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Abstract
We study the problem of decomposing a volume bounded by a smooth surface into a collection
of Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution
to this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from
α-shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the
surface, yielding the first provably-correct algorithm for this problem. Given an ε-sample on the
bounding surface, with a weak σ-sparsity condition, we work with the balls of radius δ times the
local feature size centered at each sample. The corners of this union of balls are the Voronoi sites,
on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface.
For appropriate values of ε, σ and δ, we prove that the surface reconstruction is isotopic to the
bounding surface. With the surface protected, the enclosed volume can be further decomposed
into an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its
interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi
cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust
cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume
by either structured grids or random samples.
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1 Introduction

Mesh generation is a fundamental problem in computational geometry, geometric modeling,
computer graphics, scientific computing and engineering simulations. There has been a
growing interest in polyhedral meshes as an alternative to tetrahedral or hex-dominant
meshes [48]. Polyhedra are less sensitive to stretching, which enables the representation of
complex geometries without excessive refinement. In addition, polyhedral cells have more
neighbors even at corners and boundaries, which offers better approximations of gradients
and local flow distributions. Even compared to hexahedra, fewer polyhedral cells are needed
to achieve a desired accuracy in certain applications. This can be very useful in several
numerical methods [18], e.g., finite element [42], finite volume [39], virtual element [17]
and Petrov-Galerkin [41]. In particular, the accuracy of a number of important solvers,
e.g., the two-point flux approximation for conservation laws [39], greatly benefits from a
conforming mesh which is orthogonal to its dual as naturally satisfied by Voronoi meshes.
Such solvers play a crucial role in hydrology [51], computational fluid dynamics [22] and
fracture modeling [20].

VoroCrust is the first provably-correct algorithm for generating a volumetric Voronoi mesh
whose boundary conforms to a smooth bounding surface, and with quality guarantees. A
conforming volume mesh exhibits two desirable properties simultaneously: (1) a decomposition
of the enclosed volume, and (2) a reconstruction of the bounding surface.

Conforming Delaunay meshing is well-studied [28], but Voronoi meshing is less mature. A
common practical approach to polyhedral meshing is to dualize a tetrahedral mesh and clip,
i.e., intersect and truncate, each cell by the bounding surface [35,43,47,52,55]. Unfortunately,
clipping sacrifices the important properties of convexity and connectedness of cells [35], and
may require costly constructive solid geometry operations. Restricting a Voronoi mesh to the
surface before filtering its dual Delaunay facets is another approach [7,33,56], but filtering
requires extra checks complicating its implementation and analysis; see also Figure 4. An
intuitive approach is to locally mirror the Voronoi sites on either side of the surface [34, 57],
but we are not aware of any robust algorithms with approximation guarantees in this category.
In contrast to these approaches, VoroCrust is distinguished by its simplicity and robustness
at producing true unweighted Voronoi cells, leveraging established libraries, e.g., Voro++ [50],
without modification or special cases.

VoroCrust can be viewed as a principled mirroring technique, which shares a number of
key features with the power crust algorithm [13]. The power crust literature [7, 8, 10, 12,13]
developed a rich theory for surface approximation, namely the ε-sampling paradigm. Recall
that the power crust algorithm uses an ε-sample of unweighted points to place weighted sites,
so-called poles, near the medial axis of the underlying surface. The surface reconstruction
is the collection of facets separating power cells of poles on the inside and outside of the
enclosed volume.



A. Abdelkader et al. 1:3

Regarding samples and poles as primal-dual constructs, power crust performs a primal-
dual-dual-primal dance. VoroCrust makes a similar dance where weights are introduced
differently; the samples are weighted to define unweighted sites tightly hugging the surface,
with the reconstruction arising from their unweighted Voronoi diagram. The key advantage
is the freedom to place more sites within the enclosed volume without disrupting the surface
reconstruction. This added freedom is essential to the generation of graded meshes; a primary
virtue of the proposed algorithm. Another virtue of the algorithm is that all samples appear
as vertices in the resulting mesh. While the power crust algorithm does not guarantee that,
some variations do so by means of filtering, at the price of the reconstruction no longer being
the boundary of power cells [7, 11,32].

The main construction underlying VoroCrust is a suitable union of balls centered on the
bounding surface, as studied in the context of non-uniform approximations [26]. Unions of
balls enjoy a wealth of results [15,24,37], which enable a variety of algorithms [13,23,30].

Similar constructions have been proposed for meshing problems in the applied sciences
with heuristic extensions to 3D settings; see [40] and the references therein for a recent
example. Aichholzer et al. [6] adopt closely related ideas to construct a union of surface balls
using power crust poles for sizing estimation. However, their goal was to produce a coarse
homeomorphic surface reconstruction. As in [6], the use of balls and α-shapes for surface
reconstruction was explored earlier, e.g., ball-pivoting [19,54], but the connection to Voronoi
meshing has been absent. In contrast, VoroCrust aims at a decomposition of the enclosed
volume into fat Voronoi cells conforming to an isotopic surface reconstruction with quality
guarantees.

In a previous paper [4], we explored the related problem of generating a Voronoi mesh
that conforms to restricted classes of piecewise-linear complexes, with more challenging
inputs left for future work. The approach adopted in [4] does not use a union of balls and
relies instead on similar ideas to those proposed for conforming Delaunay meshing [29,45,49].

In this paper, we present a theoretical analysis of an abstract version of the VoroCrust
algorithm. This establishes the quality and approximation guarantees of its output for volumes
bounded by smooth surfaces. A description of the algorithm we analyze is given next; see
Figure 1 for an illustration in 2D, and also our accompanying multimedia contribution [2].

