
Maximal Common Subsequence Algorithms
Yoshifumi Sakai
Graduate School of Agricultural Science, Tohoku University
468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
yoshifumi.sakai.c7@tohoku.ac.jp

Abstract
A common subsequence of two strings is maximal, if inserting any character into the subsequence
can no longer yield a common subsequence of the two strings. The present article proposes a
(sub)linearithmic-time, linear-space algorithm for finding a maximal common subsequence of two
strings and also proposes a linear-time algorithm for determining if a common subsequence of
two strings is maximal.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases algorithms, string comparison, longest common subsequence, constrained
longest common subsequence

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.1

1 Introduction

A subsequence of a string of characters is obtained from the string by deleting any number of
not necessarily contiguous characters at any position. A common subsequence of two strings
can be though of as a pattern common to the strings. A common subsequence is maximal,
if inserting any character into the subsequence can no longer yield a common subsequence.
Hence, any common subsequence can be found as a subsequence of some maximal common
subsequence. The present article considers the problem of finding a maximal common
subsequence of two strings both of length O(n) over an alphabet set of O(n) characters for
some positive integer n and also considers the problem of determining if a given common
subsequence of the two strings is maximal.

A longest one of maximal common subsequences is called a longest common subsequence
(an LCS). It is well known that the dynamic programming algorithm of Wagner and Fisher
[10] finds an LCS of two O(n)-length strings in O(n2) time and O(n2) space. Moreover,
the divide-and-conquer version developed by Hirschberg [6] reduces the required space to
O(n) without increasing the asymptotic execution time. On the other hand, Abboud et al.
[1] revealed that, for any positive constant ε, there exist no O(n2−ε)-time algorithms for
computing the LCS length, unless the strong exponential time hypothesis (SETH) [7, 8]
is false. This immediately implies that, under assumption of SETH, neither an LCS can
be found nor whether a common subsequence is an LCS can be determined in O(n2−ε)
time. Problems of finding a conditional LCS have also been considered. The constrained
LCS (CLCS) problem [9, 3] (also called the SEQ-IC-LCS problem [2]) and the restricted
LCS (RLCS) problem [5] (also called the SEQ-EC-LCS problem [2]) are such problems.
Given a common subsequence P as essentially “relevant” (resp. “irrelevant”) to relationship
between the two strings, the CLCS (RLCS) problem consists of finding an LCS that has
(resp. does not have) P as a subsequence and was shown to be solvable in O(n3) time [3]
(resp. [5, 2]). From definition, the CLCS found is maximal. In contrast, the RLCS found is
not necessarily maximal and, unless maximal, the RLCS might not be very informative in

© Yoshifumi Sakai;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 1; pp. 1:1–1:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yoshifumi.sakai.c7@tohoku.ac.jp
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Maximal Common Subsequence Algorithms

certain applications because it is just obtained from some common subsequence, which has
the “irrelevant” P perfectly as a subsequence, only by deleting a single character.

The reason why it takes at least an almost quadratic time to find an LCS or a conditional
LCS as a pattern common to the two strings is due to condition that the pattern to be
found should have a maximum length. Possibly for an analogous reason, the best asymptotic
running time known for finding a shortest maximal common subsequence of two strings
remains cubic [4]. The present article shows that, ignoring such conditions with respect to
the length of a maximal common subsequence to be found, we can find a maximal common
subsequence much faster, by proposing an O(n log logn)-time, O(n)-space algorithm. This
algorithm can also be used to find a constrained maximal common subsequence, which hence
has P as a subsequence, in the same asymptotic time and space, where P is an arbitrary
common subsequence given as a “relevant” pattern. It is also shown that we can determine
whether any given common subsequence, such as an RLCS, is maximal further faster, by
proposing an O(n)-time algorithm.

This article is organized as follows. Section 2 defines notations and terminology used
in this article. Section 3 proposes an O(n log logn)-time, O(n)-space algorithm that finds
a maximal common subsequence of two strings of length O(n). Section 4 modifies the
above algorithm so as to output a maximal common subsequence having a given common
subsequence as a subsequence in the same asymptotic time and space. Section 5 proposes an
O(n)-time algorithm that determines if a given common subsequence is maximal. Section 6
concludes this article.

