with vertex set V , a tree decomposition of Γ
consists of a tree τ and bags βi ⊆ V for each node i of T , subject to the following constraints:
(i) each v ∈ V belongs to some bag βi; (ii) for each edge of Γ, its two endpoints v, w ∈ V
belong to some common bag βi; and (iii) for each v ∈ V , the bags containing v correspond
to a (connected) subtree of T .

The width of this tree decomposition is max |βi|− 1, and the treewidth of Γ is the smallest
width of any tree decomposition of Γ.

A consequence of the Lipton-Tarjan planar separator theorem [14] is that every planar
graph on n vertices has treewidth O(

√
n).

I Definition 2 (Rooted tree decomposition). Let Γ be a graph. A rooted tree decomposition
of Γ is a tree decomposition where one bag is singled out as the root bag. We define children
and parents in the usual way: for any adjacent bags β, β′ in the tree, if β is closer in the tree
to the root than β′ then we call β′ a child bag of β, and we call β the (unique) parent bag of
β′. A bag with no children is called a leaf bag.

More generally, we say that bag β′ is a descendant of bag β if β 6= β′ and there is some
sequence β = β0, β1, β2, . . . , βi = β′ where each βi is the parent bag of βi+1.

SoCG 2018
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I Definition 3 (Nice tree decomposition). Let Γ be a graph. A nice tree decomposition of Γ
is a rooted tree decomposition with the following additional properties:
1. The root bag is empty.
2. Every leaf bag contains precisely one vertex.
3. Every non-leaf bag has either one or two child bags.
4. If a bag βi has two child bags βj and βk, then βi = βj = βk; we call βi a join bag.
5. If a bag βi has only one child bag βj , then either:

|βi| = |βj |+ 1 and βi ⊃ βj . Here we call βi an introduce bag, and the single vertex in
βi\βj is called the introduced vertex.
|βi| = |βj | − 1 and βi ⊂ βj . Here we call βi a forget bag, and the single vertex in βj\βi

is called the forgotten vertex.

3 Kauffman’s skein-template algorithm

Kauffman’s skein-template algorithm works by building a decision tree. The leaves of this
decision tree are obtained from the original link by switching and/or splicing some crossings.
Each leaf is then evaluated as a Laurent polynomial, according to the number of components
and the specific switches and/or splices that were performed, and these are summed to obtain
the final HOMFLY-PT polynomial.

Our fixed-parameter tractable algorithm (described in Section 4) works by inductively
constructing, aggregating and analysing small pieces of Kauffman’s decision tree. We therefore
devote this section to describing Kauffman’s algorithm in detail, beginning with a description
of the algorithm itself followed by a detailed example.

I Algorithm 4 (Kauffman [11]). Let L be a link diagram with n crossings (and therefore 2n
arcs). Then the following procedure computes the HOMFLY-PT polynomial of L.

Arbitrarily label the arcs 1, 2, . . . , 2n. We build a decision tree by walking through the
link as follows:

Locate the lowest-numbered arc that has not yet been traversed, and follow the link along
this arc in the direction of its orientation.
Each time we encounter a new crossing that has not yet been traversed:

If we are passing over the crossing, then we simply pass through it and continue
traversing the link.
If we are passing under the crossing, then we make a fork in the decision tree. On
one branch we splice the crossing, and on the other branch we switch the crossing.
Either way, we then pass through the crossing (following the splice if we made one)
and continue traversing the link.

Whenever we encounter a crossing for the second time – regardless of whether it was first
seen on the over or under strand – we simply pass through it (again following the splice
if we made one) and continue traversing the link.
Whenever we return to an arc that has already been traversed (thus closing off a component
of our modified link):

If there are still arcs remaining that have not yet been traversed, then we locate the
lowest-numbered such arc and continue our traversal from there.
If every arc has now been traversed, then the resulting modified link becomes a leaf of
our decision tree.