The abstract VoroCrust algorithm

1. Take as input a sample P on the surfaceM bounding the volume O.
2. Define a ball Bi centered at each sample pi, with a suitable radius ri, and let U = ∪iBi.
3. Initialize the set of sites S with the corner points of ∂U , S↑ and S↓, on both sides ofM.
4. Optionally, generate additional sites S↓↓ in the interior of O, and include S↓↓ into S.
5. Compute the Voronoi diagram Vor(S) and retain the cells with sites in S↓ ∪ S↓↓ as the

volume mesh Ô, where the facets between S↑ and S↓ yield a surface approximation M̂.

(a) Surface balls. (b) Labeled corners. (c) Voronoi cells. (d) Reconstruction.

Figure 1 VoroCrust reconstruction, demonstrated on a planar curve.
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In this paper, we assume O is a bounded open subset of R3, whose boundary M is a
closed, bounded and smooth surface. We further assume that P is an ε-sample, with a weak
σ-sparsity condition, and ri is set to δ times the local feature size at pi. For appropriate
values of ε, σ and δ, we prove that Ô and M̂ are isotopic to O andM, respectively. We also
show that simple techniques for sampling within O, e.g., octree refinement, guarantee an
upper bound on the fatness of all cells in Ô, as well as the number of samples.

Ultimately, we seek a conforming Voronoi mesher that can handle realistic inputs possibly
containing sharp features, can estimate a sizing function and generate samples, and can
guarantee the quality of the output mesh. This is the subject of a forthcoming paper [3]
which describes the design and implementation of the complete VoroCrust algorithm.

The rest of the paper is organized as follows. Section 2 introduces the key definitions
and notation used throughout the paper. Section 3 describes the placement of Voronoi
seeds and basic properties of our construction assuming the union of surface balls satisfies
a structural property. Section 4 proves this property holds and establishes the desired
approximation guarantees under certain conditions on the input sample. Section 5 considers
the generation of interior samples and bounds the fatness of all cells in the output mesh.
Section 6 concludes the paper with pointers for future work. A number of proofs is deferred
to the full version, available online [1]; see also the accompanying multimedia contribution in
these proceedings [2].

2 Preliminaries

Throughout, standard general position assumptions [38] are made implicitly to simplify the
presentation. We use d(p, q) to denote the Euclidean distance between two points p, q ∈ R3,
and B(c, r) to denote the Euclidean ball centered at c ∈ R3 with radius r. We proceed
to introduce the notation and recall the key definitions used throughout, following those
in [13,26,37].

2.1 Sampling and approximation

We take as input a set of sample points P ⊂M. A local scale or sizing is used to vary the
sample density. Recall that the medial axis [13] ofM, denoted by A, is the closure of the
set of points in R3 with more than one closest point onM. Hence, A has one component
inside O and another outside. Each point of A is the center of a medial ball tangent toM
at multiple points. Likewise, each point onM has two tangent medial balls, not necessarily
of the same size. The local feature size at x ∈M is defined as lfs(x) = infa∈A d(x, a). The
set P is an ε-sample [9] if for all x ∈M there exists p ∈ P such that d(x, p) ≤ ε · lfs(x).

We desire an approximation of O by a Voronoi mesh Ô, where the boundary M̂ of Ô
approximatesM. Recall that two topological spaces are homotopy-equivalent [26] if they
have the same topology type. A stronger notion of topological equivalence is homeomorphism,
which holds when there exists a continuous bijection with a continuous inverse fromM to M̂.
The notion of isotopy captures an even stronger type of equivalence for surfaces embedded
in Euclidean space. Two surfacesM,M̂ ⊂ R3 are isotopic [16, 25] if there is a continuous
mapping F : M× [0, 1] → R3 such that for each t ∈ [0, 1], F (·, t) is a homeomorphism
from M to M̂, where F (·, 0) is the identity of M and F (M, 1) = M̂. To establish that
two surfaces are geometrically close, the distance between each point on one surface and its
closest point on the other surface is required. Such a bound is usually obtained in the course
of proving isotopy.



A. Abdelkader et al. 1:5

2.2 Diagrams and triangulations
The set of points defining a Voronoi diagram are traditionally referred to as sites or seeds.
When approximating a manifold by a set of sample points of varying density, it is helpful to
assign weights to the points reflective of their density. In particular, a point pi with weight
wi, can be regarded as a ball Bi with center pi and radius ri = √wi.

Recall that the power distance [37] between two points pi, pj with weights wi, wj is
π(pi, pj) = d(pi, pj)2−wi−wj . Unless otherwise noted, points are unweighted, having weight
equal to zero. There is a natural geometric interpretation of the weight: all points q on the
boundary of Bi have π(pi, q) = 0, inside π(pi, q) < 0 and outside π(pi, q) > 0. Given a set of
weighted points P, this metric gives rise to a natural decomposition of R3 into the power
cells Vi = {q ∈ R3 | π(pi, q) ≤ π(pj , q) ∀pj ∈ P}. The power diagram wVor(P) is the cell
complex defined by collection of cells Vi for all pi ∈ P.