2 Preliminaries

For any sequences S and S′, let S ◦ S′ denote the concatenation of S followed by S′. Let ε
denote the empty sequence. For any sequence S, let |S| denote the length of S. For any index
i with 1 ≤ i ≤ |S|, let S[i] denote the ith element of S, so that S = S[1] ◦ S[2] ◦ · · · ◦ S[|S|].
A subsequence of S is a sequence obtained from S by deleting elements at any position, i.e.,
S[i1] ◦ S[i2] ◦ · · · ◦ S[il] for some indices i1, i2, . . . , il with 0 ≤ l ≤ |S| and 1 ≤ i1 < i2 < · · · <
il ≤ |S|. For any sequences S and S′, we say that S contains S′, if S′ is a subsequence of S.
For any indices i′ and i with 0 ≤ i′ ≤ i ≤ |S|, let S(i′, i] denote the contiguous subsequence of
S consisting of all elements at position between i′+ 1 and i, i.e., S[i′+ 1] ◦S[i′+ 2] ◦ · · · ◦S[i].
Note that S(i, i] = ε. We call S(i′, i] a prefix (resp. suffix) of S, if i′ = 0 (resp. i = |S|).

Let Σ = {c1, c2, · · · , c|Σ|} be an alphabet set of |Σ| characters, which are totally ordered.
A string is a sequence of characters over Σ. For any strings X and Y , a common subsequence
of X and Y is a subsequence of X that is also a subsequence of Y . We say that X and Y
are disjoint, if they have no non-empty common subsequences. Let a common subsequence
W of X and Y be maximal, if inserting any character into W can no longer yield a common
subsequence of X and Y .

3 Algorithm for finding a maximal common subsequence

This section proposes an O(n log logn)-time algorithm that outputs, for any strings X and Y
of length O(n) with |Σ| = O(n) given as input, a maximal common subsequence of X and Y .

For technical reasons, we assume without loss of generality that X[1] = Y [1] = c1,
X[|X|] = Y [|Y |] = c|Σ|, which will work as sentinels, and neither c1 nor c|Σ| appears in
X(1, |X|−1] and also in Y (1, |Y |−1]. Note thatW [1] = c1,W [|W |] = c|Σ|, andW (1, |W |−1]
is a maximal common subsequence of X(1, |X|−1] and Y (1, |Y |−1] for any maximal common
subsequence W of X and Y .

Y. Sakai 1:3

We also assume that the array I (resp. J) of arrays Ic (resp. Jc) for all characters c in
Σ is available, where Ic (resp. Jc) is an appropriate data structure supporting queries of the
following index, indicating the nearest occurrence of a specific character c in X (resp. Y)
from a specific position i (resp. j).

I Definition 1. For any character c in Σ and any index i with 0 ≤ i ≤ |X|, let I≺c (i) (resp.
I�c (i)) denote the least (greatest) index such that c does not appear in X(I≺c (i), i] (resp.
X(i, I�c (i)]). Define index J≺c (j) (resp. J�c (j)) analogously with respect to Y .

In what follows, we adopt as data structure Ic (resp. Jc) the y-fast trie [11] maintaining all
indices i (resp. j) with X[i] = c (resp. Y [j] = c), because array I (resp. J) is constructible
in O(n log logn) time and O(n) space and supports O(log logn)-time queries of any index
introduced above. However, in implementation for practical use, if n is not very large,
then due to hidden constant factors in big-O notation, adopting as Ic (resp. Jc) the array
consisting of the same indices as the y-fast trie in ascending order, supporting O(logn)-time
queries based on a binary search of the array, might be more suitable. Furthermore, if |Σ|
is a small constant, then we can adopt as Ic (resp. Jc) the table of indices I≺c (i) and I�c (i)
(resp. J≺c (i) and J�c (j)) for all indices i (resp. j), which supports O(1)-time queries.

We design the proposed algorithm based on the following property of a common sub-
sequence W , which is naturally derived from the fact that W is not maximal if and only if
inserting some character between some prefix and the remaining suffix of W still yields a
common subsequence of X and Y .

I Lemma 2. For any common subsequence W of X and Y , W is maximal if and only if Xk

and Yk are disjoint for any index k with 0 ≤ k ≤ |W |, where Xk (resp. Yk) is the remaining
substring obtained from X (resp. Y) by deleting both the shortest prefix containing W (0, k]
and the shortest suffix containing W (k, |W |].

