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Abstract
An Elastic-Degenerate String [Iliopoulus et al., LATA 2017] is a sequence of sets of strings, which
was recently proposed as a way to model a set of similar sequences. We give an online algorithm
for the Elastic-Degenerate String Matching (EDSM) problem that runs in O(nm

√
m logm+N)

time and O(m) working space, where n is the number of elastic degenerate segments of the text,
N is the total length of all strings in the text, and m is the length of the pattern. This improves
the previous algorithm by Grossi et al. [CPM 2017] that runs in O(nm2 +N) time.
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1 Introduction

The degenerate string matching problem [7, 1] is a variant of the string matching problem
when a position in the text may contain uncertainties; the text string, called a degenerate
string, can be regarded as a string over an extended alphabet that consists of non-empty
subsets of the original alphabet. A string matches a degenerate string if the subset at each
position of the degenerate string contains the character of the pattern at the corresponding
position. The Elastic Degenerate String Matching (EDSM) problem, first proposed by
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Iliopoulos et al. [9], is a further generalization of this setting, where substrings of the text
may contain uncertainties; the text string, called an elastic degenerate string (ED string), can
be regarded as a sequence of non-empty sets of strings. A string matches an ED string if it is
a substring of a string that can be obtained by taking a string from each position of the ED
string, and concatenating them. The motivation behind these problems is in bioinformatics,
where multiple genomic sequences from individuals of the same species can be obtained.
Recently, rather than than considering a single reference sequence, it is increasingly more
common to consider the multiple sequences [4], and ED strings is one way to model them.

Iliopoulos et al. [9], gave an (offline) algorithm which runs in O(N + αγnm) time, where
m is the length of the given pattern, n and N are respectively the length and total size
of the given elastic-degenerate text, α and γ respectively represent the maximum number
of strings in any elastic degenerate symbols and the largest number of elastic-degenerate
symbols spanned by any occurrence of the pattern in the text.

The online version of the problem was considered by Grossi et al. [8], where they gave
an algorithm which runs in O(nm2 + N) time. They also give an algorithm which runs
in O(Ndmw e) time, where w is the computer word size. Furthermore, Bernardini et al. [3]
consider the EDSM problem with errors, and presented an on-line algorithm that runs in
O((k + 1)2

mG+ (k + 1)N) time and O(m) space, where k is the number of allowed errors
(insertion/deletion/substitution), and n ≤ G ≤ N is the total size of the sets of subsets (i.e.,
the total number of strings) in the ED string. They also present a faster O((k+ 1)(mG+N))
time and O(m) space algorithm when considering only substitution errors.

In this paper, we improve the first algorithm by Grossi et al., and give a faster on-
line algorithm for EDSM that runs in O(nm

√
m logm+N) time and O(m) working space,

assuming that the alphabet size is constant, as in previous work. For the space complexity, we
will also assume that the strings at each position of the ED string are given in lexicographically
sorted order. We note that the algorithm can be considered better than that of Bernardini et
al. (with k = 0), when each subset in the ED string may contain many strings, which could
be the case as more sequences from many individuals become increasingly available.

2 Preliminaries

2.1 Strings

For any set Σ, an element of Σ∗ is called a string over alphabet Σ. We will assume that |Σ| is
constant. The empty string is denoted by ε. For any string w ∈ Σ∗, if w = xyz for (possibly
empty) strings x, y, z, then, x, y, and z are respectively called a prefix, substring, suffix of w.
The length of w is denoted by |w|. Let Pref (w),Sub(w),Suf (w) respectively denote the set
of prefixes, substrings, and suffixes of w. For any integers 1 ≤ i ≤ j ≤ |w|, w[i] denotes the
ith symbol of w, i.e., w = w[1] · · ·w[|w|], and w[i..j] = w[i] · · ·w[j] denotes a substring of w
that starts at position i and ends at position j. For convenience, let w[i..j] = ε when i > j,
w[i..j] = w[1..j] when i < 1, and w[i..j] = w[i..|w|] when j > |w|.

If w = xu = vx for non-empty strings u, v and possibly empty x, then x is called a border
of w. The border array of w is an array B[1..|w|] of integers such that B[i] stores the length
of the longest border of w[1..i]. It is well known that the border array of w can be computed
in linear time in an on-line fashion. Also, given the border array of w, the length of all
borders of w can be computed in linear time.
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2.2 Elastic-Degenerate Strings
Let Σ̃ denote the set of all finite non-empty subsets of Σ∗ excluding {ε}. An Elastic-
Degenerate string, or ED string, over alphabet Σ, is a string over Σ̃, i.e., an ED string is an
element of Σ̃∗. Below is an example of an ED string over Σ = {A,C, T}.