The nerve [37] of a collection C of sets is defined as N (C) = {X ⊆ C | ∩ T 6= ∅}. Observe
that N (C) is an abstract simplicial complex because X ∈ N (C) and Y ⊆ X imply Y ∈ N (C).
With that, we obtain the weighted Delaunay triangulation, or regular triangulation, as
wDel(P) = N (wVor(P)). Alternatively, wDel(P) can be defined directly as follows. A subset
T ⊂ Rd, with d ≤ 3 and |T | ≤ d+1 defines a d-simplex σT . Recall that the orthocenter [27] of
σT , denoted by zT , is the unique point q ∈ Rd such that π(pi, zT ) = π(pj , zT ) for all pi, pj ∈ T ;
the orthoradius of σT is equal to π(p, zT ) for any p ∈ T . The Delaunay condition defines
wDel(P) as the set of tetrahedra σT with an empty orthosphere, meaning π(pi, zT ) ≤ π(pj , zT )
for all pi ∈ T and pj ∈ P \ T , where wDel(P) includes all faces of σT .

There is a natural duality between wDel(P) and wVor(P). For a tetrahedron σT , the
definition of zT immediately implies zT is a power vertex in wVor(P). Similarly, for each
k-face σS of σT ∈ wDel(P) with S ⊆ T and k+ 1 = |S|, there exists a dual (3− k)-face σ′S in
wVor(P) realized as ∩p∈SVp. When P is unweighted, the same definitions yield the standard
(unweighted) Voronoi diagram Vor(P) and its dual Delaunay triangulation Del(P).

2.3 Unions of balls
Let B denote the set of balls corresponding to a set of weighted points P and define the
union of balls U as ∪B. It is quite useful to capture the structure of U using a combinatorial
representation like a simplicial complex [36, 37]. Let fi denote Vi ∩ ∂Bi and F the collection
of all such fi. Observing that Vi ∩Bj ⊆ Vi ∩Bi ∀Bi, Bj ∈ B, fi is equivalently defined as the
spherical part of ∂(Vi ∩Bi). Consider also the decomposition of U by the cells of wVor(P)
into C(B) = {Vi ∩Bi | Bi ∈ B}. The weighted α-complex W(P) is defined as the geometric
realization of N (C(B)) [37], i.e., σT ∈ W if {Vi ∩Bi | pi ∈ T} ∈ N (C(B)). It is not hard to
see that W is a subcomplex of wDel(P).

To see why W is relevant, consider its underlying space; we create a collection containing
the convex hull of each simplex in W and define the weighted α-shape J (P) as the union of
this collection. It turns out that the simplices σT ∈ W contained in ∂J are dual to the faces
of ∂U defined as ∩i∈T fi. Every point q ∈ ∂U defined by ∩i∈Tq

fi, for Tq ∈ B and k+ 1 = |Tq|,
witnesses the existence of σTq in W; the k-simplex σTq is said to be exposed and ∂J can be
defined directly as the collection of all exposed simplices [36]. In particular, the corners of
∂U correspond to the facets of ∂J . Moreover, J is homotopy-equivalent to U [37].

The union of balls defined using an ε-sampling guarantees the approximation of the
manifold under suitable conditions on the sampling. Following earlier results on uniform
sampling [46], an extension to non-uniform sampling establishes sampling conditions for the
isotopic approximation of hypersurfaces and medial axis reconstruction [26].

SoCG 2018
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3 Seed placement and surface reconstruction

We determine the location of Voronoi seeds using the union of balls U . The correctness of
our reconstruction depends crucially on how sample balls B overlap. Assuming a certain
structural property on U , the surface reconstruction is embedded in the dual shape J .

3.1 Seeds and guides

Central to the method and analysis are triplets of sample spheres, i.e., boundaries of sample
balls, corresponding to a guide triangle in wDel(P). The sample spheres associated with the
vertices of a guide triangle intersect contributing a pair of guide points. The reconstruction
consists of Voronoi facets, most of which are guide triangles.

When a triplet of spheres ∂Bi, ∂Bj , ∂Bk intersect at exactly two points, the intersection
points are denoted by g

l
ijk = {g↑ijk, g

↓
ijk} and called a pair of guide points or guides; see

Figure 2a. The associated guide triangle tijk is dual to glijk. We use arrows to distinguish
guides on different sides of the manifold with the upper guide g↑ lying outside O and the
lower guide g↓ lying inside. We refer to the edges of guide triangles as guide edges eij = pipj .
A guide edge eij is associated with a dual guide circle Cij = ∂Bi ∩ ∂Bj , as in Figure 2a.

The Voronoi seeds in S↑ ∪ S↓ are chosen as the subset of guide points that lie on ∂U . A
guide point g which is not interior to any sample ball is uncovered and included as a seed s
into S; covered guides are not. We denote uncovered guides by s and covered guides by g,
whenever coverage is known and important. If only one guide point in a pair is covered, then
we say the guide pair is half-covered. If both guides in a pair are covered, they are ignored.
Let Si = S ∩ ∂Bi denote the seeds on sample sphere ∂Bi.

As each guide triangle tijk is associated with at least one dual seed sijk, the seed witnesses
its inclusion in W and tijk is exposed. Hence, tijk belongs to ∂J as well. When such tijk is
dual to a single seeds sijk it bounds the interior of J , i.e., it is a face of a regular component
of J ; in the simplest and most common case, tijk is a facet of a tetrahedron as shown in
Figure 3b. When tijk is dual to a pair of seeds slijk, it does not bound the interior of J and
is called a singular face of ∂J . All singular faces of ∂J appear in the reconstructed surface.

p1

p2
p3

s123
↑

s123
↓

(a) Overlapping balls and guide circles.

s123
↓

s134
↓

B1

B4

B2

B3

s124
↑

s234
↑

s123
↓

s234
↑

C34

g234
↓

g123
↑

(b) Pattern resulting in four half-covered seed pairs.