Proof. The lemma follows from the fact that, for any index k with 0 ≤ k ≤ |W | and any
character c in Σ, W (0, k] ◦ c ◦W (k, |W |] is a common subsequence of X and Y if and only if
c appears in both Xk and Yk. J

The proposed algorithm solves the problem using string variable W , which is initially set
to c1 ◦ c|Σ| and is eventually updated to a maximal common subsequence of X and Y . For
any index k with 0 ≤ k ≤ |W |, let Xk and Yk be the substrings in Lemma 2. The algorithm
updates W by iteratively replacing it by W (0, k] ◦ c ◦W (k, |W |], where k is the least index
such that Xk and Yk are not disjoint and c is a certain character appearing both in Xk

and Yk, until Xk and Yk become disjoint for all indices k with 0 ≤ k ≤ |W |. Note that the
resulting string W is a maximal common subsequence of X and Y due to Lemma 2. The
algorithm adopts as c the character that appears both in the shortest possible suffix of Xk

or Yk and the entire string of the other. As shown later, this choice is crucial to executing
the algorithm in O(n log logn) time.

In order to execute the above, the algorithm maintains a sequence variable, Ŵ =
(i1, j1) ◦ (i2, j2) ◦ · · · ◦ (i|W |, j|W |), consisting of |W | index pairs so that X(ik, ik+1] and
Y (jk, jk+1] are respectively certain prefixes of Xk and Yk such that they are disjoint if
and only if Xk and Yk are disjoint. The character to be inserted at position between
W (0, k] and W (k, |W |] is searched for by iteratively updating Ŵ by replacing (ik+1, jk+1) by
(ik+1−1, jk+1−1). If ik+1 becomes ik or jk+1 becomes jk, then, since Xk and Yk are disjoint,
the algorithm updates Ŵ by replacing Ŵ [k+ 1] by (i′, j′) and then updates k to k+ 1, where
i′ (resp. j′) is the index such that X(0, i′] (resp. Y (0, j′]) is the shortest prefix of X (resp.
Y) containing W (0, k + 1], i.e. i′ = I�W [k+1](ik) + 1 (resp. j′ = J�W [k+1](jk) + 1). Otherwise,

CPM 2018

1:4 Maximal Common Subsequence Algorithms

Algorithm 1: Algorithm findMCS
1: W ← c1 ◦ c|Σ|;
2: Ŵ ← (1, 1) ◦ (|X| − 1, |Y | − 1);
3: k ← 1;
4: while k < |W |,
5: (i′, j′)← Ŵ [k];
6: (i, j)← Ŵ [k + 1];
7: while i′ < i, j′ < j, J≺X[i](j) ≤ j

′, and I≺Y [j](i) ≤ i
′,

8: Ŵ [k + 1]← (i− 1, j − 1);
9: (i, j)← Ŵ [k + 1];

10: if i = i′ or j = j′, then
11: Ŵ [k + 1]← (I�W [k+1](i

′) + 1, J�W [k+1](j
′) + 1);

12: k ← k + 1,
13: otherwise, if J≺X[i](j) > j′, then
14: W ←W (0, k] ◦X[i] ◦W (k, |W |];
15: Ŵ ← Ŵ (0, k] ◦ (i− 1, J≺X[i](j)− 1) ◦ Ŵ (k, |Ŵ |],
16: otherwise,
17: W ←W (0, k] ◦ Y [j] ◦W (k, |W |];
18: Ŵ ← Ŵ (0, k] ◦ (I≺Y [j](i)− 1, j − 1) ◦ Ŵ (k, |Ŵ |];
19: output W .

if X[ik+1] appears in Y (jk, jk+1] (i.e., if J≺X[ik+1](jk+1) > jk), then the algorithm updates W
to W (0, k] ◦X[ik+1] ◦W (k, |W |] and also updates Ŵ to Ŵ (0, k] ◦ (i, j) ◦ Ŵ (k, |Ŵ |], where i
(resp. j) is the index such that X(i, |X|] (resp. Y (j, |Y |]) is the shortest suffix of X (resp. Y)
containing X[ik+1] ◦W (k, |W |], i.e., i = ik+1 − 1 (resp. j = J≺X[ik+1](jk+1)− 1). Otherwise,
since Y [jk+1] appears in X(ik, ik+1], the algorithm updatesW and Ŵ in a symmetric manner
with respect to Y [jk+1].