I Example 1 (Elastic-Degenerate String).

T̃ =
{
A,

C

}
·


C,

CA,

TACA

 ·


ε,

AC,

C

 ·
{
AT,

C

}

Let T̃ denote an ED string of length n, i.e. |T̃ | = n. We assume that for any 1 ≤ i ≤ n,
the set T̃ [i] is implemented as an array and can be accessed by an index, i.e., T̃ [i] =
{T̃ [i][k] | k = 1, . . . , |T̃ [i]|}. We will also make the assumption that the strings in T̃ [i], i.e.,
T̃ [i][1], . . . , T̃ [i][|T̃ [i]|], are sorted in lexicographic order. For any c̃ ∈ Σ̃, ‖c̃‖ denotes the
total length of all strings in c̃, and for any ED string T̃ , ‖T̃‖ denotes the total length of all
strings in all T̃ [i] for i = 1, . . . , |T̃ |, i.e., ‖c̃‖ =

∑
s∈c̃ |s| and ‖T̃‖ =

∑n
i=1 ‖T̃ [i]‖. We note

that Grossi et al. define |ε| = 1 when computing ‖T̃‖, but this only increases the value of
‖T̃‖ by at most n (which is less than ‖T̃‖, in our definition, since ‖c̃‖ ≥ 1 for any c̃ ∈ Σ̃) and
thus does not affect the asymptotic complexities.

An ED string T̃ can be thought of as a representation of the set of strings A(T̃ ) =
T̃ [1]× · · · × T̃ [n], where A×B = {xy | x ∈ A, y ∈ B} for any sets of strings A and B. The
string in Example 1 can be viewed as a representation of a of 2× 3× 3× 2 = 36 strings.

For any ED string T̃ and string P , we say that P matches T̃ if
1. |T̃ | = 1 and P is a substring of some s ∈ T̃ [1], or,
2. |T̃ | > 1 and P = p1 · · · p|T̃ | where p1 is a suffix of some string in T̃ [1], p|T̃ | is a prefix of

some string in T̃ [|T̃ |], and pi ∈ T̃ [i] for all 1 < i < |T̃ |.
We say that an occurrence of P in T̃ starts at position i and ends at position j, if P matches
T̃ [i..j]. Below is the problem we solve.

I Problem 2 (Elastic-Degenerate String Matching (EDSM) [8]). Given a string P of length
m, and an ED string T̃ of length n and size N ≥ m, output all positions j in T̃ where at
least one occurrence of P ends.

We will measure space complexity in terms of working space, and exclude the input pattern
and ED string, which we assume to be stored in read-only memory, as well as the space for
output, which is write-only.

3 Tools

3.1 Suffix Trees
A suffix tree [11] ST (w) of a string w is a compacted trie of all suffixes of w$, where $ is
a special symbol that does not occur in w. In other words, the suffix tree of w is a rooted
tree where each edge has string labels, where all and only suffixes of w$ are represented
in the concatenation of all labels on a root to leaf path. Furthermore, each internal node
has at least two outgoing edges where the first character of the label of the outgoing edges
are distinct. We assume that each leaf is labeled by an integer that represents the starting
position of the suffix that corresponds to the root to leaf path. Although the total length
of all labels in a suffix tree is not O(|w|), each label can be represented in constant space,

CPM 2018
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i.e., two integers representing positions in w, since any edge label is a substring of w. It
is well known that the suffix tree of w can be constructed in O(|w|) time for constant size
alphabets [11] (as well as integer alphabets [6]).

For any node u in the suffix tree, let str(u) denote the concatenation of all edge labels on
the root to u path, and let len(u) = |str(u)|. Let parent(u) denote the parent of u, and anc(u),
desc(u) respectively, the set of nodes in the suffix tree that are ancestors and descendants of
u, including u itself. A position in the suffix tree can be represented a a pair (u, d), where u
is a node and d ≥ 0 is an integer such that d ≤ |str(u)| and d > |str(parent(u))| (if parent(u)
exists). For any substring s of w, the locus of s in ST (w) is a position (u, d) in ST (w) where
s = str(u)[1..d]. For any string s, the locus of the longest prefix s′ of s that is a substring of
w can be obtained in O(|s′|) time by simply traversing the suffix tree from the root.