Figure 2 (a) Guide triangle and its dual seed pair. (b) Cutaway view in the plane of circle C34.
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3.2 Disk caps
We describe the structural property required on U along with the consequences exploited by
VoroCrust for surface reconstruction. This is partially motivated by the requirement that all
sample points on the surface appear as vertices in the output Voronoi mesh.

We define the subset of ∂Bi inside other balls as the medial band and say it is covered.
Let the caps K↑i and K↓i be the complement of the medial band in the interior and exterior
of O, respectively. Letting npi

be the normal line through pi perpendicular toM, the two
intersection points npi ∩ ∂Bi are called the poles of Bi. See Figure 3a.

We require that U satisfies the following structural property: each ∂Bi has disk caps,
meaning the medial band is a topological annulus and the two caps contain the poles and
are topological disks. In other words, each Bi contributes one connected component to each
side of ∂U . As shown in Figure 3a, all seeds in S↑i and S↓i lie on ∂K↑i and ∂K↓i , respectively,
along the arcs where other sample balls intersect ∂Bi. In Section 4, we establish sufficient
sampling conditions to ensure U satisfies this property. In particular, we will show that both
poles of each Bi lie on ∂U .

The importance of disk caps is made clear by the following observation. The requirement
that all sample points appear as Voronoi vertices in M̂ follows as a corollary.

I Observation 1 (Three upper/lower seeds). If ∂Bi has disk caps, then each of ∂K↑i and
∂K↓i has at least three seeds and the seeds on ∂Bi are not all coplanar.

Proof. Every sphere Sj 6=i covers strictly less than one hemisphere of ∂Bi because the poles
are uncovered. Hence, each cap is composed of at least three arcs connecting at least three
upper seeds S↑i ⊂ ∂K

↑
i and three lower seeds S↓i ⊂ ∂K

↓
i . Further, any hemisphere through

the poles contains at least one upper and one lower seed. It follows that the set of seeds
Si = S↑i ∪ S

↓
i is not coplanar. J

1	

					

1	

2	

3	

4	

medial		
band	

n.	pole	

s.	pole	

g124
↑

s#124
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(b) Sliver and half-covered seeds, exaggerated vertical scale.

Figure 3 (a) Decomposing the sample sphere ∂B1. (b) Uncovered seeds and reconstruction facets.
Let τp ∈ W(P) ⊆ wDel(P) and τs ∈ Del(S) denote the tetrahedra connecting the four samples and
the four seeds shown, respectively. s↓

123 and s↓
134 are the uncovered lower guide seeds, with g↑

123 and
g↑

134 covered. The uncovered upper guide seeds are s↑
124 and s↑

234, with g
↓
124 and g↓

234 covered. 4ac is
the Voronoi facet dual to the Delaunay edge between as↓

123 and cs↑
124, etc. Voronoi facets dual to

magenta edges are in the reconstructed surface; those dual to green and blue edges are not. n is the
circumcenter of τs and appears as a Voronoi vertex in Vor(S) and a Steiner vertex in the surface
reconstruction. In general, n is not the orthocenter of the sliver τp.
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1:8 Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

I Corollary 2 (Sample reconstruction). If ∂Bi has disk caps, then pi is a vertex in M̂.

Proof. By Observation 1, the sample is equidistant to at least four seeds which are not all
coplanar. It follows that the sample appears as a vertex in the Voronoi diagram and not in
the relative interior of a facet or an edge. Being a common vertex to at least one interior and
one exterior Voronoi seed, VoroCrust retains this vertex in its output reconstruction. J

3.3 Sandwiching the reconstruction in the dual shape of U
Triangulations of smooth surfaces embedded in R3 can have half-covered guides pairs, with
one guide covered by the ball of a fourth sample not in the guide triangle dual to the guide
pair. The tetrahedron formed by the three samples of the guide triangle plus the fourth
covering sample is a sliver, i.e., the four samples lie almost uniformly around the equator of
a sphere. In this case we do not reconstruct the guide triangle, and also do not reconstruct
some guide edges. We show that the reconstructed surface M̂ lies entirely within the region
of space bounded by guide triangles, i.e., the α-shape of P , as stated in the following theorem.

I Theorem 3 (Sandwiching). If all sample balls have disk caps, then M̂ ⊆ J (P).

Figure 4 Cutaway view of a sliver tetrahedron τp ∈ W(P) ⊆ wDel(P), drawn to scale. Half-
covered guides give rise to the Steiner vertex (pink), which results in a surface reconstruction using
four facets (only two are shown) sandwiched within τp. In contrast, filtering wDel(P) chooses two of
the four facets of τp, either the bottom two, or the top two (only one is shown).

The simple case of a single isolated sliver tetrahedron is illustrated in Figures 3b, 4 and 2b.
A sliver has a pair of lower guide triangles and a pair of upper guide triangles. For instance,
t124 and t234 are the pair of upper triangles in Figure 3b. In such a tetrahedron, there is
an edge between each pair of samples corresponding to a non-empty circle of intersection
between sample balls, like the circles in Figure 2a. For this circle, the arcs covered by
the two other sample balls of the sliver overlap, so each of these balls contributes exactly
one uncovered seed, rather than two. In this way the upper guides for the upper triangles
are uncovered, but their lower guides are covered; also only the lower guides of the lower
triangles are uncovered. The proof of Theorem 3 follows by analyzing the Voronoi cells of
the seed points located on the overlapping sample balls and is deferred to Appendix A [1].
Alternatively, Theorem 3 can be seen as a consequence of Theorem 2 in [15].

