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Abstract
This artifact is an easy-to-use and extensible work-
bench exemplar, named K8-Scalar, which allows
researchers to implement and evaluate different
self-adaptive approaches to autoscaling container-
orchestrated services. The workbench is based on
Docker, a popular technology for easing the de-
ployment of containerized software that also has
been positioned as an enabler for reproducible re-
search. The workbench also relies on a container
orchestration framework: Kubernetes (K8s), the
de-facto industry standard for orchestration and
monitoring of elastically scalable container-based
services. Finally, it integrates and extends Scalar,
a generic testbed for evaluating the scalability of
large-scale systems with support for evaluating the

performance of autoscalers for database clusters.
The associated scholarly paper presents (i) the

architecture and implementation of K8-Scalar and
how a particular autoscaler can be plugged in, (ii)
sketches the design of a Riemann-based autoscaler
for database clusters, (iii) illustrates how to design,
setup and analyze a series of experiments to config-
ure and evaluate the performance of this autoscaler
for a particular database (i.e., Cassandra) and a
particular workload type, (iv) and validates the
effectiveness of K8-scalar as a workbench for ac-
curately comparing the performance of different
auto-scaling strategies. Future work includes ex-
tending K8-Scalar with an improved research data
management repository.
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1 Scope

The K8-Scalar artifact is an easy-to-use and extensible workbench exemplar for implementing
and evaluating different self-adaptive approaches to autoscaling container-orchestrated services.
Container technology such as Docker [5] and container orchestration frameworks such as Kuber-
netes [11] have been pushed by the Linux Foundation as the contemporary set of platforms and
tools for deploying and managing cloud-native applications [16]. Docker is a popular tool for
deploying software using fast and light-weight Linux containers [21, 19]. Moreover, Docker’s
approach to image distribution, which enables developers to store a specific configuration of a
software component as a portable and light-weight Docker image that can be downloaded from a
local or central Docker registry. The latter advantage also helps to address the above mentioned
necessity for repeating experiments in identically configured testing environments to improve
reproducible research [2]. Container technology also has the potential to improve consistency of
resource allocation parameters across different computers with the same CPU clock frequency.

K8-Scalar has been used and validated in the context of autoscalers for database clusters.
The motivation is that effective autoscaler development for databases is a field that is heavily
based on heuristics and domain knowledge. The development of autoscalers for databases must
thus be finetuned according to the concrete application and scenario in which it will be applied,
and therefore it is important to have automated solutions that allow the evaluation of diverse
alternatives.

Although autoscalers for database clusters [22, 4, 20] or multi-tier applications [1] have been
researched, developing an effective autoscaler for databases is still an art, rather than a science.
First, there is no one-size-fits-all solution as autoscalers must be specifically customized for specific
databases. For example, auto-scaling makes only sense when a database cluster is load balanced
such that adding a new database instance will reduce the load of an existing instance. The load
balancing algorithms that are specifically designed for that purpose are database-specific, however,
and therefore the autoscaler’s design must take into account how fast load balancing algorithm
adapt to requested cluster reconfigurations. Secondly, adding or removing an instance should be
cost-efficient in the sense that it should not require extensive (re)shuffling of data across existing
and new database instances. Thirdly, detecting imminent SLA violations accurately requires
multiple type of metrics to be monitored and analyzed simultaneously so that no wrong scaling
decisions are triggered by temporary spikes in resource usage or performance metrics. Such wrong
scaling decisions can be very costly an actually hurt elasticity instead of improving it.
The artifact fully supports the following contributions of the associated scholarly paper:
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K8-Scalar integrates and customizes Scalar [8], a generic platform for evaluating the scalability of
large-scale systems, with support for evaluating autoscalers for container-orchestrated
database clusters.
K8-Scalar extends Kubernetes with an advanced autoscaler for database clusters, based on the
Riemann event processor [18] that allows for simultaneous analysis of multiple metrics and
composition of multiple event-based conditions. This Advanced Riemann-Based Autoscaler
(ARBA) comes with a set of elastic scaling policies, which are based on the Universal Law of
Scalability [6, 7] and the Law of Little [15], and that have been implemented and evaluated in
the context of a case study on using Cassandra in a Log Management-as-a-Service platform [17].
The paper illustrates how to design, setup and analyze a series of experiments to configure
and evaluate the performance of a Riemann-based autoscaler for a particular database (i.e.,
Cassandra [3]) and a particular workload type

The artifact partially supports the following contribution of the scholarly paper:
The paper validates the effectiveness of K8-scalar as a workbench for accurately comparing
the performance of different auto-scaling strategies. This validation has been performed as
part of a master thesis. The artifact includes all the code for running the experiments, but it
does not include the collected research data, which is lost because the student did not commit
the research data to our research data repository.