We denote by L(u), the set of integers that are labels on the leaf nodes that are descendants
of u. Let Occ(w, s) denote the set of occurrences of s in w, i.e. Occ(w, s) = {i | w[i..i+ |s| −
1] = s}. Suffix trees can be used to compute this set efficiently, since Occ(w, s) = L(vs),
where (vs, |s|) is the locus of s in ST (w), if it exists, and Occ(w, s) = ∅ otherwise.

I Lemma 3 ([11]). Given the suffix tree ST (w) of string w, Occ(w, s) for any string s can
be computed in O(|s|+ Occ(w, s)) time.

3.2 Sum Set and FFT
For any sets of integers A,B, we denote by A⊕B = {a+ b | a ∈ A, b ∈ B} the sum set of A
and B.

I Lemma 4 (Efficient Computation of SumSet). For any integer m and sets of integers
A,B ⊆ [1..m], A⊕B can be computed in O(m logm) time and O(m) space.

Proof. For any set X ⊆ [1..m], let I(X) denote an array of Boolean (true or false) values
where I(X)[i] = true if and only if i ∈ X. For any 1 ≤ i ≤ m, I(A⊕B) can be computed
by the Boolean convolution:

I(A⊕B)[i] =
m∨
j=1

(I(A)[i− j] ∧ I(B)[j]).

It is well known that these values can be done in total O(m logm) time and O(m) space for
all 1 ≤ i ≤ m, using the Fast Fourier Transform [5]. The set A⊕B can easily be obtained in
O(m) time by scanning I(A⊕B)[1..m]. J

4 Algorithm

We first give an overview of the algorithm of Grossi et al. [8] which our algorithm is based
on, and then describe our improvements to it.

4.1 Overview of Algorithm
The algorithm is on-line, i.e., for each ED string position i = 1, . . . , n, it outputs i as an
answer if there is an occurrence of P that ends at i, i.e., P matches T̃ [l..i] for some l ≤ i.
Although the total number of strings in A(T̃ [1..i]), and thus the total number of occurrences
of P in all these strings, can be exponential in i, the problem can be solved efficiently since
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we only consider whether there is an end of an occurrence of P in position i of the ED string.
To this end, the key of the algorithm is to compute for each i, the set

S≤i = {j | 1 < j ≤ m,∃s ∈ A(T̃ [1..i]) s.t. P [1..j − 1] is a suffix of s}

which represents the positions j in P such that P [1..j − 1] occurs as a suffix of some string
in A(T̃ [1..i]). In other words, the set corresponds to potential positions j in P that can
result in a match later, if P [j..m] is a prefix of some string in A(T̃ [i+ 1..n]). For each i, the
computation performs the following steps:
1. Determine whether P matches T̃ [i].
2. If i > 1, determine whether P matches T̃ [l..i] for some l < i.
3. Compute S≤i .
Position i is output as an ending position of an occurrence of P , if and only if a match is
found in either Step 1 or 2. We basically follow previous work for computing Steps 1 and 2,
but consider the space usage. Our main contribution is the improvement of Step 3. We note
that the set S≤i , or more generally any subset of {1, . . . ,m} can be represented as a bit array
of size m, and determining membership, as well as adding/deleting elements, can be done in
O(1) time. Also, set union can be performed in O(m) time.

4.2 Computing Step 1

In Step 1, we simply determine whether P is a substring of some s ∈ T̃ [i].

I Lemma 5. Step 1 can be computed in total of O(m+ ‖T̃‖) time for all 1 ≤ i ≤ n, using
O(m) space.

Proof. For Step 1, we can use a linear time pattern matching algorithm such as KMP [10].
Since the pattern does not change, the preprocessing of the pattern is done once in O(m)
time. The matching can be done in O(‖T̃‖) time and O(m) space. J

4.3 Computing Step 2

Steps 2 (as well as Step 3) is computed using the suffix tree ST (P ) of P , and also uses S≤i−1.

I Lemma 6. Given S≤i−1, Step 2 can be computed in total of O(m + ‖T̃‖) time for all
1 ≤ i ≤ n, using O(m) space.

Proof. We first construct the suffix tree ST (P ) of P , which takes O(m) time and space.
Since, by definition, a value j ∈ S≤i−1 if and only if j > 1 and P [1..j − 1] is a suffix of some
s ∈ A(T̃ [1..i− 1]), we have, as observed previously, an occurrence of P that ends at position
i if and only if there exist j ∈ S≤i−1 and t ∈ T̃ [i] such that P [j..m] is a prefix of t.