4 Sampling conditions and approximation guarantees

We take as input a set of points P sampled from the bounding surfaceM such that P is an
ε-sample, with ε ≤ 1/500. We require that P satisfies the following sparsity condition: for
any two points pi, pj ∈ P , lfs(pi) ≥ lfs(pj) =⇒ d(pi, pj) ≥ σεlfs(pj), with σ ≥ 3/4.
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Such a sampling P can be obtained by known algorithms. Given a suitable representation
ofM, the algorithm in [21] computes a loose ε′-sample E which is a ε′(1+8.5ε′)-sample. More
specifically, whenever the algorithm inserts a new sample p into the set E, d(p,E) ≥ ε′lfs(p).
To obtain E as an ε-sample, we set ε′(ε) = (

√
34ε+ 1− 1)/17. Observing that 3ε/4 ≤ ε′(ε)

for ε ≤ 1/500, the returned ε-sample satisfies our required sparsity condition with σ ≥ 3/4.
We start by adapting Theorem 6.2 and Lemma 6.4 from [26] to the setting just described.

For x ∈ R3 \M , let Γ(x) = d(x, x̃)/lfs(x̃), where x̃ is the closest point to x onM.

I Corollary 4. For an ε-sample P, with ε ≤ 1/20, the union of balls U with δ = 2ε satisfies:
1. M is a deformation retract of U ,
2. ∂U contains two connected components, each isotopic toM,
3. Γ−1([0, a′]) ⊂ U ⊂ Γ−1([0, b′]), where a′ = ε− 2ε2 and b′ ≤ 2.5ε.

Proof. Theorem 6.2 from [26] is stated for balls with radii within [a, b] times the lfs. We
set a = b = δ and use ε ≤ 1/20 to simplify fractions. This yields the above expressions for
a′ = (1− ε)δ − ε and b′ = δ/(1− 2δ). The general condition requires (1− a′)2 +

(
b′ − a′ +

δ(1 + 2b′ − a′)/(1− δ)
)2
< 1, as we assume no noise. Plugging in the values of a′ and b′, we

verify that the inequality holds for the chosen range of ε. J

Furthermore, we require that each ball Bi ∈ B contributes one facet to each side of ∂U .
Our sampling conditions ensure that both poles are outside any ball Bj ∈ B.

I Lemma 5 (Disk caps). All balls in B have disk caps for ε ≤ 0.066, δ = 2ε and σ ≥ 3/2.

Proof. Fix a sample pi and let x be one of the poles of Bi and Bx = B(c, lfs(pi)) the tangent
ball at pi with x ∈ Bx. Letting pj be the closest sample to x in P \ {pi}, we assume the
worst case where lfs(pj) ≥ lfs(pi) and pj lies on ∂Bx. To simplify the calculations, take
lfs(pi) = 1 and let ` denote d(pi, pj). As lfs is 1-Lipschitz, we get lfs(pj) ≤ 1 + `. By the law
of cosines, d(pj , x)2 = d(pi, pj)2 + d(pi, x)2 − 2d(pi, pj)d(pi, x) cos(φ), where φ = ∠pjpic.
Letting θ = ∠picpj , observe that cos(φ) = sin(θ/2) = `/2. To enforce x /∈ Bj , we require
d(pj , x) > δlfs(pj), which is equivalent to `2 + δ2 − δ`2 > δ2(1 + `)2. Simplifying, we get
` > 2δ2/(1 − δ − δ2) where sparsity guarantees ` > σε. Setting σε > 2δ2/(1 − δ − δ2) we
obtain 4σε2 + (8 + 2σ)ε− σ < 0, which requires ε < 0.066 when σ ≥ 3/4. J

Theorem 4 together with Theorem 5 imply that each ∂Bi is decomposed into a covered
region ∂Bi ∩∪j 6=iBj , the medial band, and two uncovered caps ∂Bi \∪j 6=iBj , each containing
one pole. Recalling that seeds arise as pairs of intersection points between the boundaries of
such balls, we show that seeds can be classified correctly as either inside or outsideM.

I Corollary 6. If a seed pair lies on the same side ofM, then at least one seed is covered.

Proof. Fix such a seed pair ∂Bi ∩ ∂Bj ∩ ∂Bk and recall thatM∩ ∂Bi is contained in the
medial band on ∂Bi. Now, assume for contradiction that both seeds are uncovered and lie
on the same side ofM. It follows that Bj ∩Bk intersects Bi away from its medial band, a
contradiction to Theorem 4. J

Theorem 4 guarantees that the medial band of Bi is a superset of Γ−1([0, a′]) ∩ ∂Bi,
which means that all seeds sijk are at least a′lfs(s̃ijk) away from M. It will be useful to
bound the elevation of such seeds above Tpi

, the tangent plane toM at pi.

I Lemma 7. For a seed s ∈ ∂Bi, θs = ∠spis′ ≥ 29.34◦ and θs > 1
2 − 5ε, where s′ is the

projection of s on Tpi
, implying d(s, s′) ≥ h⊥s δlfs(pi), with h⊥s > 0.46 and h⊥s > 1

2 − 5ε.
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1:10 Sampling Conditions for Conforming Voronoi Meshing by the VoroCrust Algorithm