A pseudocode of the proposed algorithm is given as Algorithm findMCS in Algorithm 1,
where we assume that, by an O(n log logn)-time preprocessing, arrays I and J are available
as data structures supporting O(log logn)-time queries of any of indices I≺c (i), I�c (i), J≺c (j),
and J�c (j). In this pseudocode, variables i′, j′, i, and j are respectively used to represent
indices ik, jk, ik+1, and jk+1, where (ik, jk) = Ŵ [k] and (ik+1, jk+1) = Ŵ [k+ 1]. A concrete
example of how this algorithm works is presented in Figure 1.

As mentioned earlier, the following condition holds at any execution of line 7 of this
algorithm and also at the last execution of line 4.

I Definition 3. For any string W , any index pair sequence Ŵ = (i1, j1) ◦ (i2, j2) ◦ · · · ◦
(i|W |, j|W |), and any index k, let C(W, Ŵ , k) denote the condition that

W is a common subsequence of X and Y containing c1 ◦ c|Σ|,
1 ≤ k ≤ |W |,
for any index k′ with 1 ≤ k′ ≤ k − 1, X(iak′ , i`k′+1] and Y (jak′ , j`k′+1] are disjoint,
(ik, jk) = (iak , jak), and
for any index k′ with k ≤ k′ ≤ |W | − 1,
ik ≤ ik′+1 ≤ i`k′+1,
jk ≤ jk′+1 ≤ j`k′+1,
X(ik′+1, i

`
k′+1] and Y (jk, j`k′+1] are disjoint, and

Y. Sakai 1:5

^ d c c e f e b c c c f b b f b h a b h $

^ d d a c e g a g a a b d a c g g i a i $e f

g

Figure 1 A maximal common subsequence W = d̂cebfag$ of X = d̂ccefebcccfbbfbhagbh$ and
Y = d̂dacegagaabefdacggiai$ with c1 = ˆ and c|Σ| = $, which is output by Algorithm findMCS.
Lines 5 through 18 of the algorithm are executed fifteen times and for each number t with 1 ≤ t ≤ 15,
the tth most inner pair of arrows (one solid and the other dotted, which are of the same length)
indicates which index pairs (i, j) are considered by line 7 throughout the tth iteration of lines 5
through 18, where the dotted arrow is chosen so as to show that the sum of the length of all dotted
arrows is at most 2(|X|+ |Y |). Each dashed line between X[i] and Y [j] indicates that Ŵ is replaced
by Ŵ (0, k] ◦ (i− 1, j − 1) ◦ Ŵ (k, |Ŵ |] by either line 15 or line 18. Each solid line between X[i′] and
Y [j′], other than the leftmost one, indicates that Ŵ [k + 1] is set to index pair (i′, j′) by line 11.

X(ik, i`k′+1] and Y (jk′+1, j
`
k′+1] are disjoint,

where, for any index k′ with 0 ≤ k′ ≤ |W |, iak′ (resp. jak′) is the least index such that X(0, iak′]
(resp. Y (0, jak′]) contains W (0, k′] and i`k′+1 (resp. j`k′+1) is the greatest index such that
X(i`k′+1, |X|] (resp. Y (j`k′+1, |Y |]) contains W (k′, |W |].

I Lemma 4. Condition C(W, Ŵ , k) holds at any execution of line 7 of Algorithm findMCS
and also at the last execution of line 4.

Proof. The lemma is proven by induction. Since C(c1 ◦ c|Σ|, (1, 1) ◦ (|X| − 1, |Y | − 1), 1)
holds at the first execution of line 7, assume that C(W, Ŵ , k) holds at an arbitrary execution
of line 7. Let (i′, j′) = Ŵ [k] and let (i, j) = Ŵ [k + 1]. If i′ < i, j′ < j, J≺X[i](j) ≤ j′, and
I≺Y [j](i) ≤ i