This can be checked as follows: For each string t ∈ T̃ [i], traverse the suffix tree from
the root with t. We will detect such an occurrence of P , if, at any point in the traversal,
we reach a position corresponding to a suffix P [j..m] for some j ∈ S≤i−1, i.e., when we are
at the locus (u, d) of a prefix t′ = t[1..d] of t during the traversal, either (1) u is a leaf that
corresponds to the suffix P [j..m] for some j ∈ S≤i−1, and d = m − j + 1, or, (2) u has an
outgoing edge labeled by $ that leads to a leaf that corresponds to the suffix P [j..m] for
some j ∈ S≤i−1. Since the traversal can be done in O(|t|) time for each t, the total time for
all 1 ≤ i ≤ n is O(‖T̃‖). J

CPM 2018
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4.4 Computing Step 3
To compute S≤i , we will compute the two sets:

S=
i = {j | 1 < j ≤ m,∃s ∈ T̃ [i] s.t. P [1..j − 1] is a suffix of s}
S<i = {j + |t| : P [j..j + |t| − 1] = t, j ∈ S≤i−1, t ∈ T̃ [i], j + |t| ≤ m}.

Then, it is clear that S≤i = S=
i ∪ S<i .

4.4.1 Computing S=
i

We first describe how to compute S=
i .

I Lemma 7. S=
i can be computed in total of O(m+ ‖T̃‖) time for all 1 ≤ i ≤ n, using O(m)

space.

Proof. Consider the string P#T̃ [i][k] for each k = 1, . . . , |T̃ [i]|, where # is a character that
does not occur in P or T̃ [i][k]. Then, it is easy to see that

S=
i = {|b|+ 1 | 1 ≤ b < m, b is a proper border of P#T̃ [i][k]}.

Since the border array of a string can be computed in an on-line fashion and in linear
time [10], the border array of P# can be computed in O(m) time once. Furthermore, since
the last element of the border array of P# is 0, the remaining elements of the border array of
P#T̃ [i][k], and thus, the lengths of all borders of P#T̃ [i][k] can be computed in O(|T̃ [i][k]|)
time for any 1 ≤ k ≤ |T̃ [i]|. Thus, the total time for computing S=

i is O(m+ ‖T̃‖).
We note that the above description is slightly different from that of Grossi et al. [8],

where they describe the computation by computing the border array of the string

X = P#1T̃ [i][1]#2 · · ·#|T̃ [i]|T̃ [i][|T̃ [i]|].

Although Grossi et al. mention that the time and space complexities for the preprocessing
(for computing the border array of P ) are O(m), they do not explicitly mention the space
complexity of their matching algorithm. A naive implementation of their description would
take O(m + max{‖T̃ [i]‖ | 1 ≤ i ≤ n}) extra space for computing the border array of X,
but this can easily be reduced to O(m) extra space, since (1) we can compute the borders
separately for each T̃ [i][k] as described above, and (2) P#T̃ [i][k] can be replaced with P#Y ,
where Y = T̃ [i][k][l −m+ 2..l] and l = |T̃ [i][k]|, to obtain the same result. J

4.4.2 Computing S<
i

We first describe how Grossi et al. compute S<i . Basically, their algorithm is a fairly
straightforward approach that uses ST (P ). For each t ∈ T̃ [i], compute the set {|t|} ⊕
(Occ(P, t) ∩ S≤i−1). Then, S<i is the union of this set for all t ∈ T̃ [i], i.e.,

S<i =
⋃
t∈T̃ [i]

(
{|t|} ⊕ (Occ(P, t) ∩ S≤i−1)

)
. (1)

By Lemma 3, each {|t|}⊕ (Occ(P, t)∩S≤i−1) can be computed in O(|t|+ |Occ(P, t)|) time, and
thus the total time is O(

∑
t∈T̃ [i](|t|+ |Occ(P, t)|)) = O(‖T̃ [i]‖+

∑
t∈T̃ [i] |Occ(P, t)|). Since

all strings in T̃ [i] are distinct,
∑
t∈T̃ [i] |Occ(P, t)| = O(m2), thus, giving an algorithm that

computes S<i in O(‖T̃ [i]‖+m2) time.
Next, we describe how to improve the running time. Our main idea is: rather than

compute the sum set independently for each element t ∈ T̃ [i], we appropriately group together
elements in T̃ [i] so that the efficient sum set computation of Lemma 4 can be used.
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Figure 1 Example of a partition of ST(P ) for P = aababaabbabccac with τ = 4. There are 25
nodes (including leaves) in total. The black nodes represent the root of each component, and the
dotted edges represent boundary edges. By construction, each component contains at least τ = 4
nodes, so there are 5 ≤ 25/4 components, and any sub-component rooted at a node that is not a
root of a component contains less than τ = 4 nodes.