To each leaf of the decision tree, we assign the polynomial term (−1)t−ztαw−w0δc−1, where:
t is the number of splices that we performed on this branch of the decision tree;
t− is the number of splices that we performed on negative crossings;
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Leaf L1 Leaf L4Leaf L3Leaf L2

Start at arc 1
Pass through A

Pass through C
Pass through A
Pass through D
Pass through C
Pass through B
Pass through D

Switch B

Splice DSwitch D

Splice CSwitch C

Splice B

Start at arc 3
Pass through C
Pass through A
Pass through D
Pass through C
Pass through B

Pass through A
Pass through D
Start at arc 3
Pass through C
Pass through B

Pass through B
Pass through C
Pass through A
Pass through D

1

2

3

65
8

7

4

A D

C

B

Figure 4 Running Kauffman’s skein-template algorithm

w is the writhe of the modified link, after any switching and/or splicing;
w0 is the writhe of the original link L, before any switching or splicing;
c is the number of components of the modified link;
δ expands to the polynomial (α− α−1)z−1.

The HOMFLY-PT polynomial of L is then the sum of these polynomial terms over all leaves.

Note that different branches of the decision tree may traverse the arcs of the link in a
different order, since each splice changes the connections between arcs; likewise, the modified
links at the leaves of the decision tree may have different numbers of link components.

I Example 5. Figure 4 shows the algorithm applied to the figure eight knot, as depicted at
the root of the tree. The eight arcs are numbered 1–8; to help with the discussion we also
label the four crossings A, B, C and D, which have signs +, −, − and + respectively.

We begin at arc 1, and because we first encounter crossing A on the upper strand, we
leave it unchanged and move on to arc 2. For crossing B we can either switch or splice,
and in these cases the traversal continues to arc 3 or 8 respectively. The decision process
continues as shown in the diagram, resulting in the four leaves L1, L2, L3 and L4.

Of particular note is the branch where we splice B and then switch D. Here the traversal
runs through arcs 1, 2 and 8, at which point it returns to arc 1, closing off a small loop. We
now begin again at arc 3: this takes us through crossing C (which we pass through because
we see it first on the upper strand), then crossing A (which we pass through because we are
seeing it for the second time), then crossing D (which we likewise pass through), and so on.

SoCG 2018
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The polynomials assigned to the four leaves are shown below:

t t− w w − w0 c Poly.
L1 0 0 2 2 1 α2

L2 1 1 −1 −1 2 −zα−1δ

t t− w w − w0 c Poly.
L3 2 1 2 2 1 −z2α2

L4 3 2 1 1 2 z3αδ

This yields the final HOMFLY-PT polynomial

α2− z2α2 + (z3α− zα−1)δ = α2− z2α2 + (z3α− zα−1)(α−α−1)z−1 = α2 +α−2− z2− 1.

I Theorem 6. Kauffman’s skein-template algorithm computes the HOMFLY-PT polynomial
of an n-crossing link in time 2n · poly(n).

Proof. The decision tree has ≤ 2n leaves, since we only branch the first time we traverse
each crossing (and even then, only if we first traverse the crossing from beneath, not above).
All other operations are polynomial time, giving an overall running time of 2n · poly(n) J

Although it requires exponential time, Kauffman’s algorithm can compute the HOMFLY-
PT polynomial in polynomial space. This is because we do not need to store the entire
decision tree – we can simply perform a depth-first traversal through the tree, making and
undoing switches and splices as we go, and keep a running total of the polynomial terms for
those leaves that we have encountered so far.

4 A fixed-parameter tractable algorithm

In this section we present an explicit algorithm to show that computing the HOMFLY-PT
polynomial is fixed-parameter tractable in the treewidth of the input link diagram.

I Definition 7. Let L be a link diagram. The graph of L, denoted Γ(L), is the directed
planar 4-valent multigraph whose vertices are the crossings of L, and whose directed edges
are the oriented arcs of L.

The first main result of this section, which resolves the open problem of the parameterised
complexity of computing the HOMFLY-PT polynomial, is:

I Theorem 8. Consider the parameterised problem whose input is a link diagram L, whose
parameter is the treewidth of the graph Γ(L), and whose output is the HOMFLY-PT polynomial
of L. Then this problem is fixed-parameter tractable.

4.1 Algorithm overview
The remainder of Section 4 is devoted to proving Theorem 8. First, however, we give a brief
overview of the algorithm and the difficulties that it must overcome.