′, then C(W, Ŵ (0, k] ◦ (i− 1, j − 1) ◦ Ŵ (k + 1, |W |], k) holds, because i′ ≤ i− 1,
j′ ≤ j − 1, X[i] does not appear in Y (j′, j], and Y [j] does not appear in X(i′, i]. If i = i′

or j = j′, then C(W, Ŵ (0, k] ◦ (I�W [k+1](i
′) + 1, J�W [k+1](j

′) + 1) ◦ Ŵ (k + 1, |W |], k + 1)
holds, because X(iak , i`k+1] and Y (jak , j`k+1] are disjoint. If i′ < i, j′ < j, and J≺X[i](j) >
j′, then C(W (0, k] ◦ X[i] ◦W (k, |W |], Ŵ (0, k] ◦ (i − 1, J≺X[i](j) − 1) ◦ Ŵ (k, |W |], k) holds,
because X(i − 1, |X|] (resp. Y (J≺X[i](j) − 1, |Y |]) is the shortest suffix of X (resp. Y)

CPM 2018

1:6 Maximal Common Subsequence Algorithms

that contains X[i] ◦ W (k, |W |]. Analogously, if i′ < i, j′ < j, and I≺Y [j](i) > i′, then
C(W (0, k] ◦ Y [j] ◦W (k, |W |], Ŵ (0, k] ◦ (I≺Y [j](i)− 1, j − 1) ◦ Ŵ (k, |W |], k) holds. J

The following simple lemma plays a key role in estimating execution time of the algorithm.
This lemma claims, for example, that the situation where any solid line other than the
leftmost and rightmost ones in Figure 1 shares at least one of endpoints with a unique dotted
line is inevitable.

I Lemma 5. At least one of I�W [k+1](i
′) = i`k+1 or J�W [k+1](j

′) = j`k+1 holds at any execution
of line 11 in Algorithm findMCS, where i`k+1 and j`k+1 are the indices in Definition 3.

Proof. Since X(i′, i`k+1] and Y (j′, j`k+1] are disjoint due to Lemma 4, W [k + 1] does not
appear in at least one of X(i′, i`k+1] or Y (j′, j`k+1]. J

I Theorem 6. For any strings X and Y of length O(n) with |Σ| = O(n), Algorithm findMCS
outputs a maximal common subsequence of X and Y in O(n log logn) time and O(n) space.

Proof. Since C(W, Ŵ , |W |) holds at the last execution of line 4 of the algorithm due to
Lemma 4, it follows from Lemma 2 that W output by the algorithm is a maximal common
subsequence of X and Y .

Execution time of the algorithm is estimated as follows. Let V be the eventual string
W output by line 19. For any index k with 0 ≤ k ≤ |V |, let gak (resp. hak) denote the
least index such that X(0, gak] (resp. Y (0, hak]) contains V (0, k]. Let k be an arbitrary index
with 1 ≤ k ≤ |V | and consider W and Ŵ just before execution of line 11. Let iak , jak ,
i`k+1, and j`k+1 be the indices in Definition 3. Let (i′, j′) = Ŵ [k] and let (i, j) = Ŵ [k + 1].
Note that i′ = iak and j′ = jak due to Lemma 4. Since i = i′ or j = j′, Ŵ [k + 1] is
obtained from (i`k+1, j

`
k+1) by executing either line 15 or line 18 and then executing line 8

iteratively min(i`k+1− iak , j`k+1− jak) times. This implies that execution time of the algorithm
is O(

∑|V |−1
k=1 min(i`k+1 − iak , j`k+1 − jak) logn). Since W (0, k] = V (0, k], both iak = gak and

jak = hak hold. Similarly, since W (0, k + 1] = V (0, k + 1], both I�W [k+1](i
′) + 1 = gak+1 and

J�W [k+1](j
′) + 1 = hak+1 hold. Therefore, from Lemma 5, i`k+1 + 1 = gak+1 or j`k+1 + 1 = hak+1

holds and hence we have that min(i`k+1 − iak , j`k+1 − jak) ≤ max(gak+1 − gak , hak+1 − hak). Since
ga1 = 1, ha1 = 1, ga|V | = |X|, and ha|V | = |Y |,

∑|V |−1
k=1 max(gak+1−gak , hak+1−hak) ≤ |X|+ |Y | =

O(n). Thus,
∑|V |−1
k=1 min(i`k+1 − iak , j`k+1 − jak) = O(n), implying that the algorithm outputs

V in O(n log logn) time.
The algorithm uses variables W , Ŵ , k, i′, j′, i, and j, together with data structures I

and J , which all require O(n) space. J

4 Algorithm for finding a constrained maximal common subsequence

This section modifies Algorithm findMCS so as to output, for any common subsequence P of
X and Y given as an additional input string, a maximal common subsequence of X and Y
that contains P in O(n log logn) time and O(n) space, where we assume the same condition
of X and Y as in Section 3 and also assume that P [1] = c1, P [|P |] = c|Σ| and neither c1 nor
c|Σ| appears in P (1, |P | − 1]. Note that W [1] = c1, W [|W |] = c|Σ|, and W (1, |W | − 1] is a
maximal common subsequence of X(1, |X| − 1] and Y (1, |Y | − 1] containing P (1, |P | − 1] for
any maximal common subsequence W of X and Y containing P .