I Lemma 8. S<i can be computed in O(‖T̃ [i]‖ + m
√
m logm) time using O(m) working

space.

Proof. To improve the running time, we first partition ST (P ) into subtrees as follows, similar
to the micro-macro decomposition [2].

Let τ > 1 be a parameter that will be chosen later. Define the weight W (v) of a node v
as

W (v) =


1 v is a leaf
W ′(v) W ′(v) < τ

0 W ′(v) ≥ τ or v is the root.

where W ′(v) = 1+
∑
u∈chldr(v) W (u). The tree is partitioned into subtrees so that all nodes v

such that W (v) = 0 are roots of the subtrees that comprise the partition, i.e., each incoming
edge to a node v with W (v) = 0 is a boundary of the partition. Such an edge will be called
a boundary edge. For all nodes v, it is clear that W (v) — and thus the partition, can be
computed in linear time by a post-order traversal on ST (P ). We will call each such subtree
in the partition a component. For any node v, we denote by C (v), the set of nodes that are
descendants of v, including v itself, and are in the same component as v. Also, let Cr(P )
denote the set of all roots of components of ST (P ). Figure 1 shows an example of a partition.
The important properties of such a partition are:
1. The total number of nodes (including leaves) contained in each component is Ω(τ).
2. The number of components is bounded by O(m/τ).
3. For any node u that is not a root of a component, |C (u)| = O(τ).

Now, since Occ(P, t) = L(vt), where (vt, |t|) is the locus of t in ST (P ), we can rewrite
Equation (1) as follows, by partitioning L(vt) according to the component that each leaf
belongs to:

CPM 2018
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⋃
t∈T̃ [i]

(
{|t|} ⊕ (Occ(P, t) ∩ S≤i−1)

)

=

 ⋃
t∈T̃ [i],vt 6∈Cr(P )

(
{|t|} ⊕ (L(vt) ∩ C (vt) ∩ S≤i−1)

) ∪ (2)

 ⋃
t∈T̃ [i]

⋃
v∈desc(vt)∩Cr(P )

(
{|t|} ⊕ (L(v) ∩ C (v) ∩ S≤i−1)

) (3)

Furthermore, by grouping together all t that correspond to ancestors of each component
when computing the sum set, we can rewrite Term (3) as follows:⋃

v∈Cr(P )

(
{|t| : t ∈ T̃ [i] ∩ vt ∈ anc(v)} ⊕ (L(v) ∩ C (v) ∩ S≤i−1)

)
(4)

First, we consider how to compute Term (2). For any t ∈ T̃ [i], its locus (vt, |t|) in ST (P )
can be computed in O(|t|) time, if it exists (we can simply ignore any t that does not occur
in P ). Since we only consider t such that vt is not a root of a component, |C (vt)| = O(τ)
(Property 3). Then, all elements in L(vt)∩C (vt)∩S≤i−1 can be obtained by a simple traversal
on C (vt), and thus {|t|} ⊕ (L(vt) ∩ C (vt) ∩ S≤i−1) can be obtained in O(τ) time. Note that
this can also be bounded by the size of the subtree of ST (P ) rooted at vt. Thus, the total
time for this traversal for all t ∈ T̃ [i] is O(

∑
t∈T̃ [i] min{τ, |Tvt

|}), where |Tvt
| denotes the size

of the subtree of ST (P ) rooted at vt. Now, let XS = {t | t ∈ T̃ [i], |t| ≤ τ}, XL = T̃ [i] \XS =
{t | t ∈ T̃ [i], |t| > τ}, i.e., XS is the set of strings in T̃ [i] shorter than or equal to τ , and XL

is the set of strings in T̃ [i] longer than τ . Then,∑
t∈T̃ [i]

min{τ, |Tvt |} =
∑
t∈XS

min{τ, |Tvt |}+
∑
t∈XL

min{τ, |Tvt |}

≤
∑
t∈XS

|Tvt
|+

∑
t∈XL

τ

=
τ∑
`=1

∑
t∈XS ,|t|=`

|Tvt
|+

∑
t∈XL

τ

= O(τm+ ‖T̃ [i]‖).