2 Content

The artifact is stored and publicly available on GitHub at the following URL: https://github.
com/k8-scalar/k8-scalar. The current release includes:
1. a detailed, step-by-step hands-on tutorial that relies on Helm, a command-line interface and

run-time configuration management server for creating and managing the Helm charts [10]. A
Helm chart is a highly-configurable deployment package that encapsulates inter-dependent
Kubernetes objects such as services, configuration setting or authentication credentials. The
tutorial presents extensive and easy-to-following instructions for the following steps:

Setting up Kubernetes in a development environment using Minikube [12] or across a cluster
of machines using the universal kubeadm deployment tool [14].
Deploying the Kubernetes’s monitoring service Heapster [9] with a Grafana visual monitoring
dashboard.
Deploying the Cassandra database as a Kubernetes StatefulSet object [13].
Developing and configuring a specific Scalar experiment for the Cassandra database and a
specific type of workload (e.g 90% reads and 10% writes).
Building a Docker image of the Scalar experiment.
Deploying the Scalar experiment as a StatefulSet.
Running the Scalar experiment with a different linearly increasing workload profiles for
determining the appropriate resource thresholds where elastic scaling actions should be
triggered in order to avoid imminent SLA violations.
Configuring a concrete autoscaling strategy of the included Advanced Rieman-Based Auto-
scaler (ARBA) and deploying it.
Running a Scalar experiment to evaluate the behavior of a particular autoscaling strategy.
The Grafana visual monitoring dashboard allows to monitor resource usage and scaling
actions at run-time. Scalar’s statistical results can be further analyzed off-line. Scalar
also monitors the performance of the experiment itself in order to detect any undesired
scalability or performance bottlenecks in the Scalar code itself.
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2. A library with development and operational code artifacts of K8-Scalar. This archive thus
consists of two logical parts:

A development directory containing the following subdirectories:
a. The cassandra sub-directory that contains a Dockerfile for building the Cassandra image

that we have used in our experiments.
b. A set of sub-directories that encapsulate development code for some of the MAPE-K

components of the ARBA autoscaler:
The riemann sub-directory that contains the code of ARBA’s Analyzer component
(which is dependent on Kubernetes’ monitoring service Heapster [9] and is written on
top of the Riemann event processor [18].
The scaler sub-directory that contains the code of the Executor component for
performing scaling actions of the Cassandra database.

c. The set of sub-directories with development code for K8-Scalar experiments:
The scalar sub-directory that contains all the code for extending Scalar with support
for (i) evaluating autoscalers for the Cassandra databases and (ii) mapping SLAs to
resource thresholds.
The example-experiment sub-directory which offers a template for configuring a
specific K8-Scalar experiment (e.g. with a specific particular workload profile).

d. A set of sub-directories with development code for configuring a number of Kubernetes
tools on which K8-Scalar relies:

The grafana sub-directory that contains a slightly customized Dockerfile for building
the monitoring dashboard image that visualizes monitoring data from Heapster.
The helm directory that contains configurations for a running Kubernetes cluster such
that the Helm software works properly on top of that Kubernetes cluster.

The above sub-directories, except the helm directory, also contain a Dockerfile for building
a Docker image of the respective software component in these sub-directories.
An operations directory containing the following sub-directories with Helm packages for
deploying the following Kubernetes resources:
a. The Cassandra-cluster in the cassandra-cluster directory.
b. The Heapster monitoring service in the monitoring-core directory.
c. The ARBA autoscaler in the arba subdirectory which deploys the riemann-based Analyzer

component with a particular strategy configured and the Scaler component.
d. The Scalar experiment-controller in the experiment-controller directory.

3. The development and operations artifacts for all experiments presented in the scholarly paper
in the experiments/LMaaS sub-directory.

4. The docs directory containing the documentation of Scalar.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://github/k8-scalar/k8-scalar. The above mentioned hands-on tutorial is available
at https://github.com/k8-scalar/k8-scalar/blob/master/README.md.

4 Tested platforms

K8-Scalar runs on multiple platforms: Linux VMs, Linux bare metal, OS X, and Windows. It has
been tested and used extensively on Linux Ubuntu Xenial VMs and with the kubeadm universal
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Kubernetes deployment tool [14]. The detailed hands-on experience for running K8-Scalar on a
development desktop computer using the minikube deployment tool [12] runs on Linux bare metal,
Windows 7, Windows 10, and Mac OS . It has been tested on Mac OS and Windows 10. System
requirements for running the hands-on tutorial:

Your local machine should support VT-x virtualization
To run the Kubernetes cluster on your local machine, a VM with 1 CPU core and 2GB is
memory is sufficient but the cassandra instances will not fit.
To run 1 cassandra instance, a VM with minimally 2 virtual CPU cores and 4GB virtual
memory must be able to run on your machine. In order to run 2 Cassandra instances, 4 virtual
CPU cores and 8GB of virtual memory is needed.

Disclaimer. The minikube-based setup of the tutorial is not suitable for running scientific
experiments. Minikube only supports kubernetes clusters with one worker node (i.e. the minikube
VM). It is better to run the different components of the K8-Scalar architecture on different VMs
as illustrated in Section 3 of the related scholarly paper. Kubeadm is needed for setting up
Kubernetes clusters on multiple VMs.

5 License

The artifact is available under the Apache License version 2.0 (http://www.apache.org/licenses/
LICENSE-2.0.

6 MD5 sum of the artifact

f7a3f4aa8cc0f64c8b8f0b162bda8816

7 Size of the artifact

0.19 GiB
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