Roughly speaking, our algorithm takes a nice tree decomposition of Γ(L) and works from
the leaf bags to the root bag. For each bag of the tree, we consider a range of possible
“boundary conditions” for how a link traversal interacts with the bag, and for each set of
boundary conditions we aggregate all “partial leaves” of Kauffman’s decision tree that satisfy
them. We formalise these boundary conditions and their resulting aggregations using the
notions of a configuration and evaluation respectively (Definitions 12 and 16).

This general pattern of dynamic programming over a tree decomposition is common for
fixed-parameter tractable algorithms. The main difficulty that we must overcome is to keep
the number of configurations polynomial in the number of crossings n. This difficulty arises
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because the choices in Kauffman’s decision tree depend upon the order in which you traverse
the crossings, and so each configuration must encode a starting arc for every connected
portion of a link traversal in every “partial leaf” of the decision tree. Because a “partial leaf”
could contain O(n) disjoint portions of a traversal, each with O(n) potential starting arcs,
the resulting number of configurations would grow at a rate of O(nn), which is too large.

Our solution is the following. Recall that Kauffman’s algorithm uses an arbitrary ordering
of the arcs of the link to determine the order in which we traverse arcs and make decisions
(to pass through, switch and/or splice crossings). In our algorithm, we order the arcs using
the tree decomposition – for each directed arc, we identify the forget bag in which its end
crossing is forgotten, and we then order the arcs according to how close this forget bag is to
the root of the tree. This makes the ordering of arcs inherent to the tree decomposition, and
so we do not need to explicitly encode starting arcs in our configurations. This is enough to
reduce the number of configurations at each bag to a function of the treewidth alone, with
no dependency on n.

4.2 Properties of tree decompositions
We now make some small observations about tree decompositions of the graphs of links.

I Definition 9. Let L be a link diagram, let T be a rooted tree decomposition of Γ(L), and
let β be any bag of T . For each crossing c of L, we say that:

c is unvisited at β if c does not appear in either β or any bags in the subtree rooted at β;
c is current at β if c appears in the bag β itself;
c is forgotten at β if c does not appear in the bag β, but does appear in some bag in the
subtree rooted at β.

Observe that the unvisited, current and forgotten crossings at β together form a partition
of all crossings of L.

I Lemma 10. Let L be a link diagram, let T be a rooted tree decomposition of Γ(L), and let
β be any bag of T . Then no arc of L can connect a crossing that is forgotten at β with a
crossing that is unvisited at β, or vice versa.

Proof. Let crossing c be forgotten at β, and let crossing d be unvisited at β. If there were
an arc from c to d (or vice versa) then some bag of T would need to contain both c and d,
by condition (ii) of Definition 1.

Since c appears in a descendant bag of β but not β itself, condition (iii) of Definition 1
means that all bags containing c must be descendant bags of β. However, since d is unvisited,
no bag containing d can be a descendant bag of β, yielding a contradiction. J

I Lemma 11. Let L be a link diagram, let T be a nice tree decomposition of Γ(L), and let c
be any crossing of L. Then T has a unique forget bag for which c is the forgotten vertex.

Proof. Since the root bag of T is empty, there must be some forget bag for which c is the
forgotten vertex. Moreover, since the bags containing c form a subtree of T , there is only
one bag that contains c but whose parent does not – the root of this subtree. J

4.3 Framework for the algorithm
We now define precisely the problems that we solve at each stage of the algorithm. Our first
task is to define a configuration – that is, the “boundary conditions” that describe how a
link traversal interacts with an individual bag of the tree decomposition.

SoCG 2018
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I Definition 12. Let L be a link diagram, let T be a rooted tree decomposition of
Γ(L), and let β be any bag of T . Then a configuration at β is a sequence of the form
(a1, b1, a2, b2, . . . , au, bu), where:
1. Each ai is an outgoing arc from some crossing that is current at β, where the destination

of this arc is a crossing that is either current or forgotten at β. Moreover, every such arc
must appear as exactly one of the ai.

2. Each bi is an incoming arc to some crossing that is current at β, where the source of this
arc is a crossing that is either current or forgotten at β. Moreover, every such arc must
appear as exactly one of the bi.

3. If an arc of L connects two crossings that are both current at β, then by conditions 1
and 2, such an arc must appear as some ai and also as some bj . In this case we also
require that i = j.