Here, the last inequality uses
∑
t∈XS ,|t|=` |Tvt | = O(m), which is true because all substrings

in XS are distinct, implying that all subtrees rooted at a given depth ` of the suffix tree are
disjoint and therefore their total size is O(m). Also,

∑
t∈XL

τ <
∑
t∈XL

|t| ≤ ‖T̃ [i]‖.
The total time for computing Term (2) is therefore O(τm+ ‖T̃ [i]‖).

Next, we consider how to compute Term (4). Notice that for any v ∈ Cr(P ), the size of
set {|t| : t ∈ T̃ [i] ∩ vt ∈ anc(v)} is O(m), since len(v) ≤ m+ 1, and can be obtained in O(m)
time provided that all loci of strings in T̃ [i] are marked on ST (P ). Also, L(v) ∩ C (v) ∩ S≤i−1
can also be computed in O(m) time. Since the sets can be computed in O(m) time, the sum
set can be computed in O(m logm) time using Lemma 4. The total time for all components
is therefore O(mτ m logm) (Property 2).

From the above arguments, the total time for computing Equation (1) is O(‖T̃ [i]‖+ τm+
m2

τ logm). By choosing τ =
√
m logm, we obtain O(‖T̃ [i]‖+m

√
m logm).

Concerning the space complexity, it is easy to implement the above algorithm in O(m+
|T̃ [i]|) space. The term |T̃ [i]| exists because in the above description, we assumed that we
had marked the locus of each t ∈ T̃ [i] on the suffix tree. If we assume that the strings



K. Aoyama, Y. Nakashima, T. I, S. Inenaga, H. Bannai, and M. Takeda 9:9

Algorithm 1: Pseudo code of algorithm for computing S<i .
Input: P , T̃ [i], S≤i−1, ST (P )
Output: S<i
// assumes T̃ [i] is lexicographically sorted.

1 S = ∅;
2 Function dfs(ancl, k, (vk, `k), v):
3 while vk = v do
4 ancl.push(`k);
5 k ← k + 1;
6 (vk, `k)← locus of T̃ [i][k] ; // (null, 0) if k > |T̃ [i]|
7 if W (v) = 0 then // v is a root of a component
8 S← S ∪ (ancl⊕ (L(v) ∩ C (v) ∩ S≤i−1));
9 for c ∈ chldr(v) do // in lexicographic order of children

10 dfs(ancl, k, (vk, `k), c); // recurse on child
11 while ancl.top() > len(c) do // discard visited descendants
12 ancl.pop();

13 ancl← empty stack;
14 r ← root of ST (P );
15 (v1, `1)← locus of T̃ [i][1];
16 dfs(ancl, 1, (v1, `1), r);
17 return S;

T̃ [i][1], . . . , T̃ [i][|T̃ [i]|] are lexicographically sorted, we can reduce the space by doing the
computation through a depth-first traversal on the suffix tree from left to right, during
which we only maintain the loci on the path we are considering. The space requirement
follows, since the length of this path is O(m). This is illustrated in the pseudo-code shown
in Algorithm 1. J

I Theorem 9. Problem 2 can be solved in O(N + nm1.5√logm) time using O(m) working
space.

Proof. For each i = 1 . . . , n, all computations other than Step 3 take O(‖T̃ [i]‖) time, while
Step 3 takes O(‖T̃ [i]‖ + m

√
m logm) time. Thus, for all 1 ≤ i ≤ n, the total time is

O(
∑n
i=1 ‖T̃ [i]‖+ nm

√
m logm) = O(N + nm

√
m logm). J

If we cannot assume that the strings in each T̃ [i] are sorted in lexicographic order, the
space complexity becomes O(m+ maxi=1,...,n |T̃ [i]|).

5 Conclusion

We present a new algorithm for the elastic degenerate string matching problem which runs
in O(nm

√
m logm+N) time using O(m) working space. While previous algorithms for the

EDSM problem are basically applications of now “standard” string matching techniques, our
algorithm applies a novel technique combining FFT and the suffix tree.

On a side note, it seems interesting that while Boolean convolution was the key technique
that Fischer and Paterson [7] used to solve the degenerate pattern matching problem, we
solve a generalized version of the problem with the same tool (Boolean convolution) but
applying it in a different way.

CPM 2018
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