Proof. Let lfs(pi) = 1 and Bs = B(c, 1) be the tangent ball at pi with s /∈ Bs; see Figure 5a.
Observe that d(s,M) ≤ d(s, x), where x = sc ∩ ∂Bs. By the law of cosines, d(s, c)2 =
d(pi, c)2 + d(pi, s)2 − 2d(pi, c)d(pi, s) cos(π/2 + θs) = 1 + δ2 + 2δ sin(θs). We may write2
d(s, c) ≤ 1 + δ2/2 + δ sin(θs). It follows that d(s, x) ≤ δ2/2 + δ sin(θs). As lfs is 1-Lipschitz
and d(pi, x) ≤ δ, we get 1 − δ ≤ lfs(x) ≤ 1 + δ. There must exist a sample pj such that
d(x, pj) ≤ εlfs(x) ≤ ε(1 + δ). Similarly, lfs(pj) ≥ (1 − ε(1 + δ))(1 − δ). By the triangle
inequality, d(s, pj) ≤ d(s, x) + d(x, pj) ≤ δ2/2 + δ sin(θs) + ε(1 + δ). Setting d(s, pj) <
δ(1−δ)(1−ε(1+δ)) implies d(s, pj) < δlfs(pj), which shows that for small values of θs, s cannot
be a seed and pj 6= pi. Substituting δ = 2ε, we get θs ≥ sin−1 (2ε3 − 5ε+ 1/2) ≥ 29.34◦ and
θs > 1/2− 5ε. J

We make frequent use of the following bound on the distance between related samples.

I Claim 8. If Bi ∩ Bj 6= ∅, then d(pi, pj) ∈ [κε, κδ] · lfs(pi), with κ = 2/(1 − δ) and
κε = σε/(1 + σε).

Proof. The upper bound comes from d(pi, pj) ≤ ri + rj and lfs(pj) ≤ lfs(pi) + d(pi, dj) by
1-Lipschitz, and the lower bound from lfs(pi)− d(pi, dj) ≤ lfs(pj) and the sparsity. J

Bounding the circumradii is the culprit behind why we need such small values of ε.

I Lemma 9. The circumradius of a guide triangle tijk is at most %f ·δlfs(pi), where %f < 1.38,
and at most %f · d(pi, pj) where %f < 3.68.

Proof. Let pi and pj be the triangle vertices with the smallest and largest lfs values,
respectively. From Claim 8, we get d(pi, pj) ≤ κδlfs(pi). It follows that lfs(pj) ≤ (1+κδ)lfs(pi).
As tijk is a guide triangle, we know that it has a pair of intersection points ∂Bi ∩ ∂Bj ∩ ∂Bk.
Clearly, the seed is no farther than δlfs(pj) from any vertex of tijk and the orthoradius of
tijk cannot be bigger than this distance.

Recall that the weight wi associated with pi is δ2lfs(pi)2. We shift the weights of all
the vertices of tijk by the lowest weight wi, which does not change the orthocenter. With
that wj − wi = δ2(lfs(pj)2 − lfs(pi)2) ≤ δ2lfs(pi)2((1 + κδ)2 − 1) = κδ3lfs(pi)2(κδ + 2).
On the other hand, sparsity ensures that the closest vertex in tijk to pj is at distance at
least N(pj) ≥ σεlfs(pj) ≥ σε(1 − κδ)lfs(pi). Ensuring α2 ≤ (wj − wi)/N(pi)2 ≤ κδ3(2 +
κδ)/(σ2ε2(1− κδ)2) ≤ 1/4 suffices to bound the circumradius of tijk by crad = 1/

√
1− 4α2

times its orthoradius, as required by Claim 4 in [27]. Substituting δ = 2ε and σ ≥ 3/4 we get
α2 ≤ 78.97ε, which corresponds to crad < 1.37. It follows that the circumradius is at most
cradδlfs(pj) ≤ crad(1 + κδ)δlfs(pi) < 1.38δlfs(pi).

For the second statement, observe that lfs(pi) ≥ (1−κδ)lfs(pj) and the sparsity condition
ensures that the shortest edge length is at least σεlfs(pi) ≥ σε(1− κδ)lfs(pj). It follows that
the circumradius is at most δcrad

σε(1−κδ) < 3.68 times the length of any edge of tijk. J

Given the bound on the circumradii, we are able to bound the deviation of normals.

I Lemma 10. If tijk is a guide triangle, then (1) ∠a(npi , npj ) ≤ ηsδ < 0.47◦, with ηs < 2.03,
and (2) ∠a(nt, npi

) ≤ ηtδ < 1.52◦, with ηt < 6.6, where npi
is the line normal to M at pi

and nt is the normal to tijk. In particular, tijk makes an angle at most ηtδ with Tpi
.

2 Define f(u, v) =
√

1 + u2 + 2uv − (1 + u2/2 + uv) and observe that f(u,−u/2) = 0 is the only critical
value of f(u, .). As ∂2f/∂v2 ≤ 0 for (u, v) ∈ R× [−1, 1], we get that f(u, v) ≤ 0 in this range.
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Proof. Claim 8 implies d(pi, pj) ≤ κδlfs(pi) and (1) follows from the Normal Variation
Lemma [14] with ρ = κδ < 1/3 yielding ∠a(npi

, npj
) ≤ κδ/(1 − κδ). Letting Rt denote

the circumradius of t, Theorem 9 implies that the Rt ≤ %f · δlfs(pi) ≤ lfs(pi)/
√

2 and the
Triangle Normal Lemma [31] implies ∠a(np∗ , nt) < 4.57δ < 1.05◦, where p∗ is the vertex of t
subtending a maximal angle in t. Hence, ∠a(npi

, nt) ≤ ∠a(npi
, np∗) + ∠a(np∗ , nt). J

Towards establishing homeomorphism, the next lemma on the monotonicity of distance
to the nearest seed is critical. First, we show that the nearest seeds to any surface point
x ∈M are generated by nearby samples.