We call each pair ai, bi a matching pair of arcs in the configuration, and if ai = bi (as in
condition 3 above) then we call this a trivial pair.

Intuitively, each matching pair ai, bi describes the start and end points of a “partial
traversal” of the link (possibly after some switches and/or splices) that starts and ends in
the bag β, and that only passes through forgotten crossings. By placing these endpoints in a
sequence a1, b1, . . . , au, bu, we impose an ordering upon these “partial traversals” (which we
will eventually use to order the traversal of arcs in Kauffman’s decision tree).

I Lemma 13. Let L be a link diagram, let T be a rooted tree decomposition of Γ(L), and let
β be any bag of T . Then configurations at β exist (i.e., the definition above can be satisfied).
Moreover, then there are at most (2|β|)!2 possible configurations at β.

Proof. To show that the definition can be satisfied, all we need to show is that the number
of arcs from a current crossing to a current-or-forgotten crossing (i.e., the number of arcs ai)
equals the number of arcs from a current-or-forgotten crossing to a current crossing (i.e., the
number of arcs bi). This follows immediately from the fact that there are no arcs joining a
forgotten crossing with an unvisited crossing (Lemma 10).

The number of configuration is a simple exercise in counting: there are exactly |β|
crossings current at β, each with exactly two outgoing and two incoming arcs. This yields
at most 2|β| arcs ai and 2|β| arcs bj , giving at most (2|β|)! possible orderings of the ai and
(2|β|)! possible orderings of the bi. J

Our next task is to describe how we order the arcs in Kauffman’s decision tree in order
to avoid having to explicitly track the start points of link traversals in our algorithm.

I Definition 14. Let L be a link diagram, and let T be a nice tree decomposition of Γ(L).
Let a1, . . . , a2n be the directed arcs of L. Let ci denote the crossing at the end of arc ai,

and let βi be the (unique) forget bag that forgets the crossing ci.
A tree-based ordering of the arcs of L is a total order on the arcs {ai} that follows a

depth-first ordering of the corresponding bags {βi}. That is:
1. whenever βi is a descendant bag of βj , we must have aj < ai;
2. for any two disjoint subtrees of T , all of the arcs whose corresponding bags appear in

one subtree must be ordered before all of the arcs whose corresponding bags appear in
the other subtree.

Essentially, this orders the arcs of L according to how close to the root of T their ends
are forgotten – arcs are ordered earlier when the crossings they point to are forgotten closer
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to the root. There are many such possible orderings; for our algorithm, any one will do.2
We now proceed to define an evaluation – that is, the aggregation that we perform for

each configuration at each bag.

I Definition 15. Let L be a link diagram and let T be a nice tree decomposition of Γ(L).
Fix a tree-based ordering < of the arcs of L, and let κ = (a1, b1, a2, b2, . . . , au, bu) be a
configuration at some bag β.

A partial leaf for κ assigns one of the three tags pass, switch or splice to each forgotten
crossing at β, under the following conditions.

Consider (i) all the forgotten crossings of L, after applying any switches and/or splices
as described by the chosen tags; and (ii) all the arcs of L whose two endpoints are forgotten
and/or current. These join together to form a collection of (i) connected segments of a link
that start and end at current crossings and whose intermediate crossings are all forgotten;
and (ii) closed components of a link that contain only forgotten crossings. We require that:
1. Each segment (as opposed to a closed component) must begin at some arc ai and end at

the matching arc bi.
2. Suppose we traverse the segments and closed components in the following order. First

we traverse the segments in the order described by κ (i.e., the segment from a1 to b1,
then from a2 to b2, and so on). Then we traverse the closed components according to
the ordering <: we find the closed component with the smallest arc according to < and
traverse it starting at that arc; then we find the closed component with the smallest arc
not yet traversed and traverse it from that arc; and so on.
Then the pass, switch and splice tags that we assign to each forgotten crossing must
be consistent with Kauffman’s algorithm under this traversal. Specifically:

If we encounter a forgotten crossing for the first time on the upper strand, then it
must be marked pass.
If we encounter a forgotten crossing for the first time on the lower strand, then it must
be marked either switch or splice.

This definition appears complex, but in essence, a partial leaf for κ is simply a choice
of operations on each forgotten crossing that could eventually be extended to a leaf of the
decision tree in Kauffman’s original algorithm.