The only difference of the modified algorithm from the original algorithm is to initialize
W to P , instead of c1 ◦ c|Σ|, and Ŵ to a certain index pair sequence P̂ satisfying C(P, P̂ , 1),

Y. Sakai 1:7

Algorithm 2: Algorithm findCMCS
1: W ← P ;
2: Ŵ ← ε;
3: i← |X| − 1; j ← |Y | − 1;
4: for each index k from |P | − 1 down to 1,
5: while X[i+ 1] 6= P [k + 1],
6: i← i− 1;
7: while Y [j + 1] 6= P [k + 1],
8: j ← j − 1;
9: Ŵ ← (i, j) ◦ Ŵ ;
10: i← i− 1; j ← j − 1;
11: Ŵ ← (1, 1) ◦ Ŵ ;
12: k ← 1;
13: do the same as lines 4 through 19 of Algorithm findMCS.

instead of (1, 1) ◦ (|X| − 1, |Y | − 1). Since lines 4 through 19 of the original algorithm
delete no characters from W , the modified algorithm eventually outputs a maximal common
subsequence of X and Y that contains P in O(n log logn) time after initialization of (W, Ŵ , 1)
to (P, P̂ , 1). For any index k with 1 ≤ k ≤ |P |, let i`k+1 (resp. j`k+1) be the greatest index such
that X(i`k+1, |X|] (resp. Y (j`k+1, |Y |]) contains P (k, |P |]. Then, Definition 3 immediately
suggests that P̂ can be set to (1, 1) ◦ (i`2 , j`2) ◦ (i`3 , j`3) ◦ · · · ◦ (i`|P |, j`|P |). Thus, we have
Algorithm findCMCS presented in Algorithm 2 as an O(n log logn)-time algorithm for finding
a maximal common subsequence of X and Y containing P .

I Theorem 7. For any strings X and Y of length O(n) with |Σ| = O(n) and any common
subsequence P of X and Y , Algorithm findCMCS outputs a maximal common subsequence of
X and Y containing P in O(n log logn) time and O(n) space.

Proof. It is easy to verify by induction that, for any index k with 1 ≤ k ≤ |P | − 1, X(i, |X|]
(resp. Y (j, |Y |]) at execution of line 9 of the algorithm are the shortest suffix of X (resp.
Y) that contains P (k, |P |]. Therefore, W , Ŵ , and k just after execution of line 12 satisfy
C(W, Ŵ , k). Since lines 1 through 12 are executed in O(n) time, the theorem can be proven
in a way similar to the proof of Theorem 6. J

5 Algorithm for determining if a common subsequence is maximal

This section proposes an O(n)-time algorithm that determines, for any strings X and Y of
length O(n) with |Σ| = O(n) and any common subsequence W of X and Y given as input,
whether W is maximal or not.

The proposed algorithm is based on Lemma 2. Using an array of |Σ| bits, each being
used to indicate if a distinct character in Σ appears in Yk, we can determine if Xk and Yk
are disjoint in O(|Xk|+ |Yk|) time for any index k with 0 ≤ k ≤ |W |, where Xk and Yk are
the substrings of X and Y in Lemma 2, respectively. However, this naive approach provides
only an O(n2)-time algorithm, because both |Xk| and |Yk| can be Θ(n) for all indices k and
|W | can also be Θ(n). In order to reduce this execution time to O(n), the algorithm exploits
the fact that if Xk−1 and Yk−1 are disjoint, then the prefix X/

k of Xk overlapping Xk−1 and
the prefix Y /k of Yk overlapping Yk−1 are also disjoint; otherwise, W is not maximal due to
Lemma 2, where X−1 = X(0, 0] and Y−1 = Y (0, 0]. From this fact, if Xk−1 and Yk−1 are