I Lemma 11. The nearest seed to x ∈ M lies on some ∂Bi where d(x, pi) ≤ 5.03 · εlfs(x).
Consequently, d(x, pi) ≤ 5.08 · εlfs(pi).

Proof. In an ε-sampling, there exists a pa such that d(x, pa) ≤ εlfs(x), where lfs(pa) ≤
(1 + ε)lfs(x). The sampling conditions also guarantee that there exists at least one seed
sa on ∂Ba. By the triangle inequality, we get that d(x, sa) ≤ d(x, pa) + d(pa, sa) ≤
εlfs(x) + δlfs(pa) ≤ ε(1 + 2(1 + ε))lfs(x) = ε(2ε+ 3)lfs(x).

We aim to bound ` to ensure ∀pi s.t. d(x, pi) = ` · εlfs(x), the nearest seed to x cannot lie
on Bi. Note that in this case, (1−`ε)lfs(x) ≤ lfs(pi) ≤ (1+`ε)lfs(x). Let si be any seed on Bi.
It follows that d(x, si) ≥ d(x, pi)− d(pi, si) ≥ ` · εlfs(x)− 2εlfs(pi) ≥ ε

(
(1− 2ε)`− 2

)
lfs(x).

Setting ε
(
(1− 2ε)`− 2

)
lfs(x) ≥ ε(2ε+ 3)lfs(x) suffices to ensure d(x, si) ≥ d(x, sa), and

we get ` ≥ (2ε+ 5)/(1− 2ε). Conversely, if the nearest seed to x lies on Bi, it must be the
case that d(x, pi) ≤ `εlfs(x). We verify that `ε = ε(2ε+ 5)/(1− 2ε) < 1 for any ε < 0.13. It
follows that d(x, pj) ≤ `ε/(1− `ε)lfs(pi). J

I Lemma 12. For any normal segment Nx issued from x ∈M, the distance to S↑ is either
strictly increasing or strictly decreasing along Γ−1([0, 0.96ε]) ∩Nx. The same holds for S↓.

Proof. Let nx be the outward normal and Tx be the tangent plane toM at x. By Theorem 11,
the nearest seeds to x are generated by nearby samples. Fix one such nearby sample pi. For
all possible locations of a seed s ∈ S↑ ∩ ∂Bi, we will show a sufficiently large lower bound on
〈s− s′′, nx〉, where s′′ the projection of s onto Tx.

Take lfs(pi) = 1 and let Bs = B(c, 1) be the tangent ball to M at pi with s ∈ Bs.
Let A be the plane containing {pi, s, x}. Assume in the worst case that A⊥Tpi and x is
as far as possible from pi on ∂Bs ∩ Tpi

. By Theorem 11, d(pi, x) ≤ 5.08ε and it follows
that θx = ∠(nx, npi

) ≤ 5.08ε/(1− 5.08ε) ≤ 5.14ε. This means that Tx is confined within a
(π/2− θx)-cocone centered at x. Assume in the worst case that nx is parallel to A and Tx is
tilted to minimize d(s, s′′); see Figure 5b.

Let T ′x be a translation of Tx such that pi ∈ T ′x and denote by x′ and s′ the projections
of x and s, respectively, onto T ′x. Observe that T ′x makes an angle θx with Tpi

. From
the isosceles triangle 4picx, we get that θ′x ≤ 1/2∠picx = sin−1 5.08ε/2 ≤ 2.54ε. Now,
consider 4pixx′ and let φ = ∠xpix′. We have that φ = θx + θ′x ≤ 2.54ε+ δ/(1− δ) ≤ 4.55ε.
Hence, sin(φ) ≤ 4.55ε and d(x, x′) ≤ 5.08ε sin(φ) ≤ 0.05ε. On the other hand, we have that
∠spis′ = ψ ≥ θs−θx and d(s, s′) ≥ δ sinψ, where θs ≥ 1/2−5ε by Theorem 7. Simplifying we
get sin(ψ) ≥ 1/2− 10.08ε. The proof follows by evaluating d(s, s′′) = d(s, s′)− d(x, x′). J

I Theorem 13. For every x ∈M with closest point q ∈ M̂, and for every q ∈ M̂ with closest
point x ∈M, we have ‖xq‖ < ht · ε2lfs(x), where ht < 30.52. For ε < 1/500, ht · ε2 < 0.0002.
Moreover, the restriction of the mapping π to M̂ is a homeomorphism and M̂ andM are
ambient isotopic. Consequently, Ô is ambient isotopic to O as well.
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Figure 5 Constructions used for (a) Theorem 7, (b) Theorem 12 and (c) Theorem 13.

Proof. Fix a sample pi ∈ P and a surface point x ∈ M ∩ Bi. We consider two cocones
centered at x: a p-cocone contains all nearby surface points and a q-cocone contains all guide
triangles incident at pi. By Theorem 3, all reconstruction facets generated by seeds on Bi
are sandwiched in the q-cocone.

Theorem 10 readily provides a bound on the q-cocone angle as γ ≤ ηtδ. In addition, since
d(pi, x) ≤ δlfs(pi), we can bound the p-cocone angle as θ ≤ 2 sin−1 (δ/2) by Lemma 2 in [7].
We utilize a mixed pq-cocone with angle ω = γ/2 + θ/2, obtained by gluing the lower half of
the p-cocone with the upper half of the q-cocone.