Note that the order of traversal in condition 2 is indeed consistent with Kauffman’s
algorithm. The segments must be traversed before the closed components; this is because
the segments will be extended and eventually closed off as the algorithm moves towards the
root of the tree, and so the segments will eventually contain arcs that are smaller (according
to <) than any of the arcs in the closed components in condition 2 above.

I Definition 16. Let L be a link diagram and let T be a nice tree decomposition of Γ(L).
Fix a tree-based ordering < of the arcs of L, and let κ be a configuration at some bag β.

The evaluation of κ is a Laurent polynomial in the variables α, z and δ, obtained by
summing the terms (−1)t−ztαw−w0δc−1 over all partial leaves for κ, where:

t is the number of forgotten crossings marked splice;
t− is the number of forgotten negative crossings marked splice;

2 Different tree-based orderings share many common properties. For example, given any collection of
arcs that are connected in Γ(L), all tree-based orderings share the same minimum arc in this collection.
This is enough to ensure that different tree-based orderings will traverse the arcs and crossings of L in
exactly the same order when running Kauffman’s algorithm.

SoCG 2018
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w is the number of forgotten positive crossings minus the number of forgotten negative
crossings, where we ignore any crossings marked splice and we reverse the sign of any
crossings marked switch;
w0 is the writhe of the entire original link diagram L (including all crossings);
c is the number of closed components that contain only forgotten crossings, as described
in condition 2 of Definition 15.

The structure of the algorithm itself is now simple: we move through the tree decomposi-
tion from the leaf bags to the root bag, and at each bag β we compute the evaluation of all
configurations at β.

This process eventually ends at the root bag, where we can show that the evaluation of
the (unique) empty configuration encodes the HOMFLY-PT polynomial of the link L:

I Lemma 17. Let L be a link diagram and let T be a nice tree decomposition of Γ(L). Fix a
tree-based ordering < of the arcs of L.

Then there is only one configuration at the root bag of T (which is the empty sequence).
Moreover, if the evaluation of this configuration is the Laurent polynomial Q(α, z, δ), then
the HOMFLY-PT polynomial of L is obtained by replacing δ with (α− α−1)z−1.

Proof. At the root bag, every crossing is forgotten; therefore no crossings are current and so
the only configuration is the empty sequence. Call this κ0.

Following Definition 15, we then see that the partial leaves for κ0 are precisely the leaves
of the decision tree in Kauffman’s skein-template algorithm, assuming that we order the arcs
in Kauffman’s algorithm using our tree-based ordering <.

Moreover, when evaluating κ0, the terms (−1)t−ztαw−w0δc−1 that we sum are precisely
the polynomials that we sum in Kauffman’s algorithm, with the exception that we keep δ as
a separate variable instead of expanding it to (α− α−1)z−1.

It follows that, if we take this evaluation and expand δ to (α− α−1)z−1, then we obtain
the same result as Kauffman’s algorithm, which is the HOMFLY-PT polynomial of L. J

4.4 Running the algorithm
Having defined the problems to solve at each bag, we can now describe the algorithm in full.

I Algorithm 18. Suppose we are given a link diagram L and a nice tree decomposition T of
Γ(L). Then the following algorithm computes the HOMFLY-PT polynomial of L.

If L contains any trivial twists – that is, arcs that run from a crossing back to itself – then
we untwist them now. This preserves the topology of the link, and so does not change the
HOMFLY-PT polynomial. If this produces any zero-crossing components then we also remove
them – this does change the HOMFLY-PT polynomial (as explained in the introduction, we
lose a factor of (α− α−1)z−1), but we can simply adjust the result once the algorithm has
finished by multiplying through by (α− α−1)z−1 again.

Next, fix a tree-based ordering < of the arcs of L.
Now, as described at the end of Section 4.3, we work through the bags of T in order from

leaves to root. At each bag β we compute and store the evaluation of all configurations at β.
How we do this depends upon the type of the bag β.