CPM 2018

1:8 Maximal Common Subsequence Algorithms

Algorithm 3: Algorithm determineIfMCS
1: ia0 ← 0; ja0 ← 0; i`|W |+1 ← |X|; j`|W |+1 ← |Y |;
2: k ← 1;
3: for each index i from 1 to |X|,
4: if k ≤ |W | and X[i] = W [k], then
5: iak ← i;
6: k ← k + 1;
7: k ← |W | − 1;
8: for each index i from |X| down to 1,
9: if k ≥ 1 and X[i] = W [k + 1], then

10: i`k+1 ← i− 1;
11: k ← k − 1;
12: k ← 1;
13: for each index j from 1 to |Y |,
14: if k ≤ |W | and Y [j] = W [k], then
15: jak ← j;
16: k ← k + 1;
17: k ← |W | − 1;
18: for each index j from |Y | down to 1,
19: if k ≥ 1 and Y [j] = W [k + 1], then
20: j`k+1 ← j − 1;
21: k ← k − 1;
22: for each character c in Σ,
23: ic ← 0;
24: jc ← 0;
25: for each index k from 0 to |W |,
26: for each index i from i`k + 1 to i`k+1, where i`0 = 0,
27: iX[i] ← i;
28: if jX[i] > jak , then
29: output “not maximal” and halt;
30: for each index j from j`k + 1 to j`k+1, where j`0 = 0,
31: jY [j] ← j;
32: if iY [j] > iak , then
33: output “not maximal” and halt;
34: output “maximal”.

disjoint, then whether Xk and Yk are disjoint can be determined only by checking if X.
k and

Y /k are disjoint as well as checking if Xk and Y .k are disjoint, where X.
k (resp. Y .k) are the

remaining suffix of Xk (resp. Yk) after deleting prefix X/
k (resp. Y /k). Note however that,

as long as using the array of |Σ| bits, it still takes O(|Xk|+ |Yk|) time to determine if Xk

and Yk are disjoint. The algorithm reduces this execution time to O(|X.
k |+ |Y .k |) by using,

instead of the bit array, a pair of arrays of |Σ| indices. Each index in one (resp. the other) of
the arrays in the pair is used to represent the last position at which a distinct character in
Σ appears in the prefix of Y (resp. X) having Y /k (resp. Xk) as a suffix. This index array
allows the algorithm to determine if any character in X.

k (resp. Y .k) appears in Y /k (resp.
Xk) in O(1) time. Furthermore, since the prefix of Y (resp. X) having Y /k (resp. Xk) as a

Y. Sakai 1:9

suffix is the concatenation of the prefix of Y (resp. X) having Y /k−1 (resp. Xk−1) as a suffix
followed by Y .k−1 (resp. X.

k), for each k, this index array can be updated appropriately in
O(|Y .k−1|) (resp. O(|X.

k |)) time.
We show that Algorithm determineIfMCS presented in Figure 3 works as the proposed

algorithm.

I Theorem 8. For any strings X and Y of length O(n) with |Σ| = O(n) and any common
subsequence W of X and Y , Algorithm determineIfMCS outputs message “not maximal”,
if W is not a maximal common subsequence of X and Y , or outputs message “maximal”,
otherwise, in O(n) time.

Proof. For any index k with 0 ≤ k ≤ |W |, let Xk and Yk be the strings in Lemma 2
and let indices iak , i`k+1, jak , and j`k+1 be such that Xk = X(iak , i`k+1] and Yk = Y (iak , i`k+1].
Furthermore, let X/

k = X(iak ,max(i`k , iak)] and let X.
k = X(max(i`k , iak), i`k+1], where i`0 = 0.

Similarly, let Y /k = Y (jak ,max(j`k , jak)] and let Y .k = Y (max(j`k , jak), j`k+1], where j`0 = 0.
The algorithm uses index variable ic (resp. jc) for any character c in Σ. Let I (resp. J)
denote the array consisting of variables ic (resp. jc) for all characters c in Σ. For any index
k with −1 ≤ k ≤ |W |, let CI(k) (resp. CJ (k)) denote the condition that, for any character c
in Σ, X(ic, i`k+1] (resp. Y (jc, j`k+1]) is the longest suffix of X(0, i`k+1] (resp. Y (0, j`k+1]) in
which c does not appear.