Let q ∈ M̂ and consider its closest point x ∈M. Again, fix pi ∈ P such that x ∈ Bi; see
Figure 5c. By sandwiching, we know that any ray through q intersects at least one guide
triangle, in some point y, after passing through x. Let us assume the worst case that y
lies on the upper boundary of the pq-cocone. Then, d(q, x) ≤ d(y, y′) = h = δ sin(ω)lfs(pi),
where y′ is the closest point on the lower boundary of the pq-cocone point to q. We also have
that, d(pi, x) ≤ cos(ω)δlfs(pi) ≤ δlfs(pi), and since lfs is 1-Lipschitz, lfs(pi) ≤ lfs(x)/(1− δ).
Simplifying, we write d(q, x) < δω/(1− δ) · lfs(x) < htε

2lfs(x).
With d(q, x) ≤ 0.55εlfs(x), Theorem 12 shows that the normal line from any p ∈ M

intersects M̂ exactly once close to the surface. It follows that for every point x ∈M with
closest point q ∈ M̂, we have d(x, q) ≤ d(x, q′) where q′ ∈ M̂ with x its closest point inM.
Hence, d(x, q) ≤ htε2lfs(x) as well.

Building upon Theorem 12, as a point moves along the normal line at x, it is either the
case that the distance to S↑ is decreasing while the distance to S↓ is increasing or the other
way around. It follows that these two distances become equal at exactly one point on the
Voronoi facet above or below x separating some seed s↑ ∈ S↑ from another seed s↓ ∈ S↓.
Hence, the restriction of the mapping π to M̂ is a homeomorphism.

This shows that M̂ and M homeomorphic. Recall that Theorem 4(3) implies U is a
topological thickening [25] ofM. In addition, Theorem 3 guarantees that M̂ is embedded
in the interior of U , such that it separates the two surfaces comprising ∂U . These three
properties imply M̂ is isotopic toM in U by virtue of Theorem 2.1 in [25]. Finally, as M̂ is
the boundary of Ô by definition, it follows that Ô is isotopic to O as well. J

5 Quality guarantees and output size

We establish a number of quality guarantees on the output mesh. The main result is an
upper bound on the fatness of all Voronoi cell. See Appendix B for the proofs [1].
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Recall that fatness is the outradius to inradius ratio, where the outradius is the radius of
the smallest enclosing ball, and the inradius is the radius of the largest enclosed ball. The
good quality of guide triangles allows us to bound the inradius of Voronoi cells.

I Lemma 14. Consider guide triangle tijk. (1) Edge length ratios are bounded: `k/`j ≤
κ` = 2δ

1−δ
σε

1+σε . (2) Angles are bounded: sin(θi) ≥ 1/(2%f ) implying θi ∈ (7.8◦, 165◦). (3)
Altitudes are bounded: the altitude above e is at least αt|e|, where αt = 1/4%f > 0.067.

Observe that a guide triangle is contained in the Voronoi cell of its seed, even when one
of the guides is covered. Hence, the tetrahedron formed by the triangle together with its
seed lies inside the cell, and the cell inradius is at least the tetrahedron inradius.

I Lemma 15. For seeds sijk ∈ S↑∪S↓, the inradius of the Voronoi cell is at least %vδ · lfs(pi)
with %v = ĥs/(1 + 3

2σ%f
) > 0.3 and ĥs ≥ 1

2 − (5 + 2ηt)ε.

To get an upper bound on cell outradii, we must first generate seeds interior to O.
We consider a simple algorithm for generating S↓↓ based on a standard octree over O.
For sizing, we extend lfs beyond M, using the point-wise maximal 1-Lipschitz extension
lfs(x) = infp∈M(lfs(p) + d(x, p)) [44]. An octree box � is refined if the length of its diagonal
is greater than 2δ · lfs(c), where c is the center of �. After refinement terminates, we add an
interior seed at the center of each empty box, and do nothing with boxes containing one or
more guide seeds. Applying this scheme, we obtain the following.

I Lemma 16. The fatness of interior cells is at most 8
√

3(1+δ)
1−3δ < 14.1.

I Lemma 17. The fatness of boundary cells is at most 4(1+δ)
(1−3δ)(1−δ)2%v

< 13.65.

As the integral of lfs−3 is bounded over a single cell, it effectively counts the seeds.

I Lemma 18. |S| ≤ 18
√

3/π · ε−3 ∫
O lfs−3.

6 Conclusions

We have analyzed an abstract version of the VoroCrust algorithm for volumes bounded by
smooth surfaces. We established several guarantees on its output, provided the input samples
satisfy certain conditions. In particular, the reconstruction is isotopic to the underlying
surface and all 3D Voronoi cells have bounded fatness, i.e., outradius to inradius ratio. The
triangular faces of the reconstruction have bounded angles and edge-length ratios, except
perhaps in the presence of slivers. In a forthcoming paper [3], we describe the design and
implementation of the complete VoroCrust algorithm, which generates conforming Voronoi
meshes of realistic models, possibly containing sharp features, and produces samples that
follow a natural sizing function and ensure output quality.

For future work, it would be interesting to ensure both guides are uncovered, or both
covered. The significance would be that no tetrahedral slivers arise and no Steiner points
are introduced. Further, the surface reconstruction would be composed entirely of guide
triangles, so it would be easy to show that triangle normals converge to surface normals as
sample density increases. Alternatively, where Steiner points are introduced on the surface,
it would be helpful to have conditions that guaranteed the triangles containing Steiner points
have good quality. In addition, the minimum edge length in a Voronoi cell can be a limiting
factor in certain numerical solvers. Post-processing by mesh optimization techniques [5, 53]
can help eliminate short Voronoi edges away from the surface. Finally, we expect that the
abstract algorithm analyzed in this paper can be extended to higher dimensions.
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