If β is a leaf bag:
In this case we have exactly one current crossing c, and every incoming and outgoing arc

from c connects it to an unvisited crossing. Therefore there is only one configuration (the
empty sequence). Moreover, since there are no forgotten crossings at all, this configuration
has an evaluation of α−w0δ−1, where w0 is the writhe of the entire input diagram L.
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If β is an introduce bag:
Let c be the new crossing that is introduced in β, and let β′ be the child bag of β. Note

that, by applying Lemma 10 to the bag β′, we see that each of the four arcs that meets c
must connect c to either a current or unvisited crossing at β.

If all four of these arcs connect c to an unvisited crossing at β, then the configurations at
β are precisely the configurations at β′. Moreover, since the forgotten crossings at β′ and β
are the same, it follows that the partial leaves and evaluation of each configuration will be
identical at bags β′ and β, and so we can copy all of our computations from the child bag β′
directly to β with no changes.

If one or more arcs connects c to a current crossing at β, then each configuration κ′

at β′ gives rise to many configurations at β. Specifically, each such arc a will appear as a
new trivial pair ai = bi = a in the sequence (see condition 3 of Definition 12). This pair
may be inserted anywhere amongst the matching pairs from κ′; that is, we can extend the
sequence (a1, b1, . . . , au, bu) to (a1, b1, . . . , aj , bj , a, a, aj+1, bj+1, . . . , au, bu) for any insertion
point j. As before, the partial leaves after this insertion are identical to the partial leaves for
κ′, and so the evaluation of each such new configuration is identical to the evaluation of κ′.

If β is a join bag:
Let β1 and β2 be the two child bags of β. We iterate through all pairs (κ1, κ2) where

each κi is a configuration at βi, and attempt to find “compatible” pairs that can be merged
to form a configuration at β. Note that all forgotten crossings at β1 will be unvisited at β2,
and all forgotten crossings at β2 will be unvisited at β1.

The only arcs that appear in the sequences for both κ1 and κ2 are those arcs whose
endpoints are both current at β. By Definition 12, such arcs must appear as trivial pairs in
both κ1 and κ2. Therefore, if these trivial pairs all appear in the same relative order in both
κ1 and κ2, we can merge κ1 and κ2 to form a configuration at β – in fact there are many
ways to do this, since we can interleave the two sequences for κ1 and κ2 however we like as
long as the matching pairs from each individual κi are all kept in the same relative order.

Since the forgotten crossings for β1 and β2 are disjoint, we can combine any partial leaf
for κ1 with any partial leaf for κ2 to form a partial leaf for the new configuration κ at β.
Therefore the evaluation of κ is e1 · e2 · αw0δ, where each ei is the evaluation of κi. Here the
extra factor of αw0δ compensates for the fact that each polynomial term from Definition 16
includes a “constant factor” of α−w0δ−1 which we inherit twice from e1 and e2.

If the trivial pairs for κ1 and κ2 do not appear in the same relative order in both sequences,
then we cannot merge the two configurations to form a new configuration at β, and so we
ignore this pair of configurations (κ1, κ2) and move on to the next pair.

If β is a forget bag:
Let c be the crossing that is forgotten in β, and let β′ be the child bag of β. Once more

we iterate through all configurations at β′; let κ′ be such a configuration.
We consider applying each of the tags pass, switch and splice to the forgotten crossing

c. For consistency with Kauffman’s decision tree, we only allow the pass tag if the upper
incoming arc into c appears earlier in κ′ than the lower incoming arc into c (which means we
first encounter c on the upper strand); likewise, we only allow the switch and splice tags
if the lower incoming arc into c appears earlier in κ′ than the upper incoming arc into c.

Having chosen a tag, we then attempt to convert κ′ into a new configuration κ at β. This
involves combining matching pairs of κ′ that connect with c to reflect how the link traversal
passes through the now-forgotten crossing c. There are two ways that this can be done:
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Matching pairs on either side of c could be adjacent in κ′. For instance, suppose we apply
the switch tag. Then κ′ could be of the form . . . , ai, bi, ai+1, bi+1, . . ., where bi is an
incoming arc for c and ai+1 is the opposite outgoing arc for c (in the case of splice, ai+1
would need to be the adjacent outgoing arc instead). The new configuration κ would
then be . . . , ai, bi+1, . . .; here (ai, bi+1) becomes a new matching pair.
There could be a single matching pair in κ′ that runs from c back around to itself. For
instance, if we apply the switch tag then κ′ could be of the form . . . , ai, bi, . . ., where ai

is an outgoing arc for c and bi is the opposite incoming arc (again, for splice we would
need bi to be the adjacent incoming arc instead). In this case, forgetting c will connect
the two ends of the traversal segment from ai to bi to form a new closed link component,
and the new configuration κ is obtained by deleting the pair (ai, bi) from κ′.