After computing indices iak , jak , i`k , and j`k for all indices k with 0 ≤ k ≤ |W | by lines 1
through 21 of the algorithm, lines 22 through 24 initialize variables ic and jc so that CI(−1)
and CJ (−1) hold. Then, for any index k from 0 to |W |, lines 25 through 33 check if Xk and
Yk are disjoint as follows. Since either k = 0 or Xk−1 and Yk−1 are disjoint, X/

k and Y /k are
disjoint. Therefore, it suffices to check if X.

k and Y /k are disjoint and check if Xk and Y .k are
disjoint. Lines 27 through 29 update I so as to satisfy CI(k) by iteratively executing line
27 and also check if X.

k and Y /k are disjoint by iteratively executing line 28 using array J
satisfying CJ(k − 1). If X.

k and Y /k are not disjoint, then, since jX[i] > jak holds for some
index i with i`k + 1 ≤ i ≤ i`k+1 due to CJ (k− 1), line 29 outputs message “not maximal” and
terminates the algorithm; otherwise, line 29 is never executed also due to CJ(k − 1) and
hence lines 30 through 33 are executed. Lines 30 through 33 update array J so as to satisfy
CJ (k) and check if Xk and Y .k are disjoint using array I satisfying CI(k) in a similar manner.
Thus, the algorithm works correctly.

It is easy to verify that the algorithm runs in O(n) time. J

6 Conclusion

The present article proposed an O(n log logn)-time, O(n)-space algorithm that finds a
maximal common subsequence of two O(n)-length strings over an alphabet set of O(n)
characters, which are totally ordered, where n is an arbitrary positive integer and a common
subsequence is maximal, if inserting any character into it can no longer yields a common
subsequence. It is also shown that, without increasing asymptotic time and space complexities,
this algorithm can be used to find a constrained maximal common subsequence, which
contains a common subsequence given arbitrarily as a “relevant” pattern, after an appropriate
initialization of some variables. Furthermore, an O(n)-time algorithm that determines if a
given common subsequence is maximal was also proposed.

There remain some questions to be solved, which are related to the problems considered
in the present article. Our algorithms run much faster than those proposed so far (and also
all possible algorithms under SETH) for the LCS-related problems corresponding to ours.
One reason for this difference is that any common subsequence is certainly a subsequence

CPM 2018

1:10 Maximal Common Subsequence Algorithms

of some maximal common subsequence but is not necessarily a subsequence of any LCS.
This fact naturally poses a question whether we can find a restricted maximal common
subsequence, which does not contain a common subsequence given as an “irrelevant” pattern,
in O(n log logn) time and O(n) space, because some restricted non-maximal common sub-
sequences are not necessarily subsequences of any restricted maximal common subsequence.
The gap between asymptotic execution time of the proposed algorithms for finding a maximal
common subsequence and for determining if a common subsequence given is maximal imme-
diately poses another natural question whether we can find a maximal common subsequence
in O(n) time.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness res-

ults for lcs and other sequence similarity measures. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

2 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common sub-
sequence problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

3 Francis YL Chin, Alfredo De Santis, Anna Lisa Ferrara, NL Ho, and SK Kim. A simple al-
gorithm for the constrained sequence problems. Information Processing Letters, 90(4):175–
179, 2004.

4 Campbell B Fraser, Robert W Irving, and Martin Middendorf. Maximal common
subsequences and minimal common supersequences. Information and Computation,
124(2):145–153, 1996.

5 Zvi Gotthilf, Danny Hermelin, Gad M Landau, and Moshe Lewenstein. Restricted LCS. In
International Symposium on String Processing and Information Retrieval, pages 250–257.
Springer, 2010.

6 Daniel S Hirschberg. Algorithms for the longest common subsequence problem. Journal of
the ACM (JACM), 24(4):664–675, 1977.

7 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

8 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

9 Yin-Te Tsai. The constrained longest common subsequence problem. Information Pro-
cessing Letters, 88(4):173–176, 2003.

10 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal
of the ACM (JACM), 21(1):168–173, 1974.

11 Dan E Willard. Log-logarithmic worst-case range queries are possible in space Θ(N). In-
formation Processing Letters, 17(2):81–84, 1983.

	Introduction
	Preliminaries
	Algorithm for finding a maximal common subsequence
	Algorithm for finding a constrained maximal common subsequence
	Algorithm for determining if a common subsequence is maximal
	Conclusion