Note that we must combine two pairs of matching pairs – one for each strand that passes
through c. If this cannot be done as described above (i.e., the relevant matching pairs are
neither adjacent in κ′ nor do they run from c back to itself), then we cannot apply our chosen
tag to κ′. In this case we just move to the next choice of tag for c and/or the next available
configuration at β′.

If we are able to use our chosen tag with κ′, then we can use the evaluation of κ′ to
compute the evaluation of the new configuration κ. We must, however, multiply by an
appropriate factor to reflect how the partial leaves have changed, following Definition 16:

if we chose splice then we must multiply by z, and also by −1 if c is a negative crossing;
if we pass a positive crossing or switch a negative crossing, we must multiply by α;
if we pass a negative crossing or switch a positive crossing, we must multiply by α−1;
if we formed a new closed link component then we must multiply by δ.

Since κ is obtained by deleting and/or merging matching pairs from κ′, it is possible that
several different child configurations κ′ could yield the same new configuration κ. If this
happens, we simply sum all of the resulting evaluations at κ.

Once we have finished working through all the bags, we take the evaluation of the unique
configuration at the root bag and expand δ to (α−α−1)z−1 as described in Lemma 17. This
yields the final HOMFLY-PT polynomial of L.

I Theorem 19. If the nice tree decomposition in Algorithm 18 has O(n) bags and width k,
then the algorithm has running time O

(
(2k)!4 · poly(n)

)
, where n is the number of crossings

in the link diagram L.

Proof. Most of the operations in the algorithm are clearly polynomial time, and we do not
discuss their precise complexities here. The only source of super-polynomial running time
comes from the large number of configurations to process at each bag.

When processing a forget or introduce bag, Lemma 13 shows that there are ≤ (2k)!2
child configurations to process, requiring O

(
(2k)!2 · poly(n)

)
time in total. When processing

a join bag, we iterate through pairs of configurations (κ1, κ2), and so the total processing
time becomes O

(
(2k)!4 · poly(n)

)
. Note that, although any individual pair (κ1, κ2) could

yield a super-polynomial number of new configurations κ (due to the many possible ways to
merge configurations), these nevertheless contribute to a total number of configurations at
the join bag which is still bounded by Lemma 13, and so the total processing time at a join
bag remains no worse than O

(
(2k)!4 · poly(n)

)
. J

Algorithm 18 assumes that you already have a tree decomposition; however, finding one
with the smallest possible width is an NP-hard problem [6]. We therefore extend our running
time analysis to the more common case where only the link is given, and a tree decomposition
is not known in advance.
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I Corollary 20. Given a link diagram L with n crossings whose graph Γ(L) has treewidth k,
it is possible to compute the HOMFLY-PT polynomial of L in time O

(
(8k)!4 · poly(n)

)
.

Proof. Cygan et al. [6] give an algorithm that can construct a tree decomposition with width
≤ 4k + 4 and n bags in time O(8kk2 · n2). Kloks [12] then shows how to convert this into a
nice tree decomposition in O(n) time with the same width, and with O(n) bags. Our corollary
now follows by applying Theorem 19 with width 4k + 4. Note that the running time from
Theorem 19 dominates the preprocessing time required to build the tree decompositions. J

Corollary 20 shows that computing the HOMFLY-PT polynomial is fixed-parameter
tractable, thereby finally concluding the proof of Theorem 8, our first main result.

However, unlike Kauffman’s algorithm, our algorithm is not polynomial space, since it
must store up to (2k)!2 configurations and their evaluations at each bag.

We can now finish this paper with our second main result. Since the treewidth of a planar
graph is O(

√
n), we can substitute k = O(

√
n) into Corollary 20 to yield the following:

I Corollary 21. Given a link diagram L with n crossings, it is possible to compute the
HOMFLY-PT polynomial of L in time eO(

√
n·log n).

That is, it is possible to compute the HOMFLY-PT polynomial in sub-exponential time.
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